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OIL PRICE SHOCKS, INVENTORIES,
AND MACROECONOMIC
DYNAMICS
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This paper investigates the time delay in the transmission of oil price shocks using
disaggregated manufacturing data on inventories and sales. VAR estimates indicate that
industry-level inventories and sales respond faster to an oil price shock than aggregate
gross domestic product, especially in industries that are energy-intensive. In response to
an unexpected oil price increase, sales drop and inventories are accumulated. This leads to
future reductions in production. We estimate a modified linear–quadratic inventory model
to inquire whether the patterns observed in the VAR impulse responses are consistent with
rational behavior by the firms. Estimation results suggest that three mechanisms play a
role in the industry-level dynamics. First, oil prices act as a negative demand shock.
Second, the shock catches manufacturers by surprise, resulting in higher-than-anticipated
inventories. Third, because of their desire to smooth production, manufacturers deviate
from the target level of inventories and spread the decline in production over various
quarters; hence the delay in the response of aggregate output.
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1. INTRODUCTION

A puzzling aspect of the historical correlation between oil prices and the macroe-
conomy is the substantial time delay in the transmission of an oil price innovation
[see Hamilton and Herrera (2004), Kilian and Lewis (2011), among others]. In
contrast with the rather fast propagation of monetary policy or technology shocks,
a slowdown in real gross domestic product (GDP) growth typically has not shown
up until four quarters after an unexpected oil price increase.1 This paper uses
disaggregate manufacturing data to investigate this puzzle empirically.

I begin my analysis by estimating a vector autoregression on the real oil price
change, sales growth, and the inventory–sales ratio for 21 manufacturing indus-
tries (19 two-digit and 2 three-digit SIC industries) plus three aggregates (total
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manufacturing, nondurables, and durables). I find that sales in energy-intensive
industries (e.g., transportation equipment, petroleum products) respond to an un-
expected oil price increase in less than a year, faster than the response of GDP to
the same innovation. In addition, the initial effect on industry-level output is less
pronounced because of an increase in finished goods inventories. These inventories
are gradually worked down by a continuing period of curtailed production. This
pattern is suggestive of the classic inventory-accelerator model of the business
cycle.

To inquire whether this account of the oil price dynamics is consistent with a
model of firm behavior, I estimate and test a linear–quadratic model of inventory
accumulation. This model was originally developed by Holt et al. (1960) and
has been extensively used in empirical analysis of inventory behavior.2 Although
this literature is impressively broad, it has not been very successful in producing
economically plausible parameter values. In particular, parameter estimates are
seldom statistically significant, sometimes have the wrong sign, and are often
unsupportive of the underlying model [Fuhrer et al. (1995)].

In this paper I estimate a modified version of the linear–quadratic inventory
model, in which I introduce two generalizations. First, we model the shock to
the marginal cost of production as an I (1) variable cointegrated with sales, as
suggested by Hamilton (2002).3 This departure from the common assumption that
the cost shock is stationary has the benefit of accounting for stochastic trends
in sales and inventories, while ensuring that both marginal costs of production
and inventory carrying costs are stationary along the long-run equilibrium path.
Second, I allow a more general specification of the cost and demand shocks faced
by the firm than commonly assumed in the empirical literature.4

Estimates of this modified linear–quadratic inventory model are shown to pro-
duce industry-level impulse responses that resemble those implied by the VAR
model. Moreover, the dynamics entailed by our estimates is consistent with two
stylized facts about inventory behavior: procyclicality and persistence [Ramey and
West (1999)]. In the wake of an oil price shock, economic activity contracts and
inventories are drawn down. The rise in the inventory–sales ratio, resulting from a
smaller decline in inventories than in sales is slowly worked down as adjustment
to the steady state takes place.

This paper is organized as follows. Section 2 discusses the data as well as some
measurement choices. Section 3 uses a VAR framework to study the dynamics
of oil price innovations at the industry level. In Section 4 I inquire whether the
uncovered dynamics is consistent with rational behavior of the firms by estimating
and testing a modified version of the linear–quadratic inventory model. Section 5
concludes.

2. DATA AND MEASUREMENT

To investigate the nature of the time lag in the propagation of oil price innova-
tions, I use data on manufacturing sales and finished goods inventories (hereafter
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inventories) from the Bureau of Economic Analysis (BEA). The series span the
period between January 1959 and March 2000, are measured in chained dol-
lars of 1996, and comprise three manufacturing aggregates (total manufacturing,
durables, and nondurables), nineteen 2-digit SIC industries, and two 3-digit SIC
sectors (motor vehicles and other transportation equipment).5

Although the data are available at a monthly frequency from the BEA, I choose
to transform monthly data into quarterly series by aggregating monthly sales and
using end-of-the-quarter inventories. Although this time aggregation constitutes a
deviation from the inventory literature and a loss of higher-frequency information,
it significantly diminishes the computational burden involved in the estimation
of our inventory model and it facilitates comparison with the oil price shocks–
macroeconomy literature.

The first data choice to be made here is how to characterize the data–generating
process of inventories and sales. The leading approach in the inventory literature
has been to model inventories and sales as stationary around a deterministic
trend. However, results from a DF-GLS test reported in Table A.1 of the Online
Appendix6 indicate that we cannot reject the null hypothesis of a unit root at
a 5% significance level for any sectors except tobacco inventories and sales.
Furthermore, residual-based cointegration tests suggest that inventories and sales
are cointegrated for more than half of the industries. Therefore, in my analysis
I consider an industry where sales, inventories, and production have a stochastic
trend7 and the first two series are cointegrated.

A second choice is the measure of oil prices. We follow Mork (1989) and Lee
and Ni (2002) in measuring oil prices by the refiners’ acquisition cost (RAC)
instead of the PPI, when possible, and make adjustments to account for the price
controls of the 1970s. I deflate the RAC by the consumer price index (CPI) and
then compute the rate of growth by taking the first difference in the logarithm of
the real oil price.

