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Abstract

TheUpper Famennian (UpperDevonian) Strud locality has yielded very abundant and diversified
flora as well as vertebrate and arthropod faunas. The arthropod fauna, mostly recovered from fine
shales deposited in a calm, confined floodplain habitat including temporary pools, has delivered a
putative insect and various crustaceans including eumalacostracans and notostracan, spinicauda-
tan and anostracan branchiopods. Here we present the Strud eurypterids, consisting of
semi-articulated juvenile specimens assigned to Hardieopteridae recovered from the pool and
floodplain deposits, as well as larger isolated fragments of potential adults recovered from strati-
graphically lower, coarser dark sandy layers indicative of a higher-energy fluvial environment. The
Strud fossils strongly suggest that, as proposed for someCarboniferous eurypterids, juvenile fresh-
water eurypterids inhabited sheltered nursery pools and migrated to higher-energy river systems
as they matured.

1. Introduction

Eurypterids (so-called ‘sea scorpions’) are an extinct group of aquatic predatory chelicerate
arthropods that flourished in the Palaeozoic oceans and rivers. Eurypterids possessed elongate,
dorsoventrally flattened bodies, consisting of two tagmata (Dunlop& Lamsdell, 2017). The ante-
rior prosoma (cephalothorax) is composed of a fused dorsal shield bearing paired compound
eyes and median ocelli as well as six pairs of appendages, the chelicerae (appendage I) and five
locomotory appendages (appendages II–VI) inserting ventrally. The posterior opisthosoma
(abdomen) consists of seven preabdominal segments, five postabdominal segments and a
terminal telson (Størmer, 1955). Eurypterids are divided into two suborders: Stylonurina
Diener, 1924 and Eurypterina Burmeister, 1843, conventionally distinguished by the form and
function of appendage VI. In Stylonurina this appendage retains a walking function, whereas
in Eurypterina it is modified into a swimming paddle (Lamsdell et al. 2010b; Lamsdell, 2011).

Phylogenetic analysis supports the monophyly of both Eurypterina (Tetlie & Cuggy, 2007;
Lamsdell et al. 2013, 2015; Lamsdell & Selden, 2013) and Stylonurina (Lamsdell et al. 2010a, b;
Lamsdell, 2013; Lamsdell & Selden, 2017). Stylonurina is diagnosed by the possession of
transverse sutures on the ventral plates and the lack of a modified podomere 7a on appendage
VI. Stylonurina first appear in the early Late Ordovician (460 Ma) (Størmer, 1951) and persist
into the late Permian (Ponomarenko, 1985).

Here we describe semi-articulated juvenile stylonurine eurypterid specimens and isolated
fragments thatmay represent adults, from the Upper Famennian (Upper Devonian) Strud local-
ity, Belgium. This early continental ecosystem has until now yielded an abundant and diversified
flora including early cupulate seed plants (Prestianni et al. 2007), vertebrates including early
tetrapod remains (Clément et al. 2004; Olive et al. 2016a), placoderms (Olive, 2015; Olive
et al. 2015a, 2016b), actinopterygian, acanthodian and sarcopterygian fishes (Clément &
Boisvert, 2006), as well as an aquatic arthropod fauna. The arthropods, mostly recovered from
fine shales deposited in a calm and confined floodplain environment including ephemeral pools,
have recently been reported in several publications. They include a putative insect (Garrouste
et al. 2012, 2013; Hörnschemeyer et al. 2013), various crustaceans including eumalacostracans
(Gueriau et al. 2014a, b) and notostracans, spinicaudatan and anostracan branchiopods
(Lagebro et al. 2015; Gueriau et al. 2016, 2018), as well as the eurypterid material presented
herein, which has been mentioned on several occasions but not yet subjected to detailed study.

Although numerous eurypterids are known from the Carboniferous of Belgium (Tetlie & Van
Roy, 2006), only two taxa have been formally described from Upper Devonian rocks, both at the
Pont-de-Bonne Modave quarry (Liège Province). Cyrtoctenus dewalquei Fraipont, 1889 was a

https://doi.org/10.1017/S0016756818000936 Published online by Cambridge University Press

https://www.cambridge.org/geo
https://doi.org/10.1017/S0016756818000936
https://doi.org/10.1017/S0016756818000936
mailto:james.lamsdell@mail.wvu.edu
http://orcid.org/0000-0002-1045-9574
https://doi.org/10.1017/S0016756818000936


