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Abstract. Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius
degree of a Perron number that is not totally real, in terms of the layout of its Galois
conjugates in the complex plane. As an application, we prove that there are cubic Perron
numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind,
McMullen and Thurston. A similar result is proved for bi-Perron numbers.
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1. Introduction
Let A be a non-negative, integral, aperiodic matrix, meaning that some power of A has
strictly positive entries. One can associate to A a subshift of finite type with topological
entropy equal to log(λ), where λ is the spectral radius of A. By the Perron–Frobenius
theorem, λ is a Perron number [3]; a real algebraic integer p ≥ 1 is called Perron if it
is strictly greater than the absolute value of its other Galois conjugates. Lind proved a
converse, namely, that any Perron number is the spectral radius of a non-negative, integral,
aperiodic matrix [7]. As a result, Perron numbers naturally appear in the study of entropies
of different classes of maps such as post-critically finite self-maps of the interval [10],
pseudo-Anosov surface homeomorphisms [2], geodesic flows, and Anosov and Axiom A
diffeomorphisms [7].

Given a Perron number p, its Perron–Frobenius degree, dP F (p), is defined as the
smallest size of a non-negative, integral, aperiodic matrix with spectral radius equal to
p. In other words, the logarithms of Perron numbers are exactly the topological entropies
of mixing subshifts of finite type, and the Perron–Frobenius degree of a Perron number
is the smallest ‘size’ of a mixing subshift of finite type realizing that number. Our main
result gives a lower bound for the Perron–Frobenius degree of a Perron number, which is
not totally real. See the related work of Boyle and Lind, which gives an upper bound in the
context of non-negative polynomial matrices [1].
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THEOREM 1.1. Let p > 0 be a Perron number. Assume that some Galois conjugate p′ of
p is not real, and η := tan−1((p − Re(p′))/|Im(p′)|)≤ 1. Then

dP F (p)≥
2π
3η
.

To visualize the angle η geometrically, see the left-hand side of Figure 3 for t = p′/p.
It was known to Lind, McMullen [8] and Thurston [10, note on page 6]) that there are
examples of Perron numbers of constant algebraic degree (in fact cubics), whose Perron–
Frobenius degrees are arbitrary large. Their proofs are not published, to the best of the
author’s knowledge. As a first application, we give a proof of their result.

COROLLARY 1.2. (Lind, McMullen, Thurston) For any N > 0, there are cubic Perron
numbers whose Perron–Frobenius degrees are larger than N.

The second application is a similar result for a class of algebraic integers called bi-
Perron numbers. A unit algebraic integer α > 1 is called bi-Perron if all other Galois
conjugates of α lie in the annulus {z ∈ C | 1/α < |z|< α}, except possibly for α−1.

Bi-Perron numbers appear in the study of stretch factors of pseudo-Anosov
homeomorphisms, in particular the surface entropy conjecture (also known as Fried’s
conjecture). Fried proved that the stretch factor of any pseudo-Anosov homeomorphism on
a closed, orientable surface S is a bi-Perron number [2], and Penner showed the Perron–
Frobenius degree of the stretch factor is at most 6|χ(S)| (see [9, page 5]). The strong
form of the surface entropy conjecture states that the set of stretch factors of pseudo-
Anosov homeomorphisms over all closed, orientable surfaces is exactly the set of bi-Perron
numbers (see [2, Problem 2] or [8]). In §3 we prove the following corollary.

COROLLARY 1.3. For any N > 0, there are bi-Perron numbers of algebraic degree at most
6 whose Perron–Frobenius degrees are larger than N.

We do not know if the examples in the above corollary arise as stretch factors of pseudo-
Anosov maps (see Question 4.2).

1.1. Outline. In §2 we recall the proof of Lind’s theorem and prove Theorem 1.1. In §3
we prove two applications of the main theorem, namely Corollaries 1.2 and 1.3. In §4 we
suggest further questions regarding Perron numbers arising as stretch factors of pseudo-
Anosov homeomorphisms.

2. Perron–Frobenius degree
Given an algebraic integer λ of degree d over Q and minimal polynomial f (x)= xd

−

c1xd−1
− · · · − cd , define its companion matrix as

B =


0 0 · · · cd

1 0 · · · cd−1

0 1 · · · cd−2
...

...
...

0 0 · · · c1

 .
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Note that the characteristic polynomial of B is equal to f (x) up to sign. The Jordan form
of B shows that Rd splits into a direct sum of one-dimensional and two-dimensional B-
invariant subspaces corresponding to real roots and pairs of conjugate complex roots of
f (x). If λ′ is a root of f (x), denote the B-invariant subspace corresponding to λ′ by Eλ′ ,
and let πλ′ : Rd

→ Eλ′ be the projection to Eλ′ along the complementary direct sum. As
λ is real, Eλ is one-dimensional. Fixing a point w ∈ Eλ, we identify rw with r for r ∈ R.
Let E be the positive half-space corresponding to λ, that is, the set of points such that
their projection under πλ is a positive multiple of w. By an integral point in E we mean an
integral point with respect to the standard basis of Rd .

