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Abstract

Two spheres with centers p and q and signed radii r and s are said to be in contact if
|p − q|2 = (r − s)2. Using Lie’s line-sphere correspondence, we show that if F is a field in
which −1 is not a square, then there is an isomorphism between the set of spheres in F3

and the set of lines in a suitably constructed Heisenberg group that is embedded in (F[i])3;
under this isomorphism, contact between spheres translates to incidences between lines.

In the past decade there has been significant progress in understanding the incidence
geometry of lines in three space. The contact-incidence isomorphism allows us to translate
statements about the incidence geometry of lines into statements about the contact geome-
try of spheres. This leads to new bounds for Erdős’ repeated distances problem in F3, and
improved bounds for the number of point-sphere incidences in three dimensions. These new
bounds are sharp for certain ranges of parameters.

2020 Mathematics Subject Classification: 52C10 (Primary)

1. Introduction

Let F be a field in which −1 is not a square. For each quadruple (x1, y1, z1, r1) ∈ F4, we
associate the (oriented) sphere S1 ⊂ F3 described by the equation (x − x1)

2 + (y − y1)
2 +

(z − z1)
2 = r 2

1 . We say two oriented spheres S1, S2 are in “contact” if

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 = (r1 − r2)

2. (1·1)

If F =R, then this has the following geometric interpretation:

(i) If r1 and r2 are non-zero and have the same sign, then (1·1) describes internal
tangency;

(ii) If r1 and r2 are non-zero and have opposite signs, then (1·1) describes external
tangency.

In this paper we will explore the following type of extremal problem in combinatorial
geometry: Let n be a large integer. If S is a set of n oriented spheres in F3 (possibly with
some additional restrictions), how many pairs of spheres can be in contact? This question
will be answered precisely in Theorem 1·8 below.
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When F =R, variants of this problem have been studied extensively in the literature [1, 4,
13, 25]. For example, Erdős’ repeated distances conjecture in R

3 [8] asserts that n spheres in
R

3 of the same radius must determine O(n4/3) tangencies. The current best-known bound is
O(n295/197+ε) in R

3 [26]. In Theorem 1·9 we will establish the weaker bound O(n3/2) which
is valid in all fields for which −1 is not a square.

Before discussing this problem further, we will introduce some additional terminology.
Let i be a solution to x2 + 1 = 0 in F and let E = F[i]. Each element ω ∈ E can be written
uniquely as ω = a + bi, with a, b ∈ F . We define the involution ω̄ = a − bi , and we define

Re(ω) = 1

2
(ω + ω̄), Im(ω) = 1

2
(ω − ω̄).

We define the Heisenberg group

H= {(x, y, z) ∈ E3 : Im(z) = Im(x ȳ)}. (1·2)

The Heisenberg group contains a four-parameter family of lines. In particular, if a, b, c, d ∈
F , then H contains the line

{(0, c + di, a) + (1, b, c − di)t : t ∈ E}, (1·3)

and every line contained in H that is not parallel to the xy plane is of this form. If
a1, b1, c1, d1 and a2, b2, c2, d2 are elements of F , then the corresponding lines are coplanar
(i.e. they either intersect or are collinear) precisely when

(c1 + d1i − c2 − d2i, a1 − a2) ∧ (b1 − b2, c1 − d1i − c2 + d2i) = 0. (1·4)

The Heisenberg group H has played an important role in studying the Kakeya problem
[15, 16, 19]. More recently, it has emerged as an important object in incidence geometry [10].
See [24] (and in particular, the discussion surrounding Proposition 5) for a nice introduction
to the Heisenberg group in this context.

Our study of contact problems for spheres in F3 begins by observing that the contact
geometry of (oriented) spheres in F3 is isomorphic to the incidence geometry of lines in H

that are not parallel to the xy plane. Concretely, to each oriented sphere S1 ⊂ F3 centered
at (x1, y1, z1) with radius r1, we can associate a line � of the form (1·3), with a = −z1 − r1,
b = −z1 + r1, c = −x1, d = −y1. Two oriented spheres S1 and S2 are in contact if and only
if the corresponding lines �1 and �2 are coplanar. We will discuss this isomorphism and its
implications in Section 2. This isomorphism is not new—it is known classically as Lie’s
line-sphere correspondence (it is also similar in spirit to previous reductions that relate
questions in incidence geometry to problems about incidences between lines in three space
[5, 20, 22]). However, we are not aware of this isomorphism previously being used in the
context of combinatorial geometry.

The isomorphism is interesting for the following reason. In the past decade there has been
significant progress in understanding the incidence geometry of lines in E3. This line of
inquiry began with Dvir’s proof of the finite field Kakeya problem [6] and Guth and Katz’s
proof of the joints conjecture [11], as well as subsequent simplifications and generaliza-
tions of their proof by Quilodrán and independently by Kaplan, Sharir and Shustin [14].
More recently, and of direct relevance to the problems at hand, Guth and Katz resolved
the Erdős distinct distances problem in R

2 (up to the endpoint) by developing new tech-
niques for understanding the incidence geometry of lines in R

3. Some of these techniques
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Fig. 1. A pencil of contacting spheres. The left and right images are two different perspectives of the same
set. Note that there is precisely one sphere of radius 0. If F =R, then each sphere on one side of the center
point has positive radius, while each sphere on the other side has negative radius.

were extended to all fields by Kollár [17] and by Guth and the author [12]. The isomor-
phism described above allows us to translate these results about the incidence geometry of
lines into statements about the contact geometry of spheres. We will describe a number of
concrete statements below.

To begin exploring the contact geometry of oriented spheres, we should ask: what arrange-
ments of oriented spheres in F3 have many pairs of spheres that are in contact? The next
example shows that there are sets of spheres in F3 so that every pair of oriented spheres is
in contact.

Example 1·1. Let (x, y, z, r) ∈ F4 and let (u, v, w) ∈ F3 with u2 + v2 + w2 = s2 for some
nonzero s ∈ F . Consider the set of oriented spheres P= {(x + ut, y + vt, z + wt, r +
st) : t ∈ F}. Every pair of spheres from this set is in contact. See Figure 1.

Definition 1·2. Let P be a set of spheres, every pair of which is in contact. If P is maximal
(in the sense that no additional spheres can be added to P while maintaining this property),
then P is called a “pencil of contacting spheres.” If S is a set of oriented spheres and P
is a pencil of contacting spheres, we say that P is k-rich (with respect to S) if at least
k spheres from S are contained in P. We say P is exactly k-rich if exactly k spheres from S
are contained in P.

Remark 1·3. If we identify each sphere in a pencil of contacting spheres with its coordinates
(x, y, z, r), then the corresponding points form a line in F4. If we identify each sphere in
a pencil of contacting spheres with its corresponding line in H, then the resulting family of
lines are all coplanar and pass through a common point (possibly at infinity1). This will be
discussed further in Section 2·4.

The next result says that any two elements from a pencil of contacting spheres uniquely
determine that pencil.

LEMMA 1·4. Let S1 and S2 be distinct oriented spheres that are in contact. Then the set
of oriented spheres that are in contact with S1 and S2 is a pencil of contacting spheres.

