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ABSTRACT

We tackle problems that appear in the practical application of  the Mack 
method for the estimation of reserving risk and the bootstrapping of ultimate 
reserve distributions. More specifi cally, we design a fi lter for outliers and large 
jumps, and present a robust version of Mack’s variance estimator. A combination 
of these guarantees a reasonable Mack and bootstrap error even for defi cient 
data. Furthermore, a method is derived that allows us to remove the infl uence 
of fl uctuations in earning patterns from the reserve risk estimate. It is thereby 
shown that the relation between underwriting and accident year based loss 
development patterns is given by a convolution. A numerically stable inversion 
thereof is obtained by means of a Tikhonov regularization. The reliability of 
the presented methods is verifi ed with several loss triangles.
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1. INTRODUCTION

In the balance sheet of a P&C insurance company reserves are reported at best 
estimate of the ultimate loss. This is why many methods have been developed to 
calculate this quantity. In the recent years though, new regulations and discus-
sions on new accounting rules are pushing for reporting also the reserve risk. This 
is the risk that the ultimate loss will signifi cantly vary from the best estimate.
For instance, the Swiss Solvency Test (SST) requires adding a market value 
margin to the discounted reserves. This margin is computed from the risk based 
capital needed to back those reserves. In other words, actuaries need to estimate 
the risk of reserves (i.e. the uncertainty in the estimates of ultimate losses of under-
writing reserves). The subject has thus become quite topical in our fi eld. This 
paper deals with various aspects of estimating risk from P&C reserve triangles.

The Mack method (Mack, 1993) is one of the most prominent methods for 
estimating reserve risk. The main reasons are its simplicity and the suitability 
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of its underlying stochastic model. Another popular approach is the bootstrap 
(England and Verrall, 1999). It was recently shown (England and Verrall, 
2006) that the bootstrap can be based on the same stochastic model as the 
Mack method. Unfortunately, as many actuaries discovered, the straightfor-
ward application of both methods to realistic data sets is not always possible. 
Real data are often affected by problems such as wrong bookings causing 
outliers or jumps. This paper proposes several corrections to both methods 
that increase the accuracy of the estimation. As mentioned above, the resulting 
reserve risk is not directly reported in the accounting balance sheet, but it 
matters for Asset-Liability Management (ALM), the risk-adjusted valuation 
of  companies and internal models to compute the market value margin 
required by solvency tests such as the SST.

There are two major sources of  inaccuracy when directly applying the 
standard methods: outliers or large artifi cial jumps in the data and fl uctuations 
in the earning patterns due to the wrong representation of  the triangles in 
underwriting years instead of accident years. To remedy the fi rst one, we pro-
pose in this paper the application of fi lters and/or a robust modifi cation of the 
Mack’s variance estimator. The corresponding modifi cation of the bootstrap 
algorithm is also described. If  the reserve triangles describe loss development 
per underwriting year, which is often the case in reinsurance, a straightforward 
application of the Mack or bootstrap method will treat the fl uctuations in earning 
patterns as noise in the loss developments. Hence the reserve risk is overestimated. 
We present here a method for separating fl uctuations in earning patterns from 
those in claim settlements. In general, we aim at separating true reserve uncer-
tainty from noise artifi cially introduced by the method or wrongly booked data.

In Section 2, we briefl y present the standard techniques as far as they are 
relevant to our study. Their application to real data with errors is discussed in 
Section 3, followed by the conclusion in Section 4. In Appendix A, we present 
the data used to produce the results and to demonstrate the methods.

2. RESERVE ESTIMATES AND RISK: STANDARD SOLUTIONS

Let Ljk be the accumulated incurred claims (losses) of the accident year with 
index j,  1   ≤   j   ≤  N, either paid or reported up to development year k, 1   ≤   k   ≤   N. 
The exact defi nition of the term accident year will be the subject of an explicit 
discussion later in the paper. One has claim observations if  k  ≤   N  +  1  –  j, so 
the available data form a triangle. The goal is to estimate the reserve amount R, 
see Section 2.1, and the mean squared error of the reserve estimator, denoted 
by mse (R), see Sections 2.2 and 2.3.

2.1. The Chain Ladder Algorithm

A popular method for estimating claim reserves is the chain ladder method (Tay-
lor, 2000). Estimates of unobserved (future) losses are obtained recursively, 
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Lj, k + 1  =  Lj, k   fk, starting from the latest observation Lj, N + 1 –  j  =  Lj, N + 1 –  j . The 
chain ladder factors fk are given by the weighted average of  the individual 
developments,  fjk   :=   Lj, k + 1 / Ljk, over the accident years j,
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for 1  ≤  k  ≤  N  –  1. The ultimate claim amount is Uj   : =   LjN . Here the triangle is 
assumed to be large enough to cover the full business development, so Uj is 
really ultimate. It can be estimated as 

 Uj   =   L j, N + 1 –  j   ∙   fN + 1 –  j   ∙  …  ∙   fN – 1. (2)

The current reserve amount Rj (at the end of development year k   =   N  +  1  –  j) 
is given by 

 Rj   =   L j, N + 1 –  j (  fN + 1 –  j    ·  …   ·    fN  –  1  –  1) + C j, N + 1 –  j  , (3)

where Cjk denotes the case reserve, that is the claims of accident year j which 
have been reported but not been paid up to development year k. The fi rst sum-
mand of Eq. (3) is the estimate of incurred but not reported (IBNR) losses.

2.2. Mack Method

The underlying uncertainty of the reserve estimation Rj is assessed in terms of 
its mean square error. An analytic estimate thereof can be obtained by using 
the assumptions of the Mack model (Mack, 1993):

 E(Lj, k + 1  |  Lj1,  ...,  Ljk )   =   Ljk  fk ,  (4)

 Var (Lj, k + 1  |  Lj1,  ...,  Ljk )   =   Ljk sk
2, (5) 

 {Li1,  ...,  LiN}, {Lj1,  ...,  LjN},  i  !  j,  are independent. (6)

The values of fk and sk can be estimated by the chain ladder factors (1) and 
the variance estimator (Mack, 1993)
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The fi nal formula (Mack, 1993) for the mean squared error estimate reads 
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In addition, the mean squared error of the overall reserve estimate, jj 2= ,R RN= /
can be calculated 
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2.3. Bootstrapping of Reserve Risk

Bootstrapping, introduced in (Efron, 1979), is a general approach to statistical 
inference. Its fi rst application to stochastic reserves can be found in (England 
and Verrall, 1999). This approach is based on the over-dispersed Poisson model. 
The extension to arbitrary generalized linear models (McCullagh and Nelder, 
1989), including the Mack model, was demonstrated recently (England and 
Verrall, 2006). Bootstrapping as a general method is reviewed in Section 2.3.1. 
The application to reserve risk, in particular to the Mack model, is discussed 
in Section 2.3.2.

2.3.1. Bootstrapping in General

The task of bootstrapping is as follows: given an independent and identically 
distributed (iid ) sample of size n, x  =  (x1,  ...,  xn), from an unknown distribu-
tion F, and a statistic q(x), such as an estimator, fi nd out the induced distribu-
tion P(q ) of q.

The main idea behind the bootstrap method is to approximate the distribu-
tion F by the empirical distribution F = i 1 d=

n/ (x  –  xi) / n. An iid sample of size n 
is drawn from F, called bootstrapped sample x* = (x1

*,  ...,  xn
* ). In practice,

this is done by drawing random samples with replacement from (x1,  ...,  xn). 
The sampling is repeated B times giving {x*

1,  ...,  x*
B}, and the statistic is evalu-

ated for each sample. Finally, the desired distribution P(q ) is approximated by 
the bootstrapped distribution P  = i 1 dB

=/ (q  –  q (x*
1)) / B.

