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Abstract

The nonlinear Compton scattering by a linearly polarized laser pulse of finite duration is analyzed, with a focus on the spin
effects of target electrons. We show that, although the Compton scattering accompanied by the electron no-spin flip is
dominant, for some energy regions of Compton photons their emission is dominated by the process leading to the
electron spin flip. This feature is observed for different pulse durations, and can be treated as a signature of quantum
behavior. Similar conclusions are reached when analyzing the scattered electron energy spectra. This time, the
sensitivity of spin effects to the carrier-envelope phase of the driving pulse is demonstrated. The possibility of electron
acceleration by means of Compton scattering is also discussed.
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1. INTRODUCTION

Compton scattering of a laser beam with relativistic electrons
has become an efficient source of highly polarized, nearly
monoenergetic, and tunable high-energy photons. These
Compton photon beams have various industrial, medical,
and scientific applications. Therefore, it is of great impor-
tance to theoretically predict spectral and spatial distributions
of Compton photon beams, and to control their properties
using the incident beam parameters. While the theory of a
Compton process induced by a monochromatic plane wave
laser field is well documented in the literature (for recent re-
views, see Di Piazza et al., 2012; Ehlotzky et al., 2009; Rash-
chupkin et al., 2012), there is a need to fully understand the
situation when a finite laser pulse collides with the target
particles.
In the first analysis of a Compton process beyond the

monochromatic plane wave approximation, the scattering
by a Klein-Gordon particle was considered (Neville &
Rohrlich, 1971). The Compton scattering by a Dirac particle
for long laser pulses, in which case the slowly-varying en-
velope approximation is justified, was considered (Nar-
ozhny & Fofanov, 1996). For intense, few-cycle pulses,
which are used in modern experimental setups, a more ade-
quate treatment of the temporal structure of an incident laser

pulse is necessary. Such a treatment has been used in very
recent papers (Boca et al., 2012a, 2012b; Boca & Florescu,
2009; 2011; Heinzl et al., 2010; Krajewska & Kamiński,
2012a; Mackenroth & Di Piazza, 2011; Mackenroth et al.,
2010; Seipt & Kämpfer, 2011). In these papers, the laser
field has been modeled by a plane-wave-fronted pulse
(PWFP), which has finite extension in the propagation di-
rection but has infinite extension in the transverse direction.
As argued (Bulanov et al., 2011), this approximation is jus-
tified for highly energetic electrons moving in a laser pulse,
since the action of the laser ponderomotive force pushing
these electrons aside with respect to the pulse propagation
direction can be neglected. For completeness, let us also
mention that such a description has been proposed by
Neville and Rohrlich (1971).

Various aspects of Compton scattering; including the
carrier-envelope phase effects, the shape effects, the sensi-
tivity of the Compton radiation to the incident pulse duration,
were analyzed (Boca et al., 2012a, 2012b; Boca & Florescu,
2009; 2011; Heinzl et al., 2010; Krajewska & Kamiński,
2012a; Mackenroth & Di Piazza, 2011; Mackenroth et al.,
2010; Seipt & Kämpfer, 2011). However, in only one of
these papers were the electron spin effects in Compton scat-
tering by a pulsed laser field explicitly studied (Boca et al.,
2012b). Prior investigations of spin effects in Compton
scattering concerned a monochromatic plane wave field
(Bolshedvorsky & Polityko, 2000; Ivanov et al., 2004;
Panek et al., 2002). It followed from these investigations
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that the processes which are not accompanied by the electron
spin flip dominate above those which are. It is the aim of the
present paper to check whether this is also the case for the
Compton process induced by a finite pulse. More impor-
tantly, we will investigate whether the spin effects vary
with the incident pulse duration or with its carrier-envelope
phase. For this purpose, we will consider the linearly polar-
ized laser field impinging on the target electron. This is in
contrast to the situation analyzed in (Boca et al., 2012b),
where the circularly polarized laser pulse was considered.
Let us also note that a lot of effort has been made in the lit-
erature to describe the classical counterpart of Compton scat-
tering, which is Thomson scattering (Lau et al., 2003; Popa,
2011; 2012; Umstadter, 2003). It appears that for some par-
ameters of the colliding beams, the Compton scattering spec-
tra averaged over the electron spin give exactly the same
results as Thomson scattering (Boca & Florescu, 2011;
Heinzl et al., 2010; Seipt & Kämpfer, 2011), i.e., for those
parameters the spin effects do not play a significant role.