We will defer the proof of Lemma 1·4 to Section 2·4. Example 1·1 suggests that rather
than asking how many spheres from S are in contact, we should instead ask how many k-rich

1If two lines are parallel, then we say these lines pass through a common point at infinity.
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Fig. 2. A pair of complimentary conic sections. The sets C and C′ are shown individually on the left and
center, respectively, and C∪ C′ is shown on the right. If F =R, then (in this example) all of the spheres
in C have positive radius, and all of the spheres in C′ have negative radius. In particular, while certain
pairs of spheres in C (resp. C′) are (externally) tangent, no pairs of spheres are in contact in the sense of
(1·1). Note that while the centers of the spheres in C are contained in a line, the corresponding quadruples
(x1, y1, z1, r1) are contained in an irreducible degree-two curve.

pencils can be determined by S—each pencil that is exactly k rich determines
(k

2

)
pairs of

contacting spheres. We begin with the case k = 2. Since each pair of spheres can determine
at most one pencil, a set S of oriented spheres determines at most

(|S|
2

)
2-rich pencils of

contacting spheres. The next example shows that in general we cannot substantially improve
this estimate, because there exist configurations of n oriented spheres that determine (n2/4)

2-rich pencils.

Example 1·5. Let S1, S2 and S3 be three spheres in F3, no two of which are in contact.
Suppose that at least three spheres are in contact with each of S1, S2, and S3, and denote
this set of spheres by C. Let C′ be the set of all spheres that are in contact with every sphere
from C. Then every sphere from C is in contact with every sphere from C′ and vice-versa.
Furthermore, Lemma 1·4 implies that no two spheres from C are in contact, and no two
spheres from C′ are in contact, so the spheres in C∪ C′ do not determine any 3-rich pencils
of contacting spheres. This means that if S ⊂ C and S ′ ⊂ C′, then S ∪ S ′ determines |S| |S ′|
2-rich pencils of contacting spheres. See Figure 2.

Definition 1·6. Let C and C′ be two sets of oriented spheres, each of cardinality at least
three, with the property that each sphere from C is in contact with each sphere from C′, and
no two spheres from the same set are in contact. If C and C′ are maximal (in the sense that
no additional spheres can be added to C or C′ while maintaining this property), then C and
C′ are called a “pair of complimentary conic sections.”

Remark 1·7. If we identify each sphere in a pair of complimentary conic sections with its
coordinates (x, y, z, r), then the corresponding points are precisely the F-points on a pair
of conic sections in F4, neither of which are lines. If we identify each sphere in a pair of
complimentary conic sections with its corresponding line in H, then the resulting families
of lines are contained in two rulings of a doubly-ruled surface in E3. Note, however, that the
two rulings of this doubly-ruled surface contain additional lines that do not come from the
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pair of complimentary conic sections, since not all lines in the rulings will be contained in
H. This will be discussed further in Section 2·5.

We are now ready to state our main result. Informally, it asserts that the configurations
described in Examples 1·1 and 1·5 are the only way that many pairs of spheres in F3 can be
in contact.

THEOREM 1·8. Let F be a field in which −1 is not a square. Let S be a set of n oriented
spheres in F3, with n ≤ (char F)2 (if F has characteristic zero then we impose no constraints
on n). Then for each 3 ≤ k ≤ n, S determines O(n3/2k−3/2) k-rich pencils of contacting
spheres. Furthermore, at least one of the following two things must occur:

(i) there is a pair of complimentary conic sections C, C′ so that

|C∩ S| ≥ √
n and |C′ ∩ S| ≥ √

n;
(ii) S determines O(n3/2) 2-rich pencils of contacting spheres.

Theorem 1·8 leads to new bounds for Erdős’ repeated distances problem in F3.

THEOREM 1·9. Let F be a field in which −1 is not a square. Let r ∈ F\{0} and let
P ⊂ F3 be a set of n points in F3, with n ≤ (char F)2 (if F has characteristic zero then
we impose no constraints on n). Then there are O(n3/2) pairs (x1, y1, z1), (x2, y2, z2) ∈P
satisfying

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 = r 2. (1·5)

As discussed above, when F =R the conjectured bound is O(n4/3) and the current best-
known bound is O(n

3
2 − 1

394 +ε) [26]. For general fields in which −1 is not a square, the
previous best-known bound was O(n5/3).

Remark 1·10. The bound O(n3/2) given above cannot be improved without further restric-
tions on n. Indeed, if we select P to be a set of p2 points in F

3
p, then by pigeonholing

there exists an element r ∈ Fp\{0} so that there are2 roughly p3 solutions to (1·5). When n is
much smaller than p2 (e.g. if n ≤ p) it seems plausible that there should be O(n4/3) solutions
to (1·5).

Remark 1·11. The requirement that −1 not be a square is essential, since if −1 is a square
in F then for each r ∈ F\{0}, the sphere {(x, y, z) ∈ F3 : x2 + y2 + z2 = r 2} is doubly-ruled
by lines (see e.g. [21, lemma 6]). It is thus possible to find an arrangement of n/2 spheres
of radius r , all of which contain a common line �. Let P =P1 ∪P2, where P1 is the set of
centers of the n/2 spheres described above and P2 is a set of n/2 points on �. Then P has
n2/4 pairs of points that satisfy (1·5).

Theorem 1·9 can also be used to prove new results for the incidence geometry of points
and spheres in F3. In general, it is possible for n points and n spheres in F3 to determine n2

points-sphere incidences. For example, we can place n points on a circle in F3 and select n
spheres which contain that circle. The following definition, which is originally due to Elekes

2Some care has to be taken when selecting the points in P to ensure that not too many pairs of points satisfy
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2 = 0, but this is easy to achieve.
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and Tóth [7] in the context of hyperplanes, will help us quantify the extent to which this type
of situation occurs.

Definition 1·12. Let F be a field, let P ⊂ F3, and let η > 0 be a real number. A sphere
S ⊂ F3 is said to be η-non-degenerate (with respect to P) if for each plane H ⊂ F3 we have
|P ∩ S ∩ H | ≤ η|P ∩ S|.

THEOREM 1·13 (Point-sphere incidences). Let F be a field in which −1 is not a square.
Let S be a set of n spheres (of nonzero radius) in F3 and let P be a set of n points in F3,
with n ≤ (char F)2 (if F has characteristic zero then we impose no constraints on n). Let
η > 0 and suppose the spheres in S are η-non-degenerate with respect to P . Then there are
O(n3/2) incidences between the points in P and the spheres in S , where the implicit constant
depends only on η.

In [1], Apfelbaum and Sharir proved that m points and n η-non-degenerate spheres in
R

3 determine O∗(m8/11n9/11 + mn1/2) incidences, where the notation O∗(·) suppresses sub-
polynomial factors. When m = n, this bound simplifies to O∗(n17/11). Thus in the special
case m = n, Theorem 1·13 both strengthens the incidence bound of Apfelbaum and Sharir
and extends the result from R to fields in which −1 is not a square. A construction analogous
to the one from Remark 1·10 show that the bound O(n3/2) cannot be improved unless we
impose additional constraints on n.

When F =R, additional tools from incidence geometry become available, and we can
say more.

THEOREM 1·14. Let S a set of n oriented spheres in R
3. Then for each 3 ≤ k ≤ n, S

determines O(n3/2k−5/2 + nk−1) k-rich pencils of contacting spheres.

Note that a k-rich pencil determines
(k

2

)
pairs of contacting spheres. Since the quantity(k

2

)
n3/2k−5/2 is dyadically summable in k, Theorem 1·14 allows us to bound the number of

pairs of contacting spheres, provided not too many spheres are contained in a common pencil
or pair of complimentary conic sections.

COROLLARY 1·15. Let S a set of n oriented spheres in R
3. Suppose that no pencil of

contacting spheres is
√

n rich. Then at least one of the following two things must occur:

(i) there is a pair of complimentary conic sections C, C′ so that

|C∩ S| ≥ √
n and |C′ ∩ S| ≥ √

n; (1·6)

(ii) there are O(n3/2) pairs of contacting spheres.