2.3.2. Application to Reserve Risk

The goal is to predict the distribution of the chain ladder reserve estimator R, i.e. 
q  =  R. To start with, one has to choose a sample x. The suggestion of (England 
and Verrall, 2006) is to take scaled Pearson residuals, which, assuming the Mack 
model, are given by 
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This triangle of  residuals is bootstrapped (resampled with replacement) to 
form a triangle of bootstrapped residuals r*. The sampling is repeated B times 
giving { r*

1,  ...,  r*
B} and for each of the bootstrapped triangles r*

i one evaluates 
the chain ladder reserve estimation R(r*

i ). To this end, the residual defi nition 
(11) is inverted to form a triangle of bootstrapped development factors f *jk ,
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The corresponding bootstrapped chain ladder factors read 
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Then the bootstrapped future losses are obtained recursively by drawing sam-
ples from the process distribution (England and Verrall, 2006). In this paper, 
a lognormal distribution is assumed for the cumulative losses Ljk, such that 
the bootstrapped future losses are given by 

L*
j, k + 1   +   Lognormal ( fk

*Ljk,  s2
k  Ljk),   k  =  N  –  j  +  1, (14)

L*
j, k + 1   +   Lognormal ( fk

*L*
jk,  s2

k  L*
jk),   k   ≥  N  –  j  +  2. (15)

 
Finally, the desired distribution of  the chain ladder reserve estimator is 
approximated by the empirical distribution P  = i 1 dB

=/ (R  –  R(r*
i  )) / B of the boot-

strapped reserve estimate R(r*
i ). In addition, the mean squared error of the 

chain ladder estimator can be assessed by means of 
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3. APPLYING THE MACK AND BOOTSTRAPPING METHODS TO REAL DATA 
WITH ERRORS

3.1. Data Errors, Data Problems

Real data often have errors of different kinds. Applying the prescribed methods 
to such data leads to false estimates of reserve uncertainties. In this section, 
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we will propose different means of avoiding or eliminating such errors. The 
following types of errors are typical for data of (re)insurance companies.

(A) Incomplete data: Parts of the loss triangle are missing, usually in the upper 
left corner, refl ecting past calendar years with poor data coverage.

(B) Booking errors: The data contain one-time errors, e.g. isolated bookings 
which differ drastically from the level given by both the previous and the 
 subsequent development year, see Fig. 1. Typically these are errors that were 
corrected the following year. Even if  these bookings made sense for pure 
accounting, they do not refl ect the true reserving risks and policies.

(C) Small numbers and large jumps: For long-tail business, the incurred losses 
Ljk of  early development years can be either zero or very small for some acci-
dent years j, see Fig. 2. Note these values appear in the denominator of the 
variance estimators (7) of both the original Mack method and the bootstrap-
ping of the Mack model. While most authors agree that zero denominators 
leading to infi nite terms must be omitted from the analysis, some very low 
values (such as a few dollars) may lead to huge variance estimates. Resulting 
reserve risk estimates are extremely sensitive against small variations of these 
low values, which is in sharp contrast to their low importance.

(D) Underwriting-year based triangles: Some (re)insurers only provide triangles 
per underwriting year, not per accident year (to be exactly defi ned in Section 3.5). 
A straightforward application of methods that were introduced for accident-year 

FIGURE 1: Upward outlier in the loss development of line of business A, underwriting year 2,
Table 10 Appendix A.
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 ROBUST ESTIMATION OF RESERVE RISK 459

triangles (such as Mack or bootstrapping) leads to incorrect results, typically 
overestimating the reserving risk. The effect is eminent in particular for short-
tail lines of business.

The problems (A) and (B) can be treated on the same footing by data fi ltering 
which was fi rst discussed by (Mack, 1999). We will extend these ideas in Sec-
tion 3.2. In the presence of the data problem (C), a robust modifi cation of the 
Mack method and the bootstrapping as proposed in Section 3.3 is recom-
mended. The methods are illustrated in Section 3.4 using the data shown in 
Appendix A. Problem (D) is addressed in Section 3.5.

Aside from problems (A)-(D), practitioners are confronted with further 
data problems that are not analyzed here. Examples are fl uctuations in the 
nature of the underlying business over different accident years and trends and 
cycles in claim development related to calendar years rather than development 
years. These effects violate the assumption of independent claim developments 
and may therefore lead to further estimation errors.

3.2. Data Filtering

3.2.1. Detection of Defective Data

Data gaps of type (A) and data errors of type (B) as defi ned in Section 3.1 need 
to be detected and then treated by a data fi lter. Error detection is not trivial. 
One has to distinguish errors from plausible jumps of observed quantities such 

FIGURE 2: Large jump in the loss development of line of business A, underwriting year 9,
Table 10 Appendix A. The loss of the second period is larger then the fi rst one by a factor of 103.
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as incurred losses to a new level confi rmed by the subsequent bookings. Here 
we discuss the automatic detection of  defective data points. Of course, an 
actuary should fi nally decide whether the data are indeed defective or not.

One type of error in the triangles is that of outliers, i.e. isolated bookings 
which drastically exceed the level given by both the previous and the subse-
quent development years, see Fig. 1. Usually, this effect is due to booking 
errors. We suggest detecting an outlier by comparing its size with the estimate 
of the ultimate loss Uj. Thus, Ljk is detected as an upward outlier if  it fulfi lls 
both of the following two inequalities:

 Ljk  –  Lj, k – 1   ≥   aUj  and  Lj, k + 1  –  Ljk   ≤   – aUj. (17)

A downward outlier is similarly detected as follows:

 Ljk  –  Lj, k – 1   ≤   – aUj  and  Lj, k + 1  –  Ljk   ≥  aUj. (18)

The parameter a determines the threshold of  the outlier detection, and we 
suggest choosing a between 10% and 30%.

Another possible anomaly in the data is that of  huge jumps in the loss 
development, see Fig. 2, where the factor between values matters more than 
the difference. We suggest detecting jumps by a comparison of the development 
and the chain ladder factors, which gives the following criterion for the detec-
tion of a large jump at the development factor fjk:

 fjk   ≥   bfk. (19)

The threshold can be controlled by the parameter b, and we suggest choosing 
b between 10 and 100. Of course, the arbitrariness of this choice also demon-
strates the limits of data fi ltering. In particular in the jump case, it can be very 
diffi cult to decide whether the data are indeed false. We therefore suggest in 
Section 3.3 a modifi cation of the Mack method and the bootstrap that makes 
these methods robust against data errors.

3.2.2. Filter Functions

Suppose one has detected a defective data point Lmn which one wants to 
exclude from the measurement of the reserve risk. This data point could be an 
outlier or simply Lmn  =  0. In this case there are two development factors, 
namely fmn  =  Lm, n  + 1  /  Lmn and fm,  n  – 1  =  Lmn  /  Lm,  n  – 1, which are defective as well. 
We therefore introduce two kind of fi lter functions,

  vjk   =   1  –  djm  dkn , (20)

wjk   =   1  –  djm (dkn  +  dk,  n – 1) , (21)
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 ROBUST ESTIMATION OF RESERVE RISK 461

where dij denotes the Kronecker delta. Here vjk is used to suppress Lmn itself 
and wjk is used to exclude fmn and fm, n  –  1.

Suppose on the other hand one has detected a defective development factor 
fmn, e.g. a large jump in the loss development. In this case we set the fi lter 
functions to 

  vjk   =   1, (22)

wjk   =   1  –  djm  dkn. (23)

3.2.3. Filtering and the Mack method

The chain ladder factors (1) are weighted averages of the development coeffi cients, 
while the variance estimators (7) are weighted averages of the deviation of fjk 
from the mean development. One thus has to suppress in both cases fmn and 
fm, n  –  1 from the averaging which yields 
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Similar equations can be found in (Mack, 1999) with a different prefactor, 
1 / (N  –  k  –  1) instead of 1 /  j -j 1= k 1N k- w ,a k/  in (25). We choose the latter in 
order to obtain an unbiased estimate. Finally, the mean squared error is 
obtained by (9) and (10), substituting  fk� and sk

2� for  fk  and sk
2.

