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Let L : dom L » L2( « ) ! L2( « ) be a self-adjoint operator, « being open and
bounded in RN . We give a description of the Fu·c¶ ³ k spectrum of L away from the
essential spectrum. Let ¶ be a point in the discrete spectrum of L; provided that
some non-degeneracy conditions are satis¯ed, we prove that the Fu·c¶ ³ k spectrum
consists locally of a ¯nite number of curves crossing at (¶ ; ¶ ). Each of these curves
can be associated to a critical point of the function H : x 7! hjxj; xiL2 restricted to
the unit sphere in ker(L ¶ I). The corresponding critical values determine the slopes
of these curves. We also give global results describing the Fu·c¶ ³ k spectrum, and
existence results for semilinear equations, by performing degree computations
between the Fu·c¶ ³ k curves.

1. Introduction

Let « » RN be open and bounded. We will consider, in the Hilbert space L2( « )
of real-valued functions, semilinear equations involving a self-adjoint operator L.
These equations contain an asymmetric nonlinear term, also called a `jumping non-
linearity’,

Lu = ¬ u + ­ u + f; (1.1)

where u + = maxfu; 0g, u = maxf u; 0g and f 2 L2( « ). We will also consider
the equation

Lu = ¬ u + ­ u + g(¢; u); (1.2)

assuming that g(x; u) has a sublinear growth in u, for juj ! 1.
The ­ rst sections of our paper deal with the homogeneous equation,

Lu = ¬ u + ­ u : (1.3)

The set of points ( ¬ ; ­ ) for which this equation has non-trivial solutions is called
the Fuµć± k or Dancer{Fuµć± k spectrum, Dancer [5] and Fuµć± k [8] having recognized
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its importance in the study of semilinear boundary-value problems. This spectrum
will be denoted by § (L). We will also denote by ¼ d (L) the discrete spectrum of
L (i.e. all the isolated eigenvalues of ­ nite multiplicity), and ¼ es s (L) the essential
spectrum of L, which is the complement of ¼ d (L) in ¼ (L), the spectrum of L.

We give in x 2 a characterization of the Fuµć± k spectrum. The result is not new,
but recalled here in a form adapted to its use in the later sections. Let I » R
be an open interval such that I \ ¼ (L) = ¶ 2 ¼ d (L). Using a Lyapunov{Schmidt
decomposition together with contraction mappings arguments, we show that the
points of the Fuµć± k spectrum within I £ I can be seen as points where a real-valued
function,

h0(¢; ¬ ; ­ ) : ker(L ¶ I) ! R;

to be de­ ned below, admits 0 as a critical value. This observation has already been
made by Gon¹calves and Magalh~aes [12], although under less general hypotheses.
As a consequence, the sets

F =
n

( ¬ ; ­ ) 2 I £ I j min
x2 ker(L ¶ I); kxk = 1

h0(x; ¬ ; ­ ) = 0
o

;

F + =
n

( ¬ ; ­ ) 2 I £ I j max
x2 ker(L ¶ I); kxk = 1

h0(x; ¬ ; ­ ) = 0
o

are contained in the Fuµć± k spectrum. In the case where dim ker(L ¶ I) = 1, the
spectrum (within I £ I) is easily seen to be reduced to these sets; this case has
been studied by Gallou�et and Kavian [11]. Results concerning the general case
have been obtained by Gon¹calves and Magalh~aes [12], Magalh~aes [15], Cac [3] and
Schechter [21], through variational methods. Basically, all these works only pay
attention to the sets F + and F .

For what concerns the structure of the Fuµć± k spectrum between F + and F ,
examples of Margulies and Margulies [16] have shown that many curves in § (L)
can pass through the point ( ¶ ; ¶ ). One of the main purposes of our paper is to
provide a general and precise description of this part of the Fuµć± k spectrum. Using
a modi­ ed problem equivalent to (1.3) when ¬ 6= ­ , we start, in x 3, by describing
the Fuµć± k spectrum in the neighbourhood of the point ( ¶ ; ¶ ). Roughly speaking, we
show in theorem 3.1 that, close to ( ¶ ; ¶ ), § (L) is made of curves, each one being
associated to a non-degenerate stationary point of the function

H : ker(L ¶ I) ! R : x 7! hjxj; xi

restricted to the unit sphere (h¢; ¢i denotes the scalar product in L2( « ), the norm
being denoted by k ¢ k). Notice that this local result does not require L to have a
compact resolvent. Examples are given with several curves emanating from ( ¶ ; ¶ ).

Section 4 is devoted to the global study of the Fuµć± k spectrum. Let J » R be an
interval such that J \ ¼ es s (L) = ;. Using a non-degeneracy condition introduced
by Micheletti [18] and Pistoia [19] for elliptic equations, we show that the curves
obtained in x 3 for some ¶ 2 J can be continued up to the boundary of J £ J .
Moreover, we show that any element of § (L) in J £J belongs to one of these curves.
Hence, provided the non-degeneracy conditions are satis­ ed, the Fuµć± k spectrum can
be completely described within J £J . A related result is also presented in x 7, which
does not require this non-degeneracy condition.
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Section 5 is a remark about situations where the component of the Fuµć± k spectrum
containing the point ( ¶ ; ¶ ) is reduced to a single curve (at least within the square
I £ I).

Existence conditions for solutions of the non-homogeneous equation (1.1) and
of (1.2) are given in x 8. Results of this type are well known outside the regions
between the curves F and F + (i.e. in type-I regions), where no other part of
the Fuµć± k spectrum is present. Some results were obtained by Schechter in [22]
concerning the regions between F and F + (type-II regions), but the conditions
he imposes on the forcing term are of a di¬erent nature with respect to ours. For
instance, his conditions do not apply for (1.1) when f is non-trivial. Instead, our
assumptions are similar to those for type-I regions, but apply only in some parts of
the type-II regions. These existence conditions are based on results obtained in x 6
concerning topological degree computations. In the neighbourhood of ( ¶ ; ¶ ), the
computations eventually reduce to the study of the index of each critical point of
the function H above, restricted to the unit sphere in ker(L ¶ I). As a consequence,
if dim ker(L ¶ I) = 2, if ( ¬ ; ­ ) does not belong to the Fuµć± k spectrum and is close
to ( ¶ ; ¶ ), we are able to show in corollary 8.2, that a solution of (1.1) exists for all
f 2 L2( « ), if the function

S1 » ker(L ¶ I) ! R : x 7! 1
2
( ¬ ­ )H(x) + ¶ 1

2
( ¬ + ­ )

has only simple zeros, the number of zeros being di¬erent from 2. This result is
obtained by showing that the topological degree with respect to large balls is dif-
ferent from 0. Examples are provided showing that this can occur between some of
the Fuµć± k curves obtained by theorem 3.1. This contrasts with the more common
situation of a degree 0 between Fuµć± k curves emanating from the same point of
the diagonal ¬ = ­ . We also study an example where dim ker(L ¶ I) = 3 and as
many as 14 curves arise from the point ( ¶ ; ¶ ). In this last example, the index of
the critical points of H restricted to the unit sphere (i.e. the topological index of
the gradient ­ eld rH projected on the unit sphere), as well as the corresponding
critical values, are computed.

Being away from the essential spectrum of L allows the use of fairly simple
techniques for studying (1.1), (1.2) and (1.3). We use a Lyapunov{Schmidt decom-
position, contraction mappings for the component of the equation in Im(L ¶ I),
and degree arguments for the component in [Im(L ¶ I)]? = ker(L ¶ I). For the
local description of § (L) in theorems 3.1 and 4.2, we use an appropriate version of
the implicit function theorem given in the appendix.

Notice that the results dealing with the restriction of the function H above to
the unit sphere in ker(L ¶ I) are presented in such a way that dim ker(L ¶ I) > 2
is implicitly assumed. The corresponding statements when dim ker(L ¶ I) = 1 are
straightforward, and not presented.

2. Reduction to an equivalent problem

Let J » R an open bounded interval such that J \ ¼ (L) = f ¶ 1; : : : ; ¶ pg » ¼ d (L).
We will denote by Pi the orthogonal projector onto ker(L ¶ iI) (1 6 i 6 p)
and by P the projector onto X :=

Lp
i= 1 ker(L ¶ iI). Using a Lyapunov{Schmidt

decomposition, we obtain the following lemma.
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Lemma 2.1. For any ¬ ; ­ 2 J , f 2 L2( « ) and x 2 X , the problem

Lu =

pX

i = 1

¶ iPix + (I P )[ ¬ u+ ­ u + f ]; (2.1)

P u = x (2.2)

has a unique solution ux = ux(f; ¬ ; ­ ). Moreover, the solution ux(f; ¬ ; ­ ) is locally
Lipschitzian with respect to x, f , ¬ , ­ .