2. THEORY

In this paper, the formulas are given in units such that ħ= 1,
whereas the numerical results are presented in relativistic
units in which ħ=me= c= 1, where me is the electron rest
mass. We use the light-cone coordinates (Krajewska & Ka-
miński, 2012a). Namely, for a given space direction deter-
mined by a unit vector n and for an arbitrary four-vector a
we keep the following notations: a∥= n · a, a−= a0− a∥,
a+= (a0+ a∥)/2, and a⊥= a− a∥n. For the four-vectors,
we use both the contravariant (a0, a1, a2, a3) and the standard
(a0, ax, ay, az) notations.
Using the S-matrix formalism of quantum electrodynamics

(QED), we derive that the probability amplitude for the
Compton process, e−piλi � e−pfλf + γKσ, with the initial and
final electron momenta and spin polarizations piλi and pfλf,
respectively, equals

A(e−piλi � e−pfλf + γKσ) = −ie ∫ d4x j(++)
pfλf , piλi

(x) · A(−)
Kσ (x), (1)

where Kσ denotes the Compton photon momentum and
polarization. Here, we consider the case when both the
laser pulse and the Compton photon are linearly polarized.
In Eq. (1),

A(−)
Kσ (x) =

���������
1

2ε0ωKV

√
εKσe

iK·x, (2)

where V is the quantization volume, ε0 is the vacuum electric
permittivity, ωK= cK0= c|K| (K · K= 0), and εKσ= (0, εKσ)
is the polarization four-vector satisfying the conditions,

K · εKσ = 0, εKσ · εKσ′ = −δσσ′ , (3)

for σ, σ′ = 1, 2. Moreover, j(++)
pfλf ,piλi

(x) is the matrix element of

the electron current operator with its n-component equal to

[j(++)
pfλf ,piλi

(x)]n = �ψ(+)
pfλf

(x)γnψ(+)
piλi

(x). (4)

Here, ψpλ
(+)(x) is the Volkov solution of the Dirac equation

coupled to the electromagnetic field (Krajewska & Kamiński,
2010; Volkov, 1935):

ψ(+)
pλ (x) =

������
mec2

VEp

√
1− e

2k · p ∕A∕ k
( )

u(+)
pλ e

−iS(+)
p (x), (5)

with

S(+)
p (x) = p · x + ∫

k·x eA(f) · p
k · p − e2A2(f)

2k · p
[ ]

df. (6)

Moreover, Ep= cp0, p= ( p0, p), p · p=me
2c2, and upλ

(+) are
the free-electron bispinor normalized such that

�u(+)
pλ u(+)

pλ′ = δλλ′ . (7)

The four-vector potential A(k · x) in Eq. (5) represents an
external electromagnetic radiation generated by lasers, in
the case when a transverse variation of the laser field in
a focus is negligible (Bulanov et al., 2011). In other
words, A(k · x) represents the plane-wave-fronted pulse. In
this case, k · A(k · x)= 0 and k · k= 0, which allows one
to exactly solve the Dirac equation in the electromagnetic
field.
From now on, we use the Coulomb gauge for the radiation

field, in which case the electric and magnetic field com-
ponents are equal to

EEEEE(k · x) = −∂tA(k · x) = −ck0A′(k · x), (8)

BBBBB(k · x) = ∇∇∇∇∇ × A(k · x) = −k × A′(k · x), (9)

where “prime” means the derivative with respect to k · x. Be-
cause the electric field generated by lasers has to fulfill the
following condition,

∫
∞
−∞ EEEEE(ck0t − k · r)dt = 0, (10)

we have also that

lim
t�−∞

A(ck0t − k · r) = lim
t�∞

A(ck0t − k · r). (11)

If a pulse lasts for a period Tp, its fundamental frequency
is defined as ω= 2π/Tp and the laser field four-vector is
k= k0(1, n). Here, ω= ck0 whereas n is a unit vector defin-
ing a direction of the laser pulse propagation. In order to
interpret the momentum p in the Volkov solution (5) as the
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asymptotic momentum of the free electron, we take

A(k · x) = A0εf (k · x), (12)

with the shape function f(k · x) such that f(k · x)= 0 for k · x<
0 and for k · x> 2π. In addition, ε is the linear polarization
vector of the laser field such that ε2=−1 and k · ε= 0. Note
that the last conditions do not uniquely determine ε. It can be
shown that the transformation:

ε � ε+ a(k · x)k, (13)

with an arbitrary differentiable function a(k · x), does not violate
these conditions provided that k · k= 0, which is indeed the
case. Note that Eq. (13) is a special case of the gauge transform-
ation. The observable quantities, like the probability distri-
butions that we derive below, should be invariant with
respect to such a transformation. The invariance with respect
to the gauge transformation, Eq. (13), permits us to choose ε
as the spacelike vector, since its zeroth-component can be can-
celed by the gauge transformation,

ε � ε− ε0

k0
k. (14)

The same concerns εKσ. For this reason, we keep ε and εKσ as
the spacelike four-vectors.
The probability amplitude for the Compton process (1)

becomes

A(e−piλi � e−pfλf + γKσ) = i

��������������
2παc(mec2)2

E pfE piωKV3

√
A, (15)

where α is the fine-structure constant, α= e2/(4πε0c), and

A = ∫ d4x e−i(S(+)
pi
(x)−S(+)

pf
(x)−K·x)

× �u(+)
pfλf

(1− μ
mec

2pf · k f (k · x) ∕ ε∕ k) ∕ εKσ

× (1+ μ
mec

2pi · k f (k · x) ∕ ε∕ k)u
(+)
piλi

.

(16)

Here, we have introduced the scaled amplitude of the vector
potential,

μ = |eA0|
mec

, (17)

which measures the peak intensity of the laser field. After
some algebraic manipulations, we find that a phase present
in Eq. (16) equals

S(+)
pi
(x)− S(+)

pf
(x)− K · x = ( �pi − �pf −K) · x+ G(k · x), (18)

where the laser-dressed momenta have been introduced,

�p = p− μmec
p · ε
p · k 〈f 〉k +

1
2
(μmec)

2 〈f
2〉

p · k k. (19)

Since �p is polarization-dependent one observes asymmetries
in angular distributions of the Compton photons (Krajewska
& Kamiński, 2012a). Here, we understand that

〈f j〉 = 1
Tp

∫
Tp+k·r/ck0
k·r/ck0 dt [f (ck0t − k · r)]j, (20)

where j= 1, 2. In Eq. (18), we have also introduced

G(k · x) = ∫
k·x
0 df −μmec

pi · ε
pi · k

− pf · ε
pf · k

( )
(f (f)− 〈f 〉)

[

+ 1
2
(μmec)

2 1
pi · k

− 1
pf · k

( )
( f 2(f)− 〈f 2〉)

]
. (21)

Note that the space-time integral (16) can be expressed in
term of integrals

C(n) = ∫ d4x[f (k · x)]ne−i( �pi − �pf −K)·x−iG(k·x), (22)

where n= 0, 1, 2. Passing to the light-cone variables (Kra-
jewska & Kamiński, 2012a) we see that the integral over
x− is limited to the finite region, 0 ⩽ x− ⩽ 2π/k0, provided
that n is not equal to 0. For n= 0, we need to transform
the respective integral to a more suitable form, which is
done by applying the Boca-Florescu transformation (Kra-
jewska & Kamiński, 2012a). This leads to

C(0) = ∫ d4x ãf (k · x)+ b̃f
2
(k · x)

( )
× e−i( �pi − �pf −K)·x−iG(k·x), (23)

where

ã = k0

Q0
μmec

pi · ε
pi · k

− pf · ε
pf · k

( )
, (24)

b̃ = − k0

2Q0
(μmec)

2 1
pi · k

− 1
pf · k

( )
, (25)

with the four-vector Q defined as

Q = pi − pf − K. (26)

The above equations define parameters ã and b̃, provided that
Q0≠ 0. We will show below that this condition is always sat-
isfied (see, Eq. (35)).

Note that the laser-dressed momenta (19) are gauge-
dependent, as they change their values if the gauge
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transformation, Eq. (13), with a constant a is applied. For the
first time, such a definition of the laser-dressed momenta has
been introduced in the context of Compton scattering (Kra-
jewska & Kamiński, 2012a). At the same time, we would
like to note that in the formulation presented above only
the difference �pi − �pf appears. The point being that this
difference is gauge-invariant. Therefore, we can redefine
the laser-dressed momenta such that