3.2.4. Filtering and the Bootstrap

The residuals rjk, see Eq. (11), are computed from the development factors fjk . 
Thus, both rmn and rm, n  –  1 have to be eliminated from the empirical distribution 
before the sampling. In other words, random samples are drawn only from those 
residuals rjk where the fi lter function wjk is equal to unity. We have to suppress 
the defective data Lmn in the formulas for the bootstrapped development and 
chain ladder factors, Eq. (12) and (13). We therefore replace (13) by 
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and use these fi ltered chain ladder factors for the forecasting step in Eqs. (14) 
and (15). Moreover, fk� has to be substituted for fk in Eqs. (11), (12) and sk

2 is 
replaced by sk

2� in Eqs. (11), (12), (14) and (15).
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3.3. Robust Estimation of Reserve Risk

Data jumps of type (C) as defi ned in Section 3.1 may lead to absurdly high 
variance estimates. One way of  correcting this is to fi lter jumps from very 
small to high losses. Here another method is proposed: an essentially unbiased 
robust estimator.

3.3.1. Robust Mack Method

Mack’s variance estimator (7), which can be rewritten as 

 -,
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displays a singularity at Ljk  =  0. Since the incurred losses Ljk appear in the 
denominator, the Mack estimator is very sensitive to small Ljk values and 
errors of these. To make the estimator more robust, we suggest replacing the 
denominator by an expectation value,
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which will be justifi ed below by a study on the estimation bias. In practice, the 
theoretical loss expectation value E(Ljk) is unavailable, implying that one has 
to insert an appropriate estimate E(Ljk) for E(Ljk). According to (England and 
Verrall, 2002), E(Ljk) can be assessed by backward recursion starting with the 
observed incurred losses to date in the latest diagonal,

E(Lj, N –  j  + 1)   =   Lj, N –  j  + 1, (29)

         E(Lj, k – 1)   =   E(Ljk)  1fk-
1- ,  k  ≤  N  –  j  +  1. (30)

It can be shown1 that this estimator has the same form as E(Ljk | Lf), i.e.

 E(Ljk | Lf)   =   Lj, N + 1 – j  N j-f 1-    ·   …   ·   fk
–1,  k  ≤  N  +  1  –  j, (31)

which is the best prediction of Ljk given the future triangle Lf   =  {Ljk |  j  +  k   ≥  
N  +  1}.

The losses on the latest diagonal, as well as the chain ladder factors, are 
typically less corrupted by data errors than the individual losses Ljk of  early 
development years. Hence, the expectation value E(Ljk) in the denominator of 
(28) is more resilient than the individual losses Ljk. The estimator (sk

2 )r is 

1 The proof, which relies on the Mack assumptions, is available on request.
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therefore robust, in the sense of “outlier resistance” (Huber and Ronchetti, 
2009), and can replace sk

2 in all derived calculations such as Eq. (9).
However, the robustness comes with the price of a bias. We will spend the 

rest of this section computing this bias and evaluating its order of magnitude. 
Let us start with the expectation value 
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The fi rst summand of the expectation value in the numerator reads 

E(L2
j, k + 1) = E(E(L2

j, k + 1  | Lj1,  …,  Ljk))

           = E(Var(Lj, k + 1 | Lj1,  …,  Ljk)  +  E(Lj, k + 1 | Lj1,  …,  Ljk)2 ) (33)

           = sk
2 E(Ljk)  +  fk

2 E(L2
jk),

where the Mack model (4), (5) is used in the third line. Using the notation 
Lk   =   {Lij | j  ≤  k, j  ≤  N  +  1 –  i}, 1  ≤  k  ≤  N, the second summand reads 
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Here the third line makes use of the Mack assumptions (4) to (6). Finally, the 
last summand of (32) reads 
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By inserting the results (33)-(35) into Eq. (32), one obtains 
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The estimator (sk
2)r has therefore a non-vanishing bias 
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In order to simplify this expression let us make the approximation 
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which can be justifi ed in the case where the losses Ljk are independent and 
identically normal distributed with mean mk and variance sk

2. This assumption 
implies that the relative error of the above assumption reads as2 
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k
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For instance, the relative error is less than 4% for N  –  k  ≥  3 and sk / mk  =  0.25 
or less then 6% for N  –  k  ≥  5 and sk / mk  =  0.4. By using (38), one obtains 
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2 The derivation is available on request.
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The order of magnitude of this expression can be assessed by assuming the 
fl uctuations in the losses Ljk to be bounded by a certain fraction m of  the 
expected losses E(Ljk),

 [ Var(Ljk)]1/2   ≤   mE(Ljk). (41)

By combining this inequality with Eq. (40), we fi nd 

 
k

B
.N k 1#

s
m

- -

2

2  (42)

It follows that the bias sk
B r2

` j  corresponding to the fi rst development years k, 
k  %  N, is negligible for large and moderately distorted triangles (with N  ≥  10 
and m  ≤  0.5). For later development years k, k  &  1, this bias may be signifi cant; 
its contribution to the fi nal Mack error is however small, implying that the bias 
is acceptable.

Even though one has to assume in this argumentation regular and moder-
ately distorted triangles, our tests have shown that we can recommend using 
the robust estimator also for triangles with serious data problems. Then we 
argue that shifting from the original to the robust estimate essentially means 
a justifi ed correction rather than a bias.

The above fi ndings are substantiated by a Monte Carlo simulation sum-
marized in Appendix B. There the bias and the root mean squared error of 
the robust estimator (28) are calculated stochastically, by generating random 
triangles in accordance with the Mack assumptions (4) to (6). This simulation 
reveals that the bias of (28) stays less than 5%, which is much smaller than the 
corresponding root mean squared error. The latter turns out to be identical to 
the one of Mack’s variance estimator (27), so that these two estimators are 
equal in that respect. Moreover, we test their stability by introducing artifi cial 
errors in the Monte Carlo simulations, which shows that the gain in robustness 
is huge.

3.3.2. Robust Bootstrapping

Bootstrapping in the context of Mack’s model has a similar sensitivity to small 
values of incurred losses to that of its analytic counterpart. This is no surprise 
since Mack’s variance estimator is part of  the algorithm, see Section 2.3.2. 
Like in the previous section, we suggest stabilizing the procedure by using the 
robust estimator (28) instead of the original one, that is sk

2 has to be replaced 
by (sk

2)r in Eqs. (11), (12), (14) and (15). Furthermore, the residuals (11), which 
can be rewritten as 
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may display singularities. In order to exclude the losses from the denominator, 
we suggest transforming the residuals prior to bootstrapping,

 j
j

j
k j

k

k
=

( )
.

E
r r k

�
L

L
 (44)

Here the estimate of the expectation value E(Ljk) is obtained by (29) and (30). 
After resampling, the bootstrapped residual r�j�k� with randomly picked indices 
j� and k� is transformed inversely,
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L
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�r  (45)

It is shown in the examples of Section 3.4 that this procedure leads to a simi-
lar reserve risk estimate to that of the robust Mack method described in the 
previous section.

3.4. Examples

3.4.1. Line of Business with no Apparent Data Errors

This section will demonstrate the robust methods which were proposed in Sec-
tion 3.2 and 3.3. Our fi rst example, shown in Appendix A Table 9, is the 
smooth triangle A which exhibits neither outliers nor large jumps. It therefore 
provides a probe which allows us to examine the impact of the robust estima-
tor (sk

2)r on the Mack or the bootstrap error. Table 1 shows the results of the 
Mack and the bootstrap analysis. We used 10000 iterations for the bootstrap 
algorithm which permits convergence to the tenth decimal place. The fi rst row 
of Table 1 shows the results of the standard Mack and bootstrap algorithm 
as described in Section 2. The results for both methods are almost identical 
since the Mack model is used for the bootstrapping. The second row shows 
the results of  the robust methods described in Section 3.3.1 and 3.3.2. The 
relative difference in the mean squared error of the standard and the robust 

TABLE 1

COMPARISON OF THE STANDARD AND THE ROBUST METHODS (SEE SECTION 3.3.1 AND 3.3.2)
IN CASE OF THE SMOOTH TRIANGLE A.