Proof. Let · = 1
2
( ¬ + ­ ). The operator

L · = (L · I)jX ? : X? ! X? (2.3)

is invertible and kL 1
· k 1 = dist(· ; ¼ (L) n f ¶ 1; : : : ; ¶ pg). Equations (2.1) and (2.2)

are equivalent to

u = x + L 1
· [(I P )( ¬ u + ­ u · u + f )]: (2.4)

The function

u 7! ¬ u + ­ u · u + f = ( ¬ · )u + (­ · )u + f = 1
2
( ¬ ­ )juj + f;

is Lipschitzian with constant k = 1
2
j­ ¬ j. Since kkL 1

· k < 1, the right-hand side
of (2.4) is a contraction mapping, so that (2.4) has a unique solution ux 2 L2( « ).
The fact that ux = ux(f; ¬ ; ­ ) is Lipschitzian with respect to x, f , ¬ , ­ follows
from standard arguments about ­ xed points of contraction mappings.

Let ux = ux(f; ¬ ; ­ ) be the solution of (2.1), (2.2). De­ ne

c(x; f; ¬ ; ­ ) = P [ ¬ u+
x ­ ux + f ] +

pX

i = 1

¶ iPix

= 1
2( ¬ ­ )P (juxj) P (f) +

pX

i = 1

( ¶ i · )Pix;

so that ux veri­ es

Lux = ¬ u +
x ­ ux + f + c(x; f; ¬ ; ­ ): (2.5)

Equation (1.1) admits a solution if and only if there exists x 2 X such that
c(x; f; ¬ ; ­ ) = 0. The problem is therefore reduced to a problem in a ­ nite-dimen-
sional space. Notice that c(rx; rf; ¬ ; ­ ) = rc(x; f; ¬ ; ­ ) for all r > 0. The existence
of the solution ux can also be obtained through variational techniques (see [3, 11,
12,15]).

We now turn our attention to the homogeneous equation

Lu = ¬ u + ­ u : (2.6)

The values of ( ¬ ; ­ ) for which (2.6) has a non-trivial solution form the Fuµć± k spec-
trum of L. Results about this spectrum can be found in the papers of Gon¹calves and
Magalh~aes [12], Magalh~aes [15], Cac [3] and Schechter [21]. We will study in more
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detail the structure of the spectrum in the square J £ J . We will write c0(x; ¬ ; ­ )
for c(x; 0; ¬ ; ­ ). Hence we have

c0(x; ¬ ; ­ ) = P [¬ u +
x ­ ux ] +

pX

i = 1

¶ iPix = 1
2 ( ¬ ­ )P (juxj) +

pX

i= 1

( ¶ i · )Pix;

where ux = ux(0; ¬ ; ­ ) is given by lemma 2.1.
Such a function c0 has been introduced by Gallou�et and Kavian [10,11], for the

case p = 1, with a one-dimensional eigenspace for ¶ 1. The point ( ¬ ; ­ ) belongs to
the Fuµć± k spectrum if and only if c0(x; ¬ ; ­ ) = 0 for some x 6= 0. The functional

h0 : X £ J £ J ! R : (x; ¬ ; ­ ) 7! hc0(x; ¬ ; ­ ); xi

will be useful in the sequel. Notice that

h0(x; ¬ ; ­ ) = hc0(x; ¬ ; ­ ); xi
= hc0(x; ¬ ; ­ ); uxi
= hLux; uxi ¬ ku +

x k2 ­ kux k2:

This last formula relates h0 to the energy functional

H ! R : u 7! 1
2
hLu; ui 1

2
¬ ku + k2 1

2
­ ku k2

associated to (2.6), which has been used in [12,15, 19,21], in particular when L =
¢ . We present a few properties of the functions c0 and h0, starting with an obvious

observation.

Lemma 2.2. If ¬ = ­ , then

c0(x; ¬ ; ­ ) =

pX

i = 1

( ¶ i ¬ )Pix:

Lemma 2.3. The function h0 admits partial derivatives with respect to ¬ ; ­ 2 J , is
di® erentiable with respect to x 2 X and

(i)
@

@¬
h0(x; ¬ ; ­ ) = ku +

x k2;
@

@­
h0(x; ¬ ; ­ ) = kux k2;

(ii) rxh0(x; ¬ ; ­ ) = 2c0(x; ¬ ; ­ ): (2.7)

For the sake of completeness, we provide a proof of lemma 2.3, although the same
results can be found in [12,15], with a di¬erent method of proof.

Proof. For (i), we prove, for instance, the ­ rst relation. Considering the solutions
ux, vx corresponding to two di¬erent sets ( ¬ ; ­ ), ( ¬ 0; ­ ) of coe¯ cients, we can write

Lux = ¬ u+
x ­ ux + c0(x; ¬ ; ­ );

Lvx = ¬ 0v +
x ­ vx + c0(x; ¬ 0; ­ ):

Multiplying the above equations, respectively, by vx and ux and subtracting, we
obtain, since L is self-adjoint,

( ¬ ¬ 0)hu+
x ; v +

x i ( ¬ ­ )hu +
x ; vx i + ( ¬ 0 ­ )hux ; v +

x i
+ hc0(x; ¬ ; ­ ) c0(x; ¬ 0; ­ ); xi = 0: (2.8)
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But

jhu +
x ; vx ij 6

Z

uxvx<0

uxvx 6 1

4

Z

uxvx<0

[ux vx]2 6 1
4
kux vxk2: (2.9)

Since ux = ux(0; ¬ ; ­ ) is Lipschitzian with respect to ¬ , there exists K > 0 such
that

jhu+
x ; vx ij 6 Kj ¬ ¬ 0j2:

A similar result holds for hux ; v +
x i. Dividing (2.8) by ¬ ¬ 0 and letting ¬ 0 tend to

¬ , we obtain
@

@¬
hc0(x; ¬ ; ­ ); xi = ku +

x k2:

For (ii), let ux and uy be solutions given by lemma 2.1, respectively, for x and
for y in X . We thus have

Lux = ¬ u +
x ­ ux + c0(x; ¬ ; ­ );

Luy = ¬ u +
y ­ uy + c0(y; ¬ ; ­ ):

Multiplying the above equations, respectively, by uy and by ux, and working as
above, it is easy to prove that

hc0(x; ¬ ; ­ ) + c0(y; ¬ ; ­ ); x yi = hc0(x; ¬ ; ­ ); xi hc0(y; ¬ ; ­ ); yi + O(kx yk2);

or, since c0(x; ¬ ; ­ ) is Lipschitzian with respect to x,

2hc0(x; ¬ ; ­ ); x yi = hc0(x; ¬ ; ­ ); xi hc0(y; ¬ ; ­ ); yi + O(kx yk2): (2.10)

This shows that the function h0(¢; ¬ ; ­ ) : x 7! hc0(x; ¬ ; ­ ); xi is di¬erentiable and
that its gradient is given by (2.7).

Since ( ¬ ; ­ ) belongs to the Fuµć± k spectrum if and only if c0(x; ¬ ; ­ ) = 0 for some
x 6= 0, the following theorem, which provides a characterization of that spectrum
within J £ J , is an immediate consequence of the previous lemma (see [15]).

Theorem 2.4. Let L : dom L » L2( « ) ! L2( « ) be self-adjoint and let J » R
be such that J \ ¼ es s (L) = ;. Then the point ( ¬ ; ­ ) 2 J £ J belongs to the Fu·c¶ ³ k
spectrum of L if and only if 0 is a critical value of the function

h0(¢; ¬ ; ­ ) : x 7! hc0(x; ¬ ; ­ ); xi;

this critical value being reached at some point x 6= 0.