member of the large, sweep-feeding mycteropoids (Størmer &
Waterston, 1968; Lamsdell et al. 2009), while the single specimen
of Adelopthalmus (?) lohesti (Delwalque in Fraipont, 1889) has been
suggested to bemore properly interpreted as a stylonurine (Størmer&
Waterston, 1968; Tetlie &VanRoy, 2006), although its exact affinities
are uncertain. These fossils were recovered from deltaic deposits
including channel-filling sequences, most likely more distal than
the Strud facies discussed herein. Although most of the vertebrate
fauna remains to be described, several taxa have been found both
in Pont-de-Bonne Modave and Strud, in particular the lungfishes
Soederberghia cf. S. groenlandica Lehman, 1959 and Jarvikia
Lehman, 1959 (Clément & Boisvert, 2006) and some placoderms
(Olive, 2015), indicating links between both localities. However, it
is not surprising to find such similarities between the Modave and
Strud assemblages since the whole Condroz area consisted of a single
deltaic unit during the Late Famennian, suggesting that vertebrates
and arthropods may have settled in all or most of the river branches
(as also demonstrated by the discovery of a new tetrapod-bearing
locality in Becco; Olive et al. 2015b, 2016a). Nevertheless,
Cyrtoctenus is a genus of generally very large eurypterids and there
seem to be no similarities between this taxon and the new fossils
recovered from the Strud locality.

2. Geological setting

The Strud locality (Namur Province, Belgium; 50° 26 0 43.32″ N,
5°03 0 24.86″ E) exposes a 1.4 m thick fining-upward channel-filling
succession with no evidence for marine influence. According to
regional stratigraphic correlations, these deposits belong to the
Upper Famennian Bois des Mouches Formation (see Denayer et al.
2016 for a detailed stratigraphical and palaeoenvironmetal survey

of the locality). A miospore assemblage (VCo Oppel Rugospora
radiata interval biozone) confirms a late Famennian age (Denayer
et al. 2016). Unlike the other arthropods from the locality that have
been recovered from the stratigraphically highest fine shales inter-
preted as floodplain and temporary pond deposits (Fig. 1), eurypterid
specimens described herein are not restricted to these horizons. The
fine shales yielded small and largely complete specimens, while frag-
ments of much larger specimens have been recovered in association
with well-preserved plant remains and isolated complete vertebrate
bones from coarser dark sandy layers (Fig. 1) interpreted as a
higher-energy habitat of the floodplain such as rivers.

3. Materials and methods

3.a. Fossil material

The present study is based on seven specimens (IRSNB a 13223–
13229) that were collected during successive field campaigns. The
material is housed at the Royal Institute of Natural Sciences,
Brussels (Belgium). The specimens were photographed with a
Canon EOS 5D Mark III camera coupled with a Canon MP-E
65 mm macro lens, using a polarizing filter. In order to increase
the contrast between the matrix and the fossils, we used polarized
light and photographed the specimens in ethanol. The photo-
graphs reproduced in Figure 2b are part–counterpart composites.
Drawings were produced using Adobe Photoshop and Adobe
Illustrator. Measurements were made using the software ImageJ.

3.b. Preservation

Specimens from the fine floodplain and temporary pool deposits
preserve delicate structures such as appendages, and are largely

Fig. 1. Location and stratigraphy of the Strud channel-filling deposits (Late Devonian, Belgium) showing their main fossiliferous content, including the eurypterid
material (small, largely articulated specimens in fine shales, and isolated cuticular fragments in coarser deposits). Modified from Gueriau et al. (2014a) and
Denayer et al. (2016).
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articulated (Fig. 2), which is evidence for absence of (or very
limited) transport in the calm and confined environment of the
floodplain (Gueriau et al. 2014a, 2018). Their opisthosomal seg-
ments are ‘telescoped’ and the only preserved prosomal appendage
is disarticulated. The gut is not preserved. IRSNB a 13224 and
IRSNB a 13225 (Fig. 2a–e) are likely to represent exuviae judging
by their incompleteness and non-preservation of the mid-gut
(Tetlie et al. 2008), unlike many Strud crustaceans from the same
layers that regularly preserve it (Lagebro et al. 2015; Gueriau et al.
2018; see also discussion in Tetlie et al. 2008 about ecdysis in

eurypterids). On the other hand, IRSNB a 13223 (Fig. 2f, g) could
represent the cast of a carcass based on its relative completeness
and position of the appendages. Larger specimens from the other
horizon are represented by isolated and fragmented cuticular
remains.