�p � �p− s0 k − s1ε, (27)

with, in principle, arbitrary real constants s0 and s1. These
constants can still depend on time-averaged shape functions
(namely, 〈f〉 or 〈f2〉), however they should vanish for a van-
ishing laser field in order to keep the correspondence to the
free particle case. Note that the new definition (27) preserves
the difference �pi − �pf . Therefore, one can use this fact to
define the gauge-invariant laser-dressed momenta. By
making the substitution ε→ ε+ ak (where a is constant),
we find that the dressed momenta do not depend on a pro-
vided that s1=−μmec〈f〉, while retaining an arbitrary s0.
Let us stress, however, that such a modification of the mo-
mentum dressing does not affect any observable quantity,
and should be considered only as a mathematical operation.
G(k · x), given by Eq. (21), is a periodic function of k · x,

meaning that G(0)=G(2π). Hence, we can make the follow-
ing Fourier expansion,

[f (k · x)]ne−iG(k·x) =
∑∞

N=−∞

G(n)
N e−iNk·x. (28)

Using this series expansion we can rewrite Eq. (16) such that

A =
∑
N

DN ∫ d4xe−i( �pi − �pf −K+Nk)·x, (29)

where

DN = �u(+)
pfλf

∕ εKσu(+)
piλi

G(0)
N

+ 1
2
μmec

1
pi · k

�u(+)
pfλf

∕ εKσ∕ ε∕ ku(+)
piλi

(

− 1
pf · k

�u(+)
pfλf

∕ ε∕ k∕ εKσu(+)
piλi

)
G(1)

N

− (μmec)2

4(pi · k)(pf · k) �u
(+)
pfλf

∕ ε∕ k∕ εKσ∕ ε∕ ku(+)
piλi

G(2)
N , (30)

and where GN
(0) must be replaced by ãGN

(1)+ b̃GN
(2), as it fol-

lows from the Boca-Florescu transformation (23). Now, per-
forming the space-time integration in Eq. (29) and keeping in
mind that 0 ⩽ x− ⩽ 2π/k0, we arrive at

A =
∑
N

(2π)3δ(1)(P−
N )δ

(2)(P⊥
N )DN

1− e−2πiP+
N /k

0

iP+
N

, (31)

where

PN = �pi − �pf −K + Nk. (32)

Note that PN
− and PN

⊥ are independent of N.

2.1. Compton-Photon Energy Distribution

In order to solve the momentum conservation conditions im-
posed by the delta functions in Eq. (31), let us introduce the
four-vector w= pi− K, so that

p0f = p∥f + w−, p⊥f = w⊥. (33)

Since the electron mass is different from zero, it follows from
the first equation that w−> 0, and

p∥f = (mec)2 − (w−)2 + w2
⊥

2w− = K · pi
w− + w∥, (34)

which means that

Q0 = p0i − p0f − K0 = p∥i − p∥f − K∥ = − pi · K
w− < 0. (35)

This is exactly the applicability condition for the Boca-
Florescu transformation.
Since PN

⊥ and PN
− do not depend explicitly on N, and

∫ d3pf δ
(1)(P−

N )δ
(2)(P⊥

N ) =
k0p0f
k · pf , (36)

we derive the differential distribution of energy emitted as
Compton photons with polarization σ in the space direction
nK, provided that the initial and final electron momentum
and spin polarization are piλi and pfλf, respectively,

d3EC(nKσ; piλi; pfλf )
dωKd2ΩK

= α(mec)2k0(K0)2

(2π)2p0i (k · pf )

×
∑
N

DN
1− e−2πiP0

N/k
0

P0
N

∣∣∣∣∣
∣∣∣∣∣
2

. (37)

Here, one has to remember that the electron final four-
momentum pf is such that

p⊥f = w⊥, (38)

p∥f = (mec)2 + (w⊥)2 − (w−)2

2w− , (39)

p0f =
(mec)2 + (w⊥)2 + (w−)2

2w− , (40)

which follows from the four-momentum conservation con-
ditions. One can also check that the above solution of the
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momentum conservation conditions, PN
−= 0 and PN

⊥= 0,
satisfies the on-mass shell relation, pf · pf= (mec)

2.