Let us now take for J a smaller interval, say I, such that I \ ¼ (L) = ¶ 2 ¼ d (L).
Theorem 2.4 can be used directly to characterize parts of the Fuµć± k spectrum, which
can be considered, in a certain sense, as the outermost parts of that spectrum within
the square I £ I. Let us introduce the sets

F =
n

( ¬ ; ­ ) 2 I £ I j min
x 2 ker(L ¶ I); kxk = 1

hc0(x; ¬ ; ­ ); xi = 0
o

;

F + =
n

( ¬ ; ­ ) 2 I £ I j max
x 2 ker(L ¶ I); kxk = 1

hc0(x; ¬ ; ­ ); xi = 0
o

:
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It results from lemma 2.3 and theorem 2.4 that F , F + are contained in the Fuµć± k
spectrum of L. On the other hand, by lemma 2.2, if ¬ = ­ < ¶ , we have

hc0(x; ¬ ; ­ ); xi > 0 for all x 6= 0;

whereas, if ¬ = ­ > ¶ ,

hc0(x; ¬ ; ­ ); xi < 0 for all x 6= 0:

Consequently, the sets F , F + are non-empty and separate the sets

f( ¬ ; ¬ ) 2 I £ I j ¬ < ¶ g and f( ¬ ; ¬ ) 2 I £ I j ¬ > ¶ g:

On the other hand, because of lemma 2.3,

( ¬ ; ­ ) 2 F ) ( ¬ 0; ­ 0) =2 § (L) \ (I £ I) if ¬ 0 < ¬ ; ­ 0 < ­ :

A similar result holds for F + . It is in this sense that F and F + are the outer-
most parts of the Fuµć± k spectrum. The same sets have been obtained through a
variational approach by Gon¹calves and Magalh~aes [12], Magalh~aes [15], Cac [3] and
Schechter [21], for semilinear elliptic boundary-value problems.

In some problems, it can happen that, for some subspace S of ker(L ¶ I), the
following hypothesis holds:

s 2 S ) c0(s; ¬ ; ­ ) 2 S for all ¬ ; ­ 2 I: (H)

Adapting the arguments of lemma 2.3 and theorem 2.4, it is easy to see that the
sets

FS =
n

( ¬ ; ­ ) 2 I £ I j min
x2 S; kxk = 1

hc0(x; ¬ ; ­ ); xi = 0
o

;

F +
S =

n
( ¬ ; ­ ) 2 I £ I j max

x2 S; kxk = 1
hc0(x; ¬ ; ­ ); xi = 0

o

then also belong to the Fuµć± k spectrum. Because of lemma 2.3, FS must be on the
right of (or coincide with) F , and F +

S on the left of (or coincide with) F + , in
the ( ¬ ; ­ )-plane. For the partial di¬erential equation with Laplacian in example 3.2
below, where « = (0; º ) £ (0; º =

p
6), one could take, for instance,

S = fu 2 L2( « ) j u(x; y) = u(x; º =
p

6 y)g:

It can be seen that the curves F +
S , FS are distinct from F + , F .

3. The Fu·c¶ ³ k spectrum close to (¸; ¸)

In this section, I is an open bounded interval such that I \ ¼ (L) = ¶ 2 ¼ d (L).
The projection onto ker(L ¶ I) is denoted by P . We will construct hereafter some
curves belonging to the Fuµć± k spectrum within I £ I. This result follows from the
application of an implicit function theorem to a system equivalent to

Lu = ¬ u + ­ u ; (3.1)

kuk2 = 1: (3.2)

https://doi.org/10.1017/S030821050000086X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000086X


248 A. K. Ben-Naoum, C. Fabry and D. Smets

Since we are interested in values of ( ¬ ; ­ ) 2 § (L) close to ( ¶ ; ¶ ), we let

" = 1
2
( ¬ ­ ); 1

2
( ¬ + ­ ) = ¶ + "² ;

and we aim at determining ² as a function of ", for " `small’. The system (3.1),
(3.2) can be rewritten as

Lu = "juj + ( ¶ + "² )u; kuk2 = 1:

For " 6= 0, it is equivalent to

u = Pu + "L 1
¶ [(I P )(juj + ² u)] + P (juj + ² u); (3.3)

kuk2 = 1: (3.4)

We want to solve this system for u, ² as functions of ", for " close to 0. A di¯ culty
lies in the fact that the set of points at which the term P (juj) is di¬erentiable need
not be open in L2( « ). For this reason, we will need a version of the implicit function
theorem that only requires a (strong) Fŕechet di¬erentiability at one point; such a
version is presented in the appendix.

For " = 0, the system (3.3), (3.4) reduces to

P (juj + ² u) = 0; u 2 ker(L ¶ I);

kuk2 = 1:

Let (x0; ² 0) 2 ker(L ¶ I) £ R denote a solution of this system. The condition
P (jx0j) + ² 0x0 = 0 can be interpreted as expressing the fact that x0 is a sta-
tionary point for the mapping H : ker(L ¶ I) ! R : x 7! hjxj; xi restricted to
the unit sphere, ² 0 being then a Lagrange multiplier (the value of ² 0 is given by
² 0 = hjx0j; x0i). On the other hand, provided that u 6= 0 almost everywhere in « ,
for all u 2 ker(L ¶ I)nf0g, it can be seen that the di¬erentiability condition of the
appendix is satis­ ed for ("; ² ; x) = (0; ² 0; x0). Indeed, P (juj) is the only term in (3.3)
that may be problematic. Due to the projection P onto the ­ nite-dimensional space
ker(L ¶ I), this is not the case. It remains to introduce an invertibility condition
for the derivative; this non-degeneracy condition can be written

y 2 ker(L ¶ I); hx0; yi = 0; P (sgn(x0)y) = hx0; jx0jiy ) y = 0 (ND1)

(notice that y 2 ker(L ¶ I), hx0; yi = 0, P (jx0j) + ² 0x0 = 0 imply hjx0j; yi = 0).
The application of the implicit function theorem yields the following result.

Theorem 3.1. Let L : dom L » L2( « ) ! L2( « ) be self-adjoint and let ¶ 2 ¼ d (L).
Assume that u 6= 0 almost everywhere in « , for all u 2 ker(L ¶ I) n f0g, that the
function

H : ker(L ¶ I) ! R : x 7! hjxj; xi;

restricted to the unit sphere, has a stationary point x0 and that condition (ND1) is
satis¯ed at x0. Then there are continuous functions ² (¢); u(¢), de¯ned in a neigh-
bourhood E of 0, such that

(i) u(0) = x0; ² (0) = hjx0j; x0i,

(ii) Lu(") = "ju(")j + ( ¶ + "² ("))u("), ku(")k = 1 for " 2 E .
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Since ² (0) = H(x0), the above theorem means that there is a curve in the Fuµć± k
spectrum emanating from the point ( ¶ ; ¶ ), with slope

(H(x0) + 1)=(H(x0) 1): (3.5)

It is obvious that jH(x0)j 6 1; the slopes, as expected, are negative. On the other
hand, since the function H is odd, its extrema can be grouped by pairs of extrema
of opposite signs. Those pairs correspond to Fuµć± k curves which are symmetric
with respect to the line ¬ = ­ (if u is a solution of (2.6), u is a solution of
Lu = ­ u + ¬ u ). The particular case jH(x0)j = 1 occurs when (2.6) admits a
solution of constant sign; the lines ¬ = ¶ , ­ = ¶ then belong to the Fuµć± k spectrum.
However, in this case, the non-degeneracy condition (ND1) will not be satis­ ed.

Notice that when dim ker(L ¶ I) = 1, condition (ND1) is trivially satis­ ed,
but theorem 3.1, reformulated according to the remark in the introduction, brings
nothing more than a local description of the sets F + and F introduced above.

The non-degeneracy condition (ND1) could be replaced by a di¬erent one (which
is more general for extremum points, but excludes saddle points). This alternative
condition requires H to have a `true’ (local) maximum or minimum on the unit
sphere Sn 1 in ker(L ¶ I), at the point x0, meaning, for a maximum, that

there exists a neighbourhood U » Sn 1, of x0, such that

maxfH(x) j x 2 Ug = H(x0) and H(x) < H(x0), for all x 2 @U:

¼
(ND10)

A true minimum is de­ ned similarly. In these cases, the stability of true minima
(respectively, true maxima) under perturbation is used instead of an implicit func-
tion theorem (see [1]).