THEOREM 2.1. (Lind [7]) Let λ be a Perron number, with the companion matrix B : Rd
→

Rd . Let E be the positive half-space corresponding to λ. There are integral points
z1, . . . , zn in E such that for each 1≤ i ≤ n, Bzi =

∑n
j=1 ai j z j with ai j ∈ N ∪ {0}, and

any irreducible component of the matrix A = [ai j ] is an aperiodic matrix whose spectral
radius is equal to λ.

The next theorem, also due to Lind, gives a converse to the previous theorem.

THEOREM 2.2. (Lind [7]) Let λ be a Perron number, with the companion matrix
B : Rd

→ Rd . Let E be the positive half-space corresponding to λ. If A is an n × n
aperiodic, non-negative, integral matrix with spectral radius equal to λ, then there are
integral points z1, . . . , zn ∈ E such that for each 1≤ i ≤ n we have Bzi =

∑n
j=1 ai j z j .

We recall Lind’s proof of Theorem 2.2.

Proof. Consider A : Rn
−→ Rn . By Perron–Frobenius theory, there is a positive

eigenvector v ∈ Rn corresponding to λ. By working over the field Q(λ), we can assume
that v ∈Q(λ)n . Let

v = (v1, v2, . . . , vn)
T
∈ Rn,

and assume that for 1≤ i ≤ n,

vi = zi1 + zi2λ+ · · · + zidλ
d−1 > 0,

where the numbers zi j are integers. Define, for 1≤ i ≤ n,

zi = (zi1, zi2, . . . , zid)
T
∈ Zd .

Since v is an eigenvector for A,

λvi = (Av)i =
∑

j

ai jv j . (∗)

Let 9 :Q(λ)−→Qd be the map

9(a0 + a1λ+ · · · + ad−1λ
d−1)= (a0, . . . , ad−1)

T .

In particular, zi =9(vi ) for 1≤ i ≤ n. Taking 9 from both sides of equation (∗) gives

9(λvi )=
∑

j

ai j9(v j ).
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Note that multiplication by λ on Q(λ) has matrix B with respect to the basis
{1, λ, . . . , λd−1

}. Hence, we obtain

Bzi =
∑

j

ai j z j .

Finally, we need to verify that the points zi belong to the positive half-space E . Note that

w∗ = (1, λ, . . . , λd−1) ∈ Rd ,

is a left eigenvector for the linear map B corresponding to the eigenvalue λ. Let Eλ be
the one-dimensional invariant subspace of Rd corresponding to λ and C be its invariant
complement. Therefore,

C = {x ∈ Rd
| w∗x = 0}.

Let πλ be the projection map from Rd onto Eλ along the complementary direct sum. Define
a map mw∗ : Rd

−→ R that is multiplication by w∗ from the left. Then mw∗ should be a
multiple of the map πλ. On the other hand,

mw∗(zi )= w
∗zi = zi1 + zi2λ+ · · · + zidλ

d−1
= vi > 0.

Hence, replacing each zi by −zi if necessary (in case mw∗ is a negative multiple of πλ),
we have zi ∈ E for each i and the proof is complete. �

Remark 2.3. Rd can be identified with Q(λ)⊗Q R. Multiplication by λ is a linear map on
Q(λ)⊗Q R which has the matrix B with respect to the basis {1, λ, . . . , λd−1

}. Therefore,
an integral point in the standard basis of Rd can be considered as a point in Z[λ].

The following lemma and propositions will be used in the proof of Theorem 1.1.

LEMMA 2.4. Let λ be a Perron number, with the companion matrix B : Rd
→ Rd . Let δ

be a Galois conjugate of λ, and πδ be the projection onto Eδ along the complementary
direct sum. Then for any non-zero integral point z ∈ Rd , πδ(z) 6= 0.

Proof. Assume to the contrary that πδ(z)= 0. Therefore z lies in the invariant
complementary direct sum of Eδ in Rd . Set z = (x1, . . . , xd)

T
∈ Zd . Working in the

complexification Rd
⊗R C of Rd , we obtain that w∗z = 0, where w∗ = [1, δ, . . . , δd−1

]

is a left eigenvector for B corresponding to the eigenvalue δ. Therefore,

x1 + x2δ + · · · + xdδ
d−1
= 0.

However, this means that δ satisfies an integral polynomial equation with degree less than
d . Therefore all x j should be zero. This contradicts the fact that z ∈ E . �

The idea of using the next proposition has been generously suggested by Douglas Lind
in a Mathoverflow post (see https://mathoverflow.net/questions/228826/lower-bound-for-
perron-frobenius-degree-of-a-perron-number). In this post the author had asked for a way
of finding a lower bound for the Perron–Frobenius degree of a Perron number. This was
the answer that Lind gave:
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If a Perron number λ has negative trace, then any Perron–Frobenius matrix
must have size strictly greater than the algebraic degree of λ, for example
the largest root of x3

+ 3x2
− 15x − 46. If B denotes the d × d companion

matrix of the minimal polynomial of λ (which of course can have negative
entries), then Rd splits into the dominant 1-dimensional eigenspace D and the
direct sum E of all the other generalized eigenspace.

