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Breast cancer gene discovery
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Many important advances have been made in the past decade in understanding
breast cancer at the molecular level, and two important high-penetrance breast
cancer genes – BRCA1 and BRCA2 – have been identified. However, germline
mutations in these two genes are responsible for only a minority (~5%) of all
breast carcinomas, and the genes responsible for the majority of breast cancer
cases remain to be identified. There is evidence that there are additional
high-to-moderate-penetrance breast cancer susceptibility genes but, given the
high degree of molecular heterogeneity in breast carcinomas, it is likely that
each of these genes is responsible for only a subset of cases. There are also
many candidate low-penetrance breast cancer genes and many more are likely
to be identified. In addition to germline, and somatic, sequence alterations,
epigenetic changes in many genes are likely to play an important role in the
pathobiology of breast cancer. Recently developed genomic technologies and
the completion of the human genome sequence provide us with powerful tools
to identify novel candidate breast cancer genes that could play an important
role in breast tumourigenesis.
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What is a breast cancer gene? In a strict definition,
a breast cancer gene is a gene in which germline
mutations or polymorphisms confer increased
susceptibility to breast cancer. In a broader sense,
breast cancer genes are genes that play a causative
role in the pathogenesis of breast cancer even if
they do not have any germline or somatic
sequence alterations. This latter group includes
genes that are aberrantly expressed in breast
tumours due to epigenetic changes (such as
methylation), and genes that may be abnormally
activated/inactivated at the protein level. Some
of these genes are specific for breast cancer,
whereas others are involved in other cancer types
as well.

Breast cancer is one of the most common
cancers diagnosed in women worldwide and is a
leading cause of cancer-related death (Ref. 1).

Therefore, the identification of breast cancer genes
is a major scientific and social problem. The
identification of such genes will not only enable
the identification of individuals at high risk, but
also aid in the design of more-effective therapies
for breast cancer prevention and treatment.
Pathological stages in breast tumourigenesis,
along with an indication of underlying genetic
alterations, are shown in Figure 1. Similar to the
development of other cancer types, breast
tumourigenesis is a multistep process; it starts
with ductal hyperproliferation and progresses
into in situ, then invasive, and finally metastatic
carcinomas.

Breast cancer susceptibility is genetically
determined, but the penetrance (i.e. the frequency
of individuals with a specific genotype who
manifest the trait in the phenotype) of known
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genes that predispose to breast cancer varies
widely (Ref. 2). A minority of breast cancer cases
are attributable to inherited mutations in rare
high-penetrance breast cancer susceptibility genes
such as BRCA1 and BRCA2 (i.e. individuals with
mutations in these genes frequently develop
breast cancer), but the majority of cases are
probably due to multiple low-penetrance genes
(Refs 2, 3, 4). This assumption is based on multiple
studies suggesting that most of the excess familial
risk of breast cancer is genetic, yet known genes
explain fewer than 25% of this excess risk,
indicating that other breast cancer genes remain
to be identified (Refs 5, 6, 7, 8). Analyses of genetic
models to explain familial breast cancer risk that
is not due to BRCA1 and BRCA2 suggest that the
most likely scenario is a polygenic model with many
susceptibility alleles, although the existence of an
autosomal recessive mendelian allele cannot be
excluded (Refs 9, 10). It is the interaction between
these genes and environmental factors (e.g.
geographical location, smoking, fruit/vegetable
consumption) that determines the individual’s
overall breast cancer risk. In this sense, breast
cancer, similar to diabetes, asthma or heart
disease, is a complex genetic disease (Ref. 11).

Family linkage studies are useful for the
identification of high-penetrance, and perhaps
even moderate-penetrance, breast cancer genes,
whereas the identification of low-penetrance
genes requires a combination of approaches
including candidate-gene-based association
studies in affected and non-affected populations,
analysis of somatic mutations in tumours, and the
use of novel, comprehensive and unbiased
genomic techniques (Fig. 2) (Ref. 11). This article
reviews the strategies and techniques that are
available for the identification of additional breast
cancer genes.

Linkage studies:
high-penetrance genes

Families with multiple cases of cancer, frequently
arising at an early age, have been useful for the
identification of many cancer predisposition
genes. Although inherited mutations in such
genes are rare, these genes are frequently
mutated in sporadic tumours as well. Breast
cancer is particularly well suited for these types
of studies, since one of the strongest risk factors
for breast cancer is the occurrence of the disease
in first-degree relatives, particularly if they are

Figure 1. A hypothetical model depicting the multistep process of breast tumourigenesis. Clinical and
pathological stages are indicated. The relationships among the earliest-stage tumours (hyperplasia, atypical
hyperplasia, and in situ carcinoma) are not well understood and it is questionable if all these lesions represent
obligate precursors of invasive carcinomas. Tumour progression is driven by inherited and acquired genetic
changes, which are reflected in altered profiles of gene expression and of protein levels and modifications
(fig001kpb).
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diagnosed at an early age. The identification of a
susceptibility locus on chromosome 17 was,
therefore, of great importance, not only because
it proved that early-onset breast cancer is
inherited but also because it demonstrated that
a high-penetrance breast cancer susceptibility
gene exists (Ref. 12). The hunt for BRCA1, and
subsequently BRCA2, was a ‘brute-force’ linkage
mapping approach in affected families and
was one of the most competitive races in the
history of gene cloning (Refs 13, 14); BRCA1 was
found on chromosome 17q21 and BRCA2 on
13q12.3. However, in contrast to most cancer
predisposition genes identified through family
studies, neither of these two genes is mutated in
sporadic breast carcinomas (Refs 15, 16).

