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Abstract The effect of disorder for pinning models is a subject which has attracted much attention in

theoretical physics and rigorous mathematical physics. A peculiar point of interest is the question of

coincidence of the quenched and annealed critical point for a small amount of disorder. The question
has been mathematically settled in most cases in the last few years, giving in particular a rigorous

validation of the Harris criterion on disorder relevance. However, the marginal case, where the return

probability exponent is equal to 1/2, that is, where the interarrival law of the renewal process is given by
K(n) = n−3/2ϕ(n) where ϕ is a slowly varying function, has been left partially open. In this paper, we give

a complete answer to the question by proving a simple necessary and sufficient criterion on the return

probability for disorder relevance, which confirms earlier predictions from the literature. Moreover, we
also provide sharp asymptotics on the critical point shift: in the case of the pinning of a one-dimensional

simple random walk, the shift of the critical point satisfies the following high temperature asymptotics

lim
β→0

β2 log hc(β) = −
π

2
.

This gives a rigorous proof to a claim of Derrida, Hakim and Vannimenus (J. Stat. Phys. 66 (1992),

1189–1213).
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1. Introduction

In statistical mechanics, the introduction of disorder into a system, that is, of a random

inhomogeneity in the Hamiltonian, can drastically change its critical behavior. However,

this change of behavior does not always occur and in some cases the disorder system keeps

the features of the homogeneous one, at least for small intensities of disorder. As most

systems encountered in nature possess some kind of microscopic impurities, this question

of disorder relevance, that is whether a disordered system behaves like the homogeneous

one, has been the object of a lot of attention in the physics community (see [39] and

references therein).
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The present paper deals with the question of influence of disorder for the pinning

model. This subject has been the object of a lot of studies in the past decades, either in

theoretical physics [11, 12, 23, 24, 26, 29, 30, 40, 41, 48, 49, 52], or rigorous mathematical

physics [1, 3–8, 17, 21, 22, 25, 34–38, 44, 51, 53, 54]. A reason why the question of disorder

relevance in the special case of the pinning model has focused much interest is that it

is a rather simple framework with a rich phenomenology, and thus gives a good context

to test the general prediction made by physicists concerning relevance of disorder [39].

Indeed, the pure model (i.e., the one without disorder) is exactly solvable in the sense that

there is an explicit simple expression for the free energy, see [28], but the specific-heat

exponent νSH associated to it can take any value in the interval (−∞, 1] by tuning the

value of the parameter α introduced in Equation (2.1):

νSH = max(1, 2−α−1). (1.1)

Because of these characteristics, the disordered pinning model has been an ideal

candidate to check rigorously the validity of the renormalization group predictions, and

in particular, that of the Harris criterion [39]. The principal idea of Harris criterion is that

one can predict the effect of a small quantity of disorder by looking at the properties of the

pure system: disorder relevance only depends on the sign of the specific-heat exponent.

Specifically, when applied to the pinning model, the criterion leads to the following

prediction:

• when the return probability exponent α is strictly larger than 1/2, then disorder is

relevant;

• when α is smaller than 1/2, disorder is irrelevant;

• there is no specific prediction for the case α = 1/2, where the specific-heat exponent

vanishes.

Specific studies concerning disordered pinning [24, 29] give more detailed predictions:

in the case α > 1/2, there is a shift of the critical point of the disordered system with

respect to the annealed one; whereas for α < 1/2, the two critical points coincide, at

least when the inverse temperature β is small. The case α = 1/2 has been studied in the

physics literature but has been the source of some controversy: in the case where no slowly

varying function is present, which corresponds to the classical models of two-dimensional

wetting of a rough substrate by a random walk, the authors of [29] predicted irrelevance
of the disorder, while a few years later [24] claimed that the critical point was shifted.

Both predictions then found supporters in the physics literature until the case was solved

mathematically (see [35] and references therein). The full claim in [24] is that for the

wetting model (see (2.14)–(2.17) for the difference between pinning a wetting) of a (p− q)
random walk the difference between the quenched critical point hc(β) and the one of the

pure system hc(0) satisfies (see [24, Equation (1.7)])

lim
β→0+

β2 log (hc(β)− hc(0)) = −
pπ

(2− p)2
. (1.2)

The smallness of this conjectured hc(β) for β close to zero explains why numerical

simulations where not able to produce a general agreement between physicists.
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While the cases covered by the Harris criterion have all been brought on a rigorous

ground [1, 3, 25, 34, 43, 53, 54], it turns out that the marginal case is still partially open.

In [35, 36] it has been proved that there is indeed a shift in the critical point in the

controversial case – α = 1/2, ϕ(n) equivalent to a constant – the best lower bound which

is known on hc(β) is exp
(
−cbβ

−b) for all b > 2 [36], while the best upper bound is given

by exp
(
−cβ−2) for some nonoptimal constant c [1, 53].

