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We conduct direct numerical simulations (DNS) of the Cahn–Hilliard–Navier–
Stokes (CHNS) equations to investigate the statistical properties of a turbulent
phase-separating symmetric binary-fluid mixture. Turbulence causes an arrest of
the phase separation which leads to the formation of a statistically steady emulsion.
We characterise turbulent velocity fluctuations in an emulsion for different values of
the Reynolds number and the Weber number. Our scale-by-scale kinetic energy budget
analysis shows that the interfacial terms in the CHNS equations provide an alternative
route for the kinetic energy transfer. By studying the probability distribution function
(p.d.f.) of the energy dissipation rate, the vorticity magnitude and the joint-p.d.f. of
the velocity-gradient invariants we show that the statistics of the turbulent fluctuations
do not change with the Weber number.

Key words: breakup/coalescence, isotropic turbulence, turbulence simulation

1. Introduction

Below the consolute temperature, a symmetric binary mixture with a spatially
homogeneous composition spontaneously phase separates forming domains of
individual phases via the process of spinodal decomposition, see e.g. the books
Chaikin & Lubensky (1998) and Goldenfeld (2005). During the dynamics, individual
domains merge and coarsen to form even larger domains until a final configuration
is reached wherein two single-component domains separated by an interface are
formed. The exact mechanism of domain growth depends on the interplay of viscous,
inertial and surface tension forces (Lifshitz & Slyozov 1961; Siggia 1979; Furukawa
1985; Bray 1994; Kendon 2000; Kendon et al. 2001; Puri 2009; Datt, Thampi &
Govindarajan 2015; Cates & Tjhung 2018).

The presence of external stirring such as shear or turbulent mixing counteracts the
phase separation by breaking the coarsening domains to form a statistically stationary
emulsion. In the presence of an external shear (with rate γ̇ ), the size of a typical
domain D in an emulsion state can be estimated by the balance of shear stress ρνγ̇
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with the capillary force density σ/D which gives D∼σ/ρνγ̇ (Hashimoto et al. 1995).
Here ρ is the density, ν is the kinematic viscosity and σ is the surface tension of
the emulsion. Although both experiments (Onuki 2002) and numerical simulations
(Stansell et al. 2006; Stratford et al. 2007; Cates & Tjhung 2018) confirm the
formation of an emulsion state, the domain size shows different scaling with shear
rate in the directions perpendicular and parallel to the shear (Stansell et al. 2006;
Stratford et al. 2007; Cates & Tjhung 2018).

The situation is much more tractable when the binary-fluid mixture emulsion
is formed by external stirring that generates homogeneous isotropic turbulence
(HIT). Because of the isotropy of the flow, a single length scale characterises the
domain size. The average domain size D of such an emulsion can be estimated
by a balance of inertial stress (ρ(δDU)2) with the capillary force density (σ/D)
(Hinze 1955), where δDU is the typical velocity difference across the domain. Using
δDU∼D1/3ε

1/3
inj (Kolmogorov 1941; Frisch 1996; Pandit, Perlekar & Ray 2009), where

εinj is the energy dissipation rate, provides an estimate for the average domain size as
D ∼ (ρ/σ)−3/5ε

−2/5
inj . Early experiments (Pine et al. 1984; Easwar 1992) indicated an

arrest of the phase-separation process in the presence of HIT. This was theoretically
understood using eddy diffusivity arguments by Aronovitz & Nelson (1984). However,
only recent numerical investigations using a multicomponent lattice–Boltzmann
method in three dimensions (Perlekar et al. 2014) and direct numerical simulations
(DNS) of Cahn–Hilliard–Navier–Stokes equations in two dimensions (Berti et al.
2005; Fan et al. 2016; Perlekar, Pal & Pandit 2017; Fan, Diamond & Chacon
2018) have been able to study emulsification by turbulence in symmetric binary-fluid
mixtures. Surprisingly, unlike shear flows, here the numerically calculated domain size
is in excellent agreement with Hinze’s prediction in both two and three dimensions.

