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Constraints on the wall layer in turbulent pipe
flow
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Dynamical constraints on the wall layer in turbulent pipe flow imply both a narrow peak in
the streamwise component of the turbulent Lamb vector near the wall, and a scaling of the
wall layer depth proportional to the depth of the viscous sublayer. An approximation of the
Lamb vector distribution, which equates to the gradient of Reynolds stress, is proposed.
Hence the equation for streamwise mean flow may be integrated to obtain an expression
for the velocity profile in the wall layer.
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1. Introduction

Turbulent flow in cylindrical pipes is of great practical and theoretical interest. The
transition to turbulence in pipe flow is also a paradigm of turbulent transition, of interest
in its own right. The response of fluid flux to an applied pressure gradient depends on
the stress at the pipe wall and its transmission to the bulk flow, which is governed by
the turbulence structure of the wall layer. Better understanding of this aids the design of
efficient flow systems. Flow in this region is usually modelled based on similarity theory,
and decomposed into a viscous sublayer and a log layer with experimentally determined
coefficients (e.g. Hinze 1959; Townsend 1976).

Here, some dynamical constraints on the wall layer are discussed. These allow an
approximate form of the gradient of Reynolds stress there to be postulated, as well as
the wall-layer thickness. Thus a mean wall-layer velocity profile may be derived, which
compares well with results from previous experimentation.

2. Steady, axisymmetric pipe flow

2.1. Reynolds-averaged mean flow equation
The flow in a smooth pipe of radius R is represented in cylindrical polar coordinates r, φ, z
as an axisymmetric mean flow in the z direction, varying with radius r and with unsteady
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fluctuations of velocity u′:

u = U(r)ẑ + u′, (2.1a)

u′ = u′ẑ + v′φ̂ + w′r̂. (2.1b)

The mean pressure is denoted P. It is a common observation or assumption that for steady,
fully developed pipe flow, dP/dz is approximately constant.

The z-component of the Reynolds-averaged momentum equation for mean flow in a
smooth pipe is (Townsend 1976, § 5.2)

1
r

∂

∂r
(r u′w′) = − 1

ρ

∂P
∂z

+ ν

r
∂

∂r

(
r
∂U
∂r

)
, (2.2)

where ρ and ν are the fluid density and kinematic viscosity, respectively. Inasmuch as
it contains fewer terms, this is less complex than the turbulent kinetic energy (TKE)
equation. Outside the wall layer, the last term in (2.2) becomes insignificant.

The viscous and Reynolds stresses may be combined into a total stress

τ = ν
∂U
∂r

− u′w′ (2.3)

which tends to zero at the axis r = 0 and has a value τo at r = R. This wall value is a
viscous contribution (e.g. Wu & Moin (2008), figure 22), since both limits of the Reynolds
stress tend to zero.

The external parameters which characterise flow in a smooth pipe may be taken as the
pipe radius R, the pressure gradient along the pipe per unit fluid density,

H = − 1
ρ

dP
dz

> 0 (2.4)

and the kinematic viscosity. Of these, R and H are appropriate for non-dimensionalising
turbulent flow, and hereafter a hat ( ·̂ ) denotes the dimensionless equivalent of a previously
dimensional quantity, e.g.

Û = U
R1/2H1/2 . (2.5)

2.2. The friction factor and Prandtl’s formula
The dimensionless friction factor, f , is defined in terms of the pressure gradient, pipe
diameter and dynamic pressure of the mean flow speed U (defined as the volume flux per
unit area) as follows:

f =
∣∣∣∣dP

dz

∣∣∣∣ 2R
1
2ρU2

= 4

Û2
. (2.6)

The Reynolds number is

Re = (2R)U
ν

= 2ÛM, (2.7)

where

M = R3/2H1/2

ν
. (2.8)

Turbulent boundary layers are often modelled in terms of the friction velocity u∗ =
(τ1/ρ)1/2, where τ1 ∼ τ0 is the peak Reynolds stress beyond the wall layer. Assuming that
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Constraints on the wall layer in turbulent pipe flow

the viscous term is very small over almost the entire radial range, i.e. neglecting a thin
layer at the pipe wall, (2.2) may be integrated to give

u2
∗ ≈ HR

2
. (2.9)

