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Abstract

An infrared laser propagating through a semiconductor waveguide, embedded with a density ripple of wave number q,
resonantly excites third harmonic radiation. The phase matching is achieved when q equals difference between third
harmonic wave number and three times the wave number of the laser. The excited third harmonic is in higher order
radial Eigen mode than the pump laser. The third harmonic efficiency increases with electron concentration and
decreases with the frequency of the laser.
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1. INTRODUCTION

Harmonic generation is a prominent nonlinear effect in
higher power electromagnetic wave matter interaction.
Extensive studies of second and third harmonic generation
have been carried out at microwave and laser wavelengths.
Recently, Verma and Sharma have studied second harmonic
generation from gas jet targets in the presence of strong
azimuthal magnetic fields, observed in many laser plasma
experiments. Sharma and Sharma have studied second har-
monic generation in a laser filament in plasma. The second
harmonic spectrum is broadened due to filamentation. In
dielectrics, the nonlinearity responsible for harmonic gener-
ation arises due to nonlinear polarizability, whereas in semi-
conductors and plasmas it arises due to ponderomotive force,
ohmic heating, and relativistic mass variation (Panwar &
Sharma, 2009; Verma & Sharma, 2009; Kaur et al., 2008;
Foldes et al., 2003).

Efficiency of energy conversion is limited by wave
number mismatch. The third harmonic wave number k3z,
for instance, exceeds three times the wave number of the
laser (k3z . 3kz), making harmonic generation a non-
resonant process. It has been suggested (Parashar and
Pandey, 1992; Rax and Fisch, 1992) that the application of
a density ripple of wave number q ¼ k3z 2 3kz can turn the
third harmonic generation into a resonant process, greatly

enhancing the efficiency. Sidick et al. (1994) have analyzed
ultra-short pulse (,50 fs) second harmonic generation in
quasi-phase-matched dispersive media in the regime of weak
conversion with phase mismatch, group-velocity mismatch,
and linear absorption accounted for. In addition to the
expected increase in conversion efficiency, the quasi-phase-
matched structure is shown to counteract pulse distortions.

Kuo et al. (2007) and Pai et al. (2006) have observed one
order of magnitude enhancement in third harmonic gener-
ation of a 0.8 mm laser from a gas jet target with an electron
density ripple created by using a machining laser beam. Liu
and Tripathi (2008) have developed an analytical formalism
of resonant third harmonic generation in rippled density
plasma and explained their results. Recently, Dahiya et al.
(2007) have observed similar behavior in their particle in
cell simulations.

Teubner et al. (2004) observed harmonics from the rear-
side of thin solid over-dense foils of carbon and aluminum,
employing 150 fs, 395 nm, 1018 Wcm22 laser. They
observe harmonics from the front-side in the specular reflec-
tion direction and harmonics up to tenth order along with the
fundamental from the rear-side. The intensity of the harmo-
nics proportional inversely to some power of harmonic
number n (in some region it goes as n22). They have found
that such behavior is due to the Brunel (1987) mechanism.
Liu and Parasher (2005) have developed a theory for harmo-
nic generation from oblique incident laser on a thin metal
foil, employing the Brunel model. The harmonic generation
is strongly sensitive to angle of incidence.
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Khurgin (1995) has theoretically shown that the flows of
direct current in a semiconductor can double the frequency
of the optical radiation. The second order susceptibility,
proportional to current is calculated to be in the 10214–
10213 m/V range. Ozaki et al. (2007) have studied intensive
harmonic generation from silver ablation. Tsang (1995) has
reported a 103 signal enhancement of third harmonic gener-
ation that is due to the excitation of a surface plasmon in thin
silver films by attenuated total internal reflection geometry.
Because the third harmonic generation signal depend on
the cube of the incident intensity and the second harmonic
generation depends on the square of the intensity, the third
harmonic generation overtakes the second harmonic gener-
ation at laser intensities beyond 6 × 1011 Wcm22.