Although there are some indications that
somatic epigenetic inactivation of BRCA1 and
BRCA2 occurs in some sporadic tumours,
overwhelming evidence suggests the occurrence
of differing tumourigenic pathways for inherited

and sporadic breast carcinomas (Refs 17, 18).
Somewhat disappointingly, follow-up large-scale
mutation screening studies determined that not
only are BRCA1 and BRCA2 not mutated in
sporadic tumours, but mutations in these two
genes are responsible for only a fraction of
inherited cases (Ref. 2). Since family history still
remains a strong predictive factor in patients
with no detectable mutations in these genes,
additional high-to-moderate breast cancer
susceptibility genes remain to be identified
(Refs 5, 6, 7, 19, 20). Germline mutations in
several other genes (Table 1), including TP53
(‘tumour protein p53’), PTEN (‘phosphatase
and tensin homologue’),  LKB1 ,  CHK2
(‘checkpoint homologue 2’) and MLH1/MSH2
(‘MutL homologue 1/MutS homologue 2’), also
predispose individuals to breast cancer, but
these cases are very rare and are usually part of a
multicancer and/or developmental abnormality
syndrome (Ref. 21). Since the discovery of BRCA1

Figure 2. Summary of approaches used for breast cancer gene discovery. Family linkage studies are
useful only for the identification of high-to-moderate-penetrance breast cancer genes. Association studies
using unbiased genome-wide screens, or candidate genes selected on the basis of biological function, somatic
gene alterations (genetic, epigenetic and gene expression changes) or animal models, usually identify low-
penetrance breast cancer genes. bc 49, breast cancer arising at age 49 years; SNP, single-nucleotide
polymorphism (fig002kpb).
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Table 1. Genes with germline mutations associated with
breast cancer susceptibility (tab001kpb)

Gene name Mode of discovery Putative function Refs

BRCA1 Linkage in families DNA-damage checkpoint control, 12, 13
recombination, transcription

BRCA2 Linkage in families DNA-damage checkpoint control, 14
recombination, transcription

BRCAx-Chr13q21 CGH plus linkage in families ? 24, 28, 29

BRCAx-Chr8p Linkage in families ? 22

TP53 Candidate-gene testing DNA-damage checkpoint control 92
in families

LKB1 CGH plus linkage in families Apoptosis/growth arrest? 30, 93, 94, 95

PTEN RDA plus candidate-gene Negative regulation of 51, 53
testing in families mitogenic/survival signals

MLH1/MSH2 Linkage in families Mismatch repair 96, 97

ATM Linkage in families DNA-damage checkpoint control 98

CHK2 Candidate-gene testing DNA-damage checkpoint control 99
in families

HRAS1-VNTR Candidate-gene testing Proto-oncogene: altered transcription/ 100
linkage disequilibrium/genomic instability

CYP1A1 Candidate-gene testing Metabolism of oestrogen and 101
polycyclic aromatic hydrocarbons

CYP2D6 Candidate-gene testing Metabolism of steroid hormones 102, 103

CYP17 Candidate-gene testing Metabolism of steroid hormones 104

NAT1 Candidate-gene testing Metabolism of aromatic and 105, 106
heterocyclic amines

NAT2 Candidate-gene testing Metabolism of aromatic and 105, 107
heterocyclic amines

COMT Candidate-gene testing Metabolism of catechol oestrogens 108, 109

SOD2 Candidate-gene testing Metabolism of superoxide anions 110, 111

SULT1A Candidate-gene testing Metabolism of carcinogens and 112, 113
endogenous hormones

GSTM1 Candidate-gene testing Altered detoxification of carcinogens 114, 115

GSTP1 Candidate-gene testing Altered detoxification of carcinogens 114

GSTT1 Candidate-gene testing Altered detoxification of carcinogens 114

XRCC1, 3, 5 Candidate-gene testing Base-excision repair 116

(continued on next page)
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and BRCA2, two additional loci, on chromosomes
8p and 13q, have been implicated in beast cancer
susceptibility, but so far no new breast cancer
susceptibility gene (referred to here as BRCAx) has
been identified (Refs 22, 23, 24).