The surface-layer similarity assumption dU/dy ∝ u∗/y (von Kármán 1931) leads to the
log profile

U
u∗

= k−1 ln
y
y1

, (2.10)

where y is the direction normal to the boundary surface at y = 0, k ≈ 0.4 is von Kármán’s
constant, and the integration constant becomes a length scale y1 to be determined. For pipe
flow, y = R − r and, in smooth pipes, y1 is taken to be the length scale ν/u∗ of the viscous
layer. From (2.9), the dimensionless viscous length scale behaves as

ν

Ru∗
≈

√
2

M
. (2.11)

Combination and experimental calibration of the above relations leads to Prandtl’s
formula for flow in smooth pipes (Prandtl 1933),

f −1/2 = −2.0 log10

(
2.51

f 1/2 Re

)
. (2.12)

Wall-layer data are often presented as velocities scaled by u∗ as a function of distance
in wall units, that is, distance scaled by ν/u∗. This scaling is denoted by a superscript +.
Then (2.11) gives the approximate equivalences,

y+ = yu∗
ν

= M√
2

ŷ, (2.13a)

U+ = U
u∗

=
√

2Û. (2.13b)

The viscous sublayer is conventionally specified as extending through 0 � y+ � 5, while
the wall layer extends to y+ ≈ 30. In the viscous layer very close to the wall it is expected
that (e.g. Townsend (1976), § 5.9)

U+ ≈ y+. (2.14)

3. The turbulent Lamb vector

3.1. Relationship to Reynolds stress
The Reynolds stress gradient may be identified with the z-component of the turbulent
Lamb vector �′′ = ω′ × u′,

�′′
z = 1

r
∂

∂r
(r u′w′), (3.1)

where ω′ = ∇ × u′ is the turbulent vorticity (see Appendix A). This is significant because
the turbulent velocity fluctuations tend to zero at the pipe wall, hence so do the components
of �′′. (The azimuthal component of �′′ may be assumed negligible throughout, while the
radial component is in a three-way balance with the radial gradients of mean pressure and
TKE.)
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Equation (2.2) may then be written in dimensionless form as

1
r̂

∂

∂ r̂

(
r̂
∂Û
∂ r̂

)
= M(L − 1), (3.2)

where the dimensionless z-component of the Lamb vector is denoted by L (= �′′
z /H).

3.2. Behaviour in the different layers
At intermediate Re (∼104), the turbulent stress is observed as linearly increasing with
radius in the bulk of the flow, before decreasing rapidly in the wall layer. This is consistent
with a first-order balance between the turbulent stress and the pressure gradient in the main
part of the flow.

Thus in the core, simply omitting the shear-dependent term from (3.2),

L ≈ 1 (3.3)

which agrees with the observed linear radial dependence of u′w′ in this region.
The thickness of the wall layer is denoted d, so that the core extends through 0 < r <

R − d and the wall layer through R − d < r < R. In the wall layer, the assumption of a
steady, z-invariant mean state implies that the pressure gradient should equal that in the
core, or else a radial pressure gradient would appear at downstream locations (Hinze 1959,
§ 7.8). The boundary conditions may be specified as

Û = 0, L = 0 at r̂ = 1
∂Û
∂ r̂

= G, L = 1 at r̂ = 1 − d̂

⎫⎬
⎭ (3.4)

where G is the velocity gradient at the inner edge of the wall layer, as yet unknown.

3.3. Model of the Lamb-vector component in the wall layer

Since u′w′ → 0 as r → R, (3.1) implies that∫ R

0
r �′′

z dr = 0. (3.5)

From this constraint, and the very simple core-region approximation (3.3), it would then
seem that �′′

z must have a radial distribution like that sketched in figure 1. Thus, from (3.3),∫ R−d

0
r �′′

z dr ≈ 1
2 (R − d)2H (3.6)

and hence ∫ R

R−d
r �′′

z dr ≈ −1
2 (R − d)2H. (3.7)

That is, �′′
z must have substantial negative values in the wall layer since d 	 R.