Moreover, there remains a very narrow window of slowly varying function for which

the issue of disorder relevance is still open (e.g., ϕ(n) =
√

log n). The aim of this paper

is to settle these two issues by exhibiting a simple necessary and sufficient criterion on

the return probability for disorder relevance; and by proving a generalized version of

conjecture (1.2).

2. Model and results

2.1. The disordered pinning model

We now define in full details the disordered pinning model. Let τ = (τn)n>0 be a recurrent

renewal process, i.e., a random sequence whose increments (τn+1− τn)n>0 are identically

distributed positive integers. We assume that τ0 = 0, and that interarrival distribution

satisfies

K(n) := P(τ1 = n) = (2π)−1ϕ(n) n−(1+α), (2.1)

for some α > 0 and slowly varying function ϕ(·) (the presence of (2π)−1 in the formula

is rather artificial but simplifies further notations). We denote by P the law of τ . With a

small abuse of notation we sometimes consider τ as a subset of N.

With no loss of generality, we assume that our renewal process is recurrent, i.e., that

P(τ1 = ∞) = 1−
∞∑

n=1

K(n) = 0.

Indeed, in the case of a transient renewal process, the partition function can be rewritten

as of a recurrent renewal, at the cost of a change in the parameter h (see [31, Ch. 1]).

Let ω = (ωn)n∈N (the random environment) be a realization of a sequence of IID random

variable whose law is denoted by P. We assume that the variables ωn have exponential

moments of all order, and set for β ∈ R

λ(β) := logE[eβω] <∞. (2.2)

We assume (with no loss of generality) that the ω’s are centered and have unit variance.

Given h ∈ R (the pinning parameter), β > 0 (the inverse temperature), and N ∈ N, we

define a modified renewal measure Pβ,h,ωN whose Radon–Nikodym derivative w.r.t. P is

given by

dPβ,h,ωN
dP

(τ ) :=
1

Zβ,h,ωN

exp

( N∑
n=1

(βωn + h− λ(β))1{n∈τ }

)
1{N∈τ }, (2.3)
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where Zβ,h,ωN is the partition function,

Zβ,h,ωN := E

[
exp

( N∑
n=1

(βωn + h− λ(β))1{n∈τ }

)
1{N∈τ }

]
. (2.4)

The free energy per monomer is given by

F(β, h) := lim
N→∞

1
N

log Zβ,h,ωN
P−a.s.
= lim

N→∞

1
N
E
[
log Zβ,h,ωN

]
. (2.5)

See e.g., [32, Theorem 4.1] for a proof of the existence and nonrandomness of the limit.

It is not difficult to check that it is a nonnegative, nondecreasing convex function. When

β = 0, there is no dependence in ω and we choose to denote the measure, partition

function, and free energy respectively by Ph
N , Zh

N and F(h). Note that with our convention

E
[
Zβ,h,ωN

]
= Zh

N , so that the partition function and free energy of the annealed system

(which is obtained by averaging the Boltzmann weight over ω) corresponds to that of the

pure one.

The pure free energy has an explicit expression:

F(h) =

 0 when h < 0,

G−1(h) when h > 0,
(2.6)

where G−1 is the inverse of the function

G :

R+ → R+,

x 7→ − log

(
∞∑

n=1

e−nx K(n)

)
.

(2.7)

In particular, this implies that for α ∈ (0, 1)

F(h) = hα
−1
ϕ̂(1/h), (2.8)

where ϕ̂(1/h) is an explicit slowly varying function (similar results exists for the cases

α > 1 and α = 0, we refer to [31, Theorem 2.1]). A simple use of Jensen’s inequality gives

E
[
log Zβ,h,ωN

]
6 logE

[
Zβ,h,ωN

]
= log Zh

N , (2.9)

and hence

F(β, h) 6 F(h). (2.10)

Some other convexity property (see [31, Proposition 5.1]), on the other hand, implies

that

F(β, h) > F(h− λ(β)). (2.11)

Hence, the quenched system also presents a phase transition

hc(β) := inf{h ∈ R | F(β, h) > 0}, (2.12)

and we have

0 6 hc(β) 6 λ(β). (2.13)

The inequality on the r.h.s. is in fact always strict: we have hc(β) < λ(β) (see [2]). On

the other hand, the question whether hc(β) is equal to zero or not turns out to have a

more complex answer, and is deeply related to the problem of disorder relevance.
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2.2. Back to the origins: the random-walk pinning/wetting models

Let us also, for the sake of completeness, describe models for pinning/wetting of a simple

random walk which is the one introduced and studied in [24]. Given a fixed parameter

p ∈ (0, 1), let P denote the law of a one-dimensional nearest-neighbor simple random

walk S on Z: S0 = 0 and the increments Xn := (Sn − Sn−1)n>1 form a sequence of IID

variables

P(Xn = ±1) = p/2 and P[Xn = 0] = q = 1− p.