3. DYNAMICS OF OIL PRICE INNOVATIONS AT THE INDUSTRY LEVEL

Assume the data-generating process for a particular industry to be given by a
three-dimensional VAR(4), where xt contains the log growth of the real oil price,
the log growth of quarterly real sales, and the log difference between inventories
and sales. The VAR is assumed to have a linear moving-average representation
given by

xt = A (L) ut , A (0) = A0, (1)

where wt = [uo,t , us,t , uh,t ]′ is a vector of white noise structural innovations.
The process in (1) is consistent with evidence of cointegration (see Table A.1 in
the Online Appendix) and can be directly mapped into the usual error-correction
model.8 For identification purposes we assume A0 is a lower triangular matrix. The
ordering of the real oil price change before the manufacturing variables imposes
the reasonable restriction that oil prices do not respond contemporaneously to
changes in industry-level sales or inventories [see Kilian and Vega (2011)].
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FIGURE 1. Responses to a 10% increase in the real oil price. Estimates based on the
reduced-from VAR(4) system described in Section 3. The 90% confidence intervals were
computed using Killan’s (1998) bootstrap-after bootstrap method.

Note that, given the responses for the level of sales and inventories, we can infer
the production response using the inventory identity

Qt = St + Ht − Ht−1, (2)

where Qt denotes output, St denotes sales, and Ht denotes inventories.9 Fig-
ure 1 illustrates the impulse responses to an unexpected 10% increase in the
real oil price. The 90% confidence intervals are computed using Kilian’s (1998)
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FIGURE 1. Continued.

bootstrap-after-bootstrap method. For the sake of brevity I relegate the cumulative
impulse response to the Appendix (see Figures A.1a–A.1c).

Four important features of oil price innovations dynamics are apparent:

• Industry-level sales decline in response to an oil price increase. In particular,
for industries that are energy-intensive in production (e.g., chemicals, rub-
ber and plastics, petroleum products) or consumption (e.g., motor vehicles,
other transportation equipment), a decline in sales occurs during the first
year. Significant reductions follow in the remaining sectors and aggregate
manufacturing.
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• Industry-level output declines in response to an oil price increase. Declines
in production are observed within a year for chemicals, petroleum products,
rubber and plastics, lumber, furniture and fixtures, stone, clay and glass,
fabricated metal products, motor vehicles, and the three manufacturing ag-
gregates. A decline in the remaining industries is not evident until a year
later. The timing of the contraction for total manufacturing is consistent with
the time delay in the response of aggregate GDP to oil price innovations.

• Inventories usually decline at a slower pace than sales, leading to a hump-
shaped response of the inventory–sales ratio. Significant deviations from
the benchmark inventory–sales ratio are observed for chemicals, petroleum
products, rubber and plastics, lumber, furniture and fixtures, stone, clay, and
glass, fabricated metal products, and motor vehicles. These are industries
either that use petroleum intensively as an input or for which the automobile
industry constitutes an important demand source.10 A similar pattern is
observed for the three manufacturing aggregates.

• The contractionary effect is largest for motor vehicles but is also significant
for industries that are energy-intensive or for which motor vehicles constitute
an important demand factor. The long-run elasticity of sales to oil prices is
about twice as large for motor vehicles (−0.36) as for furniture and fixtures
(−0.17), the sector with the second largest effect. Moreover, a year later
when the economic slowdown spreads to aggregate manufacturing (and real
GDP), the 10% increase in oil prices has resulted in a 4.2% decline in
motor vehicles production and contractions of 0.7, 0.6, 1.0, 2.0, and 1.5% in
apparel, chemicals, petroleum products, rubber and plastics, and stone, clay,
and glass products, respectively.

4. CAN THE DYNAMICS OF OIL PRICE INNOVATIONS BE
RIGOROUSLY RECONCILED WITH RATIONAL BEHAVIOR BY FIRMS?

These patterns are suggestive of the classic inventory-accelerator model of the
business cycle. An increase in oil prices leads consumers to abstain from new pur-
chases. Partly because the shock catches manufacturers by surprise, and partly out
of a desire to smooth output fluctuations, manufacturers deviate from their target
level of inventories and spread the decline in production over several quarters. By
the fourth quarter, curtailed production in energy-intensive sectors has resulted
in lower sales and income for other industries, thus leading the economy into a
recession.

Although this account of the dynamics of an oil price innovation seems intu-
itively plausible, can it be rigorously reconciled with profit-maximizing behav-
ior by firms and apparent production-cost schedules? To answer this question
I estimate and test a linear–quadratic inventory model. My model relies on the
traditional quadratic approximation to the costs faced by the firm, but I introduce
two important changes.
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First, I modify the setup to account for the presence of stochastic trends and
comovement in inventories, sales, and the stochastic cost shock. The motivation for
this modification is twofold: (a) statistical tests indicate that inventories and sales
have a unit root and are cointegrated (see Table A.1 of the Online Appendix); (b)
when sales have a unit root and the cost shock is stationary, the marginal production
cost tends to infinity, so the firm minimizes costs by letting inventory management
cost go to infinity [Hamilton (2002)]. This problem can be avoided by assuming
that both the cost shock and sales have a unit root and are cointegrated. This
assumption is motivated on the grounds that cost-saving technological progress
generates an upward trend in sales.

Second, I use a less restrictive specification of the demand disturbances than is
common in applications of the linear–quadratic inventory model. In particular, I
assume that real oil prices have a direct effect on sales growth. The rationale for
this modification is twofold. Although, in the linear–quadratic literature, energy
prices are commonly modeled as an observable cost shifter, previous studies have
rarely found energy prices to be statistically significant [Ramey and West (1999)].
In addition, VAR estimation results uncovered a statistically significant effect of
oil price innovations on sales.