Examples of the profiles of Reynolds stress and the turbulent Lamb-vector component
are shown in figure 2. These are based on the data of Wu & Moin (2008), obtained from
https://ctr.stanford.edu/research-data.
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�z
′′

r
R – d

Q R

H

Figure 1. Sketch of the radial profile of �′′
z , given the constraints of constancy in the core region r < R − d

and null values of �′′
z and Reynolds stress at r = R. The profile intersects the r axis at Q and R.
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Figure 2. Example profiles of (a) the Reynolds stress, and (b) the streamwise component of the turbulent
Lamb vector, at Re = 5300 (blue) and Re = 44 000 (red). These are based on the data of Wu & Moin (2008).
The inset to (a) shows individual data points, indicating the extent to which the simulations resolve the fine
structure near the wall. The Lamb-vector component has been calculated from the Reynolds stress using (3.1).

Considering for instance the contribution to �′′
z from the combination of azimuthal

vorticity and radial velocity fluctuations (possibly the dominant contribution in pipe
geometry), the implications of this for the flow structure are that a strong helical correlation
in one azimuthal direction in the wall layer has a weaker counterpart in the other direction
in the core of the flow. It may be speculated that the vortex generation and flow inflections
at the laminar–turbulent transition observed by Hof et al. (2010) are related to the
establishment of turbulent structures of this sort.

To facilitate an initial, simplified analysis, the profile of �′′
z in the wall layer may be

approximated by a parabola

�′′
z = A(r − R)(r − Q), (3.8)

where R − d � Q � R. The values of A and Q are determined by H and d as follows.
At r = R − d, continuity of �′′

z implies

Ad(d − q) = H, (3.9)
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where q = R − Q. Also

∫ R

R−d
r �′′

z dr = A
∫ R

R−d
r(r − R)(r − Q) dr

= −Ad2
(

1
4

d2 − R + q
3

d + Rq
2

)
(3.10)

so that, from (3.7),

Ad2
(

1
4

d2 − R + q
3

d + Rq
2

)
= 1

2
(R − d)2H. (3.11)

Hence from (3.9)

q = d

(
3d̂2 − 8d̂ + 6

2d̂2 − 6d̂ + 6

)
⇒ d − q = d

(
2d̂ − d̂2

2d̂2 − 6d̂ + 6

)
(3.12)

and so

Q = R

(
−3d̂3 + 10d̂2 − 12d̂ + 6

2d̂2 − 6d̂ + 6

)
(3.13)

so that

Q̂ → 1 − d̂ as d̂ → 0. (3.14)

Using (3.9), (3.8) may be written

�′′
z = H

d(d − q)
(r − R)(r − Q) (3.15)

or

L = B(r̂ − 1)(r̂ − Q̂)

= B
(

r̂2 − (1 + Q̂)r̂ + Q̂
)

(3.16)

where Q̂ is given by (3.13), and

B = 1

d̂(d̂ − q̂)
(3.17)

so that, from (3.12),

B → 3

d̂3
as d̂ → 0. (3.18)

An example of the function (3.15) is shown in figure 3, along with the corresponding
integrand r �′′

z .
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Figure 3. Example plots of the present approximation to �′′
z (black solid), and hence r �′′

z (grey solid), taking
R = 1, H = 0.2 and d = 0.2. The model (3.15) is plotted in region r > (R − d), and (3.3) elsewhere.