Both of these new loci were identified
through initial molecular studies performed on
the tumours of the affected patients. In the case
of chromosome 8p, multiple independent
studies have demonstrated a high fraction of loss
of heterozygosity (LOH) in this region in
sporadic tumours (Refs 25, 26). Many of these
studies were performed in early-stage tumours,
such as in ductal carcinoma in situ [DCIS; before
the tumour grows through the breast duct
wall into the surrounding tissues (Fig. 1)], and
are therefore presumably devoid of random
chromosomal alterations. Thus, the probability
that these LOH events target a legitimate breast
tumour suppressor gene is high. Initial linkage
studies performed with chromosome 8p markers
in a small set of German breast cancer families
established a positive LOD score (this being the
logarithm of the total relative probability that a
linkage relationship exists among selected loci)
for this locus (Refs 22, 23). However, in a larger
set of families, no evidence for linkage was

found (Ref. 27). Therefore, if a BRCAx gene
exists on chromosome 8p, it is likely to be
responsible for only a very small portion of
inherited cases.

The candidate 13q21 BRCAx locus was
identified on the basis of comparative genomic
hybridisation (CGH) studies in tumours of
patients with familial breast cancers (at least
three cases per family, and without germline
mutations in known high-penetrance breast
cancer genes) (Ref. 24). The most frequently
deleted locus in these tumours was chromosome
13q21, and this was then tested in linkage studies
in the affected families where a positive LOD score
was established. However, linkage analyses in two
different sets of breast cancer families could not
confirm positive linkage to 13q21 (Refs 28, 29). The
discrepancy between these studies could be due
either to the fact that the families were selected
on the basis of different criteria or to the fact that
the 13q21 BRCAx gene is responsible for only a
minority of familial cases. Only the identification
of the gene implicated will determine which of
these possibilities is true. Nevertheless, a similar
approach (CGH followed by targeted linkage) has
been successfully used for the identification of the
LKB1 tumour suppressor gene (Ref. 30). Therefore,

Table 1. Genes with germline mutations associated with
breast cancer susceptibility (tab001kpb) (continued)

Gene name Mode of discovery Putative function Refs

TNF-α Candidate-gene testing Altered TNF-α levels/signalling 117, 118

HSP70 Candidate-gene testing Altered oestrogen signalling? 117, 118

ESR1 (ERα) Candidate-gene testing Altered oestrogen signalling 119

AR Candidate-gene testing Altered androgen signalling 36

PGR Candidate-gene testing Altered progesterone signalling 37

AIB1 Candidate-gene testing Altered oestrogen signalling 38

HLA Candidate-gene testing Immune surveillance 120

Abbreviations: AIB, amplified in breast cancer 1; AR, androgen receptor; ATM, ataxia telangiectasia
mutated; BRCA 1, 2, x: breast cancer 1, 2, x; CGH, comparative genomic hybridisation; CHK2, checkpoint
homologue; COMT: cathecol-O-methyltransferase; CYP, cythochrome P 450; ER, estrogen (oestrogen)
receptor; GST, glutathione transferase; HLA: histocompatibility antigen; HRAS1-VNTR, variable number of
tandem repeats; HSP70, heat shock protein 70; MLH1, MutL homologue 1; MSH2, MutS homologue 2; NAT,
N-acetyl transferase 2; PGR, progesterone receptor; PTEN, phosphatase and tensin homologue; RDA,
representational difference analysis; SOD2, superoxide dismutase 2; SULT1A, sulphotransferase 1A; TP53,
tumour protein p53; TNF-α, tumour necrosis factor α; XRCC 1, 3, 5, X-ray repair complementing defective
repair in Chinese hamster cells 1, 3, 5.
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it is likely to be useful for the identification of
BRCA genes as well. The best way to perform
these types of studies would be to analyse
multiple early-stage tumours from the same
patient using a high-resolution genome-wide
genetic screen, such as the bacterial artificial
chromosome (BAC) or cDNA-array CGH, followed
by high-throughput candidate-gene testing of the
implicated loci.

The fact that despite all these efforts no BRCAx
gene has been identified in the past six years
indicates that the search for BRCAx is a difficult
task. There are multiple possible reasons why
BRCAx is more difficult to find than either
BRCA1 or BRCA2 was. First, BRCA1 and BRCA2
predispose to other relatively rare cancer types –
ovarian (both genes) and male breast cancer
(BRCA2) – in addition to early-onset breast cancer,
making the identification of affected families
easier. Second, and somewhat related to the first
problem, breast cancer is a very common cancer
in women; therefore, it is possible that, by
selecting families solely based on the occurrence
of breast cancer, sporadic cases (i.e. not due to
inherited mutation in a high-penetrance gene) will
be inadvertently included, hampering the power
of the linkage studies. Third, the penetrance of
BRCAx might be much lower than that of BRCA1
or BRCA2, and observing the phenotype could
require cooperation with multiple low-penetrance
modifier genes. Finally, it is possible that there are
multiple high-to-moderate-penetrance BRCA
genes to be identified, each being responsible for
only a small number of inherited cases.