Ganeev et al. (2001) have studied harmonic generation
from solid surfaces irradiated by 27 ps Nd: glass laser
pulses in the intensity range 1013–1015 W/cm2. Harmonic
emission up to fourth order is observed in specular reflection
direction with conversion efficiencies of 22 × 1028, 10210

and 5 ×10212 for second, third, and fourth harmonic respect-
ively, for a p-polarized pump beam at 1015 W/cm2. Dromey
et al. (2009) have given a simple technique for characterizing
the spatial profile of a laser spot size obtained on a solid
target during an interaction in the target focus regime
(,1025 m) by imaging the interaction region in third harmo-
nic order (3vlaser). Nearly linear intensity dependence of
3vlaser generation for interaction 1019 Wcm22 is demon-
strated experimentally and shown to provide the basis for
an effective focus diagnostic.

Serebryannikov et al. (2006) have proposed that the
Raman-shifted solitons in a photonic crystal fiber can serve
as a pump field for phase matched third harmonic generation
in a higher-order guided mode of the same fiber. Phase
matching for this solitons-dispersive–wave mixing process
differs in its physics and in its formal notation from the con-
ventional phase matching for third harmonic generation with
a dispersive pump.

In this paper, we study the generation of third harmonic of
laser radiation in semiconductor waveguide having density
ripple in the direction of laser propagation. The ripple pro-
vides the uncompensated momentum between the harmonic
photon and combining fundamental photons and conse-
quently leads to resonant enhancement of harmonic power.
The physics of the harmonic generation process is as
follows. A linearly polarized Eigen mode laser of frequency
v and wave vector kz, propagating through the

semiconductor waveguide imparts an oscillatory velocity
yv,kz to electrons. It also exerts a ponderomotive force on
them at the second harmonic, producing oscillatory velocity
y2v,2kz .The latter beats with the density ripple nqof wave
number q to produce a density oscillation n2v,2kz+q. This
density beats with yv,kz to produce a nonlinear current, reso-
nantly driving the third harmonic when 3kz + q equal the
third harmonic wave number.

In Section 2, we deduce the mode structure equation for
the laser in a semiconductor waveguide and obtain mode
structure and dispersion relation of a symmetrical TM
mode. In Section 3, we study the third harmonic generation
of a laser beam in ripple density semiconductor waveguide.
In section 4, we discuss the results.

2. SUB-MILLIMETER/LASER EIGEN MODES OF A
SEMICONDUCTOR SLAB

Consider a parallel plane n-type semiconductor guide of
width 2a (see Fig. 1), and electron density n ¼ n0

0 + nq;
nq ¼ n0q eiqz. A far-infrared laser or a sub-millimeter wave
propagates through it in the symmetric TM mode with

Ez = A(x) e−i(vt−kzz). (1)

The wave equation governing Ez is

∇2Ez +
v2

c21′
Ez = 0, (2)

where
1′ = 1 p = 1L − v2/v(v+ in) for − a , x , a,

= 1 for |x| . a,

1p is the dielectric constant of the semiconductor slab, 1L is
the lattice permittivity, n is collision frequency, vp ¼ (4p
no

o e2/m)1/2 and –e and m are the charge and effective
mass of an electron. One may write ∇2 = ∂2/∂x2 − k2

z in
Eq. (2) and solve it inside and outside the slab separately.
For the symmetric mode (EZ (2x) ¼ EZ (x)) one obtains

A = AI coskxx for − a , x , a,

= AII e−ax for x . a,

= AII e+ax for x , −a,

where

k2
x = v21p/c2 − k2

z

( )
, a = (k2

z − v2/c2)1/2.