4. Mean velocity profile in the wall layer

4.1. Form of the velocity profile
Using (3.16) and the boundary conditions (3.4), (3.2) may be integrated to give

Û
M

= 1
16

B(r̂4 − 1) − 1
9

B(1 + Q̂)(r̂3 − 1) + 1
4
(BQ̂ − 1)(r̂2 − 1)

−
(

1
4

B(1 − d̂)4 − 1
3

B(1 + Q̂)(1 − d̂)3 + 1
2
(BQ̂ − 1)(1 − d̂)2

)
ln r̂

+ (1 − d̂)

(
Ĝ
M

)
ln r̂. (4.1)

The maximum value of Û in this layer, denoted ÛL, will be at r̂ = 1 − d̂, and is given by

ÛL

M
− (1 − d̂)

(
Ĝ
M

)
ln(1 − d̂) = 1

16
B
(
(1 − d̂)4

[
1 − 4 ln(1 − d̂)

]
− 1

)

− 1
9

B(1 + Q̂)
(
(1 − d̂)3

[
1 − 3 ln(1 − d̂)

]
− 1

)

+ 1
4
(BQ̂ − 1)

(
(1 − d̂)2

[
1 − 2 ln(1 − d̂)

]
− 1

)
.

(4.2)

To gauge the behaviour at small d̂, the terms on the right-hand side of (4.2) may be
expanded up to d̂4, see Appendix B, which is necessary given the limiting behaviour of
B (3.18). (Cancellation of terms means that the approximation (3.14) is sufficient for Q̂.)
For the terms on the left-hand side of (4.2) it is assumed, and verified later, that M � 1 as
d̂ 	 1 so that only O(M−1) terms should be retained at the end.

Regarding G, observations suggest that, at intermediate Re, there is relatively little shear
in the core of the flow compared with the layer at the wall, so that the velocity in the core
is comparable to that at the edge of the wall layer. This suggests an approximate scaling of

Ĝ ≈ − ÛL

1 − d̂
. (4.3)

944 A32-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

49
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.498


G.G. Rooney

Hence, for small d̂,

ÛL

M

(
1 + ln(1 − d̂)

)
≈ d̂2

2
+
(

2Bd̂ − 1
) d̂3

6
+
(
−6B − 3Bd̂ − 1

) d̂4

24
. (4.4)

Then substituting for B from (3.18) and retaining only the leading-order terms on each
side,

ÛL

M
≈ d̂

4
as d̂ → 0. (4.5)

The relationships (4.3) and (4.5) may be combined to substitute for G,

(1 − d̂)
Ĝ
M

≈ − d̂
4

(4.6)

so that (4.1) becomes

Û
M

= 1
16

B(r̂4 − 1) − 1
9

B(1 + Q̂)(r̂3 − 1) + 1
4
(BQ̂ − 1)(r̂2 − 1)

−
(

1
4

B(1 − d̂)4 − 1
3

B(1 + Q̂)(1 − d̂)3 + 1
2
(BQ̂ − 1)(1 − d̂)2

)
ln r̂ − d̂

4
ln r̂.

(4.7)

4.2. Scaling of the layer depth
The above analysis yields a hypothetical velocity profile in the wall layer as a function of
its depth d̂. It does not predict d̂. To further interpret the velocity profile, the scaling of d̂
must be considered, and one relevant aspect is the Reynolds number of the wall layer.

The Reynolds number is often defined simply in terms of length and velocity scales.
However, there is also an implicit assumption about flow structure, namely that the velocity
should vary by the order of the velocity scale, over a distance given by the length scale.
Otherwise, the definition would not be Galilean-invariant, for instance.

To retain the mean-velocity term in the momentum equation (3.2), which is present due
to the viscosity being non-negligible, there is an implication that the Reynolds number of
the wall layer should be bounded. This is a further constraint on the system. Denoting this
shear-layer Reynolds number by R, it is defined as

R = UL d
ν

= MÛL d̂. (4.8)

The continued existence of the shear layer may imply that R approaches some limiting
value, Rc. Then the asymptotic behaviour of (4.5) becomes ÛL/M ≈ Rc/(4MÛL), so that

ÛL ≈ R1/2
c

2
(4.9)

and then from (4.8)

d̂ ≈ 2R1/2
c

M
. (4.10)

This is the same M-dependence as (2.11), which implies that d̂ is simply as a multiple of
the viscous length scale, as might be expected.
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Figure 4. Mean flow speed in the wall layer. The solid lines show predictions for Re = 5300 (blue) and Re =
44 000 (red) using equation (4.7) over the range 10−3 < ŷ < d̂. The dashed lines show loci of data from Wu &
Moin (2008) at the same values of Re, also in blue and red, respectively. The inset shows the same data at low
values of ŷ, with both axes logarithmic.