3.c. Morphological terminology

Eurypterid terminology largely follows Tollerton (1989) for mor-
phology of the carapace, metastoma, lateral eyes, prosomal

Fig. 2. (Colour online) Juvenile eurypterids from the Late Devonian of Strud, Belgium. (a, b) IRNSB a 13224b, composite photograph (partþ counterpart) of an almost
complete specimen in dorsal view and interpretative drawing, respectively; (c) IRNSBa 13224b (circle) and associated branchiopod crustaceans in temporary ponddeposits
(notostracan, dotted arrow; spinicaudatans, solid arrows); (d, e) IRNSB a 13225b, isolated carapace in dorsal view and interpretative drawing, respectively; (f, g) IRSNB a
13223a, cast of a complete specimen in ventral view and interpretative line drawing. Scale bars 5 mm. Abbreviations: C, carapace; Dbl, doublure; Eye, compound eye; Me,
metastoma; Te, telson. Arabic numerals indicate opisthosomal segments 1–12, roman numerals indicate prosomal appendages I–IV.
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appendages, genital appendage, opisthosomal differentiation, tel-
son, and patterns of ornamentation. The terminology of the ventral
plate morphologies follows Tetlie et al. (2008). Terminology for
prosomal structures and cuticular sculpture, and the labelling of
the appendages, follows Selden (1981) with additions from
Lamsdell et al. (2015). Minor modifications to the terminology
used in these papers follow Lamsdell (2011).

4. Systematic palaeontology

ARTHROPODA Siebold, 1848
CHELICERATA Heymons, 1901
EURYPTERIDA Burmeister, 1843
STYLONURINA Diener, 1924
KOKOMOPTEROIDEA Kjellesvig-Waering, 1966
HARDIEOPTERIDAE Tollerton, 1989
(Figs 2 and 3)
Description. One fully articulated specimen (IRSNB a 13223a:

Fig. 2f, g), one semi-articulated (IRSNB a 13224b: Fig. 2a–c),
one isolated dorsal prosomal shield (IRNSB a 13225b: Fig. 2d, e)
and four isolated tergite fragments (IRNSB a 13226a–13229a:
Fig. 3) have been recovered from the locality. Based on the size
of the articulated specimens (total length including telson,
49.2 mm), the partially articulated specimen and the isolated shield
are estimated to have been c. 20 mm long in life (see Table 1 for
measurements). Two large crescentic eyes are located in a centri-
mesial position, with large palpebral lobes giving them an overall
circular outline (‘ovocrescentic’ sensu Tollerton, 1989). Ocelli
are not well preserved, although a slight swelling in between the
lateral eyes likely indicates their position. The dorsal prosomal
shield is subquadrate, with blunt posterior angles that approximate

a right angle. The doublure bears parallel striae, with paired sutures
located either side of an epistomal plate (Fig. 2b, g) indicating the
doublure is of Hallipterus type (Tetlie et al. 2008).

The chelicerae are not preserved. One specimen (Fig. 2f, g)
displays the proximal podomeres of appendages II–VI, although
the coxae are poorly preserved and do not display the gnatho-
bases. The distal portions of the appendages are preserved in
outline only, indicating they are walking limbs with no apparent
armature. Appendage III is preserved in its entirety, revealing it
consists of seven podomeres. Appendage VI is not expanded into
a swimming paddle. This is corroborated by Appendage VI in
IRNSB a 13224, which is incomplete but also interpreted as a
walking limb with small denticles proximally on its anterior
margin (Fig. 2a, b). The metastoma is potentially preserved as
an imprint on the articulated specimen (Fig. 2f, g), being broad
with a deep anterior notch but not preserving the posterior
margin, possibly pararectangular in shape (see Tollerton, 1989,
fig. 5).

The opisthosoma (Fig. 2a–c, f, g) is slender, with the maximum
width at the second or third segment approximately equal to the
width of the carapace. There is no clear difference in dimension
between the pre- and postabdominal tergites, although the tergites
of the postabdomen bear short epimeral spurs. The three posterior-
most segments (tergites 10–12) are differentiated from the preced-
ing homonomous tergites, becoming successively narrower and
longer. Neither spines nor setae are seen on any of the segments,
and the genital appendage is not preserved.

The telson is estimated to be between 1/4 and 1/3 of the total
body length and is xiphous, narrowing marginally from its base
before expanding and subsequently narrowing to its termination,
with a medial ridge (Fig. 2f, g).

Fig. 3. (Colour online) Isolated fragments of adult eurypterids from the Late Devonian of Strud, Belgium. (a) IRNSB a 13227a; (b) IRNSB a 13226a; (c) IRNSB a 13228a;
(d) IRNSB a 13229a. Scale bars 20 mm.
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The isolated tergite fragments are significantly larger than the
partially articulated fossils (up to 80 mm long). Three of the four
fragments are covered in tubercles, as is typical for hardieopterids
(Fig. 3a–c). The fourth fragment displays two layers of cuticle; the
underlying layer has a pitted surface likely representing the underside
of tubercles, and the superimposed layer is covered in scales (Fig. 3d).