If condition (ND1) is satis­ ed at any x0 2 Sn 1, it results from the above theorem
that to each stationary point of H restricted to the unit sphere corresponds a Fuµć± k
curve emanating from the point ( ¶ ; ¶ ). Notice that, with (ND1) satis­ ed at any
x0 2 Sn 1, the stationary points of H are necessarily isolated on Sn 1, meaning
that the Fuµć± k spectrum in the neighbourhood of ( ¶ ; ¶ ) consists of a ­ nite number
of curves.

The above result is illustrated by examples which deal with situations where
ker(L ¶ I) is of dimension 2 or 3. In the ­ rst case, fv(1); v(2)g will denote an
orthonormal basis of ker(L ¶ I). It will be convenient to use polar coordinates in
ker(L ¶ I). We de­ ne

z ³ = cos ³ v(1) + sin ³ v(2)

and introduce the function h : [0; 2 º ] ! R : ³ 7! H(z ³ ) = hjz³ j; z³ i. Condi-
tion (ND1) is not easy to verify in practice; when dim ker(L ¶ I) = 2, it is easier
to rely on the alternative non-degeneracy condition (ND10), based on the existence
of `true’ maxima or minima. For the third example, condition (ND1) was only
checked numerically, by computation of the Hessian along sequences converging to
the critical points.

Example 3.2. The following example is inspired by Margulies and Margulies [16].
Consider an equation with Laplacian and an asymmetric nonlinearity, together with
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Dirichlet boundary conditions, i.e.

@2u

@x2

@2u

@y2
= ¬ u + ­ u ; (3.6)

uj@« = 0: (3.7)

We will take for « the rectangle (0; º ) £ (0; º =
p

6). With

L = ¢ ; dom L = H2( « ) \ H1
0 ( « );

the operator L admits an eigenvalue ¶ = 55 of multiplicity 2, the eigenspace being
spanned by the functions sin x sin(3y

p
6) and sin(7x) sin(y

p
6). The eigenvalues

closest to 55 are 49 and 58. It is easy to check that (3.6), (3.7) admit solutions of
the form u(x; y) = sin xp(y), with p verifying

p00 + ( ¬ 1)p+ (­ 1)p = 0; (3.8)

p(0) = p( º
p

6) = 0: (3.9)

By classical results for the Dirichlet problem for ordinary di¬erential equations
with asymmetric nonlinearities (see, for instance, Fuµć± k and Kufner [9]), non-trivial
solutions exist if

2p
¬ 1

+
1p

­ 1
=

1p
6

; (3.10)

or if

1p
¬ 1

+
2p

­ 1
=

1p
6

: (3.11)

Similarly, the system (3.6), (3.7) also admits solutions of the form

u(x; y) = q(x) sin(y
p

6)

if

4p
¬ 6

+
3p

­ 6
= 1; (3.12)

or if

3p
¬ 6

+
4p

­ 6
= 1: (3.13)

Consequently, the four curves de­ ned by (3.10){(3.13), which all pass through the
point (55; 55), belong to the Fuµć± k spectrum of ¢ , with Dirichlet boundary condi-
tions. Using the results of theorem 3.1, we will show that two more curves passing
through the point (55; 55) also belong to the Fuµć± k spectrum. For this purpose, we
have to search the maxima and minima of the function h above. Since

ker(L ¶ I) = spanfsin x sin(3y
p

6); sin(7x) sin(y
p

6)g;
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Table 1.

extrema values of the slopes of the
of h at extrema of h Fu·c¶ ³ k curves

0 1/3 0:5

º =2 1/7 3=4

1.1381 0.1316 0:7674

4.2797 0:1316 1:3032

3 º =2 1=7 4=3

º 1=3 2

we have to compute values of

h( ³ ) = hjz³ j; z³ i

=
4
p

6

º 2

Z º =
p

6

0

Z º

0

j cos ³ sin x sin(3y
p

6) + sin ³ sin(7x) sin(y
p

6)j

£ [cos ³ sin x sin(3y
p

6) + sin ³ sin(7x) sin(y
p

6)] dxdy:

Numerical computations provide the values given in table 1, for the extrema of h
on [0; 2 º ], with the indication of the points where the extrema are obtained. From
these values, using formula (3.5), the slopes of the Fuµć± k curves emanating from the
point (55; 55) are deduced.

The ­ rst and last extrema correspond to solutions of the form sin xp(y), i.e. to the
curves de­ ned by (3.10), (3.11), whereas the second and ­ fth extrema correspond
to solutions of the form q(x) sin(y

p
6), i.e. to the curves given by (3.12), (3.13).

The other two extrema lead to supplementary Fuµć± k curves, with respect to those
obtained by Margulies and Margulies [16]; as can be seen from the values of the
slopes, they are, however, very close to the curves corresponding to solutions of the
form q(x) sin(y

p
6).

Example 3.3. As a second example, we consider a boundary-value problem for an
ordinary di¬erential equation of order four,

u(4) + (m2 + n2)u00 = ¬ u + ­ u ; (3.14)

u(0) = u( º ) = 0; u00(0) = u00( º ) = 0: (3.15)

We assume that m, n are integers with m 6= n, so that ¶ = m2n2 is an eigenvalue
of multiplicity 2 for the operator

L : dom L » L2(0; º ) ! L2(0; º ) : u 7! u(4) + (m2 + n2)u00;

we take dom L = H4(0; º ) (the real Sobolev space of order 4). The eigenspace
associated to ¶ is spanned by the functions sin mx, sin nx. According to theorem 3.1,
the Fuµć± k curves for (3.14), (3.15), passing through the point ( m2n2; m2n2), can
be related to the extrema of the function h : [0; 2º ] ! R,

³ 7! 2

º

Z º

0

j cos ³ sin mx + sin ³ sin nxj(cos ³ sin mx + sin ³ sin nx) dx:
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Table 2.

extremal values slopes

§1=15 7=8 and 8=7

§0:0437 0:9163 and 1:0914

§0:0348 0:9327 and 1:0721

Choosing, for instance, m = 15, n = 22, it is observed that h has six extremal
values. Table 2 gives the extrema of h. From these values, using (3.5), the slopes of
the Fuµć± k curves emanating from the point (108 900; 108 900) are obtained.

Notice that, in this problem, some of the extremal values are obtained at two
di¬erent points, since h( ³ ) = h(2 º ³ ).

Example 3.4. We now consider another equation with an elliptic operator and an
asymmetric nonlinearity, together with Dirichlet boundary conditions, i.e.

@2u

@x2
2

@2u

@y2
= ¬ u+ ­ u ; (3.16)

uj@« = 0: (3.17)

We will take for « the square (0; º ) £ (0; º ). With

L = @2
x 2@2

y ; dom L = H2( « ) \ H1
0 ( « );

the operator L has a purely discrete spectrum. It admits an eigenvalue ¶ = 99 of
multiplicity 3, the eigenspace being spanned by the functions

sin x sin(7y); sin(7x) sin(5y) and sin(9x) sin(3y):

Using spherical coordinates on S2 » ker(L ¶ I), we obtain, by numerical cal-
culations, 14 critical points. Two of the curves can be explicitly calculated; they
correspond to solutions of the form u(x; y) = sin(x)v(y) and are represented by the
equations

4q
1
2
( ¬ 1)

+
3q

1
2
(­ 1)

= 1 and
3q

1
2
( ¬ 1)

+
4q

1
2
(­ 1)

= 1:

Table 3 gives the critical values of H and the deduced slopes of the Fuµć± k curves
emanating from the point (99; 99).

4. Global structure of the Fu·c¶ ³ k spectrum: non-degenerate case

Hereafter, we extend the Fuµć± k curves constructed in the previous section and also
describe the local structure of the Fuµć± k spectrum away from the diagonal. As
before, J is an open bounded interval such that J \ ¼ es s (L) = ;. These continua-
tion results require a non-degeneracy condition introduced by Micheletti [18] and
Pistoia [19] for elliptic equations. If this condition is satis­ ed at ( ¬ ; ­ ) 2 J £ J ,
then locally near ( ¬ ; ­ ) the spectrum is the union of a ­ nite number of curves.

https://doi.org/10.1017/S030821050000086X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000086X


Structure of the Fu·c¶ ³ k spectrum 253

Table 3.

critical values slopes

§0:168 0:712 and 1:404

§0:156 0:731 and 1:369

§0:148 0:742 and 1:348

§0:143 3=4 and 4=3

§0:077 0:858 and 1:166

§0:054 0:898 and 1:114

§0:0018 0:996 and 1:004

This result follows again from the application of an implicit function theorem to a
system equivalent to

Lu = ¬ u + ­ u ; (4.1)

kuk2 = 1: (4.2)

The application of the implicit function theorem relies on the possibility of de­ ning
derivatives for the functions u 7! u + and u 7! u , in the sense of the following
result of Solimini [23], in which k ¢ kp denotes the norm in Lp( « ), « » RN being,
as before, an open bounded set.