2.2. Electron Probability Distribution

In order to obtain the energy-angular distribution of the final
electrons scattered in the Compton process we have to solve
the above-mentioned momentum conservation conditions for
the given initial and final electron momenta. Elementary al-
gebra shows that the Compton photon momentum K is

K0 = (q−)2 + (q⊥)2

2q−
, K∥ = − (q−)2 − (q⊥)2

2q−
, K⊥ = q⊥, (41)

where q= pi− pf. Since the propagation of the Compton
photon cannot be parallel to the propagation of the laser
beam (hence K−> 0), we get the condition q−> 0, which
puts restrictions on the final electron momentum. Indeed, it
leads to the inequality

x2 sin2 θf − 2xp−i cos θf + (mec)
2 − (p−i )

2 < 0, (42)

in which x= |pf|> 0, and θf is the angle between the momen-
tum pf and the direction of propagation of the laser pulse. In
order to have real solutions of this inequality, we get the re-
strictions for θf,

(p−i )
2 − (mec)

2 sin2 θf > 0, (43)

as well as for x,

max (0, x−)< x = |pf |<max (0, x+), (44)

where

x± =
p−i cos θf ±

������������������������
(p−i )

2 − (mec)2 sin
2 θf

√
sin2 θf

. (45)

Using standard methods based on the scattering matrix
element, we can derive the expression for the energy-angular
probability distribution of final electrons. Since

∫ d3Kδ(1)(P−
N )δ

(2)(P⊥
N ) =

k0K0

k · K , (46)

we obtain that this distribution is given as

d3P(pf ; λi, λf , σ)
dE pfd

2Ωf
= α(mec)2k0|pf |

(2π)2E pi (k · K)

×
∑∞

N=−∞

DN
1− e−2πiP+

N /k
0

P+
N

∣∣∣∣∣
∣∣∣∣∣
2

, (47)

where λi, λf, and σ label the spins of the initial and final

electrons, and the polarization of the Compton photon,
respectively.

2.3. Shape Function

For a particular realization of the theory derived above, we
choose the laser pulse determined by the four-vector
potential,

A(k · x) = A0Bεf (k · x). (48)

Here, A0 is related to the parameter μ (Eq. (17)), whereas the
constant B is adjusted such that the energy contained in
the laser pulse is constant (irrespective of its duration). For
the shape function, we choose

f ′(k · x) = NA sin
2 kL · x

2Nosc

( )
sin (kL · x+ χ)

= NA sin
2 k · x

2

( )
sin (Nosck · x+ χ), (49)

for 0 ⩽ kL · x ⩽ 2πNosc, and 0 otherwise. The pulse duration
equals Tp= 2πNosc/ωL, hence kL= (ωL/c)(1, n)= Nosck.
Moreover, ωL is the carrier frequency of the laser pulse
whereas Nosc (where Nosc= 1, 2, …) defines the number of
field oscillations contained in the pulse. Here, χ is the carrier-
envelope phase. Note that the shape function (49) determines
the electric and magnetic fields of the laser pulse, Eqs. (8)
and (9). Thus, the shape function for the four-vector potential
equals

f (k · x) = ∫
k·x
0 dff ′(f), (50)

and vanishes for k · x< 0 and k · x> 2π. In Eq. (49), the nor-
malization constant NA is defined such that

1
Tp

∫
Tp+k·r/ck0
k·r/ck0 dt[f ′(ck0t − k · r)]2 = 1

2
, (51)

where “prime” still means the derivative with respect to the
argument k · x. Therefore, if we keep the energy within
the pulse fixed, we need to scale the maximum value of
the vector potential by

�����
Nosc

√
when changing the number

of laser field oscillations within the pulse, Nosc. In other
words, B = �����

Nosc
√

has to be chosen in Eq. (48).

3. SPIN EFFECTS

3.1. Compton-Photon Energy Distribution

The relativistic quantum theory formulated in Section 2 is
relativistically invariant, and so we can arbitrarily choose
the reference system in which we perform our calculations.
For numerical illustration, we consider the reference
system such that the laser pulse propagates along the z-axis

Spin effects in nonlinear Compton scattering 507

https://doi.org/10.1017/S0263034613000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034613000165


(n= ez) and the electron has the initial momentum
pi=−10−4mecez, i.e., we consider the head-on configur-
ation. More importantly, since we choose pi≠ 0, it is mean-
ingful to define the electron helicity. The carrier frequency
of the incident laser pulse in the chosen reference frame is
ωL= 0.1mec

2, and so the process must be treated on
quantum-mechanical grounds. In addition, we consider a
laser pulse characterized by the parameters μ= 10 and χ= 0.
We assume that the Compton photon is scattered in the direc-
tion nK specified by the polar and azimuthal angles θK= 0.2π
and φK= 0 (in radians) which defines unambiguously the
(xz)-plane, that we call the scattering plane.
We consider the linearly polarized vectors of the laser pulse

ε and the Compton photon εK in four different configurations,
each of them either lying in the (xz)-plane or being perpendicu-
lar to this plane. From now on, λi and λf will denote the initial
and final helicities of the electron. They can be +1 if the elec-
tron spin projection on its propagation direction is+1