Although I’ve not worked this out in detail, roughly speaking the smallest
size of a Perron–Frobenius matrix for λ should be at least as large as the
smallest number of sides of a polyhedral cone lying on one side of E (positive
D-coordinate) and invariant (mapped into itself) under B. This is purely a
geometrical condition, and there are likely further arithmetic constraints as
well. For example, if λ has all its other algebraic conjugates of roughly the
same absolute value, then B acts projectively as nearly a rotation, and this
forces any invariant polyhedral cone to have many sides, so the geometric
lower bound will be quite large.

The following proposition is only one way of using the above idea, and it would be
nice to weaken the geometric assumptions about the roots or to explore the arithmetic
constraints that Lind mentions.

PROPOSITION 2.5. Let B̂ : R3
−→ R3 be a linear map. Assume that the eigenvalues of B̂

are λ, δ and θ such that:
(1) λ > 1 is a positive real number, δ, θ are a pair of conjugate complex numbers with

non-zero imaginary parts and positive real parts, and |δ|< λ;
(2) if we set t = δ/λ, then η := |(1− Re(t))/Im(t)| ≤ 1.
Define E as the positive half-space corresponding to the eigenvalue λ. Let M be the
minimum number of sides for an arbitrary non-degenerate polygonal cone Ĉ ⊂ E that
is invariant under the map B̂, that is, B̂(Ĉ)⊂ Ĉ. Then M ≥ 2π/3η.

Proof. Let Ĉ be an invariant polygonal cone for the map B̂ with M sides. Let Eλ be the
one-dimensional invariant subspace in R3 corresponding to λ. Pick an eigenvector w ∈ E
corresponding to the eigenvalue λ, and let H be the set of points whose projection under
πλ is the constant vector w. Define

P := Ĉ ∩ H.

Hence, P is a polygon with M sides and Ĉ is the cone over P (Figure 1).
Let G be the two-dimensional invariant subspace corresponding to δ. One can think

about G as the complex plane with the action of B̂ on G being multiplication by the
complex number δ.

Now if w + w′ is a vector in H where w′ ∈ G, then

B̂(w + w′)= λw + δw′ = λ
(
w +

δ

λ
w′
)
.

Here by δw′ we mean multiplication by δ inside the complex plane G. Note that
w + (δ/λ)w′ ∈ H , hence the action of B̂ on H is multiplication by the complex number
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FIGURE 1. The cone Ĉ over the polygon P .

FIGURE 2. The triangle O P j P j+1.

t = δ/λ. As a corollary, the polygon P is invariant under multiplication by t = δ/λ. Note
that 0 ∈ P since |t | = |δ|/λ < 1 and successive multiplication by t converges to the origin
in H (i.e. the intersection point Eλ ∩ H ). Now if we set η = |tan−1((1− Re(t))/Im(t))|,
by Proposition 2.6 we have M ≥ 2π/3η.

Note that this proposition is purely geometric and λ does not need to be an algebraic
integer. �

PROPOSITION 2.6. Let P be a convex non-degenerate polygon in the complex plane,
having M sides and containing the origin. Let t be a complex number with non-zero
imaginary part and positive real part. Assume that P is invariant under multiplication
by t, that is, tP ⊂ P . If η := |tan−1((1− Re(t))/Im(t))| ≤ 1, then M ≥ 2π/3η.

Proof. Without loss of generality assume that |t | ≤ 1 and Im(t) > 0. See Figure 3
to visualize the angle η geometrically. Let P1, . . . , PM be the vertices of P in
counterclockwise order and let O denote the origin. Define β j := ∠(O Pj Pj+1) and
φ j := ∠(Pj O Pj+1) (see Figure 2). The proof is divided into a few steps.

Step 1:
β j ≥

π

2
− η.

This is because if the above condition is not satisfied, then t Pj lies outside the polygon P
(see Figure 3, right), contradicting the assumption that the polygon P is invariant under
multiplication by t .
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FIGURE 3. Left: the angle η. Right: step 1.

Define l j = |O Pj |. We will work with the values l j+1/ l j . Note that P :=∏M
j=1 l j+1/ l j = 1. The index set M := {1, . . . , M} can be partitioned into two sets

according to whether φ j < η or not:

A= {1≤ j ≤ M | φ j ≥ η} and B = {1≤ j ≤ M | φ j < η}.

Define
PA :=

∏
j∈A

l j+1

l j
, PB :=

∏
j∈B

l j+1

l j
.

We clearly have P = PA · PB = 1. We give lower bounds for the values of PA and PB.

Step 2:
φ j − η <

π

2
.

To see this, consider the triangle O Pj Pj+1 and note that sum of any two angles has to be
less than π :

β j + φ j < π H⇒
π

2
− η + φ j < π H⇒ φ j − η <

π

2
.