5. Discussion

5.a. Phylogenetic affinities

The eurypteridmaterial from Strud is incomplete and fragmentary;
however, the presence of an epistoma in one of the smaller spec-
imens and the pustulose ornament of the large fragments indicate
an assignment to the stylonurine family Hardieopteridae. The new
specimens exhibit some similarities to the broadly contemporane-
ous Stylonurus (?) arnoldi Ehlers, 1935 from the Upper Devonian
of Pennsylvania, USA (generic assignment discussed below). These
include the pustulose ornamentation, enlarged lateral eyes,
rounded anterior margin of the prosoma, and a narrow opistho-
soma that does not expand beyond the width of the prosoma.
The lateral eyes in both Stylonurus (?) arnoldi and the Strud
material are identical inmorphology to the lateral eyes of hardieop-
terids, although they are far larger in comparison to carapace size
than in any previously known species. Stylonurus (?) arnoldi is,
however, differentiated from the material described herein by
the possession of a row of large scales that runs across the posterior
margin of each tergite.

Both the Strud eurypterids and Stylonurus (?) arnoldi share
a number of characteristics with rhenopterids, a clade of
Late Ordovician – Early Devonian stylonurines that include the
oldest known representatives of Stylonurina (Størmer, 1951).
The rhenopterid species Brachyopterella ritchiei Waterston, 1979
and Kiaeropterus ruedemanni, Størmer, 1934 also exhibit long, nar-
row and relatively undifferentiated opisthosomas, as in the Strud
specimens. Rhenopterids also tend to possess rather bulbous eyes
(e.g. Kiaeropterus cyclophthalmus (Laurie, 1892), Brachyopterella
pentagonalis (Størmer, 1934), Kiaeropterus ruedemanni), although
they are more anteriorly positioned and not as large as in the
Strud material, being c. 1/4 rather than 1/2 the carapace length.
Brachyopterella pentagonalis and Kiaeropterus ruedemanni also
possess an epistoma, although in these taxa the sutures defining
the plate diverge markedly anteriorly and the transverse suture of
the doublure curves posteriorly as it crosses onto the epistoma.
Rhenopterids are further differentiated from Stylonurus (?) arnoldi
and the Strud specimens by the possession of a median ocellar area

(Tetlie et al. 2007), which is lacking in the material described herein,
and by their lack of pustulose ornamentation.

The articulated Strud specimens most likely represent juveniles,
as indicated by their small size and relatively large eyes. Juvenile
eurypterids are relatively uncommon in the fossil record, but euryp-
terids are believed to have nine postembryonic ontogenetic stages,
which is also the case in Limulus (Andrews et al. 1974), and numer-
ous studies have documented postembryonic changes in eurypterid
morphology, including relative allometric proportions (Andrews
et al. 1974; Brower & Veinus, 1974, 1978; Cuggy, 1994; Lamsdell
& Selden, 2013). Consistently, juveniles possess relatively large lat-
eral eyes, elongate prosomal appendages with poorly developed
armature, and a more rounded anterior margin of the dorsal proso-
mal shield (Andrews et al. 1974; Lamsdell & Selden, 2013). As such,
a number of characteristics of the smaller Strud specimens are likely
influenced by their early ontogenetic stage, such as the extreme
rounding of the anterior portions of the carapace and the lack of
appendage armature. Stylonurus (?) arnoldi also likely represents
a juvenile (Lamsdell, pers. obs.) and occurs in the same strata as
Hallipterus excelsior (Hall, 1884).Hallipterus is also a hardieopterid
(Tetlie, 2008), and it is possible that Stylonurus (?) arnoldi is a
juvenile form (and junior synonym) ofHallipterus excelsior, as sup-
ported by their shared carapace ornament of pustules with a row of
enlarged pustules across the posterior carapace margin.

Among hardieopterids, only Tarsopterella has a subquadrate
carapace, although carapace shape is known to change throughout
eurypterid ontogeny (Andrews et al. 1974; Brower & Veinus,
1974, 1978; Cuggy, 1994), and if Stylonurus (?) arnoldi is a juvenile
Hallipterus then the carapace shape changes from horseshoe-
shaped to triangular over the course of its postembryonic develop-
ment. An epistoma, revealed in the Strud specimens (Fig. 2) where
the doublure has separated anteromedially, is also known in
Hallipterus (Tetlie, 2008). The doublure of Hardieopterus lacks
an epistoma, having a single median suture between the two lateral
plates (Waterston, 1979), while the condition of the doublure of
Tarsopterella is unknown. The Strud specimens therefore show
closer affinity to Tarsopterella and Hallipterus than they do to
Hardieopterus. The Strud hardieopterid is, however, distinct from
the known species of Tarsopterella and Hallipterus in lacking
enlarged scale rows across the posterior margin of the prosomal
dorsal shield and tergites.