The following (rather uninteresting) example shows that Theorem 1·14 can be sharp when
there are pairs of complimentary conic sections that contain almost

√
n spheres from S .

Example 1·16. Let n = 2m2 and let S be a disjoint union S = ⊔m
j=1(S j ∪ S ′

j ), where
for each index j , each of S j and S ′

j is a set of m spheres contained in complimentary
conic sections. The spheres in S determine m3 = (n/2)3/2 2-rich pencils, and no pair of
complimentary conic sections satisfy (1·6).
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A similar example shows that Theorem 1·14 can be sharp when there are pencils that
contain almost

√
n spheres from S . More interestingly, the following “grid” construction

shows that Theorem 1·14 can be sharp even when S does not contain many spheres in a
pencil or many spheres in complimentary conic sections.

Example 1·17. Let n = m4, let [m] = {1, . . . , m}, and let S consist of all oriented spheres
centered at (a, b, c) of radius d, where a, b, c, d ∈ [m]. We can verify that the equation

(a − a′)2 + (b − b′)2 + (c − c′)2 = (d − d ′)2, a, a′, b, b′, c, c′, d, d ′ ∈ [m] (1·7)

has roughly m6 = n3/2 solutions. No linear pencil of contacting spheres contains more than
m = n1/4 spheres from S . This means that S determines roughly n3/2 2-rich pencils, and
also determines roughly n3/2 pairs of contacting spheres. On the other hand, if we fix three
non-collinear points (a j , b j , c j , d j ) ∈ [m]4, j = 1, 2, 3, then the set of points (a′, b′, c′, d ′) ∈
[m]4 satisfying (1·7) for each index j = 1, 2, 3 must be contained in an irreducible degree
two curve in R

4. Bombieri and Pila [2] showed that such a curve contains O(n1/8+ε) points
from [m]4. We conclude that every pair of complimentary conic sections contains O(n1/8+ε)

spheres from S .

2. Lie’s line-sphere correspondence

In this section we will discuss the contact-incidence isomorphism introduced in Section 1.
Throughout this section, F will be a field in which −1 is not a square, and E = F[i] is a
degree-two extension of F , where i2 = −1.

2·1. Lines and the Klein quadric

In this section we will be concerned with points in E6 and its projectivisation EP5. We
will write elements of E6 using the index set (p01, p02, p03, p23, p31, p12), and elements of
EP5 will be denoted [p01 : p02 : p03 : p23 : p31 : p12]. Let K (·, ·) be the symmetric bilinear
form on E6 given by

K
(
(p01, p02, p03, p23, p31, p12), (p′

01, p′
02, p′

03, p′
23, p′

31, p′
12)

)

= p01 p′
23 + p23 p′

01 + p02 p′
31 + p31 p′

02 + p03 p′
12 + p12 p′

03.

We define the Klein quadric to be the set

{p = [p01 : p02 : p03 : p23 : p31 : p12] ∈ EP5 : p01 p23 + p02 p31 + p03 p12 = 0}.
Since the polynomial p01 p23 + p02 p31 + p03 p12 is homogeneous, the above set is well-
defined. Since char(F) 
= 2, the above relation can also be written as

K (p, p) = 0. (2·1)

We will call this the Plücker relation.
There is a one-to-one correspondence between projective lines in EP3 and points in the

Klein quadric. For our purposes, however, it will be more useful for us to identify a certain
class of (affine) lines in E3 with a large subset of the Klein quadric. Concretely, the (affine)
line (0, s, t) + E(1, u, v) can be identified with the point

[p01 : p02 : p03 : p23 : p31 : p12]
= [1 : u : v : sv − tu : t : −s]. (2·2)
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We will call this point the Plücker coordinates of the line. Conversely, the point with Plücker
coordinates [1 : p02 : p03 : p23 : p31 : p12] can be identified with the line (0, −p12, p31) +
E(1, p02, p03).

Two lines � and �̃ are coplanar (and thus either intersect or are parallel) if and only if their
respective Plücker points p and p′ satisfy the relation K (p, p′) = 0.

2·2. Oriented spheres and the Lie quadric

In this section we will recall some basic facts from Lie sphere geometry. The primary
reference is [3], especially chapter 2, and [18]. Lie sphere geometry studies objects called
“Lie spheres,” which unify the notion of a sphere, point, and plane (the latter two objects
can be thought of as spheres that have zero and infinite radius, respectively). We will restrict
attention to points and spheres.

Let L(·, ·) be the symmetric bilinear form on F6 defined by

L
(
(a, b, c, d, e, f ), (a′, b′, c′, d ′, e′, f ′)

) = 2bb′ + 2cc′ + 2dd ′ − ae′ − ea′ − 2 f f ′.

We define the Lie quadric to be the set

{q = [a : b : c : d : e : f ] ∈ FP5 : L(q, q) = 0}.

Since the polynomial QL(q) = L(q, q) is homogeneous, the above set is well defined. We
will refer to the equation L(q, q) = 0 as as the Lie relation. It can also be written as

b2 + c2 + d2 − ae − f 2 = 0. (2·3)

For each point q ∈ FP5 with L(q, q) = 0, we define the set

Sq = {(x, y, z) ∈ F3 : a(x2 + y2 + z2) + 2bx + 2cy + 2dz + e = 0}. (2·4)

When a 
= 0, Sq is the sphere defined by the equation

(x + b/a)2 + (y + c/a)2 + (z + d/a)2 = ( f/a)2. (2·5)

In particular, the oriented sphere S centered at the point (x1, y1, z1) with radius r1 can be
identified with the point

qS = [a : b : c : d : e : f ]
= [1 : −x1 : −y1 : −z0 : x2

1 + y2
1 + z2

1 − r 2
1 : r1] .

(2·6)

A set of the form Sq, with q in the Lie Quadric will be referred to as a Lie sphere. We
say that two Lie-spheres S and S′ are in “contact” if their corresponding Lie points q and q′

satisfy the relation L(q, q′) = 0, or equivalently

(b − b′)2 + (c − c′)2 + (d − d ′)2 = ( f − f ′)2. (2·7)

Indeed, examining (1·1), (2·6), and (2·7), we see that two oriented spheres S and S′ are
in contact in the sense of (1·1) precisely when their corresponding Lie points satisfy
L(q, q′) = 0.
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2·3. Line-sphere correspondence

Consider the following map φ from the Lie quadric (which is a subset of FP5) to the
Klein quadric (which is a subset of EP5). The point q = [a : b : c : d : e : f ] is mapped to

φ(q) = [p01 : p02 : p03 : p23 : p31 : p12]
= [a : d + f : −b + ic : −e : d − f : −b − ic]. (2·8)

If q, q′ ∈ FP5, then

K (φ(q), φ(q′)) = p01 p′
23 + p23 p′

01 + p02 p′
31 + p31 p′

02 + p03 p′
12 + p12 p′

03

= (a)(−e′) + (−e)(a′) + (d + f )(d ′ − f ′) + (d − f )(d ′ + f ′)

+ (−b + ic)(−b′ − ic′) + (−b − ic)(−b′ + ic′)

= −ae′ − ea′ + 2dd ′ − 2 f f ′ + 2bb′ + 2cc′

= L(q, q′).

(2·9)

Setting q = q′, we see that if q is an element of the Lie Quadric then φ(q) is an element of
the Klein Quadric. Furthermore, if q and q′ are distinct elements in the Lie Quadric, then
the Lie spheres corresponding to q and q′ are in contact if and only if their images under φ

are coplanar.
If S is the oriented sphere centered at the point (x1, y1, z1) ∈ F3 with radius r1 ∈ F , then

by combining (2·6) and (2·8), we see that S is mapped to the line in E3 with Plücker
coordinates

[p01 : p02 : p03 : p23 : p31 : p12]
= [a : d + f : −b + ic : −e : d − f : −b − ic]
= [1 : −z1 + r1 : x1 − iy1 : r 2

1 − x2
1 − y2

1 − z2
1 : −z1 − r1 : x1 + iy1] .