Here we used step 1 for the first implication.

Step 3: For any j ∈A,
l j+1

l j
≥

cos(η)
cos(φ j − η)

.

Consider the triangle O Pj Pj+1. Let A be the point on the segment O Pj+1 such that
∠O Pj A = π/2− η. Such a point exists by step 1, since

∠O Pj A =
π

2
− η ≤ β j = ∠O Pj Pj+1.

Let H be the projection of O onto Pj A (see Figure 4). It follows from the assumption
j ∈A that the point H lies inside the triangle O Pj Pj+1. This is because

∠Pj O H = η ≤ φ j = ∠Pj O A.

Then
l j+1

l j
=

O Pj+1

O Pj
≥

O A
O Pj

=
O A
O H
·

O H
O Pj

=
1

cos(φ j − η)
· cos(η).

Step 4: For any j ∈ B, we have:
l j+1

l j
≥ cos(η).
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FIGURE 4. Left: step 3. Right: step 4.

Choose the point H such that ∠Pj O H = η and ∠O Pj H = π/2− η. Therefore.
∠O H Pj = π/2. Let D be the intersection of the lines O Pj+1 with Pj H . Then D lies
on the segments O Pj+1 and Pj H (see Figure 4). To see this, note that

∠O Pj Pj+1 = β j ≥
π

2
− η = ∠O Pj H ,

∠Pj O H = η ≥ φ j = ∠Pj O Pj+1.

Here the first inequality is by Step 1, and the second inequality follows from the
assumption j ∈ β. Now

l j+1

l j
=

O Pj+1

O Pj
≥

O D
O Pj

≥
O H
O Pj

= cos(η).

We are now ready to give a lower bound for M . Note that steps 3 and 4 imply that

1= P = PA · PB ≥
( ∏

j∈A

cos(η)
cos(φ j − η)

)
·

( ∏
j∈B

cos(η)
)

H⇒ cos(η)M/|A|
≤

( ∏
j∈A

cos(φ j − η)

)1/|A|
,

where |A| is the cardinality of A. We now observe that, keeping the sum of φ j for j ∈A
fixed, the product of cos(φ j − η) is maximized when all φ j are equal. This is simply
a consequence of the following inequality, where we take a and b to be the quantities
φ j − η:

cos(a) · cos(b)≤
(

cos
(

a + b
2

))2

.

Crucially 0≤ φ j − η < π/2, for each j ∈A (by step 2 and the definition of the set A),
which implies that all cos(·) involved are non-negative. To see that the inequality holds,
note that

2 cos(a) · cos(b) = cos(a + b)+ cos(a − b)

= 2
(

cos
(

a + b
2

))2

− 1+ cos(a − b)≤ 2
(

cos
(

a + b
2

))2

.
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Let φ be the average of the angles φ j − η for j ∈A. Then we have 0≤ φ ≤ π/2, since
each of the angles φ j − η satisfies the same bounds. By definition of the set B,

for all j ∈ B, φ j < η H⇒
∑
j∈B

φ j < η · |B| = η(M − |A|).

Hence

φ̄ =

∑
j∈A(φ j − η)

|A|
=

∑
j∈M φ j −

∑
j∈B φ j − |A|η

|A|

≥
2π − η(M − |A|)− |A|η

|A|
=

2π − Mη
|A|

.

Now if 2π − Mη is negative, then there is nothing to prove. Otherwise 0≤
(2π − Mη)/|A| ≤ φ ≤ π/2, and therefore

cos(η)M/|A|
≤

( ∏
j∈A

cos(φ j − η)

)1/|A|
≤ cos(φ)≤ cos

(
2π − Mη
|A|

)
.

The next step is to give a lower bound for cos(η)M/|A|.

Step 5: For α ≥ 1 and 0≤ x ≤ 1
2 the following inequality holds:

(1− x)α ≥ 1− 2αx .

This inequality can be proved by noting that the values of both sides agree at x = 0 and
then checking the signs of derivatives for 0≤ x ≤ 1

2 and 1≤ α (for the variable x).
The assumption η ≤ 1 implies that 0≤ η2/2≤ 1

2 and hence 0≤ 1− η2/2. The in-
equality cos(y)≥ 1− y2/2 holds for every real number 0≤ y ≤ 1, and clearly M/|A| ≥ 1.
Hence we have the lower bound

cos(η)M/|A|
≥

(
1−

η2

2

)M/|A|
≥ 1− 2

(
M
|A|

)
η2

2
= 1−

Mη2

|A|
,

where in the last inequality we have used step 5. Combining with the previous bound, we
obtain that

1−
Mη2

|A|
≤ cos

(
2π − Mη
|A|

)
H⇒ 1− cos

(
2π − Mη
|A|

)
≤

Mη2

|A|

H⇒ 2 sin
(

2π − Mη
2|A|

)2

≤
Mη2

|A|
H⇒ sin

(
2π − Mη

2|A|

)
≤

√
M

2|A|
η.