4.3. Comparison with data
To compare the present model with previous studies, it is simplest to make use of Prandtl’s
formula to relate M to Re. Thus, a choice of Re gives the expected corresponding value for
f from (2.12), which then defines M = Re f 1/2/4, and hence d̂ from a chosen value of Rc.
The wall-layer profile (4.7) may then be compared with previous data.

Figure 4 shows data from Wu & Moin (2008) (see their figures 1 and 9) at Re = 5300
and Re = 44 000 (dashed lines), and (4.7) for the same values of Re (solid lines) taking
the shear-layer limiting value as Rc = 250. These correspond to M values of 2.5 × 102,
1.6 × 103 and d̂ values of 1.2 × 10−1, 2.0 × 10−2, respectively, so that Md̂ ≈ 32. The
chosen value of Rc thus implies a depth of the wall layer of approximately 23 wall units,
i.e. Md̂/

√
2 ≈ 23, see (2.13). This is smaller, though of comparable magnitude to the usual

estimate of around 30 wall units.
With this value of Rc, it can be seen that (4.7) matches closely to the data over a large

part of the wall-layer range, although there is a deviation from the data at the inner end of
the wall layer (noting that the ordinate of the main plot in figure 4 is linear).

It may be expected that a more sophisticated model of L and/or G could improve the
model here. Smoothing the transition from the wall layer to the core may also improve the
small underestimate of the wall-layer depth.

At the greater Re value, the maximum speed from this model corresponds closely to the
approximation (4.5).

5. Conclusion

Dynamical constraints on the wall layer in turbulent pipe flow have been discussed. These
imply both a narrow peak in the streamwise component of the turbulent Lamb vector near
the wall, and a scaling of the wall-layer depth proportional to the depth of the viscous
sublayer. Fitting an approximate form to the Lamb-vector component allows integration of
the equation for streamwise mean flow, resulting in an expression for the whole wall-layer
mean velocity profile which compares satisfactorily with previous data.
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The wall-layer velocity profile bridges the gap between the no-slip pipe wall and the
velocity scale of the flow in the core. Understanding its structure contributes to validation
of flow modelling by numerical or experimental methods. It also aids the extrapolation
and generalisation of experimental results obtained in specific cases.

The approximation to the Lamb-vector profile is applied over the entire wall layer. This
approach contrasts with that of Klewicki (2021) for instance, who compares the force
balance in various sublayers in a turbulent channel, and also suggests there may be some
different effects due to the cylindrical geometry of a pipe. The use of the Lamb vector
herein emphasises the apparent constraint that the geometry imposes on the wall layer in
relation to the core flow (consider, for instance, the radial integrand plotted in figure 3).
In addition, the explicit dependence of the Lamb vector on turbulent vorticity suggests
an interpretation of turbulent pipe flow in terms of azimuthal vortex structures. Corrsin
(1961) described turbulence as ‘a random field of vorticity’, emphasising the need to
consider vorticity fluctuations as well as velocity fluctuations. See Hamman, Klewicki &
Kirby (2008) for further discussion of the Lamb vector in a variety of contexts, including
turbulent channel flow.

The model developed is based on typical engineering assumptions of a constant pressure
gradient and a steady mean state, as in the standard treatment of laminar flow. Thus far it
requires no information on the details of the turbulent structures in the wall layer. However,
incorporation of such information may be helpful in developing it further.
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Appendix A. The streamwise Lamb vector in cylindrical polar coordinates

In cylindrical polar coordinates the continuity equation is

∇ · u = 1
r

∂

∂r
(ru) + 1

r
∂v

∂φ
+ ∂w

∂z
= 0 (A1)

and the vorticity is

ω =
(

1
r

∂w
∂φ

− ∂v

∂z

)
r̂ +

(
∂u
∂z

− ∂w
∂r

)
φ̂ + 1

r

(
∂

∂r
(rv) − ∂u

∂φ

)
ẑ. (A2)