Association studies:
low-penetrance genes

Candidate genes based on function
Whereas linkage studies in families are useful for
the identification of high-penetrance, and to a
lesser extent even moderate-penetrance, genes,
low-penetrance genes are impossible to identify
using this approach (Ref. 11). Although low-
penetrance genes confer only a small-to-moderate
breast cancer risk, variants of these genes might
occur at a high frequency in the population.
Therefore, combinations of low-penetrance genes
are likely to be responsible for a much larger
fraction of breast cancer cases than are high-
penetrance genes.

To date, most low-penetrance genes have been
identified on the basis of candidate selection
approaches followed by association studies in

affected and control populations (Table 1) (Ref.
3). The simplest and most efficient version of these
association studies is a case–control approach that
compares allele frequencies in breast cancer and
in control, unaffected patients. In order to be
confident that the observed association of allele
frequencies with breast cancer is not due to the
biased selection of patients, the affected and the
unaffected populations have to be well matched
(with respect to ethnicity, age, gender and so
on). Genes to be tested have usually been selected
if their biochemical function is thought to play a
role in breast tumourigenesis (Table 1). Therefore,
several of these low-penetrance breast cancer
susceptibility genes are involved in DNA-damage
signalling and repair, hormone and xenobiotic
metabolism, anti-oxidant defence, and immune
surveillance (see Refs in Table 1).

In addition, polymorphisms in high-penetrance
genes have been investigated to determine if any
of these have an effect on breast cancer risk. For
example, several common polymorphisms in
TP53, ATM (‘ataxia telangiectasia mutated’),
BRCA1 and BRCA2 have been extensively studied
in several different populations (Refs 3, 31, 32, 33,
34, 35). Although the increased risk of breast
cancer associated with the R841W BRCA1 variant
remains to be confirmed in larger populations,
several BRCA2 variants and the Arg72Pro
polymorphism in TP53 do appear to confer a
slightly elevated risk of breast cancer (Refs 3, 33).

Modifiers of high-penetrance genes
Another potential way to identify low-penetrance
breast cancer susceptibility genes is to search for
genes that modify the penetrance of high-
penetrance genes, although many investigators
believe that modifier genes probably account
for only a tiny fraction of the total variance in
these families. According to some investigators,
the power of this approach might be that
because there are many breast cancer cases in
the affected cohort, even genes with slight
effects on penetrance can be revealed. However,
there are potential problems as well, including
the possibility that modifiers of high-penetrance
genes might not have an effect in the general
population, and difficulties associated with
selecting enough unaffected controls from the
mutation carriers. In the case of BRCA1 and
BRCA2, several studies have been performed to
identify genes that influence the age of onset
and the occurrence of associated ovarian cancer
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(Ref. 20). Among others, genes involved in
oestrogen and androgen signalling (oestrogen,
androgen and progesterone receptors, and an
oestrogen receptor co-activator, AIB1), as well as
detoxifying enzymes [glutathione S-transferase T1
(GSTT1)], might affect cancer penetrance in
mutation carriers (Refs 36, 37, 38). In addition,
targeted genotyping approaches indicate the
presence of a modifier locus at 5q33-4, but the gene
responsible has not been identified (Ref. 2). An
interesting finding of an unselected case–control
association study was that one of the alleles of
BRCA2 (N372H) had a different distribution
among females and males, with females showing
an excess of heterozygotes but no homozygotes,
whereas the reverse was found in males (Ref. 34).
This might indicate that there is a sex-specific
selection for certain alleles either during the
generation of the germ cells or in utero during
embryonic development, owing to the fact that
BRCA2 function could be important for these
processes. This result also indicates that breast
cancer patients should be analysed for associated
phenotypes unrelated to the cancer, such as
infertility, since these might aid the discovery of
new modifier alleles.

In addition to polymorphisms in the coding
region of the candidate breast cancer susceptibility
genes, recent results indicate that sequence
variations in the non-coding regions such as
promoters and introns could also have an effect
on breast cancer risk. The molecular effects of
these alterations are not always clear, but one
possibility is that they influence the mRNA/
protein levels of the genes. The importance of
this type of effect is highlighted by a recent
analysis of the effect of a sequence change in the
APC (‘adenomatous polypsosis coli’) gene in
colon cancer (Ref. 39). An unidentified sequence
alteration outside of the coding exons led to a
twofold decrease in APC protein levels that was
sufficient to initiate colonic polyp formation
and increase colon cancer risk. Similarly, a
polymorphism in the promoter region in the gene
encoding insulin-like growth factor I (IGF-I)
appears to be associated with increased breast
cancer risk (Ref. 40).