4.1. A Model of Inventory Behavior

Consider the following decision problem, similar to that Hamilton (2002):11

max
{Qt ,Ht }∞t=0

E0

{ ∞∑
t=0

βt (PtSt − Ct)

}
(3)

subject to

Ct = (1/2)[a0(�Qt)
2 + a1(Qt − Uc,t )

2 + a2(Ht−1 − a3St )
2], (4)

Qt = St + Ht − Ht−1, (5)

where Pt is the price of the good in period t , St is real sales during period t,

Ct is the cost of production, Qt is the quantity produced during period t, Ht are
inventories of finished goods at the end of period t, β is the discount rate, and Uc,t

is a stochastic exogenous shock to the marginal cost of production.
The first-order condition for cost minimization is derived by differentiating the

objective function (3) with respect to Ht :

Et [a0(�Qt − 2β�Qt+1 + β2�Qt+2) + a1(Qt − Uc,t )

−βa1(Qt+1 − Uc,t+1) + βa2(Ht − a3St+1)] = 0. (6)

Consider the case where inventories and sales have a unit root and are cointegrated
with cointegrating vector (1,−a3). Further, assume that the unobserved shock to
the marginal cost of production, Uc,t , has a unit root and is cointegrated with sales,

https://doi.org/10.1017/S1365100516000225 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000225


OIL PRICE SHOCKS AND INVENTORIES 627

so that
Uc,t − St − kc = vc,t ∼ I (0), (7)

where
vc,t = θc1vc,t−1 + θc2vc,t−2 + εc,t, (8)

kc is a constant term, and the innovation εc,t has a zero-mean normal distribution
with variance σ 2

c . As I mentioned before, cointegration between Uc,t and St can be
motivated by the presence of an unobserved technology shock (an upward trend
in Uc,t or a downward trend in U ∗

c,t ) that generates an upward trend in sales and,
given the inventory accumulation equation (5), also in production.12

I consider the data-generating process for sales of a particular industry to be
given by

�St = ks +λs1�St−1 +λs2�St−2 +λo1ot−1 +λo2ot−2 +λo3ot−3 +λo4ot−4 + es,t ,

(9)
where �St = vs,t ∼ I (0), and ot is simply the change in real oil prices. In turn,
the process for ot is given by

ot = ko + ωo1ot−1 + ωo2ot−2 + eo,t (10)

and [
es,t

eo,t

]
=

[
1 λo0

0 1

] [
εs,t

εo,t

]
,

where the innovations εs,t , and εo,t are uncorrelated normally distributed processes.
The constant terms ks, kc, and ko are not separately identified, because they only
affect the constant term in the expression for the firm’s optimal level of inventories.
Hence, without loss of generality, we can solve the firm’s optimal inventory
problem with all constants set to zero and then add the constants at the final step
of the maximum-likelihood estimation.

The optimization problem can be stated as

min
{ut }∞t=0

E

{ ∞∑
t=0

βt
[

ut x
′
t

]
G

[
ut

xt

]
| F0

}
(11)

subject to
xt+1 = Axt + But + Cwt+1, (12)

where xt = (Ht−1,Ht−2, St−1, vc,t , vc,t−1, vs,t , vs,t−1, ot , ot−1, o,t−2, o,t−3)
′ de-

notes the state vector that summarizes the information relevant to the firm’s deci-
sion, ut = Ht denotes the control variable, and F0 denotes the information set at
t = 0.13 The solution to this optimization problem takes the form

ut = −Fxt , (13)

where F can be computed following Anderson et al. (1996).
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Equation (13), with the constant term, kh, added back in,

Ht = kh − f1Ht−1 − f2Ht−2 − f3St−1 − f4vc,t − f5vc,t−1 − f6vs,t − f7vs,t−1

− f8ot − f9ot−1 − f10ot−2 − f11ot−3, (14)

together with equations (8), (9), and (10), constitutes an observable state-space
model in which (8) is the state equation and (9), (10), and (14) are the obser-
vation equations. After setting the discount factor β = 0.98 and normalizing
the coefficient a1 = 1,14 we obtain estimates of the structural parameters via
maximum likelihood. Then these estimates and the Kalman filter are used to trace
the response of sales, inventories, and output to an innovation in the real oil price,
εo,t .

4.2. Inventories, Oil Price Shocks, and Industry Dynamics

The model of optimal inventory behavior just described is most appropriate for the
six industries identified as “production-to-stock” (food, tobacco, apparel, chem-
icals, petroleum products, and rubber and plastics). Nevertheless, to the extent
that the so-called “production-to-order” industries hold substantial inventories
of finished goods, the desire to smooth production might explain movements in
inventories. In this section we focus our discussion on the six production-to-stock
industries, the motor vehicles sector, and the three manufacturing aggregates.

Inventories and production costs: magnitude and interpretation of the cost
parameters. The usual linear–quadratic inventory model embodies two different
motives for holding inventories. The cost of adjusting production, a0�Qt, and
the cost of producing, a1Qt, represent a production–smoothing motive. That is,
a firm may hold inventories because they facilitate the intertemporal allocation
of production. A second motive for holding inventories is reflected in the term
a2 (Ht−1 − a3St ), which is the accelerator term. This term reflects the trade-off
between the physical cost of holding inventories and the cost of avoiding stock-
outs. Yet an important implication of assumption (7) is that now the quadratic
cost is directly associated with inventory investment. Hence, with the exception
that here a0 �= 0, the model is closer to the flexible accelerator model than the
usual linear–quadratic setup. As a result, higher values of a1 imply greater output
flexibility.

Table 1 reports maximum-likelihood estimates and associated asymptotic stan-
dard errors under the heading “Structural model.” The magnitudes of a0 and a2

relative to a1—which we normalize to 1—suggest that output should track sales
closely in response to a demand shock. Note how a0 and a2 are estimated to
be positive but less than 1 for all sectors. Interestingly, the degree of precision
of these cost estimates seems to be higher for sectors where the oil price shock
enters significantly into the sales process (e.g., chemicals, petroleum products, mo-
tor vehicles, manufacturing, and durable manufactures). In addition, whereas the
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TABLE 1. Parameter estimates for inventory models

Food Tobacco Apparel Chemicals Petroleum products

Structural Behavioral Structural Behavioral Structural Behavioral Structural Behavioral Structural Behavioral
model model model model model model model model model model

Parameter Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E.