LoBA
Reserve
(USD)

Mack error
(USD)

Mack error
(%)

Bootstrap
error (USD)

Bootstrap 
error (%)

Original Method 9900 793 8.0 780 7.9

Robust Method 9900 741 7.5 740 7.5
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techniques is (793  –  741) / 793 . 6.6% in case of  the Mack method and 
(780  –  740) / 740 . 5.4% in case of the bootstrapping. Of course, it is not clear 
whether this difference stems from the bias or the variance of the estimators 
sk

2 and (sk
2)r. Nevertheless, we conclude that the order of magnitude of the 

impact of the bias of (sk
2)r on the reserve risk estimate is no larger than 5%.

3.4.2. Line of Business with Data Errors

The loss triangle B, see Appendix A Table 10, is the prime example of a defec-
tive data set. It contains vanishing entries, outliers as well as large jumps, and 
it thus leads to a huge reserve risk estimate. Let us apply the robust methods 
of Section 3.2 and 3.3 step by step in order to obtain a reasonable result.

First, one has to handle the four vanishing entries of the fi rst development 
year. The information regarding these losses is missing and we accordingly 
treat them as defective data points which are fi ltered using the methods 
described in Section 3.2.3 and 3.2.4. Alternatively, it is feasible to fi ll these data 
points with backward projections using the chain ladder factors. However, this 
would artifi cially smooth the triangle and thus underestimate the reserve risk. 
The resulting Mack and bootstrap errors are shown in Table 2. We show inte-
ger percentage fi gures as the bootstrap algorithm does not converge to values 
with more precise digits, even for a large number (e.g. 25’000) of iterations.
We assume that this poor convergence is due to the irregularity of the data. 
The outliers are detected using the criteria (17), (18) and a detection threshold 
of a  =  20%. This identifi es three upward outliers at (i  =  13, k  =  6), (i  =  2, k  =  11), 
(i  =  8, k  =  11) which we also exclude from the Mack and the bootstrap analy-
sis using the methods of Section 3.2.3 and 3.2.4. Here the relative reserve risk 
estimate drops to 29%, see the second row of Table 2. The estimate is still huge 
since the data exhibit large jumps. The jump at (i  =  9, k  =  1, 2) is particularly 
dominant with a loss increase by a factor of 103. We accordingly apply the 
robust methods of Section 3.3.1 and 3.3.2 which both lead to a relative reserve 
risk estimate of  18%, see the third row of  Table 2. Alternatively, one can 
obtain robust results by combining the standard Mack and bootstrap method 

TABLE 2

APPLICATION OF THE OUTLIER FILTER AND THE ROBUST ESTIMATOR (28)
TO THE ERRONEOUS LOSS TRIANGLE B.

LoBB
Reserve
(mUSD)

Mack error
(mUSD)

Mack error
(%)

Bootstrap
error (mUSD)

Bootstrap
error (%)

Original Method 25 9.0 36 9.8 37

Outlier Filter 27 7.9 29 8.1 29

Robust Estimator 27 4.9 18 4.8 18
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with a jump fi lter (see Section 3.2.1). Table 3 presents the corresponding results 
for different detection thresholds b. A comparison with Table 2 shows that the 
effect of  the robust estimator is comparable to that of  a strong jump fi lter 
(with threshold b  =  2) in the example of LoBB.

3.5. Fluctuations in Earning Patterns and the Estimation of Reserve Risk

Individual defective data points are one possible source of inaccuracy in the 
measurement of reserve risk. Another reason for miscalculation is a systematic 
shift in the nature of the loss development patterns over the years.

As an example let us take data problem (D) as defi ned in Section 3.1. 
There some variations in the timing of  the risk exposure for different under-
writing years lead to additional volatility in the data. The measured reserve 
risk does not only refl ect the stochastic nature of  the claim settlements but 
also has a component which is due to the volatility of  the earning pattern 
over the years. For instance, PartnerRe publish their loss triangles both per 
underwriting and per accident year. The difference in the Mack error is 
501 mUSD – 468 mUSD = 33 mUSD, as to be discussed in Section 3.5.6, and 
we argue that this difference is mainly due to the infl uence of  fl uctuations in 
earning patterns.

The term accident year needs a clearer defi nition at this point. We mean 
the calendar year during which a loss was primarily triggered, mainly regard-
ing contracts of the ‘‘risk attaching’’ type, irrespective of the fact that some 
fi nancial consequences and the reporting may have occurred in later years. The 
accident year of a certain loss event may coincide with the underwriting year 
or may be one or more years later, refl ecting the earning pattern of the  contract. 
At the same time the earning pattern describes the pace with which reserves 
for a certain new contract will be built up.

In some cases the accident-year based data are not available. We have there-
fore developed a method that allows for removal of the impact of the earning 
patterns from underwriting-year based reserve risk estimates. The procedure 
is independent from the method used to predict the reserve risk. We will use 

TABLE 3

 APPLICATION OF THE JUMP FILTER TO THE ERRONEOUS LOSS TRIANGLE B.
THE FIRST LINE WAS OBTAINED BY THE STANDARD METHOD INCLUDING AN OUTLIER FILTER.

THE JUMP FILTER WAS APPLIED IN THE SECOND AND THIRD ROW WITH DECREASING THRESHOLD b.

Jump fi lter
threshold b

Reserve
(mUSD)

Mack error
(mUSD)

Mack error
(%)

Bootstrap
error (mUSD)

Bootstrap 
error (%)

3 27 7.9 29 8.1 29

10 27 5.9 22 6.2 23

2 26 4.7 18 4.8 18
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 ROBUST ESTIMATION OF RESERVE RISK 469

it with the Mack method, but it is possible to combine it with any other esti-
mation method such as bootstrapping.

An overview of  the procedure is given in Section 3.5.1 followed by the 
derivation of the method in the next three subsections. The results are illus-
trated using two examples in Section 3.5.6.

3.5.1. Description of the Method

We assume that fl uctuations in the claims settlement are independent of vari-
ations of the earning pattern. Hence the variances (and their estimates) of the 
ultimate reserve estimates are additive,

 s2
UY = s2

AY + s2
EP. (46)

Here the following abbreviations are used:

• sUY: Mack error of the original underwriting year based triangle which is 
subject to both effects: uncertainty in the size of claims and volatility in the 
earning pattern.

• sAY: Estimate of the true reserving risk that stems only from variations in 
the claims development.

FIGURE 3: Application of the Tikhonov regularization.
The fi gure on the left shows the straightforward solution of (50).

The regularized solution, obtained by Eq. (52), is shown in the second fi gure.
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• sEP: Mack error of an auxiliary triangle Lik that has fl uctuations only due to 
the volatility of the earning pattern. The ultimate claims are kept constant.

The true reserve risk sAY can thus be estimated by 

 .AY = -UY EPs s s2 2  (47)

The remainder of this subsection will explain the construction of the auxiliary 
triangle Lik.

First let us calculate the earned premium patterns. We assume that most 
of the premium of an underwriting year is earned after a period of l years, 
where l is typically small. The values of the incremental earning patterns are 
then defi ned as 

 1,i
i

i

i , , ,i N k lk
l

k
# #=

- -kp P
P P

 (48)

where Pik is the accumulated earned premium of underwriting year i, earned 
up to development year k. We have a triangle of observed earned premiums 
with k  ≤  N  +  1  –  i. For k   ≥  N  +  1  –  i, we choose the projections obtained by 
the chain ladder method.

Next let us evaluate the average incremental accident year pattern d which 
we defi ne as 
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setting Ljk  =  0 and Pik  =  0 for k  <  1. This pattern is not directly available in our 
case. It is however related to the observable average incremental underwriting 
year pattern d via a convolution,

 j d .d pk
j

l

k j
1

1=
=

- +/  (50)

Here pj denotes an average earning pattern j 1 pi ,
N
1

j= i =
Np /  and the average 

underwriting year pattern d is defi ned as 
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i i
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U
k

=

k-/  (51)

The abbreviation Lik denotes the accumulated total claims of  underwriting 
year i, 1  ≤  i   ≤  N, either paid or reported up to development year k, 1 ≤  k   ≤  N.

A straightforward inversion of (50) is numerically very sensitive to noise in 
the patterns d and p. Usually, this leads to unreasonable accident patterns d, 
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FIGURE 4: First step of the construction of the auxiliary triangle Lik for line of business C.
The inverse convolution leads to the average loss development per accident year.