(2·10)

This corresponds to the line (0, ω, t) + E(1, u, ω̄), where t = −z1 − r1, u = −z1 + r1, and
ω = −x1 − iy1. As we saw in Section 1, lines of this form are contained in the Heisenberg
group H.

2·4. Pencils of contacting spheres

In this section we will explore the structure of pencils of contacting spheres in F3, the Lie
quadric, and the Heisenberg group. We will begin by proving Lemma 1·4. For the reader’s
convenience we will restate it here.

LEMMA 1·4. Let S1 and S2 be distinct oriented spheres that are in contact. Then the set
of oriented spheres that are in contact with S1 and S2 is a pencil of contacting spheres.

Proof. We will prove the following equivalent statement: Let �1 and �2 be coplanar lines in
the Heisenberg group that are not parallel to the xy plane. Let L be the set of lines in the
Heisenberg group not parallel to the xy plane that are coplanar with both �1 and �2 (so in
particular �1, �2 ∈L). Then all of the lines in L are contained in a common plane in E3 and
all pass through a common point (possibly at infinity). Furthermore, L is maximal in the
sense that no additional lines can be added to L while maintaining the property that each
pair of lines is coplanar.
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First, observe that every line in H that is not parallel to the xy plane points in a direction
v of the form v = (1, b, c − di) ∈ E3, with b, c, d ∈ F . Every such line that points in the
direction v must be contained in the plane

�v = {(x, y, z) ∈ E3 : bx + y = c + di}. (2·11)

In particular, this implies that any set of lines in H that all point in the same direction and
are not parallel to the xy plane must be contained in a common plane in E3.

Next, observe that if w = (x1, y1, z1) ∈H, then every line contained in H passing through
w must be contained in the plane

�w = {(x, y, z) ∈ E3 : iy1x − i x1 y − i z = −i z1}. (2·12)

If w and w′ are distinct points in H, then the corresponding planes �w and �w′ are also
distinct, and thus either are disjoint or intersect in a line. In particular, this implies that if
two distinct lines contained in H intersect at a point w ∈H, then the unique plane in E3

containing both lines is precisely �w.
Now, let �1, �2, and �3 be three lines in H that are pairwise coplanar. The following argu-

ment will show that �1, �2, and �3 must be contained in a common plane and must pass
through a common point (possibly at infinity).

First, if all three lines are parallel, then we have already shown that they are contained in
a common plane and we are done. If not all three lines are parallel, then we can suppose that
�1 and �2 intersect at a point w ∈H, so �1 and �2 must be contained in �w. If �3 is parallel
to one of these lines, then without loss of generality we can suppose it is parallel to �1, and
both lines point in direction v. Then �2 intersects two distinct lines contained in �v, so �2

must also be contained in �v. But if w′ = �2 ∩ �3, then this implies �w = �w′ = �v, which
is impossible since w 
= w′. Thus we may suppose that �3 is not parallel to either �1 or �2.
Suppose �3 intersects �1 and �2 at distinct points. Then �3 must also be contained in �w.
But at least one of the points �1 ∩ �2 and �1 ∩ �3 must differ from w, which implies there is
a point w′ 
= w with �w = �w′ ; this is a contradiction. We conclude that �3 passes through
�1 ∩ �2. Since all lines in H passing through w must be contained in �w, we conclude that
�1, �2, and �3 are coplanar and coincident.

It now immediately follows that if every line in L is coplanar with both �1 and �2, then
each of these lines must either be parallel with �1 and �2 (if �1 and �2 are parallel), or must
pass through their common intersection point (if �1 and �2 are not parallel). Furthermore,
each line in L must be contained in the plane spanned by �1 and �2. In particular, all of the
lines in L are coplanar and pass through a common point (possibly at infinity). By construc-
tion the set L is maximal, i.e. no additional lines can be added to L while maintaining the
property that all pairs of lines in L are coplanar.

If w = (x1, y1, z1) ∈H, then the set of lines in H that are not parallel to the xy plane
containing w are of the form (0, c + id, a) + E(1, b, c − id), where

c + b Re x1 = Re y1,

d + b Im x1 = Im y1,

a + c Re x1 + d Im x1 = Re z1.

(2·13)
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The set of quadruples (a, b, c, d) satisfying (2·13) belong to a line in F4; we will call this
line Vw. Similarly, if v = (1, b, c − di) ∈ E3, with b, c, d ∈ F , the set of lines in H pointing
in direction v are of the form (0, c + id, a) + E(1, b, c − id) with a ∈ F . We will call this
line Vv.

Remark 2·1. The above discussion implies that the spheres in a pencil of contacting spheres
must either all have the same (signed) radius, or must all have different radii.

2·5. Complimentary conics

In this section we will discuss the structure of sets of spheres that form complimentary
conics. The next lemma says that pencils of spheres and and pairs of complimentary conics
are the only configurations allowing many spheres to be in contact.

LEMMA 2·2. Let S and S ′ be sets of oriented spheres, each of cardinality at least three,
so that every sphere in S is in contact with every sphere in S ′ and vice-versa. Then either
S ∪ S ′ is contained in a pencil of contacting spheres (in which case every sphere in S ∪ S ′

is in contact with every other sphere), or S and S ′ are contained in complimentary conic
sections.

Proof. First, suppose that two spheres S1, S2 ∈ S are in contact. Then by Proposition 1·4, the
spheres in {S1 ∪ S2} ∪ S ′ are contained in a pencil P of contacting spheres. Since |S| ≥ 3, we
have that |P′ ∩ S ′| ≥ 3. Proposition 1·4 now implies that every sphere from S is contained
in P. We conclude that S ∪ S ′ is contained in a pencil of contacting spheres. An identical
argument applies if two spheres S′

1, S′
2 ∈ S ′ are in contact. Thus we can suppose that no two

spheres from S are in contact, and no two spheres from S ′ are in contact. Let C′ be the set of
spheres in contact with each sphere from S , and let C be the set of spheres that are in contact
with each sphere from C′; we have that C and C′ are complimentary conics containing S and
S′, respectively.

We will now consider the structure of a pair of complimentary conic sections. Let
q1, q2, q3 be elements of the Lie quadric, no two of which are in contact. Let �1, �2 and
�3 be the lines in E3 corresponding to the images of q1, q2, and q3 under φ. Let F be the

algebraic closure of F (so in particular E ⊂ F), and let �i be the Zariski closure of �i in F
3
.

Then �1, �2 and �3 are skew lines in F
3
, and the set of lines in F

3
that are coplanar with

each �i form a ruling of a doubly ruled surface in F
3
. Let R be the set of lines in the ruling

that contains the lines �1, �2 and �3 and let R′ be the set of lines in the other ruling. The sets
R and R′ are irreducible conic curves in the variety {p ∈ FP5 : K (p, p) = 0}. We then have
C= φ−1(R) and C′ = φ−1(R′). Since φ is linear, this implies that C and C′ are precisely the
F-points of an irreducible curve in FP5 that is contained in the Lie quadric (or more pre-
cisely, contained in the variety {q ∈ FP5 : L(q, q) = 0}). Recalling the identification (2·5)
of points in the Lie quadric with spheres in F3, we see that C and C′ correspond to sets of
oriented spheres whose (x, y, z, r) coordinates are contained in conic sections, neither of
which are lines.