Proposition 4.1. If 1 < q < p and if u 2 Lp( « ) is such that u 6= 0 almost
everywhere on « , given " > 0, there exists a neighbourhood U » Lp( « ) of u such
that

ku +
1 u +

2 À fu>0g(u1 u2)kq 6 "ku1 u2kp for all u1; u2 2 U:

In other words, if 1 < q < p and if u 6= 0 almost everywhere, the function u 7! u +

has a strong Fŕechet derivative at u, as a function from Lp( « ) to Lq( « ). This result
will be used below, with q = 2 and p > 2. As already noted in the previous section,
a di¯ culty lies in the fact that the set of points u 2 Lp( « ), at which derivatives
are guaranteed to exist by proposition 4.1, will not be open. Therefore, a version
of the implicit function theorem must be used which requires only the existence
of a (strong) Fŕechet derivative at one point. We will use the one presented in the
appendix.

The non-degeneracy condition, where ( ¬ 0; ­ 0) 2 § (L), can be written as follows:

for any u 6= 0 verifying Lu = ¬ 0u+ ­ 0u ,

we have u 6= 0 almost everywhere on « and

dim ker(L ( ¬ 0 À fu>0g + ­ 0 À fu<0g)I) = 1:

9
=

; (ND2)

Here, À fu>0g is the characteristic function of the set ft 2 « j u(t) > 0g, and À fu<0g
is de­ ned similarly. With condition (ND2), an implicit function theorem can be
used to describe locally the structure of the Fuµć± k spectrum.

Theorem 4.2. Let L : dom L » L2( « ) ! L2( « ) be self-adjoint, J » R be such
that J \ ¼ es s (L) = ; and ¬ 0 6= ­ 0 be such that ( ¬ 0; ­ 0) 2 (J £ J) \ § (L). Assume
that the equation Lu = ¶ u has no solution of constant sign for ¶ 2 J , that the non-
degeneracy condition (ND2) holds and that dom L » Lp( « ) for some p > 2, the
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injection being continuous when dom L is equipped with the graph norm. Then, if
u0 is a solution of Lu0 = ¬ 0u+

0 ­ 0u0 , with ku0k = 1, there exists neighbourhoods
A of ¬ 0, B of ­ 0, U of u0 and continuous functions ­ (¢) : A ! B : ¬ 7! ­ ( ¬ ),
u(¢) : A ! U : ¬ 7! u( ¬ ) such that

(i) ­ ( ¬ 0) = ­ 0, u( ¬ 0) = u0,

(ii) Lu( ¬ ) = ¬ u + ( ¬ ) ­ ( ¬ )u ( ¬ ), ku( ¬ )k = 1 for ¬ 2 A,

(iii) Lu = ¬ u + ­ u , kuk = 1, with u 2 U , ¬ 2 A, ­ 2 B ) u = u( ¬ ),
­ = ­ ( ¬ ).

Moreover, ­ (¢) is di® erentiable at ¬ 0 and

­ 0( ¬ 0) =
ku +

0 k2

ku0 k2
: (4.3)

Proof. As indicated above, the idea of the proof is to apply the implicit function
theorem of the appendix to a system equivalent to (4.1), (4.2). Since

Lu0 = ¬ 0u +
0 ­ 0u0 = ( ¬ 0 À fu0>0g + ­ 0 À fu0<0g)u0;

we have, by (ND2),

ker(L ( ¬ 0 À fu0>0g + ­ 0 À fu0<0g)I) = Ru0:

We will denote by Q the orthogonal projection on that set, that is, Qu = hu; u0iu0.
Let

K = ([L ( ¬ 0 À fu0>0g + ­ 0 À fu0<0g)I ]ju ?
0

) 1:

As the injection dom L ! Lp( « ) is continuous, the operator K , considered as
an operator from L2( « ) to Lp( « ), is continuous. The system (4.1), (4.2) can be
rewritten as

u = T (u; ¬ ; ­ ); (4.4)

kuk2 = 1; (4.5)

where

T (u; ¬ ; ­ ) = hu; u0iu0 + K(I Q)[¬ u + ¬ 0u +
0 ¬ 0 À fu0>0g(u u0)

­ u + ­ 0u0 ­ 0 À fu0<0g(u u0)]

+ [¬ hu + ; u0i ¬ 0hu; u +
0 i ­ hu ; u0i + ­ 0hu; u0 i]u0:

The implicit function theorem will be used to solve locally (4.4), (4.5). For this
purpose, we note that T : Lp( « ) £ J £ J ! Lp( « ) is Lipschitzian with respect to
¬ on bounded subsets of Lp( « ) £ J £ J ! Lp( « ), and that the partial derivatives
(@T=@u)(u0; ¬ ; ­ 0), (@T=@­ )(u0; ¬ ; ­ 0), given by

@T

@u
(u0; ¬ ; ­ 0) ¹ = h ¹ ; u0iu0 + ( ¬ ¬ 0)K(I Q)( À fu0>0g ¹ )

+ ( ¬ ¬ 0)h ¹ ; u +
0 i; u0; (4.6)

@T

@­
(u0; ¬ ; ­ 0) = K(I Q)u0 ku0 k2u0; (4.7)
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are such that, for " > 0 given, there exists neighbourhoods A1 of ¬ 0, B1 of ­ 0 and
U1 of u0 such that, for ¬ 2 A1, ­ ; ­ 0 2 B1 and u; u0 2 U1,
®®®®T (u; ¬ ; ­ ) T (u0; ¬ ; ­ 0)

@T

@u
(u0; ¬ ; ­ 0)(u u0)

@T

@­
(u0; ¬ ; ­ 0)(­ ­ 0)

®®®®

6 "[ku u0k + j­ ­ 0j]:

This result follows from proposition 4.1. In other words, the di¬erentiability condi-
tion of the appendix is satis­ ed and the implicit function theorem A.1 can be used.
It remains to check the invertibility of the derivative. More precisely, we must show
that, given z 2 Lp( « ), t 2 R, the system

¹
@T

@u
(u0; ¬ 0; ­ 0) ¹

@T

@­
(u0; ¬ 0; ­ 0)s = z; (4.8)

h ¹ ; u0i = t (4.9)

has a unique solution ( ¹ ; s). First, multiplying (4.8) by u0 gives

sku0 k2 = hu0; zi;

leading to the value of s. Indeed, ku0 k is di¬erent from 0, since we have assumed
that the equation Lu = ¶ u has no solution of constant sign for ¶ 2 J . From (4.8),
we then deduce, using (4.6), (4.7),

(L ( ¬ 0 À fu0>0g + ­ 0 À fu0<0g)I)( ¹ z) = s(I Q)u0 ;

from which (I Q)( ¹ z) is uniquely determined. Since Q¹ is obtained from (4.9),
a unique ¹ is deduced from (4.8), (4.9).