We define Pβ,h,ωN which is a probability measure defined by its Radon–Nikodym derivative:

dPβ,h,ωN
dP

(S) :=
1

Zβ,h,ωN

exp

( N∑
n=1

(βωn + h− λ(β))1{Sn=0}

)
1{SN=0}, (2.14)

where Zβ,h,ωN is the partition function,

Zβ,h,ωN := E

[
exp

( 2N∑
n=1

(βωn + h− λ(β))1{Sn=0}

)
1{S2N=0}

]
. (2.15)

We notice that the set τ := {n | Sn = 0} is a renewal process. It satisfies for p ∈ (0, 1) (cf.

[31, Proposition A.10])

P(τ1 = n) = P[Sn = 0; Sk 6= 0,∀k ∈ {1, . . . , n− 1}]
n→∞
∼

√
p

2π
n−3/2. (2.16)

It thus falls in our framework with α = 1/2 and ϕ(n) converging to
√

2pπ .

Remark 2.1. The reader can check that the case p = 1 which corresponds to the simple

random walk on Z is a bit different for periodicity issue (the condition SN = 0 can only

be satisfied for even values of N) but is equivalent to p = 1/2 after rescaling space by a

factor 2.

The wetting measure which is the one studied in [24] is defined in a similar manner

but with the additional constraint that S has to remain positive, to model the presence

of a rigid substrate which the interface cannot cross,

dP̃β,h,ωN
dP

(S) :=
1

Z̃β,h,ωN

exp

( N∑
n=1

(βωn + h− λ(β))1{Sn=0}

)
1{SN=0;Sn>0,∀n∈[0,N ]}. (2.17)

The constraint has the effect of shifting the pure critical point which is not equal to zero.

One has

hc(0) := log
2

2− p
. (2.18)

Even though this is less obvious, the model also falls in our framework (see [31, Ch. 1]

for details) and the associated recurrent renewal process has interarrival law.

K (n) :=
2

2− p
P[Sn = 0; Sk > 0,∀k ∈ {1, . . . , n− 1}]

n→∞
∼

1
2− p

√
p

2π
n−3/2. (2.19)

In particular, one has α = 1/2 and ϕ(n) converges to
√

2pπ/(2− p).
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2.3. Critical point shift and disorder relevance

Knowing whether the inequality hc(β) > 0 is sharp for small β is an important question

in terms of disorder relevance. It corresponds to knowing whether the annealed and

quenched critical points coincide. This question has been the object of a lot of attention

of theoretical physicists and mathematicians in the past twenty years [1, 3, 24, 25, 34–

36, 44, 53].

In [24], Derrida, Hakim and Vannimenus exposed a heuristic argument based on the

Harris criterion [39], which yields several predictions for the critical point shift for a

related hierarchical model. Their claims can be translated as follows in the case where

the slowly varying function ϕ is asymptotically equivalent to a constant:

(A) when α < 1/2 disorder is irrelevant;

(B) when α > 1/2 disorder is relevant, and hc(β) is of order β
2α

2α−1 ;

(C) when α = 1/2 disorder is relevant, and − log hc(β) is of order β−2.

Note that the case (C) presents a special interest, as it includes the pinning of a simple

random walk (2.14). Moreover, whereas (A) and (B) have met a general agreement in

the physics community, prediction (C) was in opposition to the earlier conclusion of [29],

and remained controversial for a long time (see [35] and references therein).

The heuristic argument which is presented in [24] is based on second moment

computations, and can easily be generalized for the case of nontrivial slowly varying

ϕ (see e.g., the discussion in [36, § 1.3]). The prediction becomes:

(D) Disorder is relevant if and only if the renewal process τ ′ := τ (1) ∩ τ (2), obtained by

intersecting two independent copies of τ , is recurrent.

Since their publication, these predictions have mostly been brought onto rigorous

ground. In [1] (see [44, 53] for alternative shorter proofs), it has been shown that when

τ ′ is terminating (i.e., is finite), the disorder is irrelevant. In [25] (see also [4, 34]), the

prediction (B) above was shown to hold true. The existence of the limit

cα = lim
β↓0

hc(β)β
−

2α
2α−1

has been proved recently in [21], and it is shown that cα is universal, in the sense that

it does not depend on the law P. In [35], the prediction (C) was partially proved, it was

shown that hc(β) > 0 for all β with a suboptimal lower bound. The best standing lower

bound on hc(β) is given in [36] where it is shown that for any ε > 0, hc(β) > e
−

cε
β2+ε .

Furthermore, the papers [35, 36] do not provide a complete proof of prediction (D)

but fails very close to it: for the case α = 1/2 and ϕ(n) ∼ (log(n))κ , the method in [36] is

sufficient to prove disorder relevance for κ > 1/2, and is not able to provide a result only

for κ = 1/2 (κ < 1/2 corresponds to disorder irrelevance).