In two dimensions, Perlekar et al. (2017) show that the inverse energy cascade
and the corresponding energy flux are blocked at a wavenumber corresponding to the
domain size D. In three dimensions, numerical investigations (Kendon et al. 2001;
Perlekar et al. 2014) show that for a binary-fluid mixture the energy content in
the inertial range is suppressed in comparison to a single-component fluid at the
same Reynolds number. However, an understanding of the underlying energy transfer
mechanisms in three dimensions remains unclear.

In this paper, we conduct DNS to investigate the energy transfer mechanisms and
the statistical properties of the velocity fluctuations in a stirred three-dimensional
symmetric binary-fluid mixture. Our main findings are: (i) external stirring arrests
phase separation (coarsening); (ii) our scale-by-scale analysis reveals that interfaces
provide an alternative route for energy transfer and dissipation; (iii) for identical
Reynolds number, a single-component fluid and a binary-fluid mixture have the same
small-scale statistics.

The rest of the paper is organised as follows. We present the equations and the
numerical method that we use in § 2. In §§ 3.1–3.3 we derive the equations for the
total energy and the scale-by-scale kinetic energy budget, and present our numerical
findings. In § 4 we investigate the small-scale statistics of the vorticity magnitude and
the energy dissipation rate. We conclude in § 5.

2. Equations and direct numerical simulation (DNS)

We model a phase-separating symmetric binary-fluid mixture by using the
Cahn–Hilliard–Navier–Stokes (CHNS) or Model-H equations (Cahn 1968; Hohenburg
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& Halperin 1977; Celani et al. 2009; Yue, Zhou & Feng 2010; Magaletti et al. 2013;
Fan et al. 2016; Pandit et al. 2017; Perlekar et al. 2017):

(∂t + u · ∇)u= ν∇2u−∇P+Λφ∇∇2φ + f , (2.1)
(∂t + u · ∇)φ =M∇2µ, (2.2)

µ≡Λ

(
−φ + φ3

ξ 2
−∇

2φ

)
, (2.3)

∇ · u= 0. (2.4)

Here φ, u and P are the Cahn–Hilliard order parameter, the velocity and the pressure
field at position x and time t, ν is the kinematic viscosity, M is the mobility, ξ controls
the width of the interface between the two phases, Λ is the mixing energy density,
the order-parameter diffusivity κ ≡ MΛ/ξ 2, the surface tension σ ≡ 2

√
2/3(Λ/ξ)

and f is the external forcing that generates turbulence. The order parameter takes
positive values in one phase and negative in the other. For simplicity, we assume
the density (ρ = 1), the viscosity η and the mobility M to be independent of φ
and the same for the two phases (in the lattice–Boltzmann simulations of Perlekar
et al. (2014), mobility depends on φ). The local vorticity ω ≡ ∇ × u. Note that the
pressure P also contains contributions due to the gradient terms in φ. We use a cubic
domain with each side of length L= 2π and discretise it with N3 collocation points.
We employ periodic boundary conditions. Equations (2.1) and (2.2) are numerically
integrated using a pseudo-spectral method with 1/2-dealiasing and time marching
is done using an exponential Adams–Bashforth scheme (Cox & Matthews 2002). A
large-scale forcing f̂ k= f0ûk/

∑
k=1,2 |ûk|

2, where the caret indicates Fourier transform,
with |k|6 2 ensures a constant energy injection rate εinj = f0.

2.1. Interface width ξ and mobility M
For an incompressible binary-fluid mixture such as 3-methylpentane-nitroethane (3MP-
NE), ξ ≈ 10−9 m, σ ≈ 10−2 kg s−2 and the diffusivity κ is expected to be within an
order of its value above the consolute temperature, i.e. κ 6 10−12 m2 s−1 (Wims et al.
1970; Aronovitz & Nelson 1984; Pine et al. 1984). Substituting these values in the
definition of κ , we get an estimate for mobility M = κξ 2/Λ∼ 10−20 kg−1 m3 s.

It is numerically prohibitive to use such vanishingly small ξ and M in CHNS
equations. However, using an asymptotic analysis Magaletti et al. (2013) found that
for ξ �L and with M ∝Lξ 3/(ΛτL) (or equivalently κ ∝Lξ/τL), the solution of the
CHNS equations is consistent with the ‘sharp-interface’ limit (ξ → 0 and M → 0).
Thus in all our numerical simulations we have used κ ≈ 2.5(L/τL)ξ ≈ 10−2.