Recall the assumption 0≤ (2π − Mη)/|A| ≤ π/2. Therefore the quantity
(2π − Mη)/2|A| lies in the interval [0, π/4]. In the latter interval, the inequality
sin(x)≥ x/

√
2 holds. Hence,

1
√

2

2π − Mη
2|A|

≤ sin
(

2π − Mη
2|A|

)
≤

√
M

2|A|
η.

H⇒ 2π − Mη ≤ 2
√

M |A| η H⇒ 2π − Mη ≤ 2Mη

H⇒ Mη ≥
2π
3
. �
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Proof of Theorem 1.1. Assume that dP F (p)= n. Therefore, there is an n × n non-
negative, integral, aperiodic matrix A = [ai j ]with spectral radius equal to p. Let B : Rd

→

Rd be the companion matrix corresponding to the minimal polynomial of p. Let w be an
eigenvector for the map B corresponding to the eigenvalue p, and denote by E ⊂ Rd the
positive half-space containingw. By Theorem 2.2, there are integral points z1, . . . , zn ∈ E
such that for each 1≤ i ≤ n,

Bzi =
∑

ai j z j .

Let C be the cone over the points z1, . . . , zn , that is,

C = {ε1z1 + · · · + εnzn | ∀i, εi ≥ 0} ⊂ E .

The cone C is invariant under the action of B, that is, B(C)⊂ C. Let E p and E p′ be
the one-dimensional and two-dimensional invariant subspaces of Rd corresponding to p
and p′, respectively. Set W := E p ⊕ E p′ , and let π : Rd

−→W be the projection onto
the invariant subspace W along the complementary direct sum. Since the maps B and π
commute, we have

Bzi =
∑

j

ai j z j H⇒ B(π(zi ))= π(B(zi ))=
∑

j

ai jπ(z j ).

Therefore, if we set ẑi := π(zi ), then ẑi ∈W ∩ E and they satisfy the same linear equations
as zi did. Hence the cone Ĉ ⊂W ∩ E over the points ẑi is invariant under the linear action
of B̂ := B|W .

By Lemma 2.4, since the zi are integral points, none of the points π(zi ) can lie entirely
inside the one-dimensional subspace E p ⊂W ; otherwise πp′(zi )= 0. Therefore, the cone
Ĉ is non-degenerate. In summary, the cone over the points π(zi ) is a non-degenerate
polygonal cone Ĉ in W , which is invariant under the action of B̂. By assumption the map
B̂ satisfies the conditions of Proposition 2.5. Therefore, the desired bound holds. �

3. Applications
COROLLARY 1.2 (Lind, McMullen, Thurston). For any N > 0, there are cubic Perron
numbers whose Perron–Frobenius degrees are larger than N.

Proof. The idea is to construct a cubic polynomial f (x) with exactly one real rootw1 > 0,
and such that for one of the other roots, say w2:
(1) the absolute value of w2 is smaller than but very close to w1 and the argument of w2

is very small;
(2) f (x) is irreducible.
It is easy to construct a reducible polynomial of the form g(x)= (c − x)[(a − x)2 + b2

]

that satisfies (1). Moreover, by perturbing g(x), one expects g(x) to become irreducible
and still satisfy (1). The details are as follows. Let ε > 0. The proof is broken down into
several steps.

Step 1: There are natural numbers a, b, c� 0 satisfying the inequalities√
a2 + b2 < c ≤ a + ε b,

(
a
b

)2

≤ c. (1)
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First by choosing a0 much larger than b0, we may arrange that
√

a2
0 + b2

0 < a0 + ε b0.

Let c0 be a positive integer satisfying (a0/b0)
2
≤ c0. Pick k� 0 such that

k(a0 + ε b0)− k
√

a2
0 + b2

0 ≥ c0 + 4,

and denote by c the largest integer between k
√

a2
0 + b2

0 and k(a0 + ε b0). Therefore

c ≥ k(a0 + εb0)− 1≥ (c0 + 4)− 1= c0 + 3> c0.

Set a = ka0 and b = kb0. We now check that the desired inequalities hold for a, b, c. The
first inequality is satisfied by the definition of c. Moreover,

c ≥ c0 ≥

(
a0

b0

)2

=

(
a
b

)2

.

Note that by choosing k� 0, we can assume that all of the numbers a, b and c are large.
This proves step 1.

Define the cubic polynomial f (x) as f (x)= (c − x)[(a − x)2 + b2
] + 1.

Step 2: The polynomial f (x) has a real root ω1 satisfying

c < ω1 <min
{

c + 1, c +
c + 1

a2 + b2 − 1

}
.

By the intermediate value theorem, it is enough to show that

f (c) > 0, f (c + 1) < 0, f
(

c +
c + 1

a2 + b2 − 1

)
< 0.

We have f (c)= 1> 0 and

f (c + 1)=−[(a − c − 1)2 + b2
] + 1≤−b2

+ 1< 0.