SNP-ing the genome
Although the candidate-gene testing approach
has been successful in identifying several putative
new low-penetrance breast cancer genes, and will
continue to be used in the future, it is inherently

limited to characterised genes (which currently
constitute the minority of genes encoded by the
human genome). Unbiased comprehensive
studies are needed to uncover additional,
uncharacterised breast cancer genes using
polymorphic markers. So far, these studies have
been technically challenging to complete in the
general population. However, recent advances
in many different fields will probably make
these studies possible. The completion of the
human genome project and subsequent re-
sequencing of parts of the genome in different
individuals has led to the discovery of a large
number of single-nucleotide polymorphisms
(SNPs) (Ref. 41). The identification of these
SNPs, in combination with recently developed
high-throughput SNP-genotyping methods,
will enable us to perform genome-wide
association studies in large populations (Refs 42,
43, 44). The recent finding that the human
genome is probably composed of blocks (tens to
hundreds of kilobases) of haplotypes might
make the execution of genome-wide association
studies easier (Ref. 45), since instead of individual
SNPs of unknown relevance one can look at the
frequency of haplotypes (containing multiple
SNPs) in the affected and control populations.
Although no study of this type has been
performed in breast cancer, it is likely that such
studies will be conducted in the future once the
haplotype map of the human genome is defined.
In addition to the technical challenges involved,
there are several other difficulties that might make
these types of studies impossible to perform or
interpret. For example, the extent of linkage
disequilibrium in surrounding common gene
variants in various human populations is
unknown. Similarly, the number of SNPs required
to perform genome-wide studies is still subject to
debate. Several recent reviews discuss the current
status of SNP genotyping and future challenges
(Refs 46, 47, 48, 49, 50).

Somatic genetic alterations in tumours
Homozygous deletions and mutations
In addition to analysing germline mutations,
studying somatic genetic alterations in breast
tumours might also lead to the identification of
candidate breast cancer susceptibility genes. The
identification of the PTEN and DPC4/Smad4
(‘deleted in pancreatic carcinoma 4’/‘SMA and
MAD related protein 4’) tumour suppressor genes
through mapping homozygous deletions in breast
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and pancreatic tumours, respectively, proves the
validity of this approach (Refs 51, 52). Similarly,
the locus responsible for Peutz–Jeghers syndrome
(the LKB1  gene),  which is an autosomal
dominant condition associated with multiple
gastrointestinal hamartomatous polyps and
melanocytic spots of the lips, buccal mucosa and
digits, was initially localised by CGH studies in
tumours of affected patients (Ref. 30).

There are many different techniques that could
be used for the identification of genes deleted
or amplified in tumours. The PTEN tumour
suppressor gene was discovered based on
representational difference analysis (RDA) of a
breast tumour followed by mapping of the
deleted fragment and candidate-gene testing
(Ref. 51). In the case of DPC4, detailed LOH
mapping in multiple tumours led to the definition
of a locus that corresponded to a region of
consensus LOH and a homozygous deletion
(Ref. 52). Although PTEN is almost never
mutated in sporadic breast carcinomas, germline
mutations within the gene are responsible for
two inherited cancer predisposition syndromes:
Cowden’s disease and Bannayan–Riley–Ruvalcaba
syndrome (Refs 53, 54, 55).

Candidate-gene approaches are also applied
in searches for genes somatically inactivated
in tumours, and almost all newly identified
candidate tumour suppressor genes tested for
mutations in breast carcinomas show varying
results. Examples for these genes are those
encoding ‘Patched’ (PTCH), mitogen-activated
protein kinase kinase 4 (MKK4) and E-cadherin
(CDH1) (Refs 56, 57, 58, 59, 60) (Table 2). PTCH is
a receptor for ‘Sonic hedgehog’ (SHH) and is
mutated in a hereditary cancer predisposition
known as Gorlin syndrome. In one study, analysis
of PTCH in seven breast tumours identified two
missense mutations of unknown relevance,
whereas a larger study analysing 45 breast
tumours found no evidence of genetic alterations
(Refs 56, 57). Thus, alterations in PTCH/SHH
signalling are unlikely to play an important role
in breast tumourigenesis. The MKK4 gene was
implicated as a tumour suppressor gene since
it was found to be homozygously deleted in two
human tumour cell lines, derived from pancreatic
and lung carcinomas (Ref. 58). E-cadherin is a
cell adhesion protein with growth/invasion
suppressor function and shows germline
mutations in hereditary diffuse gastric carcinoma
patients (Ref. 61). In addition, the CDH1 gene

encoding E-cadherin is located on chromosome
16q, a region demonstrating frequent LOH in
sporadic breast carcinomas (Ref. 62). Analysis of
42 medullary and infiltrating ductal breast
carcinoma samples revealed no alterations in
CDH1, but four out of seven lobular invasive
carcinomas harboured a truncating mutation (Ref.
59). Since this initial study, many other groups
have independently confirmed the presence of
frequent CDH1 mutations in lobular breast
carcinomas, indicating that mutations in this gene
play an important role in the development of
lobular carcinomas. Despite the fact that CDH1
mutations have been identified very infrequently
in ductal carcinomas (Ref. 63), the expression of
CDH1 is frequently abolished by promoter
methylation, and LOH at 16q is also frequently
observed in these tumour types (Ref. 64). This
might indicate either that elimination of CDH1
protein function is also important in ductal
carcinomas or that LOH at 16q targets an as-yet-
unidentified tumour suppressor gene.