a0 0.000 0.036 0.481 0.831 0.037 0.024 1.102 1.227 0.225∗ 0.132 0.000 0.140 0.189∗∗∗ 0.067 0.815 0.767 0.032∗∗ 0.015 0.049∗∗ 0.022
a1 26.852 16.986 0.907 1.010
a2 0.017 0.015 0.015 0.013 0.555 0.602 0.025 0.021 0.220 0.152 0.200 0.155 0.003 0.004 0.000 0.000 0.034 0.024 0.025 0.018
a3 0.167∗∗∗ 0.016 0.162∗∗∗ 0.017 −0.090 0.068 −0.046 0.036 0.437∗∗∗ 0.018 0.429∗∗∗ 0.021 0.366∗∗∗ 0.057 0.321 13.298 0.084∗∗∗ 0.019 0.077∗∗∗ 0.020
λs1 −0.074 0.087 −0.085 0.077 −0.280∗∗∗ 0.079 −0.281∗∗∗ 0.079 0.046 0.078 0.009 0.087 0.314∗∗∗ 0.075 0.352∗∗∗ 0.080 −0.360∗∗∗ 0.076 −0.356∗∗∗ 0.077
λs2 −0.221∗∗∗ 0.079 −0.230∗∗∗ 0.077 0.096 0.078 0.092 0.078 −0.205∗∗∗ 0.068 −0.166∗∗ 0.080 −0.022 0.068 −0.090 0.083 −0.227∗∗∗ 0.079 −0.238∗∗∗ 0.077
λo1 0.655 0.875 0.515 0.870 −0.216 0.218 −0.214 0.219 −0.110 0.219 −0.028 0.316 −1.348 0.730 −1.234 0.951 −4.966∗∗∗ 0.662 −5.029∗∗∗ 0.667
λo2 −1.461 1.215 −1.462 1.345 0.367 0.320 0.367 0.321 −0.193 0.331 −0.141 0.429 0.694 1.084 0.113∗ 1.838 4.876∗∗∗ 1.074 4.986∗∗∗ 1.074
λo3 0.387 1.220 0.310 1.352 −0.135 0.324 −0.147 0.330 −0.150 0.337 −0.071 0.406 −0.632 1.075 −0.611∗∗ 1.990 −0.236 1.215 −0.551 1.202
λo4 0.382 0.868 0.615 0.880 −0.096 0.223 −0.079 0.229 0.346 0.224 0.244 0.283 0.921 0.747 1.375 1.066 −0.087 0.905 0.167 0.832
ωo1 1.063∗∗∗ 0.079 1.065∗∗∗ 0.079 1.065∗∗∗ 0.079 1.065∗∗∗ 0.079 1.064∗∗∗ 0.079 1.065∗∗∗ 0.079 1.065∗∗∗ 0.079 1.065∗∗∗ 0.079 1.064∗∗∗ 0.079 1.065∗∗∗ 0.079
ωo2 −0.099 0.079 −0.100 0.079 −0.099∗∗ 0.078 −0.100 0.079 −0.100 0.079 −0.100 0.079 −0.100 0.079 −0.100 0.079 −0.100 0.079 −0.100 0.079
θc1 0.105 0.092 −0.194 0.255 −0.205∗∗ 0.095 −0.545∗∗∗ 0.157 0.187∗ 0.104 0.396∗∗ 0.157 0.027 0.081 −0.236 0.174 −0.121 0.095 −0.133 0.092
θc2 −0.081 0.088 −0.118 0.119 −0.131 0.095 −0.305∗∗ 0.121 0.029 0.097 0.033 0.118 −0.044 0.086 −0.122 0.105 −0.052 0.093 −0.092 0.090
kh 0.453∗ 0.246 0.328∗∗ 0.165 0.242∗ 0.134 0.142∗∗ 0.065 −0.772∗∗∗ 0.199 −0.891∗∗∗ 0.283 0.133 0.130 0.117∗∗∗ 0.045 0.476∗∗∗ 0.162 0.415∗∗ 0.151
ks 0.608∗∗ 0.273 0.597∗∗ 0.282 0.089 0.074 0.082 0.073 0.205∗∗∗ 0.073 0.071 0.094 0.759∗∗∗ 0.223 0.762∗∗∗ 0.283 0.756∗∗∗ 0.219 0.776∗∗∗ 0.227
ko 0.045∗ 0.026 0.045∗ 0.026 0.044∗ 0.026 0.045∗ 0.026 0.045∗ 0.026 0.045∗ 0.026 0.045 0.026 0.045∗ 0.027 0.045∗ 0.026 0.045∗ 0.026
σ 2

c 0.234∗∗∗ 0.071 0.712 1.053 0.020∗∗∗ 0.004 0.135∗ 0.184 0.115∗ 0.065 0.062 0.044 0.393∗∗∗ 0.095 1.045 1.013 0.129∗∗∗ 0.024 0.131∗∗∗ 0.024
σ 2

s 2.265∗∗∗ 0.253 2.262∗∗∗ 0.252 0.156∗∗∗ 0.017 0.156∗∗∗ 0.017 0.264∗∗∗ 0.030 0.259∗∗∗ 0.029 2.123∗∗∗ 0.239 2.098∗∗∗ 0.235 1.461∗∗∗ 0.163 1.462∗∗∗ 0.163
σ 2

o 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002
σso −0.020 0.018 −0.020 0.018 0.001 0.005 0.002 0.005 0.005 0.006 0.005 0.006 0.015 0.017 0.015 0.022 0.015 0.014 0.016 0.015
λ∗
s1 3.886∗∗ 1.684 0.927∗∗∗ 0.131 −0.943 3.327 0.663∗∗∗ 0.209 0.001 0.143

λ∗
s2 −0.252 0.183 0.070 0.065 −1.271 4.728 0.303∗∗ 0.115 −0.450 0.534

LR test
(p-value)

Unobserved 0.028 0.148 0.161 0.840 0.481
cost

Effect of 0.750 0.484 0.065 0.030 0.000
oil price

Behavioral 0.000 0.546 1.000 0.022 1.000
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TABLE 1. Continued

Rubber and plastics Motor vehicles Manufacturing Nondurables Durables

Structural Behavioral Structural Behavioral Structural Behavioral Structural Behavioral Structural Behavioral
model model model model model model model model model model