In this paper, we prove that (D) holds and prove a sharp estimate for the critical point

shift in the case α = 1/2.

We also mention the recent works [19, 20] which proposes an alternative approach to

disorder relevance for pinning model. In the case where τ ′ = τ (1) ∩ τ (2) is recurrent, the
authors consider weak coupling limits of the model by scaling β and h with N adequately.
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When α < 1/2 the right choice is to choose N of the order of the correlation length of the

pure system, and β such that the variance of the partition function remains bounded.

The existence of a nontrivial scaling limit is derived using the framework of polynomial

chaos [18]. The case α = 1/2 presents some extra challenge and is the object of ongoing

work [20].

2.4. Results

Our first theorem is the confirmation of the validity of prediction (D), in the standard

interpretation of disorder relevance.

Theorem 2.2. We have

{∀β > 0, hc(β) > 0}

if and only if ∑
n>1

1
n2(1−α)(ϕ(n))2

= ∞. (2.20)

Note that as mentioned in the previous section, most of the theorem is proved in

previous papers, and we only need to prove one implication in the case α = 1/2.

Our second result concerns the sharp estimate for the critical point shift in the case

α = 1/2 in the absence of a slowly varying function. In particular, in view of (2.16) and

(2.19) it provides a proof of the limit stated in the abstract and of the claim (1.2).

Theorem 2.3. Assume that there exists a constant cϕ such that limn→∞ ϕ(n) = cϕ, or

equivalently

K(n)
n→∞
∼ (2π)−1 cϕ n−3/2.

Then we have

lim
β→0

β2 log hc(β) = −
1
2
(cϕ)2. (2.21)

In fact, we obtain a more general version of (2.21) which gives precise asymptotic

estimates for arbitrary ϕ (see Propositions 7.1–6.1).

2.5. Concerning renewals with more irregular tails

While the assumption that K (n) is regularly varying is quite natural (and is almost the

only one considered by the literature), one may ask oneself if (D) may hold with greater

generality. Let us restrict here the discussion to the case where there exists some α > 0
such that

K (n) = n−(1+α)+o(1). (2.22)

The proofs presented in [25] and [44] seem sufficiently robust to be adapted to this case

(even if some details might require some work). Hence, it is reasonable to say that (D) is

still valid when α 6= 1/2 (shift of the critical point for α > 1/2 and no shift for α < 1/2),

when (2.22) holds. When α = 1/2, the case of irrelevant disorder might also be treated

by adapting [44].
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However, it seems trickier to adapt the proof of the present paper concerning the

relevance of disorder when α = 1/2. Indeed, several estimates depend on limit theorems

that are specific to renewals with a regularly varying distribution, the most delicate point

being to find an estimate to replace Lemma 5.3. The problem, though a difficult one,

seems merely technical and the main ideas in the proof still apply. Therefore it is not

a very daring conjecture to assume that (D) holds true when (2.22) is satisfied, though

proving it could be quite challenging.

Predicting whether (D) holds with more generality, e.g., for all renewals such that

lim
n→∞

n−1 log K (n) = 0,

is a difficult matter, as irregular renewals can have a very pathological behavior.

2.6. Open questions

Our result completely settles the question of whether a small quantity of disorder induces

critical point shift in the pinning model. However, some issues concerning disorder

relevance are still open and even not settled at the heuristic level. This is, in particular,

the issue of smoothing of the free energy curve.

It has been shown in [37] that for Gaussian disorder, the growth of the free energy at

the vicinity of the critical point is at most quadratic

F(h, β) 6
1+α
2β2 (h− hc(β))

2. (2.23)

When α < 1/2, in particular, this implies that the free energy curve of the disordered

system is smoother than that of the pure one (this is true in great generality, see [17]).

For α > 1/2 instead, it is known [1, 44, 53] that for small β the quenched free energy and

annealed free energy have the same critical behavior (and in fact more precise results

are known [38]). However, it is not known if the quenched and annealed critical behavior

coincide in the marginal case α = 1/2. Moreover, there is no general agreement on what

the critical exponent should be for the disordered system as soon as hc(β) > 0. Let us

mention the recent work [26] where heuristics in favor of an infinitely smooth transition,

of the type exp
(
−

cst.
√

h−hc(β)

)
, are exposed.

Note that for our pinning model, critical point shift of the free energy and smoothing

of the free energy curve come together. However, these two phenomena are not always

associated. Let us mention a few variations concerning pinning.

• In [8], a special case of the pinning model is studied, for which the environment in ω

is not IID. For this model, there is a smoothing of the free energy curve induced by

disorder, but no critical point shift.