The x-axis shows the development year in each of the plots.
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FIGURE 5: Second step of the construction of the auxiliary triangle Lik for line of business C.
A forward convolution leads to the loss development pattern for a specifi c underwriting year, i  =  12 in the 

displayed example. This is done for all underwriting years. The x-axis shows the development year in each plot.
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see Fig. 3. However, a robust solution can be found with the Tikhonov regu-
larization (Tikhonov, 1963), see Section 3.5.4. A stable pattern d is here obtained, 
see Fig. 4, by the solution of the linear equation 

 (l2 DT D  +  ATA) d = AT d, (52)

where D denotes the operator 
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The matrix A is determined by the average earning pattern 
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 (54)

This formulation is for the case l  =  3; other choices of  l can be handled 
 analogously. The parameter l determines the degree to which the solution is 
regularized. As explained in Section 3.5.5 and Appendix B, a reasonable choice 
for l is given by the mean of the singular value spectrum of A, i.e.

 si .N
1

i

N

1
l =

=

/  (55)

The singular values of A, denoted by {s1,  …,  sN}, are the square roots of the 
eigenvalues of A†A.

Finally, the incremental auxiliary triangle Lik can be constructed via N 
convolutions, see Fig. 5, of the earning patterns and the average development 
pattern per accident year d,

 pi .diLik j
j

l

k j
1

= -U 1
=

+/  (56)

3.5.2. From Underwriting to Accident Years

Equations (50) and (56) permit the construction of the auxiliary triangle Lik. 
The derivation of these relations is shown in the following. To start with, we 
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defi ne Lijk as the incremental total claims of underwriting year i, 1  ≤  i   ≤  N, and 
accident year i  +  j  –  1, 1  ≤   j  ≤  l, either paid or reported in the year i  +  k  –  1,
1  ≤  k  ≤  N. Here the indices j and k both count the years from the underwriting 
year i onwards. Then we defi ne the incremental pattern dijk as 

 
ij

ij

k 1= L

L
:dijk

k

k
= N .
/

 (57)

This describes the development of claims that stem from a fi xed underwriting 
and accident year.

In order to derive (56), let us consider the artifi cial scenario in which there 
is no variability in the claim development. “Claim variability” is understood 
here as the variations in the incremental accident year pattern 

 
j

,j j
j

L
k

k 1
=

-
.k -

U
L

d  (58)

Thus, a triangle has no variations in the claim development if  the above pat-
tern djk is independent of j, such that there is only one pattern dk. In order to 
relate dijk and dk, one has to take into account that the index k in the defi nition 
of dk (49) is defi ned relative to the index j. In contrast, the index k in (57) refers 
to the underwriting year i. One therefore has the identity 

 dijk = dk  –  j  +  1. (59)

Furthermore, note that the ultimate loss amount of underwriting year i and 
accident year j is approximately the fraction of the ultimate loss of underwrit-
ing year i which was earned in the year j,

 iL .pijk
k

N

ij
1

.

=

U/  (60)

By inserting the results (59) and (60) into Eq. (57), one fi nds 

 Lijk = Ui  pij  dk  –  j  +  1. (61)

Finally, the auxiliary triangle Lik results from a reduction of the accident year 
index j,

 piji=L L .dik ijk k j
j

l

j

l

1 1
1=

= =
- +U/ /  (62)

Now Eq. (50) is derived with similar arguments. Instead of the previously treated 
artifi cial scenario, let us consider a realistic case in which there is variability 
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in the claim development. Eq. (59) therefore does not hold as the development 
patterns of this realistic triangle have a dependency on i and j. However, the 
patterns will mostly depend on the portfolio structure which is determined by 
the underwriting year i. Hence we make the approximation 

 dijk  .  di, k  –  j  +  1. (63)

Furthermore, let us approximate the ultimate loss amount of  underwriting 
year i and accident year j by the fraction of the ultimate loss of underwriting 
year i which was on average earned in the year j,

 L . .ijk
k

N

j i
1=

Up/  (64)

Upon inserting the results (63) and (64) into Eq. (57), one obtains 

 Lijk = Ui  pj di, k  –  j  +  1. (65)

The reduction of the index j yields 

 jL = p d ,ii- ,i i .L Lk k ijk
j

l

j

l

k j1
11

1=
==

-- U +//  (66)

This equation can be rewritten as 

 jp d ,iid k
j

l

k j
1

1=
=

- ,+/  (67)

where dik   :=   (Lik  –  Li,  k  –  1)  /  Ui denotes the underwriting year development pattern. 
Taking the average over the underwriting years, one fi nds 

 j dd p N
1

,k i
i

N

j

l

1 1
=

= =
k j 1- + ,e o/ /  (68)

where the defi nition (51) is used. The average dN
i 1 N,i= /k j 1- +/  can in turn be 

used as an estimate for the average incremental accident year pattern (49),

 d .N
1

,i

N

i 1
.

=

dk j k j1 1- -+ +/  (69)

The average underwriting and accident year patterns are thus related via a 
convolution,

 jpd dk
j

l

1
=

=

.k j 1- +/  (70)
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3.5.3. Inverse Convolution

The convolution (70) will be needed in inverted form. For that purpose let us 
rewrite it in matrix notation,

 d = A   ·   d, (71)

where A is the Toeplitz matrix defi ned in Eq. (54). On a fi rst glance one might 
suggest solving (71) by a matrix inversion of A,

 dV = A–1   ·   d, (72)

where dV denotes the estimate of the solution. However, this usually leads to 
oscillating or even divergent development patterns dV, see Fig. 3. The cause of 
this effect is the presence of noise in the observed pattern d. To account for 
this noise one has to replace the relation between the different development 
patterns (71) by 

 d = A  ·   d + n, (73)

where n is an unknown noise term, that is a random vector with zero mean 
and fi nite variance. A straightforward matrix inversion,

 dV   =   A–1  ·   d   =   d  +  A–1  ·   n, (74)

leads therefore to an error term, A–1 ·   n, which can cause oscillations.

3.5.4. Tikhonov Regularization

A method which allows one to fi nd a stable solution of (73) is the Tikhonov 
regularization (Tikhonov, 1943; Tikhonov, 1963; Foster, 1961). The goal is 
to fi nd a smooth development pattern d that is approximately in line with 
the observation d. The smoothing of  d does not imply any smoothing of 
the original triangle or a lowering of the reserve risk estimate, as to be shown 
in Fig. 11. The data misfi t function implied by d is defi ned in terms of the 
two-norm 

 misfi t  (d)   =  || d – A  ·   d  ||2. (75)

The smoothness of the solution can be quantifi ed by the two-norm of its “fi rst 
derivative” (Hansen, 1998), which reads 

 - ,dD d d
k

N

k k
1

1

1=
-

+
=

22
_ i/
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with D the “derivative operator” defi ned in (53). A compromise between data 
misfi t and smoothness can be found by the minimization of a weighted sum 
of (75) and (76), i.e.

 dl
V    =   argmin { || d – A  ·   d  ||2  +  l2  || D  d ||2}, (76)

where l is the regularization parameter. The function in (76) is a quadratic 
form. Hence its unique minimum is the null of its derivative,

 dk2
2  {(d – Ad)T  ·   (d – Ad) + l2 dT DT Dd}   =   0,   k = 1,  …,  N.

The regularized solution of (73) is therefore obtained by the solution of the 
set of linear equations 

 (l2 DT D + ATA) dl
V  = AT d. (77)

3.5.5. Choosing the Regularization Parameter

To fi x the parameter l, it is helpful to analyze the reason for the noise sensitiv-
ity of matrix inversions. This in turn can best be explored by the singular value 
decomposition: any matrix A   !   �n  ≈  m can be decomposed as 

 s i ,A u vi
i

r

i
1

= †

=

/  (78)

where r denotes the rank of A, si is the square root of the i’th eigenvalue of AA† 
(i’th singular value), ui is the left singular vector (given by the i’th eigenvector of 
AA†), and vi denotes the right singular vector (given by the i’th eigenvector of 
A†A).