2, and −1
otherwise. In the presented figures, we will show the results for
two cases: when the electron helicity does not change during
the process (λiλf=+1) and when it does change (λiλf=−1)
due to the Compton photon emission. The results for different
pulse durations will be shown.
In Figure 1, we show the energy spectra of Compton radi-

ation which is emitted when the laser pulse polarization
vector lies in the scattering plane, and the laser pulse contains
four oscillations (Nosc= 4). Comparing all panels, we
observe the dominant contribution for those Compton pho-
tons which are also polarized in the scattering plane (see,
the upper panels). In this case, the process which conserves
helicity of the colliding electron dominates for small energies
of emitted photons, when ωK< 2mec

2. For larger Compton
photon energies, ωK> 2mec

2, both processes (with and with-
out the electron spin flip) seem to occur with comparable
probabilities. To see a more detailed structure of these distri-
butions we present them in Figure 2 over a very narrow range
of ωK. These distributions exhibit very rapid oscillations,
which is a typical feature of the Compton radiation spectra
(Boca & Florescu, 2009; Krajewska & Kamiński, 2012a;
Panek et al., 2002; Seipt & Kämpfer, 2011). Interestingly,
there are some energies ωK for which the Compton radiation
is predominantly emitted in the process that does not con-
serve the colliding electron helicity. This is in contrast to
the case when Compton scattering is induced by a monochro-
matic plane wave laser field (Panek et al., 2002) or even by a
finite laser pulse of circular polarization (Boca et al., 2012b).
We anticipate therefore that this effect is most pronounced for
a linearly polarized laser pulse colliding with a target
electron.
As one can see in Figure 1, the emission of photons polar-

ized perpendicularly to the scattering plane is suppressed as
compared to the emission of photons polarized in that plane.
On contrary, in Figure 3 we demonstrate that photon emis-
sion in both directions is comparable. We would like to
stress that this is a purely quantum effect and so it cannot
be observed in Thomson scattering. Here, similar to Figure 1,

the no-spin-flipping process is by far more efficient over
the shown range of Compton photon energies, i.e., when
ωK < 2mec

2.
Note that Figure 2 unveils regimes in which the Compton

radiation is mostly emitted via a spin-flipping process. The
question arises whether the demonstrated frequency differ-
ences could be resolved experimentally. To answer this ques-
tion, let us keep in mind that the presented spectra relate to a
particular choice of the reference frame. The parameters used
in this section, when transformed to the laboratory frame
(LAB), correspond to the head-on collision of a
Ti:Sapphire laser beam (ωL

LAB= 1.548 eV) with a highly re-
lativistic electron such that |pi

LAB|= 7.9 GeV/c. Due to their
interaction, a highly energetic photon is produced; for
instance, with energy ωK

LAB= 3 GeV and at the angle
θK
LAB= π − 6 × 10−5π if ωK= 2mec

2 and θK= 0.2π. What
is however more important (see, Figure 2), the spin-flipping
configuration is preferable over the energy interval of

Fig. 1. (Color online) The energy spectra of Compton photons (37) emitted
in the head-on collision of a short laser pulse and the relativistic electron. The
laser pulse propagates in the z-direction whereas its polarization vector ε is in
the (xz)-plane. In addition, the central frequency of the laser field is ωL=
0.1mec

2, its strength is determined by the parameter μ= 10, and the carrier-
envelope phase is χ= 0. The results are for the four-cycle laser pulse (Nosc=
4). The electron initial momentum is pi=−10−4mecez. The Compton
photon is detected in the direction specified by the polar and azimuthal
angles θK= 0.2π and φK= 0 (in radians). While the upper panels are for
the case when both the laser pulse and the Compton photon are polarized
in the same direction, the lower panels are for the case when both vectors
are perpendicular to each other. At the same time, the left column represents
the results for the case when the electron helicity is conserved during the pro-
cess (λiλf=+1), while the right column represents the results for the case
when the electron helicity flips due to the Compton photon emission
(λiλf=−1).
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Compton photons roughly 0.03mec
2 (in the chosen reference

frame) or, equivalently, 45 MeV (in the laboratory frame).
We believe therefore that even in view of finite energy
spread and emittance of available electron beams, it is poss-
ible to resolve such differences experimentally.
As we have mentioned above, the characteristic property of