Note that for some triples q1, q2, q3 it is possible that no elements of the Lie quadric will
be in contact with each qi . This can happen, for example, if F =R; q1 and q2 correspond
to disjoint spheres; and q3 corresponds to a sphere contained inside q1. In this situation the
complimentary conic sections C and C′ are well defined, but C′ does not have any R-points.
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3. Incidence geometry in the Heisenberg group

In this section we will explore the incidence geometry of lines in the Heisenberg group.
In particular, we will prove Theorems 1·8, 1·9 and 1·13. Our main tool is the following
structure theorem for sets of lines in three space that determine many 2-rich points. The
version stated here is [12, theorem 3·8]; a similar statement can also be found in [17].

THEOREM 3·1. There are absolute constants c > 0 and C so that the following holds. Let
L be a set of n lines in E3, with n ≤ c(char E)2 (if E has characteristic zero then we impose
no constraints on n). Then for each A ≥ C

√
n, either L determines at most C An 2-rich

points, or there is a plane or doubly-ruled surface in E3 that contains at least A lines from L.

Recall that lines contained in the Heisenberg group are somewhat special. In particular,
Lemma 1·4 says that any set of pairwise coplanar lines must also pass through a common
point (possibly at infinity). The next lemma is a version of Theorem 3·1 adapted to lines
in the Heisenberg group. The hypotheses and conclusions of the theorem have also been
slightly tweaked to better fit our needs for proving Theorems 1·8, 1·9, and 1·13.

LEMMA 3·2. There is an absolute constant C1 so that the following holds. Let L be a set
of n lines in the Heisenberg group that are not parallel to the xy plane, with n ≤ (char E)2

(if E has characteristic zero then we impose no constraints on n). Suppose that each line in
L is coloured either red or blue. Then for each A ≥ C1

√
n, either there are at most C1 An

points that are incident to at least one red and one blue line, or there is a doubly-ruled
surface with one ruling that contains at least A red lines and a second ruling that contains
at least A blue lines.

Proof. Suppose that there are more than C1 An points that are incident to at least one red and
one blue line (we will call such points bichromatic 2-rich points). We will show that if C1 is
chosen sufficiently large then there is a doubly-ruled surface with one ruling that contains at
least A red lines and a second ruling that contains at least A blue lines.

Observe that Lemma 3·2 assumes that n ≤ (char E)2, while Theorem 3·1 places the
more stringent requirement n ≤ c(char E)2. Our first task will be to reduce the size of L
slightly. Without loss of generality we can assume that 0 < c ≤ 1, since if c > 1 then we can
replace c with 1 and Theorem 3·1 remains true. Let L′ ⊂L be a set obtained by randomly
keeping each element in L with probability c/10. With high probability, a set of this form
will have cardinality at most c(char E)2 and will will determine at least C2 An bichromatic
2-rich points, with C2 = C1c2/1000. In particular, we can assume that L′ has both of these
properties.

Our next task is to prune the set L′ slightly so that all of the unpruned lines contain many
bichromatic 2-rich points. Define L′

0 =L′. For each index j = 0, 1, . . ., let L′
j+1 be obtained

by removing a line from L′
j that contains at most 2A bichromatic 2-rich points. If no such

line exists, then halt. Observe that L′
j has cardinality |L′| − j and determines at least

C2 An − 2Aj bichromatic 2-rich points. If C2 is sufficiently large then this process must
halt for some index j with |L′

j | > 0. Let L′′ be the resulting set; we have that L′′ determines
at least C3 An bichromatic 2-rich points, with C3 = C2/2, and every line determines at least
2A bichromatic 2-rich points.

Apply Theorem 3·1 to L′′. If C1 (and thus C3) is chosen sufficiently large then there
exists a plane or doubly-ruled surface Z that contains at least 2A lines from L′′; Let L′′

Z be
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the set of lines from L′′ that are contained in Z . We claim that Z cannot be a plane; indeed
if Z was a plane then by Lemma 1·4 the lines in L′′

Z must all intersect at a common point
(possibly at infinity). In particular, each of the lines in L′′

Z contain at least 2A 2-rich points,
and at least 2A − 1 of these 2-rich points must come from lines in L′′\L′′

Z . Thus the lines
in L′′\L′′

Z must intersect Z in at least (2A)(2A − 1) > n distinct points. Since each line in
L′′\L′′

Z intersects Z in at most one point, this is impossible.
We conclude that Z is a doubly ruled surface. Since each line in L′′ that is not contained

in Z can intersect Z in at most two points, by pigeonholing there exists a line � ∈L′′
Z that

contains ≥ 2A bichromatic 2-rich points, and at least A of these points come from lines
contained in the dual ruling of Z . Without loss of generality the line � is red; this means
that the ruling dual to � contains at least A blue lines. Again by pigeonholing, at least one
of these blue lines �′ contains ≥ 2A bichromatic 2-rich points, and at least A of these points
come from lines contained in the ruling of Z dual to �′ (i.e. the ruling that contains �). We
conclude that the ruling containing � must contain at least A red lines.

COROLLARY 3·3. Let L be a set of n lines in the Heisenberg group that are not parallel to
the xy plane, with n ≤ (char E)2 (if E has characteristic zero then we impose no constraints
on n). Then either L determines O(n3/2) 2-rich points, or there is a doubly-ruled surface,
each of whose rulings contain at least

√
n lines from L.

Proof. Suppose that L determines C2n3/2 2-rich points. Randomly colour each line in
L either red or blue. With high probability L determines at least (C2/3)n3/2 bichromatic
2-rich points. If C2 is sufficiently large, then Lemma 3·3 implies that there is a doubly-ruled
surface, each of whose rulings contain at least

√
n lines from L.

Lemma 3·2 allows us to understand configurations of lines in E3 that contain many bichro-
matic 2-rich points. The next lemma concerns configurations of lines in E3 that contain many
k-rich points for k ≥ 3. Since the proof of the next lemma is very similar to that of Lemma
3·2 (in particular it uses the same ideas of random sampling and refinement), we will just
provide a brief sketch that highlights where the proofs differ.

LEMMA 3·4. Let L be a set of n lines in the Heisenberg group that are not parallel to the
xy plane, with n ≤ (char E)2 (if E has characteristic zero then we impose no constraints on
n). Let k ≥ 3. Then L determines O(n3/2k−3/2) k-rich points.

Proof sketch. Let L′ ⊂L be obtained by randomly selecting each line � ∈L with probability
2/k. Then with positive probability we have that |L′| ≤ 100|L|/k, and the number of 3-rich
points determined by L′ is at least half the number of k-rich points determined by |L|. We
now argue as in the proof of Corollary 3·3; if L′ determines ≥ C1(n/k)3/2 3-rich points, then
there must exist a doubly-ruled surface Z that contains ≥ (n/k)1/2 lines from L′, and each
of these lines must contain at least 3

√
n 3-rich points. In particular, there must be at least 3n

3-rich points contained in Z . Since Z is doubly (not triply!) ruled, this means that each of
these 3-rich points must be incident to a line from L′ that is not contained in Z . Since each
line in L′ not contained in Z can intersect Z in at most 2 points, the number of 3-rich points
created in this way is at most 2n, which is a contradiction.

With these preliminary results established, we are now ready to prove the main results of
this section.
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Proof of Theorem 1·8. First, using the line-sphere correspondence described in Section 2·3,
Theorem 1·8 is implied by the following statement about lines in the Heisenberg group.

Let L be a set of n lines in the Heisenberg group that are not parallel to the xy plane,
with n ≤ (char E)2 (if E has characteristic zero then we impose no constraints on n). Then
for each 3 ≤ k ≤ n, there are O(n3/2k−3/2) k-rich points. Furthermore, at least one of the
following two things must occur:

(i) there is a doubly-ruled surface, each of whose ruling contain at least
√

n lines
from L;

(ii) L determines O(n3/2) 2-rich points.