The flat-interface profile φ(x) = tanh(x/
√

2ξ) is an equilibrium solution of the
CHNS equations. Following Jacqmin (1999), we define the interface width w= 4.164ξ
as the distance over which φ varies from −0.9 to 0.9. To have a fully resolved
interface, in our direct numerical simulations we choose ξ(� L) such that there are
at least six grid points across the interface (Celani et al. 2009; Scarbolo et al. 2013).
Thus for a given grid spacing δx≡L/N, we set ξ = 6δx/4.164.

3. Results

The energy injection based Reynolds number Re≡
√
ε

1/3
inj L4/3/ν and Weber number

We≡ ε2/3
inj L5/3/σ characterise the turbulence intensity of the flow. Table 1 summarises
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FIGURE 1. (Colour online) Time evolution of the viscous dissipation εν for a fixed Re=
96 and different We (runs SP21, SP23, and SP24).

N ν ξ(×10−2) κ σ (×10−1) Re We εinj εν(×10−1) εµ(×10−1)

NS1 256 10−3 — — — 65 — 0.05 0.05 —
SP11 256 10−3 3.76 10−2 2.51 65 11.6 0.05 0.33 0.18
SP12 256 10−3 3.76 10−2 0.63 65 46.4 0.05 0.23 0.28
SP13 256 10−3 3.76 10−2 0.25 65 116.2 0.05 0.23 0.27
NS2 512 10−3 — — — 96 — 0.5 0.5 —
SP21 512 10−3 1.88 10−2 5.02 96 26.9 0.5 3.10 1.90
SP22 512 10−3 1.88 10−2 3.76 96 35.9 0.5 2.90 2.15
SP23 512 10−3 1.88 10−2 2.50 96 53.9 0.5 2.67 2.35
SP24 512 10−3 1.88 10−2 1.25 96 107.9 0.5 2.39 2.55

TABLE 1. Parameters N, ν, ξ , κ, σ , Re, We, εinj, εν , and εµ for our binary-fluid DNS
SP11-13 and SP21-24. The NS runs are the DNS studies conducted for single-component
Navier–Stokes fluid with the same ν and εinj as the binary fluid.

the parameters that we use. We present a grid convergence study for our high-Re, high-
We run (SP24) in the Appendix. All the simulations were time integrated up to t ≈
8TL (TL ≡ ε

−1/3
inj L2/3). We plot the time evolution of the viscous dissipation εν(t) =

ν
∑

k k2
|ûk|

2 in figure 1 and observe that a statistically steady state is attained for
t> 2.5TL.

3.1. Domain size and energy balance
In figure 2 we plot representative snapshots of the steady-state order-parameter field
φ for our runs SP21 (Re = 96, We = 26.9) and SP24 (Re = 96, We = 107.9). We
observe that the domain size in the emulsion decreases with increasing We. From φ,
we estimate the average domain size as

Lc = 2π

〈 ∑
k

|φ̂k|
2

∑
k

k|φ̂k|
2

〉
, (3.1)
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(a) (b)

FIGURE 2. (Colour online) Pseudocolour plot of the order-parameter field φ for Re= 96,
We= 26.9 (a) and for Re= 96,We= 107.9 (b). Regions with φ= 1(−1) are shown in red
(blue). Average domain size decreases with increasing We.

where k=
√

k · k and angular brackets denote time averaging in the statistically steady
state (Kendon et al. 2001; Perlekar et al. 2014, 2017; Fan et al. 2016). In figure 3(a)
we present a plot of Lc versus ε2

inj/σ
3 for different values of Re and We (see table 1).

We find the data to be in good agreement with Hinze’s prediction for the average
domain size in an emulsion D∼ (ε2

inj/σ
3)−1/5.

Geometrically the average domain size can be obtained by measuring the inverse of
the interfacial area S per unit volume (Furukawa 2000). We identify the interface as
a region with φ = 0 and use the ‘GNU triangulation surface’ (GTS) library (Popinet
& Jones 2004) to evaluate steady-state S . In the inset of figure 3(a) we show that
Lc ∼L3/S . Thus a unique length scale describes the domain size.