The x component of the electric field can be obtained from
�∇ · �E = 0,

Ex = −i
kz

kx
AI sin (kxx)e−i(vt−kzz) for − a , x , a,

= ikz

a
AII e−axe−i(vt−kzz) for x . a. (3)Fig. 1. Propagation of Infrared laser beam in semiconductor wave guide of

finite width 2a.
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The continuity of Ez and 1′ Ex at (x ¼ +a) give

AI cos kxa = AIIe
−aa, (4)

AI sin kxa = −AIIe
−aa kx

a1p
, (5)

leading to the dispersion relation

tan kxa = −kx

a1p
. (6)

This dispersion relation is valid for third harmonic as well.
The phase matching in a third harmonic process is achieved
by a density ripple in the semiconductor wave guide that acts
as a virtual photon of zero quantum energy and momentum
h− �q (where �q is the wave vector of the density ripple) to reso-
nantly excite the third harmonic. When h− �k3 = 3h− �k + h− �q,
the extra momentum required for the generation of the
third harmonic photon is exactly provided by the virtual
photon. Figures 2 and 3 show the variation of dimensionless
laser frequency versus kxa and kza, respectively, in the
fundamental mode of laser beam. As the value of plasma fre-
quency vp increases, the laser frequency slowly increases
with kxa and tends toward infinite at a particular value of
kxa. Figures 4 and 5 shows the variation of dimensionless
laser frequency versus kxa and kza respectively in the
second and the third mode of laser beam. The upper and
lower curve of Figure 5 represents the third and second
mode of the laser beam, respectively.

The magnetic field of the laser in different regions is

�B = ŷ
c

iv

k2

kx
AI sin (kxx)e−i(vt−kzz) for − a , x , a,

= ŷ
c

iv

k2
z + a2

( )
a

AII e−axe−i(vt−kz z) for x . a, (7)

where k2 ¼ kx
2 + kz

2.

3. NONLINEAR CURRENT DENSITY AND THIRD
HARMONIC GENERATION

The electric field of the laser Eigen mode induces an oscil-
latory velocity on electron

�yI =
e�EI

miv
, (8)

and exerts a ponderomotive force on them at (2v, 2kz),

�FP = −e2

2mv2
�∇E2

I

Fig. 2. (Color online) Variation of dimensionless laser frequency va/c
versus dimensionless propagation vector kxa in the fundamental mode of
laser beam.

Fig. 3. (Color online) Variation of dimensionless laser frequency va/c
versus dimensionless propagation vector kza in the fundamental mode of
laser beam.

Fig. 4. (Color online) Variation of dimensionless laser frequency va/c
versus dimensionless propagation vector kza in the second and the third
mode of laser beam.
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�FP = −e2

2mv2
�∇E2

I = −e2

2mv2
ẑ2ikz

−k2

k2
x

sin2 kxx + 1

( )[
−̂x

k2

kx
sin 2kxx

]
A2

i e−i(2vt−2kzz). (9)

This ponderomotive force induces oscillatory velocity at the
second harmonic, which on solving the equation of motion
turns out to be

�y2v,2kz
= e2

4im2v3
ẑ 2ikz

−k2

k2
x

sin2 kxx + 1

( )
− x̂

k2

kx
sin 2kxx

[ ]
× A2

I e−i(2vt−2kzz).

(10)

�y2v,2kz
beats with the density ripple to produce density pertur-

bation at 2v, 2kz + q. Using Eq. (10) in the equation of con-

tinuity
∂n

∂t
+ �∇ · (n�y) = 0, we get

n2v,2kz+q =
−e2

8m2v4
−2kz(2kz + q)

−k2

k2
x

sin2 kxx + 1

( )[
−2k2 cos 2kxx

]
A2

I noqe−i 2vt−(2kz+q)z[ ].
(11)

The third harmonic nonlinear current density at 3v, 3kz + q
can be written as

J
�NL

3 = − e

2
n2v,2kz+q �yI

= −e4noq

16im3v5

[
2kz(2kz + q)

−k2

k2
x

sin2 kxx + 1

( )
.