Here we have used the assumption b > 1.
For the last part, set p = c + ((c + 1)/(a2

+ b2
− 1)). Hence

f (p)=−
c + 1

a2 + b2 − 1
[(a − p)2 + b2

] + 1≤−
(

c + 1
a2 + b2 − 1

)
· b2
+ 1< 0

⇐⇒ 1<
(

c + 1
a2 + b2 − 1

)
· b2
⇐⇒ a2

+ b2
− 1< c b2

+ b2
⇐⇒ a2

− 1< c b2.

But the last inequality holds by the assumption (a/b)2 ≤ c. Therefore the step follows.

Step 3: f (x) has exactly one real root.
To see this, assume to the contrary that all roots of f (x) are real. Denote the other

two roots by ω2 and ω3. We will prove that ((ω2 + ω3)/2)2 < ω2ω3, which gives a
contradiction. After expanding, we deduce that

f (x)=−x3
+ (c + 2a)x2

− (2ac + a2
+ b2)x + c(a2

+ b2)+ 1.

By Vieta’s formula,

ω1 + ω2 + ω3 = c + 2a,

ω1ω2ω3 = c(a2
+ b2)+ 1.
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Therefore,
0< 2a − 1< ω2 + ω3 = c + 2a − ω1 < 2a,

where we have used the inequality c < ω1 < c + 1 from step 2. As a result,

ω2ω3 =
c(a2
+ b2)+ 1
ω1

> a2
⇐⇒ ω1 <

c(a2
+ b2)+ 1

a2 .

Here the first equality is the application of Vieta’s formula. Using step 2, in order to verify
the last inequality, it is enough to show that

c +
c + 1

a2 + b2 − 1
<

c(a2
+ b2)+ 1

a2 = c +
c b2
+ 1

a2

⇐⇒
c + 1

a2 + b2 − 1
<

c b2
+ 1

a2 ⇐⇒ (c + 1)a2 < (c b2
+ 1)(a2

+ b2
− 1).

But we have
(c + 1) < c b2

+ 1, a2 < (a2
+ b2
− 1),

which imply the last part. Therefore, we have established that ω2ω3 > a2. Putting it all
together, we obtain (

ω2 + ω3

2

)2

<

(
2a
2

)2

= a2 < ω2ω3.

This completes the proof of the step. Therefore, ω2 and ω3 are both non-real and ω3 = ω2.

Step 4: ω1 is a Perron number.
Since ω3 = ω2, we have |ω2|

2
= ω2ω3. Therefore, by Vieta’s formula,

|ω2|
2
= ω2ω3 =

c(a2
+ b2)+ 1
ω1

≤
c(a2
+ b2)+ 1

c

= a2
+ b2
+

1
c
≤ a2
+ b2
+ 1≤ c2 < ω2

1.

Here we have used ω1 > c for the first and last inequalities. The relation a2
+ b2
+ 1≤ c2

follows from a2
+ b2 < c2 (step 1) and the fact that both a2

+ b2 and c2 are integers.

Step 5:
|ω2|

2
≥ a2
+ b2
− 1.

Again using Vieta’s formula,

|ω2|
2
= ω2ω3 =

c(a2
+ b2)+ 1
ω1

≥ a2
+ b2
− 1

⇐⇒ ω1 ≤
c(a2
+ b2)+ 1

a2 + b2 − 1
= c +

c + 1
a2 + b2 − 1

.

But the last inequality holds by step 2.

Step 6: Denote the real and imaginary part of ω2 by Re(ω2) and Im(ω2). Then

|Re(ω2)| ≤ a, 0< ω1 − Re(ω2) < c − a + 2, |Im(ω2)|
2
≥ b2
− 1.
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Since ω2 and ω3 are complex conjugates, we have ω2 + ω3 = 2Re(ω2). By Vieta’s
formula,

Re(ω2)=
ω2 + ω3

2
=
ω1 + ω2 + ω3 − ω1

2
=

c + 2a − ω1

2
.

Therefore,

|Re(ω2)| ≤
c + 2a − c

2
= a.

Here, for the last inequality, we have used c < ω1 < c + 1 from step 2. This verifies
the first part of the step. For the second part, by step 4, |ω2|< ω1, which implies that
0< ω1 − Re(ω2). Moreover,

ω1 − Re(ω2) = ω1 −

(
c + 2a − ω1

2

)
=

3ω1 − (c + 2a)
2

≤
3(c + 1)− (c + 2a)

2
< c − a + 2.

Here we have used ω1 < c + 1 from step 2. This completes the second part. For the third
part,

|Im(ω2)
2
| = |ω2|

2
− |Re(ω2)|

2
≥ (a2

+ b2
− 1)− a2

= b2
− 1.

Here we have used step 5, together with the first part of step 6.

Step 7: (
ω1 − Re(ω2)

Im(ω2)

)2

≤
(ε + 2b−1)2

1− b−2 .

By the second and third parts of step 6,(
ω1 − Re(ω2)

Im(ω2)

)2

≤
(c − a + 2)2

b2 − 1
≤
(ε b + 2)2

b2 − 1
=
(ε + 2b−1)2

1− b−2 .