To prove (4.3), we observe that, for ¬ 2 A, with x( ¬ ) = P u( ¬ ), we have

h0(x( ¬ ); ¬ ; ­ ( ¬ )) = 0:

Since rxh0(x; ¬ ; ­ ) = 2c0(x; ¬ ; ­ ), c0 being continuous and x Lipschitzian in ¬ by
theorem A.1, we can write, with x0 = x( ¬ 0) = P u0,

h0(x0; ¬ ; ­ ( ¬ )) h0(x0; ¬ 0; ­ 0) = [h0(x( ¬ ); ¬ ; ­ ( ¬ )) h0(x0; ¬ ; ­ ( ¬ ))]

= 2c0(x( ¬ ); ¬ ; ­ ( ¬ ))(x( ¬ ) x0) + o(j¬ ¬ 0j)

for ¬ ! ¬ 0. But c0(x( ¬ ); ¬ ; ­ ( ¬ )) = 0, so that

h0(x0; ¬ ; ­ ( ¬ )) h0(x0; ¬ 0; ­ 0) = o(j¬ ¬ 0j) for ¬ ! ¬ 0:

An application of the mean-value theorem then yields

@h0

@¬
(x0; ¬ 0; ­ ( ¬ ))( ¬ ¬ 0) +

@h0

@­
(x0; ¬ 0; ~­ )(­ ( ¬ ) ­ 0) = o(j ¬ ¬ 0j) for ¬ ! ¬ 0;

where ~­ 2 [­ 0; ­ ( ¬ )]. Dividing by ¬ ¬ 0 and passing to the limit, we see that ­ (¢)
is di¬erentiable at ¬ 0 and that

­ 0( ¬ 0) =
(@h0=@¬ )(x0; ¬ 0; ­ 0)

(@h0=@­ )(x0; ¬ 0; ­ 0)
=

ku+
0 k2

ku0 k2
:
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In x 2, given ( ¬ ; ­ ) 2 § (L) \ (J £ J), the non-trivial solutions u of

Lu = ¬ u + ­ u (4.10)

have been put in relation with the non-trivial solutions of c0(x; ¬ ; ­ ) = 0. Under
the hypotheses of theorem 4.2, the (normalized) solutions of (4.10) are isolated
in the sense of (iii). Consequently, the solutions of c0(x; ¬ ; ­ ) = 0, kxk = 1 are
isolated; the number of solutions (of norm 1, for instance) must therefore be ­ nite.
This explains why, near ( ¬ 0; ­ 0), the Fuµć± k spectrum consists of a ­ nite number of
curves. If (ND2) holds for any ( ¬ 0; ­ 0) 2 § (L) \ (J £ J) (with ¬ 0 6= ­ 0), it can
be shown, using continuation arguments, that the Fuµć± k curves whose existence is
proved locally in theorem 4.2 can be extended up to the boundary of J £ J on one
side, and up to a point ( ¶ ; ¶ ), where ¶ 2 ¼ (L)\J , on the other side. The proof makes
use of the fact that if ( ¬ n; ­ n) belongs to the Fuµć± k spectrum § (L) for n = 1; 2; : : : ,
and if ¬ n ! ¬ ¤ , ­ n ! ­ ¤ for n ! 1, then ( ¬ ¤ ; ­ ¤ ) also belongs to § (L). Indeed,
by hypothesis, there exists un 6= 0 such that Lun = ¬ nu +

n ­ nun . Keeping the
notation of x 2, if xn is the projection of un on X , we have c0(xn; ¬ n; ­ n) = 0.
Since by lemma 2.1, xn = 0 implies un = 0, we can take, without loss of generality,
kxnk = 1. Extracting a subsequence of fxng converging to some

x¤ 2
M

¶ 2 ¼ (L) \ J

ker(L ¶ I); kxk = 1;

it follows that Lux¤ = ¬ ¤ u +
x¤ ­ ¤ ux¤ , showing that ( ¬ ¤ ; ­ ¤ ) belongs to the Fuµć± k

spectrum. This argument, combined with theorem 4.2, leads to the following state-
ment.

Theorem 4.3. Assume that, for all ¶ 2 ¼ (L) \ J , the hypotheses of theorem 3.1
are satis¯ed for each x0 2 ker(L ¶ I) such that P (jx0j) is parallel to x0. Assume
also that the hypotheses of theorem 4.2 are satis¯ed for each ( ¬ 0; ­ 0) 2 § (L)\J £J
with ¬ 0 6= ­ 0. Then the Fu·c¶ ³ k spectrum within J £ J is made of a ¯nite number
of curves, each one extending to the boundary of J £ J and passing through a
point ( ¶ ; ¶ ) for some ¶ 2 ¼ (L). These curves are graphs of decreasing functions
¬ 7! ­ ( ¬ ). Moreover, any such a curve can be associated with a critical point of the
function

H : ker(L ¶ I) ! R; x 7! hjxj; xi;
restricted to the unit sphere. That is, the curves locally constructed in x 3 and
extended here are the only ones within J £ J .

Proof. Only the last statement is not yet proved. Let ( ¬ n; ­ n) 2 § (L) such that
( ¬ n; ­ n)

6=! ( ¶ ; ¶ ) along one of the Fuµć± k curves. Let un a solution of the correspond-
ing Fuµć± k equation and xn its projection onto ker(L ¶ I). As xn 6= 0, we can assume
that kxnk = 1 and, going if necessary to a subsequence, that xn ! x ¤ 2 ker(L ¶ I).
Thus we have

0 = c0(xn; ¬ n; ­ n) = 1
2( ¬ n ­ n)P (juxn j) + ( ¶ 1

2 ( ¬ n + ­ n))xn

and, with the notation of x 3,

P (juxn j) + ² nxn = 0:
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By lemma 2.1, uxn
! ux¤ = x ¤ , so that P (jx ¤ j) = ² x ¤ for some ² 2 ( 1; 1)

( ² = 1 or ² = 1 would imply that x ¤ is of constant sign, which is excluded
by (ND1)). This shows that x ¤ is a critical point of the function H , restricted to
the unit sphere, and ends the proof.

If the operator L has a compact resolvent, the interval J can be taken arbi-
trarily large. Hence, provided that the non-degeneracy conditions (ND1), (ND2)
are satis­ ed globally, the Fuµć± k curves provided by theorem 4.3 can be extended
inde­ nitely. Moreover, if the eigenfunctions associated to an eigenvalue ¶ 0 are of
constant sign, it can be shown that the Fuµć± k spectrum does not intersect the sets
( 1; ¶ 0) £ ( ¶ 0; +1) and ( ¶ 0; +1) £ ( 1; ¶ 0). Consequently, if ¶ > ¶ 0 is another
eigenvalue of L, the Fuµć± k curves issued from ( ¶ ; ¶ ) must have asymptotes ¬ = ¬ ¤ ,
­ = ­ ¤ , with ¬ ¤ ; ­ ¤ 2 [ ¶ 0; ¶ ]. It is actually possible to prove (but the proof will be
omitted here) that if the slope of a Fuµć± k curve is p at ( ¶ ¤ ; ¶ ¤ ), the values of ¬ ¤ ; ­ ¤

must lie within the interval [ ¶ 0; ( ¶ + ¶ jpj)=(1 + jpj)], where ¶ is the point of ¼ (L)
nearest to ¶ on the left. Similar statements hold for ¶ < ¶ 0.

5. Fu·c¶ ³ k spectrum in I £ I reduced to a curve

Let I be an open bounded interval such that I \ ¼ (L) = ¶ 2 ¼ d (L). The Fuµć± k
spectrum turns out to be particularly simple when the following hypothesis holds:

for any ( ¬ ; ­ ) 2 I £ I , if there exists

x 2 ker(L ¶ I) such that c0(x; ¬ ; ­ ) = 0,

then c0(x; ¬ ; ­ ) = 0 for all x 2 ker(L ¶ I):

9
=

; (H)

Under this hypothesis, the sets F and F + de­ ned in x 2 coincide, and no other
point of the Fuµć± k spectrum is contained in I £ I.

Condition (H) appears, under a di¬erent form, in [6]. It is shown there that the
condition is satis­ ed for periodic boundary-value problems for ordinary di¬erential
equations, when the operator L is autonomous. More precisely, the following result
is presented in [6].

Lemma 5.1. Let H = L2(0; 2 º ) and L : dom L » H ! H be a self-adjoint linear
ordinary di® erential operator of order 2N with constant coe± cients, where

dom L = fu 2 H2N (0; 2 º ) j u(0) = u(2 º ); : : : ; u(2N 1)(0) = u(2N 1)(2 º )g:

If dim ker(L ¶ I) = 2, then (H) holds.