Armed with the above decomposition, one can rewrite the straightforward 
solution of the noisy inverse problem (73) as 

 $ s
1

i
i .d ddA

u n
v

†

ii

r

1
= =

-

=

+V /  (79)

This demonstrates that small singular values in the spectrum of A are respon-
sible for the noise sensitivity of A’s inverse. This affects in particular inverse 
convolutions, since the corresponding Toeplitz matrices (54) tend to have tiny 
singular values, see Fig. 6. However, the noise sensitivity can be avoided by a 
fi lter fi which damps down the components with small singular values:

 si i i
†

i
i( )

.d
u n

f f
†

i

r

i ii

r

1 1
= ( )dvf v v

=

+
=

X / /  (80)
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A common choice for the fi lter function reads 

 
i

i( ,f
s

s
i 2 2

2

l
l

=
+

)  (81)

which leads to the same solution as the Tikhonov regularization (Foster, 1961; 
Hansen, 1998).

In conclusion, the regularization parameter l controls the shape of a fi lter, 
whose purpose is to suppress components with small singular values. There-
fore, we suggest basing the choice of l on the singular value spectrum of A. 
Figure 6 shows the spectrum of A (plus signs) for different LoBs. Apparently, 
these spectra have a very similar shape which is most likely due to the Toeplitz 
structure of A. It should therefore be possible to determine the appropriate 
position of the fi lter (relative to the spectrum) once and for all and to use the 
same relative position for all LoBs. For specifi c LoBs, we fi nd that the mean 
of the singular values is an appropriate choice for l,

 s .N
1

i
i

N

1
l =

=

/  (82)

 FIGURE 6: Singular value spectrum (plus signs) and fi lter function (circles) for different LoBs.
The y-axis denotes the value of the singular value si or the fi lter fi  , and the x-axis shows the index i.
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Appendix B and the fact that the fi lter approximately reproduces the spectrum, 
see Fig. 6, supports the choice of  a numerical criterion based on Eq. (82). 
Furthermore, the spectrum of A is quite uniform for the investigated triangles, 
so we suggest using Eq. (82) for regularizing the triangles of all LoBs.

3.5.6. Examples

(A) Short-tail line of business

This section will demonstrate the earned premium correction which was 
described in Section 3.5.1. The fi rst example is the short-tail line of business C, 
shown in Appendix A. It exhibits an outlier at (i  =  1, k  =  2) and we therefore 
start with the application of the robust methods, see Table 4. Here we have 
fi ltered the outlier mentioned above, and we used 10000 iterations for the 
 bootstrap algorithm which permits convergence to the tenth decimal point. 
Now the main task is the construction of the auxiliary triangle Lik, see Eq. (56). 
The fi rst step is to evaluate the average loss development pattern per accident 
year, which is obtained by a single inverse convolution, see Fig. 4. However, a 
straightforward inverse convolution, that is the exact solution of (50), leads to 
an unreasonable pattern, shown in Fig. 3 on the left-hand side. The right-hand 
side of  Fig. 3, and the bottom of  Fig. 4, show the result of  the Tikhonov 
regularization, i.e. the solution of Equation (52). This yields a smooth result 
for the loss development pattern.

TABLE 4

ROBUST METHODS AND EARNING PATTERN (EP) CORRECTION APPLIED TO LINE OF BUSINESS C.

LoBC
Reserve
(tUSD)

Mack error
(tUSD)

Mack error
(%)

Bootstrap
error (tUSD)

Bootstrap 
error (%)

Original Method 7.4 1.85 25.1 1.85 25.1

Outlier Filter 7.4 1.32 17.9 1.32 18.0

Robust Estimator 7.4 1.23 16.7 1.25 16.9

Auxiliary Triangle – 0.73  9.9 0.72  9.8

After EP Correction 7.4 0.99 13.4 1.02 13.8

Figure 5 shows the second step of the construction of Lik. The average loss 
development pattern per accident year is convoluted with the i ’th earning 
 pattern, shown in Appendix A Table 13. This convolution is repeated for all 
underwriting years i. The Mack or bootstrap error of the resulting auxiliary 
triangle Lik yields sEP . Together with the reserve risk estimate of the original 
triangle, sUY , and Equation (47), we can evaluate the earning pattern correction, 
see Table 4.
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(B) PartnerRe’s overall portfolio

PartnerRe has published its loss development triangles (PartnerRe, 2006) on 
underwriting and on accident year bases. It therefore offers the possibility of 
testing the earning pattern correction. However, the corresponding earned pre-
mium patterns are not published. Hence we fi rst have to reconstruct them from 
the given incurred loss triangles. We therefore take a modifi cation of Eq. (67), 
namely 

 pij d ,iid k
j

l

k j
1

1=
=

- ,+/  (83)

which can be obtained by replacing (64) with (60) in the derivation of (67). 
The linear system of equations (83) can be used to reconstruct the earning 
pattern pij. It is however over-determined in pij. To fi nd a unique solution, we 
truncate the equation system after the fi rst three development years, refl ecting 
the fact that the premium is fully earned after three (or sometimes even two) 
years. One obtains 
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FIGURE 7: Comparison of the true average loss development pattern per accident year (left-hand side), and 
the reconstructed one (right hand side), for PartnerRe’s overall portfolio.
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The matrices di do not have any small singular values (si   ≥  0.3). Hence, the 
straightforward inversion of (84) is numerically stable, and it is not necessary to 
perform a regularization. The reconstructed earning pattern is shown in Table 6. 
The values pi3 are small and scattered around zero, suggesting that assuming 
only two instead of three earning years would be a valid alternative.

Given Equation (50) and the earned premium pattern, one can reconstruct 
the average loss development pattern per accident year d. The result, shown 
on the right hand side of Fig. 7, is close to the true average loss development 
pattern per accident year. The latter, which was obtained from the accident 
year based triangle, is shown on the left-hand side of Fig. 7. We have used in 
total eleven inverse convolutions to obtain the reconstructed pattern. Figure 7 
therefore demonstrates that the relation between underwriting and accident 
year patterns is well described by a convolution. Finally, the earning pattern 
corrected Mack error is obtained by means of Equation (47) and (56). The 
results are shown in Table 5. The earning pattern corrected Mack error is a good 
and slightly conservative estimate of the true value: it differs from the accident 
year based Mack error by around 10 mUSD. We explain this difference mainly 
by the fact that we had to reconstruct PartnerRe’s earning patterns.

TABLE 6

RECONSTRUCTED EARNING PATTERN OF PARTNERRE’S OVERALL PORTFOLIO.

Period Period

Underwriting Year 1 2 3 Underwriting Year 1 2 3

1996 0.90 0.08 0.02 2001 0.86 0.20 –0.06

1997 0.92 0.12 –0.05 2002 0.90 0.12 –0.01

1998 0.89 0.13 0.02 2003 0.81 0.22 –0.03

1999 0.89 0.15 0.04 2004 0.86 0.15 0.01

2000 0.78 0.20 0.02 2005 0.88 0.14 –0.01

TABLE 5

 TEST OF THE EARNED PREMIUM CORRECTION. MACK ERROR OF PARTNERRE’S OVERALL PORTFOLIO IS 
EVALUATED ON UNDERWRITING AND ON ACCIDENT YEAR BASED TRIANGLES. THE RESULT OF

THE EARNED PREMIUM CORRECTION IS SHOWN IN BETWEEN.

Mack error
(mUSD)

Reserve 
(mUSD)

Original triangle per underwriting years 501 26.2   ·  103

Earning pattern corrected result 479 ˝

Original triangle per accident years 469 ˝
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TABLE 7

APPLICATION OF THE OUTLIER FILTER, THE ROBUST ESTIMATOR AND THE EARNING PATTERN CORRECTION TO 
VARIOUS LINES OF BUSINESSES. THE EARNING PATTERN CORRECTION IS NOT SIGNIFICANT FOR LINE OF 

BUSINESS A SINCE IT IS LONG-TAILED, IN CONTRAST TO THE SHORT-TAIL LINE OF BUSINESS C.