We next investigate how much of the energy injected εinj is dissipated by the
viscosity εν and how much is the contribution due to chemical potential εµ. Using
(2.1) and (2.2), we obtain the following energy balance equation:

∂t
1
L3

∫
|u|2

2
dx︸ ︷︷ ︸

K

+∂t
1
L3

∫
Λ

ξ 2

(
−
φ2

2
+
φ4

4
+
ξ 2

2
|∇φ|2

)
dx︸ ︷︷ ︸

G

=−
ν

L3

∫
|∇u|2 dx︸ ︷︷ ︸
εν

−
M
L3

∫
|∇µ|2 dx︸ ︷︷ ︸
εµ

+
1
L3

∫
f · u dx︸ ︷︷ ︸
εinj

. (3.2)

Here K is the kinetic energy, G is the free energy of mixing, εν is the viscous
energy dissipation, εµ is the dissipation because of the chemical potential (interfacial
contribution due to breakup and merger of the domains) and εinj is the energy injected
because of the external forcing. In the statistically steady state, 〈εinj〉 ≈ 〈εν〉 + 〈εµ〉.
In figure 3(b,c) we show that for small We, the viscosity is the primary dissipation
mechanism, 〈εν〉 � 〈εµ〉, whereas for large We average domain size reduces and
the merger and breakup events increase thereby making the interfacial contribution
more dominant, 〈εµ〉 > 〈εν〉. From (2.2), it is easy to show that in the steady state
εµ = 〈

∫
u · φ∇µ dx/L3

〉. Since u∼ (εinjL)1/3 and ∇µ∼ σ/D2 (Bray 1994), we obtain
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FIGURE 3. (Colour online) (a) Semi-log plot of the domain scale Lc versus ε2
inj/σ

3

(blue circle) and its comparison with the Hinze prediction for the domain scale (D ∼
(ε2

inj/σ
3)−1/5, black line). Inset: scatter plot of the domain scale Lc versus L3/S (blue

circle); black dashed line is the linear fit L3/S = 0.62Lc. (b,c) εν/εinj (blue circle) and
εµ/εinj (orange square) with varying Weber number We for Re= 65 (runs SP11-13) and
Re= 96 (runs SP21-24), respectively. Black line shows εµ/εinj ∼We1/5 scaling.

the prediction εµ/εinj ∼ We1/5 which is in reasonable agreement with the results
obtained from our DNS.

3.2. Energy spectrum
The steady-state energy spectrum is defined as (Vincent & Meneguzzi 1991)

E(k)=
1
2

〈 ∑
k−1/2<k′6k+1/2

|ûk′ |
2

〉
. (3.3)

For high-Reynolds-number single-component turbulent flows, the energy spectrum
shows Kolmogorov scaling E(k)∼ k−5/3 in the inertial range (Kolmogorov 1941; Frisch
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FIGURE 4. (Colour online) Energy spectrum for (a) Re= 65 and (b) Re= 96 for different
values of We. The horizontal dashed line indicates Kolmogorov scaling and the vertical
dash-dot lines indicate the wavenumber corresponding to the average domain size 2π/Lc
in the emulsion. Here, η= (ν3/εν)

1/4 is the viscous-dissipation scale.

1996). The energy spectrum obtained from our DNS runs NS1 and NS2 shows half a
decade of scaling for Re=65 and nearly a decade of scaling for Re=96 (see figure 4).

We now investigate the energy spectrum for a turbulent binary-fluid mixture.
It is important to note that our parameter choice ensures that the wavenumber
corresponding to the interfacial width kw = 2π/w (kwη > 0.5) lies beyond the inertial
range.

For scales much larger and much smaller than the domain size Lc, we expect the
statistical properties of the binary fluid to be same as the single-component fluid. In
particular, we expect Kolmogorov scaling for scales much larger than the domain
size but smaller than the injection scale (2π/`inj� k� 2π/Lc). The energy spectrum
should be modified for scales comparable to the domain size, k ∼ 2π/Lc, because
of redistribution and dissipation of energy due to breakup and merger of domains.
Finally, for scales much smaller than the domain size but larger than the dissipation
scale (2π/Lc � k � 2π/η) Kolmogorov scaling should be recovered. Unfortunately,
because of the range of scales involved, it is computationally prohibitive to observe
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all these different regimes in a single DNS. We, therefore, vary the We and Re to
access different regimes discussed above.