Another situation where condition (H) holds is provided by the example L = ¢ ,
« = B(0; 1) » R2, under Dirichlet boundary conditions. Denoting by zni the ith
zero of the Bessel function Jn, it is well known that the numbers z2

ni
are eigenvalues

of L, of multiplicity 2, for n > 1. Using the symmetry of rotation, a family of
solutions of (1.3) is deduced from a particular solution, meaning that (H) is veri­ ed.
Hence F = F + , an observation already made by Magalh~aes [15].
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6. Degree computations

In order to solve the inhomogeneous equation (1.1), and also (1.2), we want to
compute, for ­ xed ( ¬ ; ­ ) 2 I £ I , the Brouwer’s degree of the map

c0(¢; ¬ ; ­ ) : ker(L ¶ I) ! ker(L ¶ I);

de­ ned in x 2, with respect to sets containing 0. As before, I is an open interval
such that I \ ¼ (L) = ¶ 2 ¼ d (L). We assume that ( ¬ ; ­ ) =2 § (L) (non-resonance
situation), so that c0(x; ¬ ; ­ ) 6= 0 for x 6= 0. Let

f : Sn 1 » ker L ¶ I ! Sn 1 » ker L ¶ I : x 7! c0(x; ¬ ; ­ )

kc0(x; ¬ ; ­ )k
;

where n = dim ker(L ¶ I). By the Lefschetz formula (see [2]),

X

xjx = f(x)

Lx(f ) =

1X

p= 0

( 1)p tr Hp(f; R);

where Hp(f; R) denotes the induced linear map on the pth-homological space of
Sn 1 and Lx(f ) is the Lefschetz number of the ­ xed point x (also called the mul-
tiplicity of x). As, for the sphere Sn 1, only H0 and Hn 1 are non-trivial, this
formula reduces to

X

xjx = f(x)

Lx(f ) = 1 + ( 1)n 1 deg(f ):

Since c0(x; ¬ ; ­ ) is non-zero for x 6= 0, we have deg(f) = ( 1)n deg(c0(¢; ¬ ; ­ )), so
that

deg(c0(¢; ¬ ; ­ )) = 1
X

xjf(x)= x

Lx(f ):

Let x 2 Sn 1 be a ­ xed point of f . Thus

c0(x; ¬ ; ­ ) = kc0(x; ¬ ; ­ )kx

and, by lemma 2.3,
rxh0(x; ¬ ; ­ ) = 2kc0(x; ¬ ; ­ )kx:

This shows that x is a critical point of the function h0(¢; ¬ ; ­ ), restricted to the unit
sphere in ker(L ¶ I), with a negative critical value.

Let fT be the vector ­ eld obtained by projecting f on Sn 1, that is,

fT (x) = f (x) hf (x); xix;

and c0;T the equivalent for c0

c0;T (x) = c0(x; ¬ ; ­ ) hc0(x; ¬ ; ­ ); xix:

The Lefschetz number of a ­ xed point x of f is nothing but the topological index of
the corresponding zero of the vector ­ eld fT (see [14]). By a homotopy argument,
it is clear that this index is the same as that of the vector ­ eld c0;T (they are
everywhere parallel with a strictly positive coe¯ cient of proportionality). We thus
obtain the following result.
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Theorem 6.1. Let ( ¬ ; ­ ) 2 (I £ I) n § (L). Assume that the restriction of the
function h0(¢; ¬ ; ­ ) to the unit sphere Sn 1 » ker(L ¶ I) (denoted h0jSn 1 ) has
only isolated critical points. Then

deg(c0(¢; ¬ ; ­ ); U ; 0) = 1
X

x 2 Sn 1

r(h0jSn 1 )(x)= 0

h0(x;¬ ;­ )<0

indx(r(h0jSn 1 ));

where U is any open bounded neighbourhood of 0 2 ker(L ¶ I).

Notice that working with the function f instead of f yields the equivalent
formula

deg(c0(¢; ¬ ; ­ ); U ; 0) = ( 1)n
X

x 2 Sn 1

r(h0 jSn 1 )(x)= 0

h0(x;¬ ;­ )>0

indx(r(h0jSn 1 ));

which can also be deduced from the preceding one using the Hopf formula for the
Euler characteristic.

When dim ker(L ¶ I) = 2, the indices of the zeros of rh0jS1 are 1 for a minimum
point and 1 for a maximum one. Moreover, the number of zeros of h0jS1 is twice
the di¬erence between the number of negative minima and the number of negative
maxima. The computation of the degree is then particularly simple, according to
the following result.

Theorem 6.2. Let ( ¬ ; ­ ) 2 (I £ I) n § (L). Assume that dim ker(L ¶ I) = 2 and
that the restriction of the function h0(¢; ¬ ; ­ ) to the unit sphere S1 » ker(L ¶ I) has
only isolated critical points and a number 2z of zeros. Then the Brouwer’s degree
of c0(¢; ¬ ; ­ ), with respect to any open bounded set U containing 0, is equal to 1 z.

Notice that these degree computations can also be performed for ( ¬ ; ­ ) 2 J £ J n
§ (L), where J is an open bounded interval such that J \ ¼ es s (L) = ;.

7. Global structure of the Fu·c¶ ³ k spectrum: general case

The Fuµć± k spectrum can be considered as the boundary of the regions where the
degree of c0(¢; ¬ ; ­ ) is constant. This observation allows us to obtain global results
for the Fuµć± k curves without assuming the non-degeneracy condition (ND2) of
Micheletti [18] and Pistoia [19]. Indeed, let ¶ 2 J \ ¼ (L) and d be a critical value of
the function h : x 7! hjxj; xi de­ ned on the unit sphere in ker(L ¶ I). We assume
that the non-degeneracy condition (ND1) is satis­ ed for each critical point x0 with
h(x0) = d. The critical point(s) associated to d give rise to Fuµć± k curves, locally
de­ ned according to theorem 3.1, which we denote by C1; : : : ; Cm. Take r > 0 small
enough so that the open ball U := B( ¶ ;¶ )(r) does not intersect any other point (~¶ ; ~¶ )
with ~¶ 2 ¼ d (L). The connected component containing every Ci in § (L) is denoted
by C and D := C n

Sm
i = 1(Ci \ U ).

The following theorem does not require condition (ND2). Roughly speaking, it
asserts that a component of the Fuµć± k spectrum within J £ J `connects’ a point of
the diagonal to the boundary of J £ J or to a (not necessarily distinct) point of the
diagonal.
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Theorem 7.1. With h : x 7! hjxj; xi de¯ned on the unit sphere in ker(L ¶ I),
assume that X

xjrh(x)= 0
h(x)= d

indx rh 6= 0: (7.1)

Then one of the following holds.

(i) D \ @(J £ J) 6= ;.

(ii) There exists ¶ ¤ 2 J \ ¼ (L) such that ( ¶ ¤ ; ¶ ¤ ) 2 D.

Proof. The proof being rather long and cumbersome, we will only give a sketch of
it. If none of the above statements is satis­ ed, then there exists " > 0 su¯ ciently
small such that if some ( ¬ ; ­ ) belongs to D", where D" is the boundary of the
"-neighbourhood of D, and ( ¬ ; ­ ) 2 § (L), then ( ¬ ; ­ ) 2 Ci \ U for some 1 6 i 6 m
(see [20] for a related result). Condition (7.1) ensures that the degree of the function
c0(¢; ¬ ; ­ ) is di¬erent, on one side of all the Ci, from the degree on the other side, at
least locally (see the next section for a precise statement and proof). The technical
part lies in showing that each component of D" can be parametrized as a closed
curve; this is in fact only true for almost all small ". The local parametrization is
performed using the di¬erentiability properties of the `distance to a set’ function
(see [7]), Sard’s lemma and the implicit function theorem. For almost all ", this
curve has a ­ nite length due to the co-area formula and is closed. The contradiction
then follows by performing a homotopy of c0 along D", without crossing the Fuµć± k
spectrum.

8. Existence results: non-resonance situation

When ( ¬ ; ­ ) does not belong to the Fuµć± k spectrum (a case which can be considered
as a non-resonance situation), theorems 6.1 and 6.2 provide existence conditions for
the non-homogeneous equation (1.1). Indeed, if the degree of c0(¢; ¬ ; ­ ), with respect
to open bounded sets containing 0, is di¬erent from 0, by continuity, the same will be
true for the function x 7! c(x; "f; ¬ ; ­ ), provided that " is small enough. Therefore,
the equation

Lu = ¬ u+ ­ u + "f;

and, consequently, also (1.1), will have at least one solution, for any f 2 L2( « ).
On the other hand, according to lemma 2.1, we have, if ¬ 6= ­ ,

2

­ ¬
c0(x; ¬ ; ­ ) = P (jxj) 2 ¶ ¬ ­

¬ ­
x+O(k( ¬ ; ­ ) ( ¶ ; ¶ )k) for ( ¬ ; ­ ) ! ( ¶ ; ¶ ):

Notice that the coe¯ cient in front of x above only depends on the slope of the line
joining ( ¶ ; ¶ ) to ( ¬ ; ­ ); if we write ­ = ¶ + p( ¬ ¶ ), then

2 ¶ ¬ ­

¬ ­
=

p + 1

p 1
:

The following is thus deduced from theorem 6.1.
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Table 4.

slopes of the Fu·c¶ ³ k
curves at ( ¶ ; ¶ ) degree

0:5
0

0:75
1

0:7673
0

1:3032
1

1:3333
0

2

Corollary 8.1. Let p 2 R n f1g be such that (p + 1)=(p 1) is not a critical value
of the function h : Sn 1 » ker(L ¶ I) ! R : x 7! hjxj; xi. If

X

xjrh(x)= 0
h(x)<(p + 1)=(p 1)

indx rh 6= 1; (8.1)

there exists ² (p) > 0 such that, if j ¬ ¶ j < ² (p) and ­ = ¶ + p( ¬ ¶ ), then (1.1)
has at least one solution for any f 2 L2( « ).