+2k2 cos 2kxx

]
A2

I noqe−i 2vt−(2kz+q)z[ ] E
�

I . (12)

The third harmonic current density produces the third

harmonic field �E3 at 3v, 3kz + q. The self consistent third
harmonic field at 3v, 3kz + q produces linear third harmonic
current density,

�J
L
3 = − n0

0e2�E3

3mi v+ in/3
( ) . (13)

The wave equation for the electric field of third harmonic can
be written as

∇2�E3 − �∇(�∇.�E3) + 9v2

c2

( )
1′3�E3 = − 12piv

c2
�J

NL
3

for − a , x , a,

(14)

where

1′3 = 13 ; 1L −
v2

p

9v2
1 − in

3v

( )[ ]
for − a , x , a,

= 1 for x| | . a.

Taking divergence of Eq. (14), we obtain, inside the semi-
conductor slab,

�∇.�E3 = 4p
3iv13

�∇.�JNL
3 . (15)

Using Eq. (15), Eq. (14) can be written as

∇2�E3 +
9v2

c2
13�E3 = �R, (16)

where

�R = − 12piv

c2
�J

NL
3 + 4p

3iv13

�∇ �∇.�JNL
3

( )
.

If one ignores �R, Eq. (16) on replacing ∂2/∂z2 by k3z
2 ¼

2(3kz + q )2, give for the z component

∂2E3z

∂x2
+ b2E3z = 0, (17)

where

b2 = k2
3x = 9v213/c2 − k2

3z

( )
for − a , x , a,

= −a2
3 = −(k2

3z − 9v2/c2) for x| | . a.

The solution of Eq. (17) for the symmetric mode can be
written as

E3Z = A3 cos k3xx for − a , x , a,

= A32ea3x for x , −a,

= A32e−a3x for x . a.

At x ¼ a, the tangential component of E3Z is continuous,

Fig. 5. (Color online) Variation of dimensionless laser frequency va/c
versus dimensionless propagation vector kxa in the second and the third
mode of laser beam.
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hence

A32e−a3a = A3 cos k3xa. (18)

The E3Z field of the third harmonic in different regions is thus

E3Z = A3C3(x)e−i(3vt−k3zz), (19)

where

C3(x) = cos k3xx for − a , x , a,

= cos k3xae−a3 x−a( ) for x| | . a.

With �R = 0, we presume that the mode structure of the third
harmonic remains unmodified; only amplitude acquires slow
z dependence,

E3z = A3(z)C3(x)e−i(3vt−k3zz). (20)

Then the wave equation, presuming phase matching, takes
the form

2ik3z
∂A3

∂z
c3 + A3

∂2c3

∂x2
+ b2A3c3 = R′

z (21)

where

R′
z = Rz for − a , x , a,

= 0 for x| | . a,

Rz =
pe4A3

I n0q

m3v4a2c2
cos kxx 2kz(2kz + q)a2M1 + k2a2M2

{ }[
+ cos k3xx 2kz(2kz + q)a2M3 + k2a2M4

{ }]
,

M1 = 3
4
− c2(3kz + q)2a2

v2a21213

( )
1 − k2a2

4k2
x a2

( )
+ kza2(3kz + q)c2

12kxa13v2a2

−3k2a2

4kxa
+ kxa

( )
,

M2 = 3
4
− kza2(3kz + q)c2

1213v2a2
− c2(3kz + q)2a2

v2a21213

( )
,

M3 = k2a2

4k2
x a2

3
4
− c2(3kz + q)2a2

v2a21213

( )
+ 3k2a4

12k2
x a2

kz(3kz + q)c2

13v2a2

{ }
,

and M4 = 3
4
+ 3kza2(3kz + q)c2

1213v2a2
− c2(3kz + q)2

1213v2

( )
.