For low Weber number (We= 11.6, Re≈ 65 and We= 26.9, Re≈ 96), the domain
size Lc � η and we observe that the energy spectrum follows its single-component
counterpart and shows Kolmogorov scaling for k > 2π/Lc. For high Weber number
(We = 116.2, Re ≈ 65 and We = 107.9, Re ≈ 96), the domain size Lc� `inj. We find
a reduction in the energy content around k ≈ 2π/Lc and it becomes comparable
to the single-component spectrum for small k. This indicates a possibility that the
Kolmogorov scaling is recovered for k� 2π/Lc. Clearly, numerical simulations with
large scale separation and much higher spatial resolutions are required to investigate
the recovery of Kolmogorov scaling for 2π/`inj� k� 2π/Lc.

3.3. Scale-by-scale kinetic energy budget
To investigate how the kinetic energy is distributed up to a given length scale ` (or
a corresponding wavenumber k = 2π/`), we now derive the scale-by-scale energy
budget equation. By multiplying the Fourier-transformed (2.1) with û−k, summing
contributions up to wavenumber k, and then averaging over statistically steady state
we obtain

Π(k)=−D(k)−Πφ(k)+F(k). (3.4)

Here Π(k)≡ 〈Re[
∑
|m|6k ûm · ̂(u · ∇u)−m]〉 is the energy flux, Πφ

≡Λ〈Re[
∑
|m|6k ûm ·

̂(φ∇∇2φ)−m]〉 is the cumulative flux of (∇φ)2, E(k)≡
∑

m6k E(m) is the cumulative
energy up to wavenumber k, D(k)≡ ν

∑
m6k m2E(m) is the cumulative dissipation up

to wavenumber k and F(k) ≡ 〈
∑
|m|6k Re[û−mf̂ m]〉 is the cumulative energy injected.

Note that for the largest wavenumber kmax = N/4, the scale-by-scale kinetic energy
budget is the same as the kinetic energy balance because Π(kmax) = 0, D(kmax) =

εν, Π
φ(kmax)= εµ, and F(kmax)= εinj.

The plots in figure 5(a,b) show the scale-by-scale energy budget for Re = 65 and
Re= 96 for a single-component fluid. The energy is injected at large scales by forcing
F(k) and is dissipated by viscosity at small scales. The Navier–Stokes nonlinearity
transfers the kinetic energy in the inertial range while keeping its flux Π(k) constant.
For our high Re= 96 run NS2, we observe a nearly constant Π(k)∼ εinj for 26 k6 10
which manifests as an extended inertial range in the energy spectrum (see figure 4b).

We now show that for the binary-fluid case, the presence of emulsion domains
dramatically alters the energy transfer mechanism. Firstly, for small We we find that
for large k (�2π/Lc) the viscous dissipation D(k) is larger than the contribution
due to interfacial flux Πφ(k) (figure 5c,d) whereas it is the opposite for high We
(figure 5e, f ). Secondly, the interfacial flux Πφ(k) first increases up to a wavenumber
corresponding to the arrest scale kc ≈ 2π/Lc. Above k > kc, Πφ(k) decreases until
large k where it is equal to εµ. This indicates that the interface undulations absorb
kinetic energy ∼Πφ(kc) from large scales. However only part of it, εµ, is dissipated
and the excess energy ∼ Πφ(kc) − εµ is redistributed among wavenumbers k > kc.
Finally, the contribution because of the kinetic energy flux Π(k) is nearly halved in
comparison to its single-component-fluid counterpart. Consistent with the discussion in
the previous section, for k> kc we find a small range where Π(k)∼ constant for k> kc

(see figure 5). Note that in figure 5(e) (run SP13, Re = 65, and We = 116.2) we do
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FIGURE 5. (Colour online) Energy flux for (a) Re= 65 (run NS1), (b) Re= 96 (run NS2),
(c) We ≈ 11.6, Re ≈ 65 (run SP11), (d) We ≈ 26.9, Re ≈ 96 (run SP21), (e) We ≈ 116.2,
Re ≈ 65 (run SP13), and ( f ) We ≈ 107.9, Re ≈ 96 (run SP24). The dashed vertical line
indicate the wavenumber corresponding to the average domain size 2π/Lc.

not observe a plateau region in Π(k) due to lack of scale separation (the contribution
due to viscous dissipation is comparable to the energy flux around k= 2π/Lc).