Original
Method

Outlier
Filter

Robust
Estimator

Earning Pattern 
Correction

LoBA Mack error (%) 8.0 8.0 7.5 6.9
LoBA Bootstrap error (%) 7.9 7.9 7.5 6.9

LoBB Mack error (%) 36 29 18 18
LoBB Bootstrap error (%) 37 29 18 18

LoBC Mack error (%) 25.1 17.9 16.7 13.4
LoBC Bootstrap error (%) 25.1 18.0 16.9 13.8

4. CONCLUSION

The aim of this paper is the development of robust and accurate solutions for 
the assessment of reserve risk. This is accomplished for the Mack method and 
the bootstrapping method based on Mack’s assumptions. More specifi cally, we 
have developed a fi lter for outliers and large jumps as well as a robust version 
of the variance estimator which is used in the Mack and the bootstrap methods. 
These procedures guarantee reasonable Mack and bootstrap estimates even 
for partially defi cient data. The robust variance estimator leads to a substantial 
gain in stability at the price of a small bias. Its root mean squared error is 
similar to the one of Mack’s variance estimator.

As a further result, we have designed a method that corrects the error 
introduced by applying the Mack or bootstrapping method to underwriting 
year based triangles. The infl uence of fl uctuations in earning patterns is thereby 
removed from the reserve risk estimate. As a by-product, one fi nds that the 
relation between loss development patterns based on underwriting year and 
accident year is approximately given by a convolution. A numerically stable 
inversion thereof is obtained through the Tikhonov regularization. We have 
demonstrated the different methods with the aid of  the triangles shown in 
Appendix A. The results are summarized in Table 7.
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APPENDIX 

Appendix A – Triangles and patterns

This Appendix shows the data which were used in the examples of Section 3.4 
and 3.5.6. The data were obtained from three different lines of business A-C. 
The accumulated incurred losses Lik of  underwriting year i which are either 
paid or reported up to development year k are shown in Table 9, 10 and 12. 
The total current case reserve, Ci,i 1 i1 -

N
N+=/ , which has been reported but not 

been paid, is summarized in Table 8. This quantity is required for the estima-
tion of the total reserve R, see Eq. (3).

TABLE 9

LINE OF BUSINESS A.
INCURRED LOSSES Lik PER UNDERWRITING YEAR i AND DEVELOPMENT YEAR k, IN USD.

i Li1 Li2 Li3 Li4 Li5 Li6 Li7 Li8 Li9 Li10 Li11 Li12 Li13 Li14 Li15 Li16 Li17 Li18 Li19

1 31 190 229 253 285 426 470 499 528 539 548 552 559 567 568 569 572 569 571 

2 29 132 193 226 337 350 362 367 373 383 384 382 387 386 387 386 387 388

3 41 168 248 411 440 462 477 484 493 491 493 499 497 498 498 498 498  

4 55 196 421 464 496 516 530 544 542 547 556 556 557 557 554 555

5 58 285 385 433 462 482 500 499 505 515 514 517 518 518 519  

6 94 385 512 563 602 635 639 646 660 660 661 661 661 662

7 72 327 464 529 575 599 602 619 624 631 633 637 634  

8 89 350 509 599 648 689 718 719 732 735 742 750

9 78 384 586 640 718 775 788 799 809 827 827  

10 86 385 490 603 705 743 785 804 806 810

11 73 316 458 591 653 703 737 753 776  

12 87 231 329 439 469 514 544 582

13 122 441 639 789 886 978 987  

14 131 446 683 821 934 948

15 217 830 1,264 1,565 1,681  

16 188 1,052 1,782 1,980

17 236 1,317 1,966  

18 292 1,455

19 250

TABLE 8

CURRENT CASE RESERVE: TOTAL CLAIM AMOUNT, C ,ii 1 N i1+ -
N
=/ ,

WHICH HAS BEEN REPORTED BUT NOT BEEN PAID.

Case Losses LoBA LoBB LoBC

C ,ii 1 N i1+ -
N
=/  (tUSD) 3.2 14.3   ·  103 2.3
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The incremental earning patterns pij , see Eq. (48), are shown for the lines 
of business A and C in Table 11 and 13. Most of the premium is earned after 
three years. The earning pattern is required for the earning pattern correction 
introduced in Section 3.5.

TABLE 10

LINE OF BUSINESS B.
INCURRED LOSSES Lik PER UNDERWRITING YEAR i AND DEVELOPMENT YEAR k, IN UNITS OF 10’000 USD.

i Li1 Li2 Li3 Li4 Li5 Li6 Li7 Li8 Li9 Li10 Li11 Li12 Li13 Li14 Li15 Li16 Li17 Li18 Li19

1 0.000 6 6 10  10  44 44 45 51 54 54 56 55 54 54 54 62 61 64
2 0.000 11 43 42 37 39 41 40 62 92 159 86 82 82 74 81 84 86
3 1.520 35 56 80 71  66 74 78 73 73 74 73 72  77 77  78  79  
4 4.330 10 74 92 94 86 87 82 81 80 78 77 77 78 77 76
5 0.000 97 116 113 117 128 127 131 125 123 119 117 116 114 114  
6 5.507 10 21 26 54 49  49 55 58 54 55 54 53  53
7 0.264 6 10 13  17 15 17  17 17 18 18 20  19  
8 0.000 12 13 25 31 28 27 26 25 23 39 23
9 0.004 6 10 15 29 27 31 30 27 29 24  
10 1.874 17 25 46 43 64 61 53 55 56
11 14.34 24 29 30 67 73 100 103 168  
12 41.30 41 68 123 99 129 183 194
13 69.02 90 133 102 159 319 124  
14 57.58 163 145 147 170 127
15 62.83 158 422 679 695  
16 93.76 144 219 232
17 79.72 199 166  
18 88.07 96
19 34.56  

TABLE 11

LINE OF BUSINESS A. EARNING PATTERN pij PER UNDERWRITING YEAR i AND DEVELOPMENT YEAR j.

Period Period

Underwriting Year 1 2 3 Underwriting Year 1 2  3

 1 0.31 0.52 0.17 11 0.49 0.42 0.09
 2 0.34 0.53 0.13 12 0.51 0.39 0.10
 3 0.32 0.50 0.18 13 0.40 0.46 0.14
 4 0.20 0.31 0.48 14 0.43 0.43 0.15
 5 0.26 0.62 0.12 15 0.41 0.47 0.13
 6 0.37 0.50 0.13 16 0.34 0.54 0.12
 7 0.38 0.49 0.13 17 0.45 0.47 0.08
 8 0.38 0.51 0.11 18 0.49 0.39 0.12
 9 0.34 0.57 0.09 19 0.41 0.47 0.12
10 0.42 0.50 0.08
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TABLE 12

LINE OF BUSINESS C.
INCURRED LOSSES Lik PER UNDERWRITING YEAR i AND DEVELOPMENT YEAR k, IN UNITS OF 10 USD.

i Li1 Li2 Li3 Li4 Li5 Li6 Li7 Li8 Li9 Li10 Li11 Li12 Li13 Li14 Li15 Li16 Li17 Li18 Li19

1 15 211 169 174 175 178 191 192 192 192 192 192 192 192 192 192 192 192 192 

2 14 83 103 106 109 110 110 110 110 111 111 111 111 111 110 110 110 110

3 36 140 168 178 183 186 187 188 186 187 186 186 186 186 186 186 186  

4 60 170 194 194 195 196 200 201 202 202 202 201 201 201 201 201

5 51 144 168 176 177 176 176 178 179 178 179 178 179 178 178  

6 26 202 234 247 246 248 249 249 249 245 244 244 243 243

7 19 95 124 127 126 127 127 127 131 132 132 132 131  

8 17 88 98 97 99 99 100 100 101 100 100 101

9 16 88 97 97 98 99 100 100 100 100 100  

10 17 92 102 105 105 107 107 106 108 108

11 16 69 78 79 80 81 82 81 81  

12 25 82 89 93 95 96 96 95

13 47 126 138 141 144 144 140  

14 49 135 183 192 184 181

15 40 101 144 192 180  

16 52 231 301 299

17 89 228 262  

18 78 347

19 107

TABLE 13

LINE OF BUSINESS C. EARNING PATTERN pij PER UNDERWRITING YEAR i AND DEVELOPMENT YEAR j.