At phase matching, the ∂2c3/∂x2 term exactly cancels with
the last term on left-hand-side. Multiplying Eq. (21) by
c∗

3dx and integrating from −1 to +1 we obtain

∂A3

∂z
= R′′

z A3
I , (22)

where

R′′
z = pe4n0q

2ik3zm3v4a2c2D

sin (kx + k3x)a
(kx + k3x)a

− sin (kx − k3x)a
(kx − k3x)a

{ }[
× 2kz(2kz + q)a2M1 + k2a2M2

]
+ pe4n0q

2k3zim3v4a2c2D

×
[

sin (3kx + k3x)a
(3kx + k3x)a

− sin (3kx − k3x)a
(3kx − k3x)a

{ }
.

× 2kz(2kz + q)a2M3 + k2a2M4
( )]

,

and

D = 1 + sin 2k3xa

2k3xa
+ cos k2

3xa

a3a

[ ]
.

If there is absorption of the third harmonic in the semicon-
ductor wave guide, we can replace ∂/∂z by (k3i ) and write

A3

AI

∣∣∣∣ ∣∣∣∣ = R′′
z A2

I

k3i

∣∣∣∣ ∣∣∣∣, (23)

where k3i (¼vp
2 n/6c2 v k3z ) is the imaginary part of the

wave number of the third harmonic.
We have numerically evaluated the field amplitude ratio

|A3/AI| for following parameters:
(e AI/mv c) ¼ 1022, 1023; (noq/no

o) ¼ 0.3; (n/v) ¼ 1.5 ×
1023; (vp a/c) ¼ 1 2 3;(v a/c) ¼ 1; 1L ¼ 14.

Figure 6 and Eq. (23) shows that the ratio of the amplitude
of the third harmonic wave and the laser beam decreases as
the plasma frequency increases, i.e., the efficiency of the
third harmonic generation decreases as plasma frequency
increases in semiconductor.

Fig. 6. (Color online) Variation of the ratio of the amplitude of the third
harmonic wave and the laser beam with plasma frequency.
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4. DISCUSSION

In a semiconductor slab with suitable density ripple, one can
have resonant third harmonic generation. The guided modes
have a non-uniform transverse mode structure. For the pump
wave in the fundamental mode, third harmonic is produced in
the third order mode. Since the damping rate is proportional
to plasma frequency and inversely proportional to laser fre-
quency v and k3z, it increases as plasma frequency increases
but decreases with v. The efficiency of harmonic generation
is limited only by the linear damping of the third harmonic
and can attain a value of the order of 0.2 % for laser intensity
of 1012 Wcm22 in a semiconductor like n type germanium.

A semiconductor wave guide yields remarkably high effi-
ciency of third harmonic generation of laser when phase
matching condition is satisfied. The non-uniform mode struc-
ture of the pump laser leads to much more sharply localized
third harmonic. At exact phase matching, the linear damping
rate of the third harmonic is a major limiting factor for effi-
ciency of harmonic generation.

Semiconductors with non-parabolic energy bands (e.g.,
n-InSb) have energy dependent free carrier mass and intro-
duce and additional source of nonlinearity. The materials
like bismuth have non-spherical energy surfaces. The free
carrier masses in such materials are tensors and so is the
effective plasma permittivity of the medium. The propa-
gation of fundamental as well as harmonic waves in such
materials is influenced by this anisotropy.

The fabrication of semiconductor with a density ripple,
indeed, is difficult. Hazra et al. (2004) have created surface
ripples over crystalline structures by using ion beams. Bulk
ripple may be created via laser machining. A short wave-
length laser, with hn greater than band gap energy, if
passed through a grating and then impinged on the semicon-
ductor slab normally, it will produce e-h pairs with spatial
periodicity, giving a free carrier density ripple. Such a tech-
nique has been employed on gas jet targets (Kuo et al., 2007)
and 10-fold enhancements in harmonic generation efficiency
have been attained. Of course this will be a ripple transient in
time. For a permanent ripple one may have to devise another
scheme.
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