High-throughput genotyping
and mutation screens
Recent technical advances make the search for
somatic genetic alterations easier to perform and
allow large-scale ‘brute-force’ approaches. The
above-described genome-wide SNP arrays can be
used for the localisation of regions deleted or
amplified in the tumours. Similarly, a genome-
wide BAC or cDNA-array CGH can facilitate the
identification of new breast cancer genes (Refs
65, 66, 67). The simultaneous comprehensive
genotype and gene expression analysis of tumours
– using CGH or SNP arrays for genotyping, and
cDNA/oligo arrays or serial analysis of gene
expression (SAGE) for the analysis of gene
expression patterns – promises to be especially
powerful for the uncovering of new candidate
genes.

A massive ‘brute-force’ project for new cancer
gene discovery was recently initiated by the
Wellcome Trust Fund at the Sanger Institute
(Cambridge, UK) (see http://www.sanger.ac.uk/
CGP/ for details). One of the goals of this project
is to conduct a genome-wide homozygous
deletion screen in over 1200 human cancer cell
lines using polymorphic CA/GT repeats followed
by STS screens (‘STS’ stands for sequence-tagged
site; short stretches of unique DNA sequence that
can be specifically detected by a PCR assay), with
the aim of identifying new tumour suppressor
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Table 2. Genes with somatic genetic and epigenetic alterations in breast cancer
(tab002kpb)

Gene Alteration Putative function Refs

MKK4 Mutation Signal transduction 58, 72

PTCH Mutation Hedgehog signalling 56, 57

CDH1 Mutation/methylation Cell adhesion 60, 64

17q- erbB2 Amplification Receptor tyrosine kinase 73, 121

8q-c-myc Amplification Transcription factor 73, 122

11q-CCND1 Amplification Cell cycle/transcription 73, 123

11q-FGF3 Amplification Growth factor 73

11q-FGF4 Amplification Growth factor 73

20q-AIB1 Amplification Transcription co-activator 124

20q-ZNF217 Amplification Transcription factor 125

CDKN2A Methylation Cell cycle 126, 127

CCND2 Methylation Cell cycle 128

SFN Methylation Cell cycle 77, 129

RARβ2 Methylation Transcription factor 130

HIN-1 Methylation Secreted growth inhibitor 76

BRCA1 Methylation Recombination/transcription 131

GSTP1 Methylation Metabolism 132

FABP3 Methylation Secreted growth inhibitor 133

HOXA5 Methylation Transcription factor 134

ARHI Imprinting/LOH Ras/Rap signalling 135

Abbreviations: AIB, amplified in breast cancer 1;  ARHI, Ras homologue gene family member I; BRCA1,
breast cancer 1; CCND1, cyclin D1; CCND2, cyclin D2; CDH1, E-cadherin; CDKN2A, cyclin-dependent
kinase inhibitor 2A (p16); erbB2, erythroblastic leukemia viral oncogene homologue 2; FABP3, fatty-acid-
binding protein 3; FGF 3, 4: fibroblast growth factor 3, 4; GST, glutathione transferase; HIN-1, ‘high in
normal’ 1; HOXA5, homeo box A5; MKK4, mitogen-activated protein kinase kinase 4; myc, v-myc
myelocytomatosis viral oncogene homologue; PTCH, patched; RARβ2, retinoic acid receptor β2; SFN,
stratifin (14-3-3σ); ZNF217, zinc finger protein 217.

genes. In addition to the deletion mapping in cell
lines, the investigators are also planning to
sequence systematically all the coding exons and
flanking splice junctions of every transcribed or
predicted human gene in multiple tumour types
including 16 primary breast carcinomas and
matched normal genomic DNA (for details,

see  http://www.sanger.ac.uk/CGP/). The
completion of this project could lead to the
identification of many new breast cancer genes.

The use of somatic genetic changes to uncover
new breast cancer genes is limited by the fact that,
owing to genomic instability, tumours can have
very high rates of somatic genetic events. Many
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of these somatic changes might be random and
not related to the tumourigenic process. The use
of early-stage tumours, possibly multiple tumours
from the same individual, can overcome this
problem. The first recognised obligate precursor
of invasive tumours is DCIS, as described above,
but unfortunately even DCIS tumours have
already accumulated multiple genetic alterations
and some are aneuploid (Refs 68, 69). Earlier-stage
tumours, such as usual or atypical ductal
hyperplasia, are not easy to diagnose and their
malignant potential and relationship to invasive
carcinomas is unclear at this point.

Another complicating problem with searching
for breast cancer genes based on LOH studies in
tumours is the fact that certain chromosomal
regions show frequent alterations that are not
due to the genes located in the region but
instead to fragile chromosome structure. The
most common fragile sites in the human genome
are 3p, 6q, 7q, 16q and 17q (Ref. 70). Even
homozygous deletions, which are relatively rare
and thought to be the clear indication of a tumour
suppressor gene, can be misleading, since two
recent studies reported polymorphic homozygous
deletions without any specific gene targets
(Refs 71, 72).