Period Period

Underwriting Year 1 2 3 Underwriting Year 1 2  3

 1 0.29 0.58 0.13 11 0.72 0.25 0.03

 2 0.32 0.60 0.09 12 0.76 0.22 0.03

 3 0.31 0.59 0.10 13 0.62 0.31 0.07

 4 0.35 0.57 0.08 14 0.59 0.33 0.08

 5 0.36 0.56 0.08 15 0.62 0.32 0.05

 6 0.43 0.47 0.10 16 0.57 0.40 0.03

 7 0.52 0.39 0.09 17 0.64 0.33 0.03

 8 0.56 0.39 0.05 18 0.66 0.29 0.05

 9 0.56 0.40 0.04 19 0.59 0.35 0.05

10 0.67 0.29 0.04  
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Appendix B – Monte Carlo simulation for the bias estimation
of the robust Mack estimator

In Section 3.3.1, we have proposed a modifi cation of Mack’s variance estima-
tor, see Eq. (28), which is supposed to be more robust against data errors than 
the original version. The bias of one version of this estimator was evaluated 
with the analytical expression (40), which was argued to be suffi ciently small. 
Here, a Monte Carlo simulation is presented which allows us to analyze the 
bias and, in addition, the root mean squared error.

The Monte Carlo method. The stochastic simulation is based on the genera-
tion of random “Mack triangles” L*

jk. To produce these random triangles, we 
identify the fi rst column of L*

jk with the one of a real triangle Ljk, that is 

 L*
j1 = Lj1,  j  =  1,  …,  N. (85)

The subsequent columns L*
j,  k  + 1, k  ≥  1, are generated recursively by drawing 

random numbers from a lognormal distribution with mean fk L*
jk and variance 

sk
2 L*

jk, that is 
 L*

j,  k  + 1    +   Lognormal(  fk L*
jk,  sk

2 L*
jk), (86)

where the parameters fk and sk
2 are obtained by using the chain ladder factors 

fk and the variance factors sk
2 of the real triangle Ljk, i.e. fk   /   fk and sk

2   /   sk
2. 

Due to this construction, the random triangles satisfy the Mack assumptions, 
(4) to (6), thus justifying the naming “Mack triangles”.

FIGURE 8: The bias and the root mean squared error (rmse) of Mack’s variance estimator (27) and the 
robust one (28) as a function of the development year k. The loss expectation value in (28) is calculated 

either exactly (left) or by backward projection (right). The bias and the rmse are given in units of s2
k. 

The bias of the robust estimator is much smaller than the rmse. The analytical prediction
of the bias is given by the thin line.
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The reliability of the different variance estimators is then obtained by calculating 
the bias 

 B   =   E(sk
2)  –  sk

2, (87)

and the root mean squared error 

 rmse   =   E k ks .s
2

-2 2
a k8 B  (88)

Estimation of the bias and the mean squared error. Figure 8 shows the result of 
the Monte Carlo simulation using line of business A for the real triangle Ljk. 
Here the left-hand side gives a comparison of the reliability of Mack’s vari-
ance estimator (27) and the robust estimator (28), with E(Ljk) calculated 
exactly. The dashed line denotes the relative bias B / sk

2 of  Mack’s variance 
estimator and the dots show the same quantity using the robust version. As 
expected, Mack’s estimator is unbiased, while the robust estimator exhibits a 
small bias (less than 5%), which agrees up to a small error with the analytical 
prediction Eq. (40) (thin line). This bias is much smaller than the relative root 
mean squared error rmse / sk

2 represented by the thick line (Mack’s estimator) 
and the asterisks (robust estimator). Similar results are obtained if  the expec-
tation value E(Ljk) in (28) is replaced by the forward projection 

   E(Lj1)   =   Lj1, (89) 

E(Lj, k + 1)   =   fk Ljk,  k  ≥  1. (90)

FIGURE 9: Estimation of the bias (left) and the root mean squared error (right) for a scenario with an 
artifi cial data error: the entry L*

1, 5 is multiplied with a factor 0.1 in the Monte Carlo simulation. 
Circles correspond to the robust estimator (28), while the asterisks are obtained with the original Mack 
estimator (27). The bias and the rmse are given in units of s2

k. The fi gure clearly shows that the robust 
Mack estimator is more resilient than the original one.
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However, we do not recommend forward projection, because of the large sto-
chastic error in the fi rst losses Lj1, especially for long-tail business.

When using the backward projection (29) and (30) for the estimation of 
E(Ljk), one obtains the right-hand side of Fig. 8. This result is similar to the 
one shown on the left, apart from the sign and the orientation of B. The bias 
is here positive (  =  conservative) for small k’s, while it tends to zero for k  "  N. 
This difference can be explained by noting that the bias is zero whenever E(Ljk)
agrees with the losses Ljk. In the case of the forward projection, E(Ljk) is close 
to Ljk for small k’s, while for the backward projection one has E(Ljk)   -   Ljk for 
k  "  N.

Similar results are obtained, when the real triangle Ljk is replaced by those 
of other lines of business.

Test of robustness. To test the stability of the estimator (28), with E(Ljk) cal-
culated by backward projection, we now introduce errors in the random “Mack 
triangles”. To this end, a particular entry, L*

1, 5 in our example, is multiplied by 
a factor c  =  0.1 (Fig. 9) or c  =  10 –3 (Fig. 10), which leads to errors similar
to those encountered in line of business C. Clearly, the fi gures demonstrate a 
large gain in stability.

Conclusions. The simulations reveal that the bias of the robust estimator (29) 
stays less than 5%, which is much smaller than the corresponding root mean 
squared error. The latter is similar to the one of the original Mack estimator, 
demonstrating the reliability of  the proposed estimator. Moreover, it turns 
out that the estimation of E(Ljk) by backward projection leads to a slightly 
positive bias, which is preferable from the point of view of risk management. 
We conclude that the robust estimator has a performance comparable to the 
Mack estimator; the gain in stability, however, is enormous.

FIGURE 10: Similar to Fig. 9 but with a more severe data error: the entry L*
1, 5 is multiplied 

with a factor of 10–3 in the Monte Carlo simulation.
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Appendix C – Calibration of the Regularization Factor

In order to determine an appropriate choice for the Tikhonov regularization 
parameter l, we analyze the patterns of  line of  business A, see Fig. 11. The 
general applicability of this choice has been explored for further LoBs. To inter-
pret the quality of  the inversion one can use the following rough rule: the 
underwriting year based pattern d and the inverted pattern per accident year d 
can roughly be compared by a shift of one development year, dk   .   dk  +  1.

We conclude from Fig. 11 that l  ≥  0.8 s is necessary to obtain a smooth pat-
tern, where s is the mean of the singular values. However, a very large regulariza-
tion parameter, l   &   s, is not reasonable since the corresponding fi lter becomes 
nontransparent even for large singular values. For instance, the choice l  =  10s 
leads to the fi lter function f   .   (2s)2  /  ((2s)2  +  (10s)2 )   .   4% for the largest 
 singular value. Hence the inverse map is almost the zero map. It is therefore 
necessary to choose l in the vicinity of s. Since the Mack error is nearly con-
stant in this region (see Fig. 11), we suggest choosing precisely l  =  s. Studies 
of different lines of business have confi rmed that the inverted loss develop-
ment pattern is in general smooth for l  ≥  0.8s and the resulting reserve risk 
estimate is almost independent of l as long as l  ≥  0.5s. The choice of Eq. (82) 
is thus suitable for a large class of lines of business.

FIGURE 11: Effect of l on the inverted accident year based loss development pattern for line of business A. 
The top left plot shows the average underwriting year based pattern. The other fi ve patterns are the 

corresponding accident year based patterns resulting from an inverse convolution, using different l’s. 
The l values are given in units of the mean of the singular values of A. The top left s denotes the Mack 

error of the triangle per underwriting years. The other s’s are the earning pattern corrected Mack errors of 
the reconstructed accident year based triangles for the corresponding choices of l.
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