The z-component of the Lamb vector is

�z = ωrv − ωφu =
(

1
r

∂w
∂φ

− ∂v

∂z

)
v −

(
∂u
∂z

− ∂w
∂r

)
u (A3)

and with the addition of w∇ · u (=0) this becomes

�z = 1
r

∂

∂r
(ruw) + 1

r
∂

∂φ
(vw) + ∂

∂z
(w2) − 1

2
∂

∂z
(u2 + v2 + w2) (A4)

so that

�z + 1
2

∂

∂z
(u · u) = 1

r
∂

∂r
(ruw) + 1

r
∂

∂φ
(vw) + ∂

∂z
(w2)

= ∇ · (wu) (A5)

as expected.
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Constraints on the wall layer in turbulent pipe flow

The same result may be obtained when considering turbulent fluctuations only, in which
case it relates the z-component of the turbulent Lamb vector to the TKE and Reynolds
stresses in the usual manner (e.g. Tennekes & Lumley (1972), their (3.3.13)). For steady
turbulent pipe flow, downstream and azimuthal gradients may be neglected, and hence

�′′
z = 1

r
∂

∂r
(r u′w′). (A6)

Thus �′′
z effectively represents that part of the Reynolds-stress gradient which remains

significant, i.e. formally removing the TKE gradient.

Appendix B. Expansions

For 0 < x 	 1,

(1 − x)4 [1 − 4 ln(1 − x)] ≈ (1 − 4x + 6x2 − 4x3 + x4)
(

1 + 4x + 2x2 + 4
3 x3 + x4

)
≈ 1 − 16

2 x2 + 40
3 x3 − 22

3 x4, (B1)

(1 − x)3 [1 − 3 ln(1 − x)] ≈ (1 − 3x + 3x2 − x3)
(

1 + 3x + 3
2 x2 + x3 + 3

4 x4
)

≈ 1 − 9
2 x2 + 9

2 x3 − 3
4 x4, (B2)

(1 − x)2 [1 − 2 ln(1 − x)] ≈ (1 − 2x + x2)
(

1 + 2x + x2 + 2
3 x3 + 1

2 x4
)

≈ 1 − 4
2 x2 + 2

3 x3 + 1
6 x4. (B3)

Using the above relations to substitute for each term on the right-hand side of (4.2) gives,
for small d̂,

ÛL

M
− (1 − d̂)

(
Ĝ
M

)
ln(1 − d̂) ≈ 1

16
B
(

−16
2

d̂2 + 40
3

d̂3 − 22
3

d̂4
)

− 1
9

B(1 + Q̂)

(
−9

2
d̂2 + 9

2
d̂3 − 3

4
d̂4
)

+ 1
4
(BQ̂ − 1)

(
−4

2
d̂2 + 2

3
d̂3 + 1

6
d̂4
)

=
(
−B + B(1 + Q̂) − (BQ̂ − 1)

) d̂2

2

+
(

5B − 3B(1 + Q̂) + (BQ̂ − 1)
) d̂3

6

+
(
−11B + 2B(1 + Q̂) + (BQ̂ − 1)

) d̂4

24

= d̂2

2
+
(

5B − 3B(1 + Q̂) + (BQ̂ − 1)
) d̂3

6

+
(
−11B + 2B(1 + Q̂) + (BQ̂ − 1)

) d̂4

24
. (B4)
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G.G. Rooney

The lack of O(x) terms in (B1)–(B3), plus a cancellation of Q̂ terms at O(d̂2), means that
the approximation (3.14) is sufficient for Q̂. Hence

ÛL

M
− (1 − d̂)

(
Ĝ
M

)
ln(1 − d̂) ≈ d̂2

2
+
(

5B − 3B(2 − d̂) + (B(1 − d̂) − 1)
) d̂3

6

+
(
−11B + 2B(2 − d̂) + (B(1 − d̂) − 1)

) d̂4

24

≈ d̂2

2
+
(

2Bd̂ − 1
) d̂3

6
+
(
−6B − 3Bd̂ − 1

) d̂4

24
. (B5)
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