5.b. Palaeoecology

The occurrence of eurypterids in an Upper Devonian non-marine
setting at Strud corroborates previous observations that eurypterids

Table 1. Measurements for Strud juvenile eurypterid specimens. All measurements are in mm. Abbreviations: max., maximum; seg. largest opisthosomal segment;
est., estimated

Prosoma Eyes Opisthosoma Telson

Total
length

Catalogue
no. Fig. Length

Max.
width

Doublure
max.

thickness
Length /
width* Position† Length

Max.
width
(seg.) Length

Max.
width

IRSNB a
13223

2f, g 10.5 13.8 0.7 2.6 / 1.9 3.9 / 4.6 / 6.7 / – 24.1 11.9 [6] 14.6 1.8 49.2

IRSNB a
13224

2a–c 4.3 5.1 0.3 1.7 / 1.3 1.6 / 1.0 / 2.5 / 2.7 – 5.0 [7] – – est. 20.1

IRSNB a
13225

2d, e 4.3 5.0 0.4 1.8 / 1.1 1.8 / 1.2 / 2.7 / 2.5 – – – – est. 20.1

*The length / width measurements for the eyes represent the average between the left and right eyes.
†Eye position is described by four distances (1 / 2 / 3 / 4) measured from the centre of the eye: (1) distance (following length axis) to anterior carapace margin; (2) distance (perpendicular to
length axis) to the closest lateral carapace margin; (3) distance (following length axis) to posterior carapace margin; (4) distance (perpendicular to length axis) to the other eye centre.
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underwent a marine to freshwater transition during the Devonian
(Lamsdell & Braddy, 2010; Lamsdell & Selden, 2017), with all
Famennian eurypterids either known from fluvial settings (Hall,
1884; Ehlers, 1935) or from near-shore lagoons and deltas alongside
plant material indicating the eurypterid material was swept in from
continental settings (Lamsdell et al. 2009; Plax et al. 2018). This tran-
sition occurs independently in several eurypterid groups (Lamsdell
& Braddy 2010; Lamsdell & Selden, 2017), as well as in the other
aquatic chelicerate groups Xiphosura (Lamsdell, 2016) and
Chasmataspidida (Lamsdell & Briggs, 2017), suggesting that some
external (potentially environmental) factor drove a concerted shift
to non-marine habitats (Lamsdell et al. 2017).

Previously, it has been recognized that juvenile eurypterids are
found more often in near-shore and lagoonal environments than
are adults (Braddy, 2001). This mirrors the life habits of modern
horseshoe crabs, where larval and juvenile horseshoe crabs
remain in coastal waters while adults disperse further offshore
(Botton et al. 2010). Among Carboniferous eurypterids, it has
been suggested that juveniles may have developed separately
from adult populations in isolated ‘nursery’ pools that effectively
formed a sheltered crèche for the small, vulnerable juveniles
(Jeram & Selden, 1994). The same phenomenon is also suggested
in Strud, where the juvenile material is recovered from a pond-
like environment, while the large fragments likely from adults
were collected stratigraphically lower in the succession together
with plant and vertebrate remains in a coarser deposit from a
higher-energy environment such as a river. Placoderms also used
habitats (though different) of the Strud alluvial plain as a nursery
(Olive et al. 2016b).

Upon reaching maturity, eurypterids could have migrated
from the ponds to rivers during periods of flooding, or maybe
even left the pools and traversed land to reach adjacent rivers,
although evidence for terrestrial eurypterid excursions is exceed-
ingly rare and indicates that individuals had extreme difficulty
moving without the buoyancy afforded by water (Whyte,
2005). This would explain why the small specimens are found
in association with the branchiopod crustaceans whereas the
adult fragments are found in strata deposited elsewhere. The
advantage of living in small shallow ponds is clear – here the
young eurypterids were safe from predators (fish) but had access
to prey (the smaller branchiopods and/or their eggs). The discov-
ery of such a shift in life habit among the Strud eurypterids is
important as it corroborates previous observations of ontogenetic
migrations among Carboniferous hibbertopterids and indicates
that this behaviour may have been common among freshwater
eurypterid groups.
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