The theorem now follows immediately from Corollary 3·3 and Lemma 3·4.

Our proof of Theorem 1·9 will follow a similar strategy to the proof of Theorem 1·8. The
main thing to verify is that not too many lines can be contained in a doubly-ruled surface.

Proof of Theorem 1·9. Let (xi , yi , zi) ∈ F3, i = 1, 2, 3 be three points. Consider the set of
points (x, y, z) ∈ F3 satisfying

(x − x1)
2 + (y − y1)

2 + (z − z1)
2 = r 2, (3·1)

(x − x2)
2 + (y − y2)

2 + (z − z2)
2 = r 2, (3·2)

(x − x3)
2 + (y − y3)

2 + (z − z3)
2 = r 2. (3·3)

Note that these three equations are satisfied precisely when

(xi , yi , zi) ∈ S(x, y, z), i = 1, 2, 3,

where

S(x, y, z) = {(x ′, y′, z′) ∈ F3 : (x − x ′)2 + (y − y′)2 + (z − z′)2 = r 2}. (3·4)

In particular, since −1 is not a square in F , the set S(x, y, z) does not contain any lines
(see e.g. [21, lemma 6]), so (3·1), (3·2), and (3·3) have no solutions when the points
(xi , yi , zi), i = 1, 2, 3 are collinear.

Subtracting (3·2) from (3·1), and subtracting (3·3) from (3·1), we obtain the equations

2(x, y, z) · (x2 − x1, y2 − y1, z2 − z1) = x2
1 + y2

1 + z2
1 − x2

2 − y2
2 − z2

2, (3·5)

2(x, y, z) · (x3 − x1, y3 − y1, z3 − z1) = x2
1 + y2

1 + z2
1 − x2

3 − y2
3 − z2

3. (3·6)

Note that the vectors (x2 − x1, y2 − y1, z2 − z1) and (x3 − x1, y3 − y1, z3 − z1) are
parallel precisely if the points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) are collinear (and
thus there are no solutions to (3·1),(3·2), and (3·3)).

If (x2 − x1, y2 − y1, z2 − z1) and (x3 − x1, y3 − y1, z3 − z1) are not parallel, then the
set of points satisfying (3·1), (3·2), and (3·3) is precisely the set of points satisfying (3·1),
(3·5), and (3·6); this is the intersection of a line and a sphere of radius r 2. Again, since a
sphere of radius r 2 cannot contain any lines, this intersection consists of at most 2 points. To
summarise,

|{(x, y, z) ∈ F3 : (x, y, z) satisfies (3·1), (3·2), and (3·3)}| ≤ 2. (3·7)
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Let L1 = {φ(p) : p ∈P}, where φ is the map defined in Section 2·3, and we identify a
point p ∈P with the corresponding sphere of zero radius. Let L2 = {φ(Sp) : p ∈P}, where
Sp is the sphere with center p and radius r .

Apply Lemma 3·2 to L1 �L2, where the first set of lines is coloured red and the second set
is coloured blue. The bound (3·7) shows that there cannot exist a doubly-ruled surface with
three red lines in one ruling and three blue lines in the other ruling. We conclude that L1 �L2

determines O(n3/2) bichromatic 2-rich points. Thus there are O(n3/2) pairs of points from
P that satisfy (1·5).

Finally, we will prove Theorem 1·13. The main observation is that while a pencil that is
exactly k-rich determines

(k
2

)
pairs of tangent spheres, this pencil only determines k − 1 or

fewer point-sphere incidences (i.e. at most k − 1 tangencies between a sphere of zero radius
and a sphere of nonzero radius).

Proof of Theorem 1·13. Let L1 be the set of lines associated to the points from P
(i.e. spheres of radius 0), and let L2 be the set of lines associated to the spheres from S .
Observe that by Remark 2·1, each k-rich pencil can contribute at most k − 1 point-sphere
incidences. Applying Lemma 3·4 to L1 �L2, we see that for each k ≥ 3 the set of pencils
of richness between k and 2k can contribute at most 2kO(n3/2k−3/2) = O(n3/2k−1/2) inci-
dences. Summing dyadically in k, we conclude that the set of pencils of richness at least 3
can contribute O(n3/2) incidences.

It remains to control the number of incidences arising from 2-rich points. Let A =
�2η−1√n �. With this choice of A, apply Lemma 3·2 to L1 �L2, where the first set of lines
is coloured red and the second set is coloured blue. If L1 �L2 contains O(An) bichromatic
2-rich points then we are done. If not, then there is a doubly-ruled surface Z with one ruling
that contains at least A red lines and a second ruling that contains at least A blue lines. Let
L′

2 ⊂L2 be the set of blue lines from one of these rulings (recall that blue lines correspond
to spheres from S). Recall that each red line in L1 that is not contained in Z intersects Z in
at most two points. Thus since A ≥ 2η−1√n, by pigeonholing there must exist a line � ∈L′

2

that is incident to fewer than ηA lines from L1 that are not contained in Z . This implies that
the corresponding sphere S ∈ S is not η-non-degenerate, which contradicts the assumption
that all of the spheres in S are η-non-degenerate.

4. Improvements over R

In this section we will show how Theorem 1·8 can be improved when F =R. The main
tool will be the following polynomial partitioning theorem due to Guth [9].

THEOREM 4·1. Let V be a set of real algebraic varieties in R
d , each of which has dimen-

sion e and is defined by a polynomial of degree at most C. Then for each D ≥ 1, there is a
d-variate “partitioning” polynomial P of degree at most D so that Rd\Z(P) is a disjoint
union of O(Dd) “cells” (open connected sets), and each of these cells intersect O(|V |De−d)

varieties from V . The implicit constant depends on d and C, but (crucially) is independent
of D and |V |.

While the definition of the dimension of a real algebraic variety is slightly technical, we
will only use the elementary facts that points in R

d are algebraic varieties of dimension 0 and
lines are algebraic varieties of dimension 1. Applying Theorem 4·1 to a set of points and to
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a set of lines in R
3 (with parameter D/2 in each case) and taking the product of the resulting

partitioning polynomials, we obtain a polynomial whose zero-set efficiently partitions a set
of points and a set of lines simultaneously. We will record this observation below.

COROLLARY 4·2. Let P be a set of points in R
3 and let W be a set of lines in R

3. Then
for each D ≥ 1, there is a polynomial P of degree at most D so that R3\Z(P) is a disjoint
union of O(D3) cells; each cell contains O(|P |D−3) points from P; and each cell intersects
O(|V |D−2) lines from W .

Note that while Corollary 4·2 guarantees that few points are contained in each cell and few
lines meet each cell, it is possible that many points and lines are contained in the “boundary”
Z(P) of the cells. The next lemma helps us understand what configurations of points and
lines are possible inside Z(P).

LEMMA 4·3. Let P ∈R[x, y, z] be irreducible and let D = deg(P). If Z(P) is not a
plane, then there are at most O(D2) “bad” lines contained in Z(P). If � ⊂ Z(P) is not
a bad line, then there are O(D) “bad” points p ∈ �. If q ∈ � is not a bad point, then it is
incident to at most one additional line that is contained in Z(P).