Here we have used the condition 0< c − a ≤ ε b from step 1.
We can now prove the corollary. Consider the algebraic integer ω1 defined as above.

Since, by step 2, c < ω1 < c + 1, the number ω1 is not an integer. The other two roots of
f (x) are not real by step 3. Hence, ω1 is a cubic algebraic integer. By step 4, ω1 is Perron.
By Theorem 1.1,

dP F (ω1)≥
2π
3η
, η := tan−1

(
ω1 − Re(ω2)

|Im(ω2)|

)
,

whenever η ≤ 1. By step 7 we have

tan(η)≤
ε + 2b−1
√

1− b−2
.

As mentioned in step 1, given any ε > 0, we may find a, b, c with the given properties
such that they are arbitrary large. Therefore we may assume that b > ε−1, or equivalently
b−1 < ε. Hence

tan(η)≤
ε + 2b−1
√

1− b−2
≤

3ε
√

1− b−2
< 6ε.
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Here the last inequality follows from b ≥ 2. To sum up, we have tan(η) < 6ε, which is
equivalent to η < tan−1(6ε) since the tangent function is strictly increasing on the interval
[0, π/2]. As a result,

dP F (ω1)≥
2π
3η

>
2π

3 tan−1(6ε)
.

By choosing ε > 0 arbitrary small, we find arbitrary large lower bounds for dP F (ω1). This
completes the proof. �

Remark 3.1. If λ is a quadratic Perron number, then dP F (λ)= 2. To see this, assume
that the minimal polynomial of λ is of the form f (x)= x2

− ux + v, where u, v ∈ Z and
1= u2

− 4v > 0. If we denote the other root by λ′, then u = λ+ λ′ > 0, since λ is Perron.
Now if u is even, then 4|1 and we may take

A =

u
2

1

4

1
u
2

 .
Then all the entries of A are positive integers, and its characteristic polynomial is equal to
f (x). If u is odd, then 1≡ 1 (mod 4). Moreover, 1 6= 1 since otherwise the polynomial
f (x) would not have been irreducible. Therefore, we may take

A =


u + 1

2
1− 1

4

1
u − 1

2

 .
The characteristic polynomial of A is equal to f (x). If u > 1, then A has positive entries.
If u = 1, then we should have v < 0 since 1> 1. In this case A2 has positive entries. �

An algebraic integer is called a unit, if the product of all its Galois conjugates is equal
to 1 or −1. Equivalently, the constant term of its minimal polynomial should be equal to 1
or −1.

Definition 3.2. A unit algebraic integer α > 1 is called bi-Perron if all other Galois
conjugates of α lie in the annulus {z ∈ C | 1/α < |z|< α}, except possibly for α−1.

OBSERVATION 3.3. Let γ > 2 be a Perron number, such that for every other Galois
conjugate γ ′ of γ we have |γ ′| ≤ γ − 2. Then the unique real solution α > 1 to α + 1/α =
γ is bi-Perron.

Proof. As the Galois conjugates of α come in reciprocal pairs, the product of all the Galois
conjugates is equal to 1. Therefore, α is a unit algebraic integer. Assume that α′ /∈ {α, α−1

}

is a Galois conjugate of α. We need to prove that 1/α < |α′|< α. There is a Galois
conjugate γ ′ 6= γ of γ such that α′ + 1/α′ = γ ′. There are three cases to consider.
(1) If |α′|> 1, then by the triangle inequality,

|α′| ≤

∣∣∣∣α′ + 1
α′

∣∣∣∣+ ∣∣∣∣−1
α′

∣∣∣∣= |γ ′| + ∣∣∣∣ 1
α′

∣∣∣∣≤ γ − 2+
∣∣∣∣ 1
α′

∣∣∣∣= (α + 1
α

)
− 2+

∣∣∣∣ 1
α′

∣∣∣∣< α.
Here the last inequality follows from |α′|> 1 and α > 1. This proves the upper bound
for |α′|. The lower bound follows from 1/α < 1< |α′|.
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(2) If |α′| = 1, the inequalities hold trivially as 1/α < 1= |α′| = 1< α.
(3) If |α′|< 1, then (α′)−1 is also a Galois conjugate. The result follows from (1), since

the inequalities are symmetric. �

Remark 3.4. Without the condition on the absolute value of γ ′, the conclusion is not true.
As an example one can take γ to be the Perron root of the polynomial (x − 5)[(x − 4)2 +
32
] − 1.

COROLLARY 1.3. For any N > 0, there are bi-Perron numbers of algebraic degree at
most 6 whose Perron–Frobenius degrees are larger than N.

Proof. Pick ε > 0. Let ω1 be the cubic Perron number constructed in Corollary 1.2, with
Galois conjugates w2 = ω3. Recall that in the construction, one could take a, b and c to be
arbitrarily large. Therefore, we may assume that b, c > 2 and b > ε−1. Throughout, when
we refer to step x , we mean step x in the proof of Corollary 1.2.