• In [46], the case of much lighter renewal K(n) ∼ e−nγ , γ ∈ (0, 1) is considered. In

that case, there is always a shift of the critical point, but when γ > 1/2, there is

no smoothing and the transition of the disordered system is of first order.

• In [33, 47], the case of the pinning of the lattice free field is considered. This is somehow

the higher-dimensional generalization of the model considered here. It is shown in
[33] that for d > 3, hc(β) = 0 for all β, but that the quenched free energy grows
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quadratically at criticality whereas the annealed transition is of first order. For d = 2
also, it is shown in [47] that hc(β) = 0 for all β, but that the quenched phase transition

is of infinite order (in contrast with the annealed transition which is of second order).

2.7. About the proof

The proof of Theorem 2.2 and of the lower bound in Theorem 2.3 are based on the same

method, which is an improvement of the one used in [36]. We can divide the process into

three steps:

(i) We perform a coarse graining of the system, by dividing it in cells of large size `.

(ii) For a power θ < 1, we use the inequality (
∑

ai )
θ 6

∑
aθi for nonnegative ai ’s, in

order to reduce the problem to the estimate of the fractional moments of partition

functions reduced to a coarse-grained trajectory.

(iii) In the end, we estimate these fractional moments using a change of measure based

on a tilt by a multilinear form of the ω.

Even though we tried to simplify the proof of some technical lemmas, the steps (i) and

(ii) are essentially the same as in [36]. The novelty lies in the change of measure which

is used: instead of using a q-linear form with q fixed, we choose a q which depend on `

(and we optimize the choice of q).

This is a rather simple and natural idea; indeed, it appears in [36] that a larger value

of q gives a better result. However, its implementation turns out to be tricky, as most

technical estimates of [36] blow up much too fast when q goes to infinity. For this reason,

we have to introduce several refinements which allow us to prove better estimates. To

prove the lower bound in Theorem 2.3, we have to optimize the constant in several

estimates and this has the effect of introducing many small ε’s in the computations: this

makes the proof of some technical Lemma a bit more delicate. Thus, for pedagogical

purpose and readability, it is more suitable to prove first a nonoptimal result.

Theorem 2.4. Assume that there exists a constant cϕ such that limn→∞ ϕ(n) = cϕ. Then

there exists a constant c1 and some β0 > 0 such that, for all β 6 β0 one has that,

hc(β) > e−c1β
−2
. (2.24)

We now outline the organization of the rest of the paper, which is divided into two

main parts.

In §§ 3–5, we jointly prove Theorems 2.2 and 2.4. Matching asymptotics for log hc(β)

are respectively proved in § 7 (lower bound) and 6 (upper bound) to complete the proof

of Theorem 2.3.

– In § 3, we present the coarse-graining scheme: we expose our choice of coarse-graining

length and, in Proposition 3.2, we explain how the proof reduces to having an

estimate on the noninteger (fractional) moments of partition functions corresponding

to coarse-grained trajectories.

– In § 4, we explain how these fractional moments can be estimated by modifying

the law of the environment in the blocks corresponding to the contact points of the

coarse-grained trajectories. More precisely, we show how the proof of our main result
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reduces to estimating the partition function in (a fraction of) one coarse-grained block

with modified environment (cf. Lemma 4.1). We also give in § 4.2 a motivated description

of the peculiar modification of the environment that we use, which is based on a

multilinear form of the (ωn) with positive coefficients.

– § 5 is devoted to the more delicate point: the proof of Lemma 4.1. It relies on

controlling moments of the multilinear form introduced in the previous section. What

makes this step difficult is that one has to deal with sums with a very large number of

interacting term, which requires several ad-hoc tricks to be estimated.

– In § 6, we prove the optimal upper bound on hc(β) of Theorem 2.3, see Proposition 6.1.

The technique is derived from [44] but relies only on a simple second moment

computations and does not use Martingale theory (see also [32, § 4.2]).

– Finally, in § 7 we adapt the techniques developed in §§ 3–5, and we obtain the optimal

lower bound on hc(β) of Theorem 2.3, see Proposition 7.1. While it mostly relies on

optimizing the constant in the proof, several important modifications are needed: in

particular, we must change the relation between h and the coarse-graining length, and

prove a substantial improvement of Lemma 4.1.

2.8. On other potential applications of the technique

This method combining coarse graining, fractional moments and change of measure,

which originates from [34] before being refined in [25, 35, 36, 42, 53], has also been

fruitfully adapted for different models: copolymers [7, 16], random-walk pinning model

[10, 14, 15], directed polymers and semi-directed polymer [43, 50, 55], large deviation

for random walk in a random environment [56] and self-avoiding walk in a random

environment [45].

We believe that the improvement of the method presented in this paper could improve

some of the known results in these various areas. Let us provide an example here: for

the directed polymer model, the adaptation of the method of [36] in [50] improved the

lower bound for the difference 1F(β) between the quenched and annealed free energies

of the directed polymer in dimension 1+ 2 [43], from exp(−cβ−4) to exp(−cbβ
−b), b > 2.