Compton radiation spectra are very rapid oscillations. These
oscillations are due to multiphoton interferences which are

characteristic for other strong-field QED processes as well.
For the Compton scattering by a long laser pulse, we also
observe an additional structure, as shown in Figure 4. The re-
sults presented in Figure 4 are for the 32-cycle pulse polar-
ized in the scattering plane. In this case, there appears an
additional structure in the region of low-energy Compton
photons. The same is present in Figure 5 where the
32-cycle pulse is polarized in the direction perpendicular to
the scattering plane. We suspect that this structure results
from a destructive interference between the Compton radi-
ation emitted during the raise of the pulse and its fall off,
which does not occur for short pulses (see, Figs. 1 and 2).
Moreover, in Figure 5 we observe that the envelope of oscil-
lations exhibits additional modulations. Other than that, the
other features discussed above for Compton scattering by a
four-cycle pulse stay the same, i.e., they do not depend on
the pulse duration. Note that the aforementioned modulations
(Fig. 5) are typical multiphoton modulations observed for
processes induced by long laser pulses. Such multiphoton
peaks in Compton scattering has been observed (Boca &
Florescu, 2009, 2011; Seipt & Kämpfer, 2011; Krajewska
& Kamiński, 2012a).

3.2. Electron Probability Distribution

Next, we would like to discuss the electron probability distri-
butions, as they allow one to establish a closer connection to
an experiment measuring only the properties of scattered

Fig. 3. (Color online) The same as in Figure 1 but the polarization vector of
the incident laser pulse ε is perpendicular to the (xz)-plane.

Fig. 4. (Color online) The same as in Figure 1 but for the 32-cycle incident
laser pulse (Nosc= 32).

Fig. 2. (Color online) The same as in the top panels of Figure 1 but over a
small region of Compton photon energies. The detailed comparison of
energy spectra is shown for the Compton process which conserves helicity
of the colliding electron (solid line) and which does not (dashed line). For
some energies, the Compton radiation is predominantly emitted in the pro-
cess which does not conserve the target electron helicity.
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electrons and letting the scattered photons to pass unob-
served. The presented electron distributions were calculated
based on theory introduced in Section 2.2. As specified in
the previous section, λi and λf denote here the initial and
final electron helicities; in particular, λiλf= 1 relates to the
process which conserves the electron spin whereas
λiλf=−1 is for otherwise.
In Figure 6, we show the probability distributions of final

electron which is scattered off a short laser pulse in the coun-
terpropagating setup; namely, we choose the reference frame
in which the pulse propagates in the z-direction (n= ez)
whereas the initial electron moves with the opposite momen-
tum pi=−10−4mecez. In the chosen reference frame, the
carrier frequency of the laser pulse is ωL= 0.1mec

2. The
maximum strength of the field is characterized by the par-
ameter μ= 10, and the carrier-envelope phase is χ= 0.
The Compton photon is scattered in the y-direction, while
the final electron direction is described by the angles θf=
0.2π and φf= 0 (in radians). This time, we define the scatter-
ing plane with respect to the initial and final electron momen-
ta, which is still the (xz)-plane. As one can see in Figure 6, the
electron scattering occurs predominantly through the
no-spin-flipping process, which happens for both considered
configurations. If we change the carrier-envelope phase to
χ= π/2, as presented in Figure 7, the spin-flipping process
becomes dominant if εK∥ε. Therefore, one can control the
properties of the process by changing the phase χ.
In closing this section, we would like to point out that

usually the process with λiλf=−1 is suppressed with respect

to the no-spin-flipping process. However, for some particular
geometries, in particular, when the laser-field polarization is
perpendicular to the scattering plane, we have found the op-
posite situation. This has been illustrated in Figure 7 (upper
row) but it is even more clear in Figure 8. In the latter
case, the results are shown in a different reference frame, in
which the initial momentum of the electron is pi=−mecez.
In particular, when comparing the panels in the upper row
of Figure 8, one observes roughly an order of magnitude
enhancement of the probability distribution for the spin-
flipping process. Even though less pronounced, such an en-
hancement is also observed in the lower panel of this
figure over the whole range of energies.

4. REMARKS ON THE ELECTRON
ACCELERATION

A lot of attention in literature has been devoted to electron
acceleration by lasers, which includes wakefield acceleration
in plasma (Esarey et al., 2009; Malka, 2012; Tajima &
Dawson, 1979; Umstadter, 2003), electron acceleration by
a standing wave (Galkin et al., 2012; Korobkin et al.,
2013), or Thomson scattering in an all-optical setup (Kulagin
et al., 2008). Here, we would like to comment on the possi-
bility of electron acceleration via the Compton process.