Parameter Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E. Coefficient S.E.

a0 0.003 0.021 0.126 0.457 0.008 0.005 0.011∗∗∗ 0.004 0.083∗∗∗ 0.032 0.046∗∗∗ 0.014 0.017 0.025 3.044 2.414 0.035∗ 0.019 0.012 0.009
a1
a2 0.015 0.009 0.021 0.014 0.044∗∗ 0.022 0.031∗ 0.017 0.020∗∗ 0.009 0.016∗∗ 0.007 0.004 0.004 0.006 0.007 0.013∗∗ 0.006 0.008∗∗ 0.003
a3 0.203∗∗∗ 0.011 0.203∗∗∗ 0.010 0.043∗∗∗ 0.003 0.043∗∗∗ 0.004 0.209∗∗∗ 0.006 0.209∗∗∗ 0.007 0.237∗∗∗ 0.022 0.235∗∗∗ 0.020 0.190∗∗∗ 0.009 0.195∗∗∗ 0.011
λs1 0.033 0.077 0.034 0.077 −0.136∗ 0.079 −0.131∗ 0.079 0.284∗∗∗ 0.077 0.292∗∗∗ 0.080 0.243∗∗∗ 0.076 0.250∗∗∗ 0.077 0.270∗∗∗ 0.084 0.234∗∗∗ 0.081
λs2 −0.085 0.078 −0.081 0.078 −0.132∗ 0.079 −0.170∗∗ 0.080 0.025 0.067 −0.037 0.080 −0.157∗∗ 0.078 −0.163∗∗ 0.077 0.076 0.071 0.045 0.084
λo1 −0.863∗∗∗ 0.311 −0.858 0.312 −5.209∗∗∗ 2.026 −5.581∗∗ 2.379 −10.673∗∗ 4.863 −15.297∗∗ 6.066 −8.193∗∗∗ 2.262 −8.463∗∗ 2.250 −7.064∗ 4.069 −7.663 5.432
λo2 0.521 0.462 0.517 0.461 0.866 2.987 1.000 3.585 6.435 7.678 9.858 10.859 8.810∗∗∗ 3.368 8.937∗∗∗ 3.359 1.704 5.608 1.649 9.859
λo3 −0.385 0.479 −0.454 0.474 2.211 2.957 2.113 3.186 1.200 10.061 −1.293 14.326 −6.622∗ 3.541 −7.156∗∗ 3.455 3.723 5.181 4.662 12.176
λo4 0.653∗∗ 0.337 0.744∗∗ 0.331 1.880 2.027 1.989 2.165 2.997 6.645 4.145 8.728 4.879∗∗ 2.467 5.753∗∗ 2.366 2.414 3.738 −0.441 7.772
ωo1 1.066∗∗∗ 0.079 1.065∗∗∗ 0.079 1.059∗∗∗ 0.078 1.065∗∗∗ 0.079 1.056∗∗∗ 0.079 1.065∗∗∗ 0.079 1.063∗∗∗ 0.079 1.065∗∗∗ 0.079 1.063∗∗∗ 0.079 1.065∗∗∗ 0.081
ωo2 −0.099 0.078 −0.100 0.079 −0.097 0.078 −0.100 0.079 −0.098 0.079 −0.100 0.079 −0.095 0.079 −0.100 0.079 −0.106 0.079 −0.100 0.081
θc1 0.030 0.084 −0.048 0.304 0.016 0.087 −0.023 0.089 0.174∗∗ 0.087 0.195∗∗ 0.090 0.120 0.086 −0.423∗∗∗ 0.111 0.325∗∗∗ 0.087 0.358∗∗∗ 0.084
θc2 0.108 0.084 0.134 0.098 −0.200∗∗ 0.084 −0.243∗∗∗ 0.085 0.036 0.098 0.041 0.091 −0.111 0.085 −0.289∗∗ 0.108 −0.113 0.085 −0.128 0.082
kh 0.235∗∗∗ 0.072 0.242 0.117 0.130∗∗∗ 0.050 0.111∗∗ 0.046 0.161 0.516 0.296 0.478 0.140 0.405 −0.077 0.197 0.158 0.310 0.356 0.271
ks 0.332∗∗∗ 0.100 0.302∗∗∗ 0.109 0.951∗ 0.561 1.242∗ 0.692 3.495∗∗ 1.547 6.807∗∗∗ 2.154 2.962∗∗∗ 0.731 2.723∗∗∗ 0.807 1.167 1.211 4.460∗∗∗ 1.525
ko 0.043 0.026 0.045∗ 0.026 0.048∗ 0.025 0.045∗ 0.026 0.052∗∗ 0.026 0.045∗ 0.026 0.041 0.026 0.045 0.026 0.055∗∗ 0.026 0.045∗ 0.026
σ 2

c 0.020∗∗∗ 0.003 0.031 0.041 0.040∗∗∗ 0.006 0.037∗∗∗ 0.006 2.810∗∗∗ 0.500 2.412∗∗∗ 0.337 1.060∗∗∗ 0.181 27.384 32.914 0.791∗∗∗ 0.115 0.718∗∗∗ 0.090
σ 2

s 0.322∗∗∗ 0.036 0.322∗∗∗ 0.036 13.833∗∗∗ 1.547 13.812∗∗∗ 1.543 115.505∗∗∗ 13.037 112.905∗∗∗ 12.598 16.791∗∗∗ 1.874 16.770∗∗∗ 1.870 60.362∗∗∗ 6.855 58.243∗∗∗ 6.535
σ 2

o 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002 0.021∗∗∗ 0.002
σso 0.006 0.007 0.007 0.007 −0.074 0.045 −0.076∗ 0.045 −0.106 0.137 −0.101 0.132 0.035 0.049 0.038 0.048 −0.120 0.093 −0.118 0.106
λ∗
s1 0.629 0.545 −0.003 0.224 −0.003 0.074 0.899∗∗∗ 0.046 −0.002 0.160

λ∗
s2 −0.100 0.298 0.668∗∗ 0.323 0.396 0.274 0.060 0.040 0.488 0.426

LR test
(p-value)