Notice that, when p = 1, the sum in (8.1) must be even, since c0(x; ¬ ; ­ ) is then
close to the even function 1

2 (­ ¬ )P (jxj).
When dim ker(L ¶ I) = 2, we obtain the following result from theorem 6.2.

Corollary 8.2. Let p 2 R n f1g be such that the function

S1 » ker(L ¶ I) ! R : x 7! hjxj; xi p + 1

p 1

has only simple zeros, the number of zeros being di® erent from 2. There exists
² (p) > 0 such that, if j¬ ¶ j < ² (p) and ­ = ¶ + p( ¬ ¶ ), then (1.1) has at least
one solution for any f 2 L2( « ).

These two results allow us to compute, in particular examples, the degree of the
function c0(¢; ¬ ; ­ ) in the regions between the Fuµć± k curves around ( ¶ ; ¶ ). This is
what we have made in the following examples.

Example 8.3. For instance, coming back to the problem of example 3.2, de­ ned
by (3.6), (3.7), and looking at the graph of h, the degree of c0(¢; ¬ ; ­ ), with respect
to open bounded sets containing 0, can be computed in the neighbourhood of ( ¶ ; ¶ ).
Table 4 indicates the values of degree obtained in the zones between the various
Fuµć± k curves.

For instance, for p = 0:76, the degree is 1. Therefore, for any function
f 2 L2((0; º ) £ (0; º =

p
6)), the problem

@2u

@x2

@2u

@y2
= (55 + ¬ )u + (55 0:76¬ )u + f;

uj@« = 0

has at least one solution if j ¬ j is su¯ ciently small.
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Table 5.

extremal values of h slopes degree

0:16064 0:7232
1

1=13 6=7
2

1=13 7=6
1

0:16064 1:3828

Table 6.

slopes of the Fu·c¶ ³ k slopes of the Fu·c¶ ³ k
curves at (99; 99) degree curves at (99; 99) degree

0:712 1:002
0 1

0:732 1:112
1 0

0:744 1:165
2 1

3=4 4=3
1 2

0:859 1:345
0 1

0:899 1:367
1 0

0:998 1:404
0

1:002

Example 8.4. We consider problem (3.14), (3.15) of example 3.3, taking now m =
6, n = 13. Table 5 gives the extremal values of h, the corresponding values of the
slopes at the Fuµć± k curves at ( ¶ ; ¶ ) = (6084; 6084), as obtained by (3.5), and the
value of the degree between the Fuµć± k curves, deduced from the graph of h. Notice
that the maximal value 0:16064, as well as the minimal value 0:160 64, is reached
at two di¬erent points.

It is observed that, for this problem, equation (1.1) always has a solution if ( ¬ ; ­ )
does not belong to the Fuµć± k spectrum (at least for ( ¬ ; ­ ) close to ( ¶ ; ¶ )).

Example 8.5. Coming back to the elliptic operator of example 3.4, we observe
numerically that the critical points of the function H restricted to the unit sphere
are all non-degenerate and as follows, in order of critical value: ­ rst three minima
followed by two saddle points, then one minimum and one saddle point for the ­ rst
seven ones. The last seven ones are deduced by symmetry: one saddle point then a
maximum, two saddle points and ­ nally three maxima. Using theorem 6.1, table 6,
giving the degree values between the Fuµć± k curves, is deduced.

Then the existence of a solution for (1.1) is ensured by corollary 8.1, in the regions
between the Fuµć± k curves where the degree is non-zero.

Adding compactness hypotheses, it is possible to treat similarly the equation
with a supplementary nonlinear term,

Lu = ¬ u + ­ u + g(¢; u); (8.2)

assuming g(x; u) to have a sublinear growth with respect to u, for u ! 1. Existence
conditions for this equation are based on the following lemma, which relates the
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Brouwer’s degree of c0(¢; ¬ ; ­ ) to the coincidence degree of L A, where

A : L2( « ) ! L2( « ) : u 7! ¬ u + ­ u ;

relatively to L (for the de­ nition and properties of the coincidence degree, see [17]).
The coincidence degree with respect to a ball B(0; R) of centre 0 and radius R is
denoted by DL(L A; B(0; R)), the Brouwer’s degree being denoted as before by
deg(c0(¢; ¬ ; ­ ); B(0; R); 0) (the ball appearing in this last expression is, of course,
in ker(L ¶ I)).

Lemma 8.6. Assume that L has a compact resolvent and that ( ¬ ; ­ ) does not belong
to the Fu·c¶ ³ k spectrum. Then, for R > 0 su± ciently large,

jDL(L A; B(0; R))j = j deg(c0(¢; ¬ ; ­ ); B(0; R); 0)j:

The above lemma is a consequence of results appearing in [17] (see corollary II.28
therein).

Using lemma 8.6 and taking the same hypotheses on the growth of g as in [21],
it is an easy matter to obtain existence conditions for (8.2).

Corollary 8.7. Assume that L has a compact resolvent and that g is a Cara-
th¶eodory function on « £ R satisfying

jg(x; u)j 6 V (x)1 ¼ juj¼ + W (x);

where 0 6 ¼ < 1 and V; W 2 L2( « ). Assume also that the hypotheses of corol-
lary 8.1 are satis¯ed for a given p. Then (8.2) has at least one solution, provided
that j ¬ ¶ j is small enough.

Appendix A.

Let X , Y , Z be Banach spaces, x0 2 X, y0 2 Y . Let U be a neighbourhood of x0, V a
neighbourhood of y0, F : U£V ! Z a continuous function. Assuming F (x0; y0) = 0,
we want to use an implicit function theorem to solve the equation F (x; y) = 0 with
respect to y. As usual, we require that the derivative (@F=@y)(x0; y0) : Y ! Z is a
linear homeomorphism, but, in opposition to the usual hypotheses, we will not ask
F to have continuous derivatives on a neighbourhood of (x0; y0). That hypothesis
is replaced by the following form of `strong’ Fŕechet di¬erentiability:

there exists a bounded linear map

(@F=@y)(x0; y0) : Y ! Z such that, for any " > 0, there

exist neighbourhoods U 0 » U of x0 and V 0 » V of y0 with
®®®®F (x; y) F (x; y0)

@F

@y
(x0; y0)(y y0)

®®®® 6 "ky y0k

for y; y0 2 V 0; x 2 U:

9
>>>>>>>>>=

>>>>>>>>>;

(A)

On this basis, the following implicit function theorem can be written (see [4, propo-
sition 4.3.1] or [13] for closely related statements).
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Theorem A.1. With the above notation, let F : U £ V ! Z : (x; y) 7! F (x; y) be
continuous with respect to x at (x0; y0), with F (x0; y0) = 0. Assume that (A) holds
and that (@F=@y)(x0; y0) : Y ! Z is a linear homeomorphism. Then there exists a
mapping g : U1 ! Y , de¯ned on a neighbourhood U1 » U of x0, continuous at x0,
such that g(x0) = y0 and F (x; g(x)) = 0 8x 2 U1. Moreover, there exists V1 » V
such that

F (x; y) = 0 for x 2 U1; y 2 V1 ) y = g(x):

If F is Lipschitzian with respect to x on U £ V , g is Lipschitzian on U1.

Theorem A.1 is applied here to functions involving the mappings

J £ Lp( « ) ! L2( « ) : ( ¬ ; u) 7! ¬ u + and J £ Lp( « ) ! L2( « ) : (­ ; u) 7! ­ u ;

with p > 2. Due to the result of Solimini [23], it is easily seen that these mappings
have strong Fŕechet derivatives in the sense of (A).
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