Adapting the method developed in the present paper, we improved the lower bound

to exp(−cβ−2) (which matches the upper bound): we obtained in [9] the sharp high

temperature asymptotic limβ↓0 β
2 log1F(β) = −π .

2.9. Notations

For n ∈ N, we let u(n) denote the probability that n is a renewal point (by convention we

set u(0) = 1). The asymptotic behavior of u(n) was studied by Doney [27, Theorem B],

who proved that for α ∈ (0, 1)

u(n) := P(n ∈ τ)
n→∞
∼ 2α sin(πα)ϕ(n)−1n−(1−α). (2.25)

When α = 1
2 (this is the case on which we focus) we obtain

u(n)
n→∞
∼

1
ϕ(n)
√

n
. (2.26)
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Recall that τ ′ = τ (1) ∩ τ (2) denotes the intersection of two independent renewals with

law P. We have

P⊗2(n ∈ τ (1) ∩ τ (2)) = u(n)2 (2.27)

and thus, from (2.25), one deduces that (2.20) is equivalent to the recurrence of τ ′. We

introduce the quantity

D(N ) :=
N∑

n=1

u(n)2. (2.28)

Note that D(N ) is a nondecreasing sequence. With some abuse of notation for x > 0 we

set

D−1(x) := max{N ∈ N | D(N ) 6 x}. (2.29)

When limn→∞ ϕ(n) = cϕ , or equivalently K(n)
n→∞
∼ (2π)−1cϕn−3/2, we have in

particular

D(N )
N→∞
∼ (cϕ)−2 log N . (2.30)

3. Coarse graining and fractional moment

In this section, we explain how our estimate on the critical point shift can be deduced from

estimates of the fractional moment of partition functions corresponding to coarse-grained

trajectories.

3.1. Choice of the coarse-graining length

We let ` denote the scale at which our coarse graining is performed. Let us fix

A := 64e4,

(the choice is quite arbitrary), and set

`β,A := D−1(Aβ−2)4. (3.1)

The reason for this particular choice appears in the course of the proof. We are interested

in estimating the free energy for

h = hβ,A := 1/`β,A. (3.2)

More precisely, our aim is to prove the following proposition.

Proposition 3.1. There exists some β0 > 0 such that for all β 6 β0,

F(β, hβ,A) = 0,

and hence

hc(β) > D−1(Aβ−2)−4.

Note that this is sufficient to prove both Theorems 2.2 and 2.4. For Theorem 2.2, one

just needs to remark that the restriction to β 6 β0 does not matter since β 7→ hc(β) is an

increasing function [36, Proposition 6.1]. For Theorem 2.4, it follows from the definition

that

lim inf
β→0

β2 log(hβ,A) > −256 e4(cϕ)2. (3.3)

https://doi.org/10.1017/S1474748015000481 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000481


316 Q. Berger and H. Lacoin

3.2. Coarse-graining procedure

The very first step is to transform the problem of estimating the expectation of log Z N
to that of estimating a noninteger moment of Z N . This is very simply achieved by using

the concavity of log. We have

E
[
log Zβ,h,ωN

]
=

4
3
E
[
log(Zβ,h,ωN )3/4

]
6

4
3

logE
[(

Zβ,h,ωN

)3/4
]
. (3.4)

The choice of the exponent 3/4 here is arbitrary and any value in the interval (2/3, 1)
would do. Hence Proposition 3.1 is proved if one can show that

lim inf
N→∞

E
[
(Z

β,hβ,A,ω
N )3/4

]
6 C, (3.5)

for some constant C > 0.

We consider a system whose size N = m` is an integer multiple of `. We split the system

into blocks of size `,

∀i ∈ {1, . . . ,m}, Bi := {`(i − 1)+ 1, `(i − 1)+ 2, . . . , `i}. (3.6)

Given I = {i1, . . . , il} ⊆ {1, . . . ,m} we define the event

EI :=
{
{i ∈ {1, . . . ,m} | τ ∩ Bi 6= ∅} = I

}
, (3.7)

and set ZI to be the contribution to the partition function of the event EI ,

ZI
:= Zβ,h,ωN (EI) = Zβ,h,ωN Eβ,h,ωN [EI ]. (3.8)

Note that ZI > 0 if and only if m ∈ I. When τ ∈ EI , the set I is called the coarse-grained

trajectory of τ . As the EI are mutually disjoint events, Zβ,h,ωN =
∑

I⊆{1,...,m} ZI and thus

using the inequality (
∑

ai )
3/4 6

∑
a3/4

i for nonnegative ai ’s, we obtain

E
[(

Zβ,h,ωN

) 3
4
]
6

∑
I⊆{1,...,m}

E
[(

ZI
) 3

4
]
. (3.9)

We, therefore, reduced the proof to that of an upper bound on E
[(

ZI) 3
4
]
, which can

be interpreted as the contribution of the coarse-grained trajectory I to the fractional

moment of the partition function.