Unobserved 0.419 0.063 0.099 0.191 0.001
cost

Oil price 0.013 0.010 0.136 0.001 0.078
Behavioral 0.613 0.163 0.161 0.021 1.000

Note: This table reports maximum likelihood estimates and associated standard errors (S.E.) for of the each sectors and the two models of interest. ∗∗∗, ∗∗, and ∗ denote significance at the
1%, 5% and 10% level, respectively. Three likelihood ratio tests are also reported: (1) Unobserved cost is the LR rest for the null that θc1 and θc2 are jointly insignificant; (2) Oil price is
the LR test for the null that λo1, λo2, λo3, and λo4 are jointly insignificant; (3) Behavioral is the LR test for the null that λ∗

s1 and λ∗
s2 are jointly insignificant.
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assumption of cointegration between inventories and sales allows us to estimate the
cointegration parameter, a3, precisely for all industries but tobacco, the remaining
cost parameters are statistically significant only for some sectors. All in all, these
results point toward a strong accelerator motive in all the aggregates and most of
the industries. The only possible exception is tobacco, where the cost of holding
inventories, a2, exceeds that of adjusting production, a0; however, the estimates
are not statistically significant.

As for the role of the cost shock, the data seem to fit our specification where vc,t

affects the cost of production in four industries and two manufacturing aggregates.
We reject the null that θc1 and θc2 are jointly insignificant for food, motor vehicles,
manufacturing and durables (see p-value for LR test in the row “Unobserved cost”
of Table 1). In addition, our finding that θc1 + θc2 < 1, θc2 − θc1 < 1 and |θc2| < 1
for all sectors supports our assumption that vc,t in (7) is stationary.

To conclude this section, let us compare our parameter estimates with those
found in the literature for the linear–quadratic inventory model. To do so, we divide
the parameter estimates reported in Table 1 by the second derivative of the objective
function (4) with respect to Ht [i.e., c = (

1 + 4β + β2
)
a0 + (1 + β) a1 + βa2]

evaluated at the estimated values â0,, â2 and the value of a1 = 1 corresponding to
our normalization. We then compute the median across the sectors and compare
it with the estimates reported by Ramey and West (1999). First, note that the
estimated slope of the marginal production cost is found to be positive (see the
third column of Table 2). This is consistent with all studies but Ramey (1991).
Second, as found by previous studies, the cost of adjustment a0 contributes only
slightly to this upward slope. Finally, estimates of a3 are consistent with observable
patterns of average inventory–sales ratios across industries and are comparable to
estimates obtained by other authors. For instance, a3 is smaller for industries with
lower average inventory–sales ratios, such as motor vehicles (average inventory–
sales ratio = 0.057) and petroleum products (0.162), but larger for industries with
higher ratios, such as apparel (0.256), chemicals (0.293), and rubber and plastics
(0.319). Not surprisingly, our results are more in line with studies that allow for
serially correlated cost variables.

In summary, existing parameter estimates of the linear–quadratic inventory
model cover a wide range (see Table 2), are seldom statistically significant, change
with the normalization, sometimes have the wrong sign, and are often unsupportive
of the underlying model [Fuhrer et al. (1995); Ramey and West (1999)]. Our
estimates of the cost function are invariant to normalization and almost always
have the correct sign, yet they are statistically insignificant in a few cases.

Oil price increases as negative demand shocks. Estimates of the structural
model suggest that an unexpected oil price increase has a contractionary ef-
fect on sales. Note the negative sign and the statistical significance of the λoi

(i = 1, ..., 4) for petroleum products, rubber and plastics, motor vehicles, manu-
facturing, nondurables, and durables. For these industries—as well as apparel and
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TABLE 2. Comparison of industry and median point estimates of cost parameters

[(1 + β)a0+ Number of
a0/c a1/c a1]/c a2/c a a

3 industries

Own estimatesb

Food 0.00 0.50 0.50 0.01 0.17
Tobacco 0.01 0.36 0.39 0.20 −0.09
Apparel 0.06 0.28 0.41 0.06 0.44
Chemicals 0.06 0.32 0.44 0.00 0.37
Petroleum products 0.01 0.45 0.48 0.02 0.08
Rubber and plastics 0.00 0.50 0.50 0.01 0.20
Motor vehicles 0.00 0.48 0.49 0.02 0.04
Manufacturing 0.03 0.40 0.47 0.01 0.21
Nondurables 0.01 0.48 0.50 0.00 0.24
Durables 0.02 0.45 0.49 0.01 0.19

Median estimatesc

Models with serially
correlated cost variables

Herrera (2018) 0.01 0.45 0.48 0.02 0.17 7
Durlauf and Maccini (1995) 0 0.43 0.43 0.15 0.55 5
Eichenbaum (1989) 0 0.21 0.21 0.58 1.15 7
Kollintzas (1995) −0.16 0.83 0.64 −0.09 1.14 6
Ramey (1991) 0.15 −0.63 −0.43 1.69 0.4 6
Models without serially

correlated cost variables
Fuhrer et al. (1995) 0.13 0.12 0.38 0 0.67 1
West (1986) 0.05 0.34 0.44 0.01 1.12 10

a Estimates in all studies but this one use monthly inventories and sales instead of quarterly sales and end-of-quarter
inventories.
b Calculations are based on the estimates reported in Table 1. In the column definitions c = (1 + 4β + β2)a0 +
(1 + β)a1 + βa2.
c Herrera (2018) denotes the median point estimates for all 2- and 3-digit industries reported in Table 1. The median
estimates for other studies are taken from Table 10 in Ramey and West (1999).

chemicals—we reject the null that the coefficients on the oil price lags, λoi, are
jointly insignificant (see p-value for the LR test in the row “Oil price” of Table 1).