By step 2, ω1 > c > 2, so the first condition of Observation 3.3 is satisfied. To prove
the second condition, we want to show that it is possible to choose a, b and c such that
|ω2| ≤ ω1 − 2. By the proof of step 4, we have |ω2|

2
≤ a2
+ b2
+ 1. As we know that

c < ω1, it is enough to prove that a2
+ b2
+ 1≤ (c − 2)2. In the proof of step 1, we defined

c as the largest integer between k
√

a2
0 + b2

0 and k(a0 + ε b0). Moreover, we had

k(a0 + ε b0)− k
√

a2
0 + b2

0 ≥ c0 + 4≥ 4.

Therefore
c ≥ k

√
a2

0 + b2
0 + 3=

√
a2 + b2 + 3.

This implies

c − 2≥
√

a2 + b2 + 1 H⇒ (c − 2)2 ≥
(√

a2 + b2 + 1
)2
> a2

+ b2
+ 1.

This shows that the hypotheses of Observation 3.3 are satisfied. Hence, we may define
the bi-Perron number α > 1 as the solution to α + 1/α = ω1. The number α satisfies a
monic integral polynomial equation of degree 6, obtained by substituting x = α + α−1 in
the minimal polynomial of ω1, f (x), and clearing the denominators. Hence the algebraic
degree of α is at most 6. In fact the degree can be taken to be equal to 6 but we do not
prove it.

The last step is to give a lower bound for the Perron–Frobenius degree of α. Pick a
Galois conjugate α′ 6= α of α such that |α′| ≥ 1. By Theorem 1.1, we have

dP F (α)≥
2π
3η̂
, η̂ := tan−1

(
α − Re(α′)
|Im(α′)|

)
,

as long as η̂ ≤ 1. We have

α +
1
α
= ω1 H⇒ α = ω1 −

1
α
< ω1,

since α > 0. Moreover,

α′ +
1
α′
= ω2 H⇒ Re(α′)= Re(ω2)− Re

(
1
α′

)
≥ Re(ω2)− 1.
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Here we have used the fact that |1/α′| ≤ 1, which implies that |Re(1/α′)| ≤ 1. Putting the
two inequalities together, we obtain

α − Re(α′)≤ ω1 − Re(ω2)+ 1.

On the other hand, α is bi-Perron, so

0< α − |α′| ≤ α − Re(α′).

Similarly,

α′ +
1
α′
= ω2 H⇒ |Im(α′)| =

∣∣∣∣Im(ω2)− Im
(

1
α′

)∣∣∣∣
≥ |Im(ω2)| −

∣∣∣∣Im( 1
α′

)∣∣∣∣≥ |Im(ω2)| − 1.

We now can give an upper bound for tan(η̂):

tan(η̂)=
(
α − Re(α′)
|Im(α′)|

)
≤
ω1 − Re(ω2)+ 1
|Im(ω2)| − 1

.

Using the second and third parts of step 6 together with step 1, we obtain

tan(η̂)≤
c − a + 3
√

b2 − 1− 1
≤

ε b + 3
√

b2 − 1− 1
=

ε + 3b−1
√

1− b−2 − b−1
.

The condition b > ε−1 is equivalent to b−1 < ε. We have

ε + 3b−1
√

1− b−2 − b−1
≤

4ε
√

1− b−2 − b−1
≤ 16ε,

where the last inequality follows from b ≥ 2. Therefore η̂ ≤ tan−1(16ε), which implies
that

dP F (α)≥
2π
3η̂
≥

2π
3 tan−1(16ε)

.

By choosing ε > 0 to be arbitrary small, we obtain arbitrarily large lower bounds for the
Perron–Frobenius degree. �

4. Questions
Let λ be the stretch factor of a pseudo-Anosov map φ on a closed orientable surface S.
Then, by Fried’s theorem, λ is bi-Perron. In fact one can construct a non-negative, integral,
aperiodic matrix of size at most 6|χ(S)| and with spectral radius λ using an invariant train
track for the map φ [9]. The author’s initial motivation for studying the Perron–Frobenius
degree of λ was to control the genus of the underlying surface. Unfortunately our bound is
not very effective for bi-Perron numbers coming from pseudo-Anosov maps, since ‘generic
conjugacy classes of pseudo-Anosov maps tend to have totally real stretch factors’ (see [4]
or [5, Appendix C5] for a precise statement). This motivates the following question.

Question 4.1. Give an effective lower bound for the Perron–Frobenius degree of a
(possibly totally real) Perron number.
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Question 4.2.
(1) Are there pseudo-Anosov stretch factors with constant algebraic degree, and with

arbitrary large Perron–Frobenius degree? In particular, can the bi-Perron numbers
constructed in Corollary 1.3 be realized as stretch factors?

(2) Fix a closed, orientable surface S. What is the set of possible Perron–Frobenius
degrees of pseudo-Anosov maps on S?

Note that a positive answer to Question 4.2(1) gives new counterexamples to a
conjecture/question of Farb recently disproved by Leininger and Reid using methods from
Teichmüller theory [6].
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