Fig. 5. (Color online) The same as in Figure 4 but the polarization vector of
the laser pulse ε is perpendicular to the (xz)-plane.

Fig. 6. (Color online) The probability distributions of final electron after it
scatters off a short laser pulse, Eq. (47). The presented results are in the re-
ference frame in which the laser pulse propagates in the z-direction, μ= 10,
ωL= 0.1mec

2, Nosc= 4, χ= 0, and the polarization vector points in the
y-direction. The electron initial momentum is pi=−10−4mecez, and the
polar and azimuthal angles of the final electron are θf= 0.2π and φf= 0
(in radians).
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As is known from classical electrodynamics, electrons in-
teracting with a plane-wave-fronted pulse cannot be acceler-
ated or decelerated. We meet a completely different situation
in QED, where during the Compton process energies of the
initial and final electrons differ from each other. Usually,
when studying the Compton effect, one is mostly interested
in efficient creation of photons as energetic as possible.
This goal is achieved by decelerating the high-energy elec-
tron. The natural question arises: Is it possible to accelerate
already high-energy electron beams by means of the
Compton process in short laser pulses? The answer to this
question (within the PWFP approximation) is positive, as fol-
lows from our discussion of the conservation conditions.
Indeed, let us choose the reference frame, the computational
reference frame, in which electrons are initially at rest, hence
p−i = mec. In this frame, there are restrictions imposed on
possible momenta of final electrons

0< |pf |< pmax = 2mec
cos θf
sin2 θf

, (52)

where cosθf> 0 and θf is the angle between the laser pulse
and final electron propagation directions. Therefore, the elec-
tron energy cannot exceed its maximum value equal to

Emax = mec
2(1+ 2 cot2 θf ), (53)

which is larger than the initial electron energy mec
2. By

making the Lorentz boost along the laser field propagation
such that its central frequency ωL scales to the laboratory
one as

ωLAB
L = γ(1− β)ωL =

������
1− β

1+ β

√
ωL, (54)

the above maximum energy transforms into

ELAB
max = mec

2γ[1+ 2(1− β) cot2 θf ]. (55)

Hence, the maximum relative gain of energy by electrons in
the Compton scattering is

δLABmax = ELAB
max

mec2γ
− 1 = 2(1− β) cot2 θf > 0, (56)

and can be arbitrary large for sufficiently small θf.
In Figure 9 we present the relative gain of the electron

energy in the laboratory frame as a function of the momen-
tum of a scattered electron in the computational frame. We
observe that for sufficiently small scattering angles θf the
electron can significantly be accelerated, but this process is
accompanied by the enormous increase of the Compton
photon energy, even larger than the initial electron energy.
Due to this fact, probabilities for the acceleration process
are many orders of magnitude smaller than the probabilities

Fig. 8. (Color online) The same as in Figure 7 but in the reference frame
where pi=−mecez. For the considered parameters, the spin-flipping process
dominates.

Fig. 7. (Color online) The same as in Figure 6 but for χ= π/2.
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in which electrons are decelerated. In this sense, although
possible, the Compton scattering in short laser pulses
cannot be considered as an efficient mechanism for the accel-
eration of electrons.

5. CONCLUSIONS

We investigated the Compton scattering by short laser pulses,
with the emphasis on spin effects. The head-on configuration
of the colliding electron and the laser pulse was considered.
The laser pulse was treated as a plane-wave-fronted field,
which is along the lines developed in our recent papers (Kra-
jewska & Kamiński, 2012a; 2012b). Using this model to de-
scribe the incident laser field, we demonstrated that the
Compton photon energy spectra are very rapidly oscillating
functions which are modulated if the incident laser pulse is
long enough. Our numerical results showed that, in general,
the Compton photon emission is most pronounced if the
polarization vector of the emitted radiation is in the scattering
plane and there is no spin-flip of the colliding electron. There
exists, however, some energy intervals where the Compton
photon emission with the electron spin-flip is dominant; in

contrast to Compton scattering by a monochromatic plane
wave laser field (Panek et al., 2002). As we demonstrated,
the same is true for the electron energy spectra. When analyz-
ing the latter, we pointed out that there is a possibility to
manipulate with spin effects by changing the carrier-
envelope phase of the incident laser pulse. Finally, we dis-
cussed the possibility of electron acceleration by means of
Compton scattering by short laser pulses.
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