To develop intuition for how oil price shocks are transmitted to inventories and
output, we first relate the industries’ estimated cost patterns to their responses to
a negative demand shock. Table 1 shows that we can classify the industries in two
groups according to the magnitude of the inventory holding cost, a2, relative to the
cost of adjusting production, a0. For instance, the motor vehicles industry is more
resistant to deviations from its target level of inventories, as suggested by the high
value of a2 relative to a0. (That is, adjusting production, a0, is less costly than
adjusting inventories, a2.) The estimated value of a3 suggests that motor vehicles
reduce inventories by $43 for every $100 drop in quarterly sales. In contrast, the
larger value of a0 relative to a2, which is statistically equal to zero, for petroleum
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products suggests that the costs of adjusting production exceed those of adjusting
inventories. As for the aggregates, durables and total manufacturing exhibit costs
of adjusting production that exceed those of holding inventories.

Even though the production-smoothing motive appears to be operative in some
industries (a0 > 0), recall that there is evidence of a strong accelerator influence.
Hence, with low positive values of a3 and a2 relative to a1, we would expect
an increase in oil prices to result in a decline in sales, production cutbacks, and
procyclical movements in inventories. With convex production costs, the last
would be the upshot of the accelerator motive dominating the incentive to smooth
production.

Industry-level dynamics. We now turn to the question posed earlier: Can our
recounting of the dynamics of an oil price innovation be rigorously reconciled
with rational behavior by firms and apparent production-cost schedules? To ad-
dress this issue, we use the Kalman filter to trace the impact of a one-time 10%
increase in oil prices on sales, St+j , inventories, Ht+j , and output, Qt+j . Figure 2
illustrates the impulse responses computed using this structural model (dashed
line) as well as the cumulative responses generated by the VAR (solid line). The
structural responses of sales and output roughly resemble those implied by the
VAR estimates. Nevertheless, some differences are evident at long horizons. More
specifically,

• Industry-level sales decline in response to an oil price increase. This nega-
tive correlation is evidenced in the sales contraction implied by the structural
model. The negative sign and statistical significance of the oil price coeffi-
cients λoi in the sales equation, and the likelihood ratio test (see “Oil price”
row in Table 1), provide additional evidence of this relationship. For tobacco,
apparel, chemicals, petroleum products, and durables, the structural model
generates a greater medium-run response of sales than the VAR.

• Industry-level output declines in response to an oil price increase. A slow-
down in production is apparent for all industries and the manufacturing
aggregates. Because output traces sales closely, the structural model gener-
ates larger output medium-run responses than the VAR for tobacco, apparel,
chemicals, petroleum products, and durables.

• Inventories usually decline at a slower pace than sales, leading to a hump-
shaped response of the inventory–sales ratio. This buildup is slowly worked
down as inventories and sales adjust to their new steady state level. For some
industries, inventories appear to exacerbate the negative effect of oil price
innovations on output relative to that on sales. As we mentioned earlier, this
pattern is consistent with a strong accelerator motive.

• The contractionary effect is largest for motor vehicles but is also signif-
icant for industries that are energy-intensive or for which motor vehicles
constitute an important demand factor. According to the structural model,
sales (production) of new motor vehicles decline about 2.5% by the fourth
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FIGURE 2. Effect of a 10% increase in the price of oil: Comparison across models.

quarter. This contraction is more than twice as large as the drop experienced
by rubber and plastics (0.86%), the “production-to-stock” industry with the
second largest contraction. The corresponding contractions in the produc-
tion of chemicals, petroleum products, rubber and plastics, and apparel are
considerably smaller (0.6, 0.9, 0.86, and 0.48%, respectively).

On the whole, the structural results are consistent with the VAR responses and
suggestive of the old inventory-accelerator model of the business cycle. Consumer
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anxiety about oil prices leads households to cut back purchases. The firms’ optimal
policy response is to deviate from their target level of inventories and spread the
decline in production over several quarters. In turn, the magnitude of this deviation
is a function of the cost of holding inventories, a2, the strength of the accelerator
motive, a3, and the cost of adjusting production, a0, relative to the marginal
production cost, a1. Further, notice that this framework implies a permanent effect
on the output level, although the growth rate of output returns to normal about two
years after the innovation.

It is worth noting here that for all industries where oil price increases lead
to a decline in sales, the response of inventories is consistent with two stylized
facts documented in Ramey and West (1999): procyclicality and persistence of
inventories. First, in the wake of an oil price innovation, sales fall and inventories
are depleted. Second, the buildup in the inventory–sales ratio is worked down
over a period of roughly two years. What leads to this procyclical movement
of inventories and the persistence in the inventory–sales ratio? Given a convex
cost function, a positive cost of adjusting production, a0 > 0, and a positive
production cost, a1 > 0, the accelerator motive dominates the incentive to smooth
production and thus leads to procycical inventories. Similarly, by allowing for a
strong accelerator motive, the response of the inventory–sales ratio to a negative
demand shock is persistent.

4.3. Can Unanticipated Changes in Inventories Exacerbate the Slowdown
in Economic Activity?

Even though there are great similarities between the structural model and the VAR
responses, there are also some differences. First, the structural estimates imply
that firms respond immediately by reducing inventories, as both inventories and
production smoothly decline to the new steady-state values. Thus, the structural
responses exhibit a larger initial decline in inventories than estimated by the VARs
for chemicals, rubber and plastics, and nondurables. Second, in the medium run,
the structural responses of output appear to be slightly smaller than implied by the
VAR, especially for food, apparel, rubber and plastics, and motor vehicles.

These differences suggest the possibility of an unanticipated and undesired
accumulation of inventories, accompanied by a larger output drop in the following
quarters. Yet this scenario is ruled out by construction in the structural model.
One possibility worth considering is that firms do not correctly anticipate the
effect that oil price innovations would have on sales. For instance, firms may
rely on a simple rule of thumb when forecasting sales and making production
decisions. Hence, they ignore factors believed to have only a small effect on profits
[Akerlof (2002)]. We estimate a model where the process for sales, �St = vs,t , is
given by

�St = λ∗
s1�St−1 + λ∗

s2�St−2 + εs,t . (15)

In contrast with (9), here oil prices do not enter directly in the equation for sales.
Note that the firm will eventually respond to the effects of an oil price innovation
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simply by adapting to the observed values of sales; they use (15) rather than (9)
to form future sales forecasts. Instead, the econometrician uses (15) and (9) to
construct the matrix A in (12) and from this finds the implied value of F(λ∗

s1, λ
∗
s2).