Proof. Statements of this form appear frequently in the literature (see e.g. [23, theorem 1·9]),
and follow directly from the machinery of Guth and the author developed in [12]. We will
briefly outline the proof here. We say a point p ∈ Z(P) is 3-flecnodal if there are at least
three distinct lines that contain p and are contained in Z(P). If a line � ⊂ Z(P) contains
more than C D 3-flecnodal lines for some absolute constant C , then all but finitely many
points of � must be 3-flecnodal (i.e. a Zariski-dense subset of � is 3-flecnodal). If there are
≥ C D2 lines � ⊂ Z(P), each of which is 3-flecnodal at all but finitely many points, then
there is a Zariski-dense subset O ⊂ Z(P) so that for each point p ∈ O there are at least
three lines containing p and contained in Z(P). But since P is irreducible, this immediately
implies that Z(P) is a plane.

The next two lemmas will help us understand the incidence geometry of configurations
of coplanar lines coming from the Heisenberg group. Recall that throughout this section,
F =R and E =C.

LEMMA 4·4. Let P ⊂H be a set of points with |P | ≥ 5. Suppose that every pair of points
is connected by a line in the Heisenberg group. Then P is contained in a (complex) line.

Proof. Let p, q ∈P . Define Vp = ⋃
p∈�⊂H

�, and define Vq similarly. Then Vp (resp. Vq)
is precisely the intersection of H with the tangent plane of H at p (resp. q). In particular,
Vp ∩ Vq is contained in a complex line, and P\{p, q} ⊂ Vp ∩ Vq. Since the choice of p and
q was arbitrary, we conclude that every subset of P cardinality |P | − 2 is collinear. Since
|P | ≥ 5, this implies that all the points of P are collinear.

LEMMA 4·5. Let P be a set of m points and let L be a set of n lines in the Heisenberg
group that are not parallel to the xy plane. Then

I (P,L) = O(n3/2 + m). (4·1)
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Proof. By Corollary 3·4, for each k ≥ 3 the number of k-rich points determined by L is
O(n3/2k−3/2). Since a k-rich point contributes k incidences, we conclude that the number
of incidences coming from points with richness ≥ 3 is O(n3/2). The number of incidences
coming from points with richness ≤ 2 is at most 2m.

We are now ready to prove the main result of this section.

PROPOSITION 4·6. Let P be a set of m points and let L be a set of n lines in the Heisenberg
group that are not parallel to the xy plane. Then

I (P,L) ≤ C(m3/5n3/5 + m + n), (4·2)

where C is an absolute constant

Proof. Our proof is closely modeled on the techniques of Sharir and Zlydenko from [23].
We will prove the result by induction on m; the base case for our induction will be when
m ≤ m0, where m0 is an absolute constant to be specified below. Observe that if m2 ≥ cn3

for a fixed constant c > 0, then then the result follows from Lemma 4·5; indeed, if m2 ≥ cn3

then n3/2 + m = O(m) and thus

I (P,L) = O(n3/2 + m) = O(m3/5n3/5 + m + n).

Henceforth we will assume that

m2 ≤ cn3, (4·3)

where c is a constant that will be specified below.
For each line � ∈L of the form (0, ω, t) +C(1, u, ω̄), let q� ∈R

4 be the point
(t, u, Re ω, Im ω). Define

Q= {q� : � ∈L}.
For each point p ∈P , let Wp ⊂R

4 be the line described by (2·13). Define

W = {Wp : p ∈P}.
By Lemma 4·5, for any set of points Q′ ⊂Q and any set of lines W ′ ⊂W , we have the
incidence bound

I (Q′,W ′) = O(|Q′|3/2 + |W ′|). (4·4)

Let A : R4 →R
3 be a surjective linear map; we will choose this map so that the image

of every line in W remains a line, and no additional incidences are added. We will abuse
notation slightly by replacing Q with the set {A(q) : q ∈Q} (so now Q⊂R

3) and replacing
W with the set {A(W ) : W ∈W} (so now W is a set of lines in R

3). Note that (4·4) remains
true with these new definitions of Q and W .

Define

D = �c min(n3/5m−2/5, m1/2)�, (4·5)

where c > 0 is the same constant as in (4·3). In the analysis that follows, “Case 1” will
refer to the situation where n3/5m−2/5 ≥ m1/2, and “Case 2” will refer to the situation where
n3/5m−2/5 < m1/2.
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Observe that D ≤ cn1/3. Indeed, in Case 1 we have m ≥ n2/3 and thus D ≤ n3/5m−2/5 ≤
cn1/3. In Case 2 we have m ≤ n2/3, and again D ≤ cm1/2 ≤ cn1/3. If we select m0 ≥ c−2, then
we have ensured that cm1/2 > 1. Inequality (4·3) implies that cn3/5m−2/5 ≥ 1; thus we can
assume that D ≥ 1. In summary, we have

1 ≤ D ≤ cn1/3. (4·6)

Apply Corollary 4·2 to Q and W with this choice of D; we obtain a partitioning polynomial
P ∈R[x, y, z]. R3\Z(P) is a union of O(D3) cells, each of which contains O(n/D3) points
from Q and each of which intersects O(m/D2) line from W .

In Case 1, we use (4·4) to control the number of point-line incidences inside the cells. If
we index the cells O1, . . . , Ot with t = O(D3) and define Wi to be the set of lines from W
that intersect Oi , then

I (Q\Z(P),W) =
∑

i

I
(Q∩ Oi , Wi

)

� D3
(
(nD−3)3/2 + m D−2

)

� n3/2 D−3/2 + m D

� m3/5n3/5.

(4·7)

In Case 2 each cell meets O(1) lines, and thus

I (Q\Z(P),W) =
∑

i

I
(Q∩ Oi , Wi

)
� |Q\Z(P)|. (4·8)

Let W =W ′ �W ′′, where W ′ consists of the lines not contained in Z(P) and W ′′ con-
sists of the lines contained in Z(P). Since each line in W ′ can intersect Z(P) at most D
times, we have

I (Q∩ Z(P), W ′) ≤ Dm ≤ cm3/5n3/5. (4·9)

Our next task is to control the number of incidences formed by lines in W ′′. Factor P
into irreducible components P1 · · · Ph · Ph+1 · · · Pk , where the polynomials P1, . . . , Ph each
have degree at least two and the polynomials ph+1 . . . pk have degree one (it is possible that
all polynomials have degree at least two or no polynomials have degree at least two. In the
former case we set k = h and in the latter case we set h = −1). For each index i , define

Qi =Q∩ Z(Pi ) \
⋃

1≤ j<i

Q j .

We have Q∩ Z(P) = ⊔k
i=1 Qi . Similarly, let Wi be the set of lines that are contained in

Z(Pi) and are not contained in Z(Pj ) for any index j < i .
If q ∈ � for some q ∈Qi and � ∈W j with i 
= j , then the line � must intersect Z(Pi), and

� cannot be contained in Z(Pi ). Since � can intersect Z(Pi ) in at most deg(Pi ) points, we
can bound the number of such “cross-index” incidences as follows.
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|{(q, �) : q ∈ �, q ∈Qi , � ∈W j for some index j 
= i}|

≤
k∑

i=1

m deg(Pi)

≤ Dm

≤ cm3/5n3/5.

(4·10)

It remains to control incidences p ∈ � where p ∈Qi and � ∈Wi . Let Qrich
i consist of those

points q ∈Qi that are incident to at least 3 lines from Wi . Define Qpoor
i =Qi\Qrich

i . By
Lemma 4·3, for each index 1 ≤ i ≤ h there are ≤ C1 deg(Pi)

2 “bad” lines for some absolute
constant C1. For each index 1 ≤ i ≤ h, let Wbad

i ⊂Wi be the set of bad lines associated to Pi

and let Wgood
i =Wi\Wbad

i . If we choose the constant c from (4·5) sufficiently small, then

h∑
i=1

|Wbad
i | ≤

h∑
i=1

C1 deg(Pi)
2 ≤ C1 D2 ≤ m/2.