Despite all the potential problems associated
with the analysis of somatic genetic alterations,
one clear advantage of this approach is that it
allows the identification of genes involved in
tumour progression, including those required
for invasion, angiogenesis and metastasis. In
summary, although analyses of somatic genetic
alterations have led to the identification of several
breast cancer genes, it has thus far proven to be a
fairly inefficient method. However, the use of new
high-throughput sequencing approaches, like the
one currently applied by the Cancer Genome
Project at the Sanger Institute, will probably yield
many new putative breast cancer genes in the near
future.

Amplifications and epigenetic changes
Certain genes and chromosomal regions are
amplified in breast tumours (Table 2). Increased
gene copy number changes can be detected by
CGH or as homogeneously staining (HS)
regions (chromosomal regions that show
unusual homogenous cytogenetic staining) or
double minutes (DMs; very small accessory
chromosomes) and they usually lead to the
overexpression of genes included in the region of

amplification (Ref. 73). Contrary to deletions,
where homozygous inactivation of a gene is a
definitive proof that the gene is the target of the
deletion, in the case of amplifications it is
frequently difficult to determine which gene is the
critical target of this genetic event. This is due to
multiple reasons: (1) amplifications are frequently
large and include many genes; (2) the amplified
gene might not always be overexpressed in the
tumour; and (3) there might be a cluster of genes
targeted by the event. Because of these facts, the
above-described combined genotype/gene
expression pattern analysis of breast tumours
could be particularly useful for the identification
of new genes targeted by amplifications. The
best-characterised amplicons in breast cancer are
on chromosome 8q, 11q, 17q and 20q (Ref. 73). For
all of these amplicons, there are many candidate
genes identified, such as c-myc (8q), CCDN1
(11q; encoding cyclin D1), FGF3 and FGF4 (11q;
encoding fibroblast growth factor 3 and 4), HER2/
erbB2 (17q; encoding erythroblastic leukemia viral
oncogene homologue 2), AIB1 (20q) and ZNF217
(20q; encoding zinc finger protein 217).

In addition to genetic changes, epigenetic
alterations including methylation or imprinting
could also lead to the somatic inactivation of
candidate tumour suppressor genes. Examples of
genes showing epigenetic changes are listed in
Table 2. Genes methylated in breast cancer could
also be identified using comprehensive gene
expression profiling (if the gene is consistently
downregulated in tumours) or by arrays or
subtractive hybridisation approaches specifically
designed for the detection of methylated genes
(Refs 74, 75). Examples of genes identified using
the former approach – in this case, SAGE analysis
of normal and cancerous mammary epithelial cells
– are HIN-1 (‘high in normal 1’) and 14-3-3σ
(encoding stratifin) (Refs 76, 77).

As demonstrated by the effect of AIB1 on
BRCA1 penetrance, polymorphisms in amplified
or epigenetically altered genes might influence
breast cancer susceptibility, but not many such
studies have been performed to date. In the case
of amplified genes, sequence variants of the
promoter region that alter expression, or in the
coding region that alter activity, could modify
breast cancer risk. Similarly, polymorphisms of
CpG sites in the promoter of methylated genes
could confer increased resistance to breast cancer.
In addition, genes targeted by these events are
excellent therapeutic or diagnostic targets, since
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amplifications or overexpression usually result in
gain-of-function phenotypes that are necessary for
the tumour cells, whereas genes specifically
methylated in cancers could be used for breast
cancer diagnosis.

Animal models of breast cancer
The nearly completed mouse and rat genome
sequences and the almost complete synteny
between these rodent genomes and the human
genome makes possible the use of animal models
of breast cancer for the identification of new
candidate cancer susceptibility genes. This is
especially true in the mouse where genetic crosses
can be performed to investigate complex genetic
diseases. In the mouse, there are already several
mammary tumour models that to some extent
reflect the human disease (Ref. 78). The most
promising approach for the generation of these
models is the somatic random inactivation of
tumour suppressor genes or the activation of
oncogenes only in the desired cell type or tissue.
An example of this is the generation of mammary-
gland-specific knock-outs of BRCA1  and
BRCA2 using cre recombinase under the control
of the whey acidic protein (WAP) promoter
(Refs 79, 80). These mouse models then can be
used to search for modifiers of the penetrance
of the phenotype.

However, a major problem with the use of mice
as models of human breast cancer is that mouse
strains are very inbred, and are therefore unlikely
to reflect the highly variable human populations.
In addition, the differing reproductive and
environmental factors and lifespans of rodents
and humans are problems that severely limit the
usefulness of this approach for the identification
of genes relevant to human disease. This is
demonstrated by the use of mice that carry a
mutated multiple intestinal neoplasia (Min)
gene, which is the mouse homologue of the
human APC gene, resulting in the development
of intestinal tumours. The Min mouse is a fairly
faithful model of human colon cancer and has
therefore been used to identify APC modifier
genes. However, although one of the putative
modifiers identified [‘modifier of Min’ (MOM1),
a secretory phospholipase Pla2g2a] strongly
inhibited intestinal polyp formation in mice, it
does not seem to play a role in human colorectal
tumours (Refs 81, 82, 83).