This corresponds to an econometric perspective in which oil prices really do matter
for sales, but firms do not use this fact in making their production and inventory
plans.

Maximum-likelihood estimates and associated standard errors for this modified
framework are reported in Table 1 under the heading “Behavioral model.” The
two new parameters lead to a significant increase in the log likelihood for food,
chemicals, and nondurables (see p-values for the LR test in Table 1 in the row
labeled “Behavioral”). Additional evidence that this behavioral story is consistent
with the observed data can be gathered by comparing the impulse response func-
tions in Figure 2. Note that for all sectors, except food and tobacco, the behavioral
model (dotted red line) implies a more sluggish initial response of inventories to
an oil price innovation. As these inventories are liquidated, they amplify the effect
of the oil price innovation on production.

I conclude this section with a caveat. Clearly, the behavioral model is not the
only alternative to the linear–quadratic inventory model. For some industries, other
specifications might fit the data better. For instance, the assumption that sales are
exogenous might be too strong for some firms, as could be the assumption of
quadratic adjustment costs. I leave the study of alternative modifications for future
research.

5. CONCLUSIONS

A puzzling aspect of the historical correlation between oil prices and aggregate
economic activity is the substantial time lag between the increase in crude oil
prices and the slowdown in real GDP growth. Typically, a decline in economic
activity does not show up until four quarters after an unexpected oil price increase.
This paper uses disaggregated manufacturing data to inquire into the causes of
this time delay.

Using a VAR framework, I uncovered four features of the dynamics of
oil price innovations at the industry level: (1) oil price innovations lead to a
faster slowdown in industry-level output than in aggregate GDP; (2) industry-
level sales decline in response to an oil price increase; (3) the response of the
inventory–sales ratio is “hump-shaped,” with inventories exhibiting procyclical
behavior; (4) the negative effect of an oil price increase is largest for motor
vehicles output, yet significant contractions also occur in industries that are
energy-intensive and for which motor vehicles constitute an important demand
factor.

I then inquired whether these patterns were consistent with a model of firm
behavior. Estimates of a modified linear–quadratic inventory model revealed a
potential role for oil price innovations as a negative demand shifter. With convex
costs and a strong accelerator motive, firms respond to this negative demand
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shock by depleting inventories and curtailing production. Partly because the shock
catches manufacturers by surprise and partly because of their desire to balance the
accelerator and production-smoothing incentives, manufacturers deviate from the
target level of inventories and spread the decline in output over various quarters.
By the end of the first year, further declines in production are evident across
various industries, thus leading the economy into a recession.

NOTES

1. Estimates based on multivariate VARs indicate a two-quarter lag in the response of output to
monetary policy shocks [Christiano et al. (2000)] and an immediate response to technology shocks
[Christiano et al. (2003)].

2. See, for example, Blanchard (1983), West (1986), Eichenbaum (1989), Krane and Braun (1991),
Ramey (1991), Kashyap and Wilcox (1993), West and Wilcox (1994, 1996), Durlauf and Maccini
(1995), and Fuhrer et al. (1995), and—for excellent surveys—West (1995) and Ramey and West
(1999).

3. Note that whereas the term shock usually refers to an independent and identically distributed
(i.i.d.) innovation in the VAR literature, the inventory literature defines a cost shock, Uc,t , as a stochastic
exogenous variation in the cost of production. This stochastic process may have a unit root and could
have both observed and unobserved components [see, e.g., Ramey and West (1999) and Hamilton
(2002)].

4. Although the methods for estimating models with more general cost structures are well known
[Anderson et al. (1996)], they are usually not implemented in the inventory literature because of their
higher computational burden.

5. To convert the inventory data from cost to market prices we follow West (1983). Because of
the change in industry classification from SIC to NAICS in the late 1990s, there is no concordance
between the older 2-digit SIC data and the newer NAICS data. Hence we are not able to expand our
sample beyond 2000:Q1.

6. The Online Appendix is available at http://gatton.uky.edu/faculty/herrera/documents/
OilAppendix.pdf.

7. Because output, Yt , is defined as the sum of sales, St , and inventory investment, �Ht , if
St ∼ I (1) and Ht ∼ I (1), then Yt ∼ I (1).

8. Let

⎡⎣ �ot

�st
ht − st

⎤⎦ =
⎡⎣ 1 0 0

0 1 0
0 −1 1

⎤⎦⎡⎣ �ot

�st
�ht

⎤⎦ +
⎡⎣ 0

0
1

⎤⎦ (ht−1 − st−1);

then the system in (1) can be rewritten as⎡⎣ �ot

�st
�ht

⎤⎦ =
⎡⎣ 1 0 0

0 1 0
0 1 1

⎤⎦A (L)

⎡⎣ uo,t

us,t

uh,t

⎤⎦ −
⎡⎣ 0

0
1

⎤⎦ (ht−1 − st−1) .

9. Note that when chain-aggregated data are used, the arithmetic sum of real sales and real invest-
ment in finished goods inventories constitutes only an approximate measure of output, given that the
price deflators of the two series might differ [Whelan (2000)].

10. See Tables A.2 and A.3 of the Online Appendix.
11. The specification here is similar to that in Ramey and West (1999). However, the notation

differs from theirs in that here production costs are given by (1/2)a1Q
2
t − a1QtUc,t + U2

c,t , whereas
Ramey and West specify production costs as (1/2)a1Q

2
t + QtU

∗
c,t . From the point of view of the

firm, the term U2
c,t is a constant that does not affect the first-order conditions. The normalization

−a1QtUc,t = QtU
∗
c,t only simplifies the algebra.

12. See Hamilton (2002) for a detailed discussion of the interpretation of cointegration in the
linear–quadratic model.
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13. A detailed description of the optimization problem in the matrix form can be found in the Online
Appendix.

14. The parameters a0, a1, and a2 in the cost function (4) are only identified to a scale; thus the need
for the normalization.
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