Proposition 3.2. Given γ > 0, there exists a constant β0 > 0 such that for all β 6 β0,

there exists a constant C` which satisfies, for all m > 1 and I ⊆ {1, . . . ,m},

E
[(

ZI
) 3

4
]
6 C`

|I|∏
k=1

γ

(ik − ik−1)10/9 , (3.10)

where by convention we have set i0 := 0.
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Proof of Proposition 3.1 from Proposition 3.2. Now we can notice that the r.h.s of (3.10)

corresponds (apart from the constant C`) to the probability of the renewal trajectory

whose interarrival probability is given by

K̂(n) = γ n−10/9, (3.11)

provided that the sum is smaller than 1. Hence, we simply apply the result with

γ =

(
∞∑

n=1

n−10/9

)−1

, (3.12)

and we let τ̂ be the renewal associated to (3.11). With this setup,∑
I⊆{1,...,m}

m∈I

E
[(

ZI
) 3

4
]
6 C`P[m ∈ τ̂ ] 6 C`, (3.13)

and thus (3.5) is proved.

4. Change of measure

4.1. Using Hölder’s inequality to penalize favorable environments

The starting idea to prove Proposition 3.2 is to introduce a change in the law of ω in

the cells (Bi )i∈I , which will have the effect of lowering the expectation of ZI . Let gI(ω)
be a positive function of (ωn)n∈

⋃
i∈I Bi (that can be interpreted as a probability density

if renormalized to have expectation 1). Using Hölder’s inequality, we have

E
[(

ZI
)3/4

]
6
(
E
[
gI(ω)−3

])1/4 (
E
[
gI(ω)ZI

])3/4
. (4.1)

The underlying idea is that most of the expectation of ZI is carried by atypical

environment for which ZI is unusually large. One should think of applying this inequality

to a function gI(ω) which is typically equal to one, but which takes a small value for the

atypical environments which are too favorable.

We also want the first term E[gI(ω)−3
]
1/4 to be small, or more precisely, not much

larger than one. Due to our coarse-graining procedure, it is natural to choose gI(ω) as a

product of functions of (ωn)n∈Bi , for i ∈ I.

Our idea, which follows the one introduced in [36], is to give a penalty when the

environment in a block has too much “positive correlation”. The “amount of correlation”

in a block is expressed using a multilinear form of (ωn)n∈Bi with positive coefficient, let

us call it X i (ω) (see (4.16)). We normalize it so that

E[X i (ω)] = 0 and E[(X i (ω))2] 6 1. (4.2)

Then we set

gi (ω) := exp
(
−M1

{X i (ω)>eM2
}

)
,

gI(ω) :=
∏
i∈I

gi (ω),
(4.3)

for an adequate value of M .
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With this choice, and for M > 10, we have for all i > 1

E
[
gi (ω)

−3
]
= 1+ (e3M

− 1)P
[

X i (ω) > eM2
]
6 1+ (e3M

− 1)e−2M2
6 2, (4.4)

and hence

E[gI(ω)−3
] = E[g1(ω)

−3
]
|I| 6 2|I|. (4.5)

4.2. Choosing X i and motivating this choice with some heuristics

In order to have a clear idea of the effect of the multiplication by gI on the expectation of

ZI , let us first expand ZI in order to isolate the contribution of each block. Assume that

I := {i1, i2, . . . , il}, and let d j and f j denote the first and last contact points in τ ∩ Bi j .

We have

ZI
:=

∑
d1, f1∈Bi1

d16 f1

· · ·

∑
dl∈Bil
fl=m N

K(d1)u( f1− d1)Zh
d1, f1

K(d2− f1) · · ·K(dl − fl−1)u(N − dl)Zh
dl ,N ,

(4.6)

where we set

Zh
a,b := E

[
exp

( b∑
n=a

(βωn + h− λ(β)) 1{n∈τ }

) ∣∣∣∣ a, b ∈ τ

]
. (4.7)

At the cost of losing a constant factor per coarse-grained contact point, we can get rid

of the influence of h: with our definition of h = 1/` we have, for all choices of d j 6 f j in

Bi j

Zh
di , fi

6 eh`Z0
di , fi
= eZ0

di , fi
. (4.8)

Writing Za,b for Z0
a,b (note that E[Za,b] = 1), we have

ZI 6 e|I|
∑

d1, f1∈Bi1
d16 f1

· · ·

∑
dl∈Bil

K(d1)u( f1− d1)Zd1, f1K(d2− f1) · · ·K(dl − fl−1)u(N − dl)Zdl ,N .