 Although rat strains are less inbred than
mice, and rat mammary carcinomas are more

similar to human breast cancers both in terms of
histopathological progression and hormone
responsiveness, many of the problems associated
with the use of mice also hold true in rats
(Ref. 84). In addition, rats are less amenable to
genetic manipulation, and so most of the rat
breast cancer models are based on chemical-
induced carcinogenesis that is unlikely to reflect
the human disease.

Thus, although rodent models of breast cancer
have the potential to aid in the identification of
new breast cancer genes, their usefulness remains
to be proven. However, one definite advantage
of animal models of cancer is that they can be used
for the identification of new cancer preventive and
therapeutic strategies that can be translated into
human clinical trials.

Clinical implications and applications
What is the clinical importance of identifying
breast cancer genes? In the case of inherited cancer
susceptibility, identifying and testing the genes
responsible is useful if the result of the test would
change the clinical management of the patient
(Ref. 85). However, this is true only if there are
effective early diagnostic and intervention
strategies available for the particular cancer
type the patient is predisposed to. In the case
of the known high-penetrance breast cancer
susceptibility genes BRCA1 and BRCA2, the value
of genetic testing is still only presumed and not
yet established (Ref. 86). Currently, the most
effective preventive therapy of choice is bilateral
mastectomy, but many women with familial risk
of breast cancer and even proven mutation
carriers do not want to undergo this treatment
(Ref. 87). Therefore, new technologies for the early
detection of, and new preventive therapies for,
breast and ovarian cancer are needed.

A recently described proteomic pattern
technology appears to be very promising since,
in a preliminary study, it demonstrated 100%
sensitivity and 95% specificity for the diagnosis
of ovarian cancer (Ref. 88). The approach is based
on surface-enhanced laser desorption/ionisation
time-of-flight mass spectrometry (SELDI-TOF
MS), which combines chromatography and mass
spectrometry, together with bioinformatic analysis
of serum from affected and unaffected patients,
resulting in the definition of a ‘normal’ and
‘cancer’ pattern. Similar approaches are currently
being developed for the diagnosis of breast and
other cancer types.
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Polymorphism screens for candidate low-
penetrance breast cancer genes are currently
performed only for research purposes. Genetic
testing for multiple low-penetrance genes
might eventually become reality, but only if
accurate prediction is possible. The complexity
of polygenic susceptibility and the possible
combination of genotype with environmental
and behavioural factors make the feasibility
and usefulness of this type of test somewhat
questionable (Ref. 89).

Ideally, understanding the genetic basis of
breast cancer should lead to more-effective cancer
prevention and treatment, since genetic defects
are potential therapeutic targets. However, in
many cases, genetic abnormalities are not tractable
pharmaceutically. The analysis of tumour samples
with associated clinical data using genomic
technologies promises to be useful for the
identification of new molecular targets that
determine the clinical behaviour of the tumours.
Many such studies on many different cancer
types have been performed in the past few
years, and many candidate targets have been
identified. However, future studies are required
to evaluate the clinical potential of these newly
identified genes. The success of anti-oestrogen
therapy (e.g. tamoxifen) for the prevention and
treatment of oestrogen-receptor-positive breast
tumours and the use of the recombinant
humanised anti-Her2/ErbB2 monoclonal antibody
trastuzumab (Herceptin®) for the treatment of
Her2/ErbB2-positive tumours suggest that
further molecular-based therapies will probably
be identified and successfully used in the clinical
management of breast cancer patients (Ref. 90).

Outstanding research questions
and future prospects

Despite all of the efforts, the genetic basis of the
majority of breast carcinomas is still poorly
defined. However, it is clear that there is not a
single breast cancer gene, an equivalent of APC
in colorectal tumours, and that hereditary and
sporadic breast tumours might have their own
tumourigenic pathways. Therefore, the search
must continue to find additional breast cancer
genes using all the available traditional and new
genomic techniques. The major challenge of
identifying other breast cancer genes might be
solved by using the new technical tools becoming
available. However, the major obstacle has been,
and continues to be, the translation of these

findings into clinical practice. As demonstrated
by the success of Herceptin® and STI571
(Gleevec™), an inhibitor of the Bcr-Abl tyrosine
kinase for the treatment of chronic myelogenous
leukaemia (Ref. 91), molecularly targeted cancer
treatment is much more effective, with fewer side
effects, than the other currently used anti-cancer
therapies. Many new putative breast cancer
therapeutic and diagnostic targets are being
investigated in the clinic and many more are likely
to follow. The identification of additional breast
cancer susceptibility genes is sure to aid the
identification of individuals at risk and the design
of targeted cancer-preventive therapies.
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