For k < kc we find that Π(k) decreases with increasing k and balances interfacial
flux Πφ(k). Indeed, much larger scale separation is required to verify if the
Kolmogorov scaling is recovered for 2π/`inj � k � kc. Nevertheless, our study
clearly shows that the presence of an interface opens up an additional mechanism for
transferring kinetic energy from large scales to scales smaller than the average size
of a domain in the emulsion.
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FIGURE 6. (Colour online) (a,b) Probability distribution function of the energy dissipation
rate P(εν) versus εν and the magnitude of the vorticity P(|ω|) versus |ω| for different We.
(c,d) Normalised p.d.f.s P(εν)σε and P(|ω|)σω for different We. We fix Re= 96 (runs SP21,
SP24). For comparison we also plot the corresponding p.d.f. for the pure fluid (run NS2).

4. Small-scale structures

We now investigate whether the different kinetic energy transfer mechanism in
binary-fluid turbulence also alters the small-scale structures. In figure 6(a,b) we plot
the statistics of the local viscous energy dissipation εloc= ν

∑
i,j(∂iuj+ ∂jui)

2/2 and the
magnitude of the vorticity field |ω| =

√
ω ·ω for a binary-fluid mixture and compare

it with a single-component fluid at the same Re. We observe a reduction in the
events with large values of εloc and |ω| on increasing We. However, the probability
distribution functions (p.d.f.s) overlap when normalised by their standard deviations.
Thus the small-scale statistics remains the same as that of a single-component
turbulent fluid.

To investigate the flow structures, in figure 7 we plot the iso-vorticity contours for
a turbulent binary mixture as well as turbulence in pure fluid and overlay the φ = 0
contours on them to highlight the emulsion domains. For the single-component fluid,
consistent with earlier studies (Ishihara, Gotoh & Kaneda 2009; Pandit et al. 2009),
we observe tubular structures. For the case of a binary mixture, as shown earlier,
smaller domains (more interfacial area) are formed as we increase We. Also, near the
interfacial region vorticity appears to be concentrated. Thus the interface undulations
also generate flow structures whose statistics are similar to that of turbulence in a
single-component fluid.
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(a)

(b)

(c)

FIGURE 7. (Colour online) Representative steady-state iso-contour plots of the vorticity
magnitude |ω| for |ω| = ¯|ω| + 6σω, where the overbar denotes spatial averaging. (a) Pure
fluid with |ω| = 1.123 (run NS2), (b) a turbulent binary mixture with We= 26.9 with |ω| =
0.93 (run SP21) and (c) We= 107.9 with |ω| = 0.76 (run SP22). For the binary-mixture
plots we also overlay the iso-contour of the order parameter φ for φ = 0 to highlight the
interface.
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FIGURE 8. (Colour online) Contour plots of the joint p.d.f. P(R∗, Q∗) for pure-fluid
turbulence (grey dots, run NS2) and binary-fluid turbulence with We= 26.9 (blue line, run
SP21), We = 107.9 (red dashed line, run SP24). Here R∗ = ν3/2R/ε3/2

ν and Q∗ = νQ/εν .
Contours are logarithmically spaced and separated by factors of 10. For all We, the value
of the outermost contour is 10−4. The black curve is the ∆=0 line that demarcates regions
with vortical ∆> 0 or strain ∆< 0 dominated flow structures.

The local flow structures as observed by a Lagrangian fluid parcel in a turbulent
flow can be quantified by the invariants R ≡ −Tr(A2)/2 and Q ≡ −Tr(A3)/3 of the
velocity gradient tensor A≡∇u (Perry & Chong 1987; Cantwell 1992). The joint p.d.f.
P(R,Q) provides an understanding of the typical structures encountered in a turbulent
flow. The discriminant ∆≡ 27Q3/4+R2 demarcates the regions dominated by vortices
(∆ > 0) from those that are dominated by strain (∆ < 0). To quantify whether the
structures formed in pure-fluid turbulence are similar to or different from a turbulent
binary mixture, in figure 8 we plot the joint p.d.f. P(R,Q) for the pure-fluid turbulence
as well as binary-fluid turbulence with Re= 96 and We= 26.9, 107.9. Although the
qualitative features remain the same we observe a small but systematic shrinkage of
the iso-contour lines with increasing We.