Thus by the induction hypothesis we have

h∑
i=1

I (Qrich
i ,Wbad

i ) ≤ I
( h⋃

i=1

Qrich
i ,

h⋃
i=1

Wbad
i

)

≤ C
((m

2

)3/5
n3/5 + ∣∣

h⋃
i=1

Wbad
i

∣∣ + ∣∣
h⋃

i=1

Qrich
i

∣∣).

If � ∈Wgood
i then � can be incident to at most C2 D bad points, for some absolute constant

C2. Since

h∑
i=1

C2 D|Wgood
i | = O(m3/5n3/5),

we have

h∑
i=1

I (Qrich
i ,Wi ) ≤ C

((m

2

)3/5
n3/5 + ∣∣

h⋃
i=1

Wbad
i

∣∣ + ∣∣
h⋃

i=1

Qrich
i

∣∣) + O(m3/5n3/5).

If q ∈Qpoor
i then q can be incident to at most two lines from Wi . Thus as long as C ≥ 2 we

have

h∑
i=1

I (Qi ,Wi ) ≤ C
((m

2

)3/5
n3/5 +

h∑
i=1

|Wi | +
h∑

i=1

|Qi |
)

+ O(m3/5n3/5). (4·11)

It remains to bound I (Qi ,Wi ) for h + 1 ≤ i ≤ k. By Lemma 4·4, if |Wi | ≥ 5, then the
lines in Wi correspond to a set of points in H that are collinear. In particular, this implies

I (Qi ,Wi ) ≤ |Qi | + |Wi |.
On the other hand, if |Wi | ≤ 4 then

I (Qi ,Wi ) ≤ 4|Qi |.
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Combining these bounds with (4·11) and summing in i , we conclude that if C ≥ 4 then

k∑
i=1

I (Qi ,Wi) ≤ C
((m

2

)3/5
n3/5 +

h∑
i=1

|Wi | +
h∑

i=1

|Qi |
)

+ C
( k∑

i=h+1

|Wi | +
k∑

i=h+1

|Qi |
)

≤ C
((m

2

)3/5
n3/5 + m + n

)
.

(4·12)

Combining (4·7), (4·8), (4·9), (4·10), and (4·12), we conclude that there is an absolute
constant C2 so that

I (Q,W) ≤ C
((m

2

)3/5
n3/5 + m + n

)
+ C2m3/5n3/5. (4·13)

If the constant C is chosen sufficiently large so that C ≥ 23/5C2, then we obtain (4·2) and the
induction closes.

Proof of Theorem 1·14. Let L= {φ(S) : S ∈ S} and let k ≥ 3. We need to prove that L deter-
mines O(n3/2k−5/2 + n/k) k-rich points. When k is small the result follows from Theorem
1·8, so we can assume that k ≥ C , for some absolute constant C to be determined later.
Let P ⊂H be the set of k-rich points determined by L, and let m = |P |. We clearly have
I (P,L) ≥ km. On the other hand, Proposition 4·6 implies that

I (P,L) = O(m3/5n3/5 + m + n). (4·14)

Thus if the constant C is selected sufficiently large compared to the implicit constant in
(4·14), then m = O(n3/2k−5/2 + nk−1), as desired.
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[8] P. ERDŐS. On sets of distances of n points in Euclidean space. Magyar Tudományos Akadémia

Matematikai Kutató Intézet Közleményei 5 (1960), 165–169.
[9] L. GUTH. Polynomial partitioning for a set of varieties. Math. Camb. Phil. Soc. 159 (2015), 459–469.

[10] L. GUTH. Polynomial methods in combinatorics. Amer. Math. Soc. (2018).
[11] L. GUTH AND N. KATZ. Algebraic methods in discrete analogs of the Kakeya problem. Adv. Math.

225 (2010), 2828–2839.
[12] L. GUTH AND J. ZAHL. Algebraic curves, rich points and doubly-ruled surfaces. Amer. J. Math. 140

(2018) 1187–1229.

https://doi.org/10.1017/S0305004121000256 Published online by Cambridge University Press

https://arXiv.org/abs/1612.02719
https://doi.org/10.1017/S0305004121000256


Sphere tangencies, line incidences and Lie’s line-sphere correspondence 421

[13] H. KAPLAN, J. MATOUŠEK, Z. SAFERNOVÁ AND M. SHARIR. Unit distances in three dimensions.
Combin. Probab. Comput. 21 (2012), 597–610.

[14] H. KAPLAN, M. SHARIR AND E. SHUSTIN. On lines and joints. Discrete. Comput. Geom. 44 (2010),
838–843.

[15] N. KATZ, I. ŁABA, AND T. TAO. An improved bound on the Minkowski dimension of Besicovitch
sets in R

3. Ann. of Math. 152 (2000), 383–446.
[16] N. KATZ AND J. ZAHL. An improved bound on the Hausdorff dimension of Besicovitch sets in R

3.
J. Amer. Math. Soc., 32 (2019), 195–259.

[17] J. KOLLÁR. Szemerédi–Trotter-type theorems in dimension 3. Adv. Math., 271 (2015), 30–61.
[18] R. MILSON. An overview of Lie’s line-sphere correspondence. In J. Leslie and T. Robart, editors, The

geometrical study of differential equations. Amer. Math. Soc. (2001), 129–162.
[19] G. MOCKENHAUPT AND T. TAO. Restriction and Kakeya phenomena for finite fields. Duke Math. J.

121 (2004), 35–74.
[20] M. RUDNEV. On the number of incidences between points and planes in three dimensions.

Combinatorica, 38 (2018), 219–254.
[21] M. RUDNEV. Point-plane incidences and some applications in positive characteristic. In K. Schmidt

and A. Winterhof, editors, Combinatorics and Finite Fields: Difference Sets, Polynomials,
Pseudorandomness and Applications, pages 211–240 (De Gruyter, 2019).

[22] M. RUDNEV AND J. SELIG. On the use of Klein quadric for geometric incidence problems in two
dimensions. SIAM J. Discrete Math. 30 (2014), 934–954.

[23] M. Sharir and O. Zlydenko. Incidences between points and curves with almost two degrees of freedom.
In Proc. 36th Annu. ACM Sympos. Comput. Geom. (2020).

[24] T. TAO. Stickiness, graininess, planiness, and a sum-product approach to the kakeya prob-
lem. https://terrytao.wordpress.com/2014/05/07/stickiness-graininess-planiness-and-a-sum-product-
approachto-the-kakeya-problem (2014).

[25] J. ZAHL. An improved bound on the number of point-surface incidences in three dimensions. Contrib.
Discrete Math. 8 (2013), 100–121.

[26] J. ZAHL. Breaking the 3/2 barrier for unit distances in three dimensions. Int. Math. Res. Not. 2019
(2019), 6235–6284.

https://doi.org/10.1017/S0305004121000256 Published online by Cambridge University Press

https://terrytao.wordpress.com/2014/05/07/stickiness-graininess-planiness-and-a-sum-product-approachto-the-kakeya-problem
https://terrytao.wordpress.com/2014/05/07/stickiness-graininess-planiness-and-a-sum-product-approachto-the-kakeya-problem
https://doi.org/10.1017/S0305004121000256

	Sphere tangencies, line incidences and Lie's line-sphere correspondence
	Introduction
	Lie's line-sphere correspondence
	Lines and the Klein quadric
	Oriented spheres and the Lie quadric
	Line-sphere correspondence
	Pencils of contacting spheres
	Complimentary conics

	Incidence geometry in the Heisenberg group
	Improvements over R