5. Conclusions
We investigated turbulence in a stirred phase-separated symmetric binary-fluid

mixture. Our study reveals that external stirring leads to the formation of a statistically
steady emulsion. The Hinze scale provides an estimate for the average domain size.
For a binary-fluid mixture, in comparison to a single-component fluid, kinetic energy
content is reduced for length scales comparable to the domain size. We show that this
is because the presence of interfaces opens up an alternative kinetic energy transfer
mechanism. Emulsion domains absorb kinetic energy at scales comparable to the
Hinze scale, dissipate part of it and redistribute the rest to small scales. Surprisingly,
even with an alternative energy transfer mechanism, we do not find any qualitative
change in the statistics of small-scale structures.

Our results bear a striking similarity with those of polymeric turbulence (Perlekar,
Mitra & Pandit 2006, 2010; Valente, Silva & Pinho 2014). There also the presence of
polymers modifies the energy transfer in the inertial range. This similarity could be
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attributed to a close correspondence between the CHNS equations and the equations
for uniaxial polymers (Balkovsky, Fouxon & Lebedev 2001). However, a crucial
difference is that the typical size of the polymer is in the dissipation range and they
are homogeneously distributed throughout the flow, whereas the size of binary-fluid
domains lies within the inertial range (Aronovitz & Nelson 1984; Perlekar et al.
2014; Fan et al. 2016).
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Appendix. Optimal grid resolution

To correctly capture the dynamics of a turbulent binary-fluid mixture it is essential
to have both the interface ξ as well as the dissipation range well-resolved. Thus to
estimate optimal grid resolution, we conduct DNS for our largest-(Re,We) run SP24
with fixed length L and varying N. Based on the criterion discussed in § 2.1, it is
straightforward to show that for ξ = 1.88 × 10−2, a grid resolution with N > 482 is
needed to have a well-resolved interface. We perform DNS with N=256,320,512 and
1024 and monitor the steady-state energy dissipation rate and the energy spectrum. We
initialise the N = 1024 configuration from an N = 512 steady-state configuration and
further time-integrate it for 2TL.

In figure 9(a–d) we plot representative snapshots of the steady-state order-parameter
field φ for different grid resolution. In all the cases the average domain size is
correctly captured. However at the lowest grid resolution (N = 256), since interface
is not well-resolved, we observe the presence of small-scale fluctuations. The viscous
dissipation shows similar evolution for different grid resolutions (see figure 9e).
Indeed the steady-state viscous dissipation εν is comparable (see table 2) for all
the cases. Next, in figure 9( f ) we present a comparison of the steady-state energy
spectrum E(kη) for different N. Although the inertial-range behaviour is identical
for all the runs, at low grid resolutions (N = 256 and N = 320) we see a pile-up of
energy at large k which is a hallmark of under-resolved spectral simulations (Canuto
et al. 1988). The energy spectrum for high-resolution runs (N = 512 and N = 1024)
is well-resolved and indistinguishable over the entire range. Since it is desirable to
have a well-resolved energy spectrum and also long time integration, we conclude
that N = 512 provides an optimal grid resolution for Re= 96. A similar study reveals
that for Re= 65, N = 256 is sufficient.

N εν

256 2.49× 10−1

320 2.40× 10−1

512 2.39× 10−1

1024 2.41× 10−1

TABLE 2. Steady-state value of the viscous dissipation εν with different grid resolutions
N. The other parameter values are the same as our binary-fluid DNS SP24 (see table 1).
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FIGURE 9. (Colour online) Grid convergence test for run SP24 (Re = 96, We = 107.9).
Pseudocolour plot of the order-parameter field φ with increasing grid resolution: (a) N =
256, (b) N = 320, (c) N = 512 and (d) N = 1024; (e) time evolution of the viscous
dissipation εν and ( f ) steady-state energy spectrum E(k) versus k.
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