(4.9)

Thus, we want to choose X i such that for most choices of di , fi one has, for some small δ

E[gi (ω)Zdi , fi ] 6 δE[Zdi , fi ] = δ. (4.10)

A natural choice for X i would be to choose something like∑
di , fi∈Bi

u( fi − di )Zdi , fi , (4.11)

shifted and scaled to satisfy the assumption on the variance and expectation. Indeed,

with this choice, g(ω) would be small whenever the (Zdi , fi )’s are too big. However, in

order to be able to perform the computations, it turns out to be better to choose X as

a linear combination of products of the (ωn)n>0; hence, instead of (4.11), we choose X i

to be something similar to a high-order term in the Taylor expansion in ω of (4.11) (and

which is close in spirit to the chaos expansion presented in [18]).
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This is the idea behind our choice of X : we perform a formal expansion of

u(b− a)E

[
exp

( b∑
n=a

(βωn − λ(β)) 1{n∈τ }

) ∣∣∣∣ a, b ∈ τ

]
,

which is analogous to the Wick expansion of the exponential of a stochastic integral: we

drop the normalizing term λ(β) but also all the diagonal terms in the expansion. The

term of order q + 1 is given by

βq+1
∑

a=i06i1<i2<···<iq=b

ωi0u(i1− i0)ωi1 . . . u(iq − iq−1)ωiq . (4.12)

Hence, after summing along all possibilities for a and b in the block (say B1), and

renormalizing, we obtain something proportional to∑
06i0<i1<i2<···<iq6`

ωi0u(i1− i0)ωi1 · · · u(iq − iq−1)ωiq . (4.13)

This is the choice of X which was made in [36]. It was then remarked that when q got

larger, it allowed to obtain sharper bounds on hc(β). A philosophical reason for this is

that by increasing q one gets closer, in some sense, to the expression (4.11).

The novelty of our approach compared to that of [36] is to take q going to infinity with

the correlation length `: we choose

q` = max
{

log
(

sup
x6`

ϕ(x)
)
; log D(`)

}
. (4.14)

Note that for most cases, and in particular when ϕ is asymptotically equivalent to a

constant, one can take q = log log `. With this choice of growing q the computations

become trickier, and to keep them tractable we also choose to reduce the interaction

range: we restrict the sum (4.13) to indices which satisfy i j − i j−1 6 t` for some t` � `.

We actually take t = b`1/4
c, in reference to the definition of the correlation length (3.1),

so that D(t) > Aβ−2, and D(t) 6 Aβ−2
+ 1. We frequently omit the dependence in ` in

the notation for the sake of readability.

We consider the set of increasing sequences of indices whose increments are not larger

than t

J`,t :=
{

i = (i0, . . . , iq) ∈ Nq+1
|1 6 i0 < i1 < · · · < iq 6 `; ∀ j ∈ {1, . . . , q}, i j − i j−1 6 t

}
.

(4.15)

We set

X1(ω) :=
1

`1/2 (D(t))q/2
∑

i∈J`,t

U (i)ωi (4.16)

where ωi =
∏q

k=0 ωik , and

U (i) =
q∏

k=1

u(ik − ik−1). (4.17)

For i > 1 we define

X i (ω) := X1(θ (i−1)`ω), (4.18)
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where θ is the shift operator: (θω)n = ωn+1. It is a simple computation to check (4.2), in

particular

E[(X i )2] =
1

` (D(t))q
∑

i∈J`,t

U (i)2 6 1. (4.19)

4.3. Proof of Proposition 3.2

The main step in the proof is to show that this choice of change of measure indeed

penalizes the partition function Zd, f for most choices of d, f inside the cell Bi .

Lemma 4.1. For any M > 10 there exists a choice for the constants η and β0, such that

for any β 6 β0, for all d, f ∈ Bi with f − d > η`, one has

E[gi (ω)Zd, f ] 6 e−M/2. (4.20)

We prove this result in the next section and explain now how we deduce Proposition 3.2

from it. Note that, as gi (ω) 6 1, we always have

E[gi (ω)Zdi , fi ] 6 E[Zdi , fi ] = 1. (4.21)

Hence, from (4.9)

E[gI(ω)ZI
]

6 e|I|
∑

d1, f1∈Bi1
d16 f1

∑
d2, f2∈Bi2

d26 f2

· · ·

∑
dl∈Bil

K(d1)u( f1− d1)e−(M/2)1{ f1−d1>η`}K(d2− f1)

· · · K(dl − fl−1)u(N − dl)e−(M/2)1{N−dl>η`} . (4.22)

Using the expression above we are going to show that given γ > 0 and δ > 0, if ` is large

enough we have (recall i0 = 0), for some constant C`

E[gI(ω)ZI
] 6 C`(eγ 2)|I|

l∏
j=1

1
(i j − i j−1)3/2−2δ . (4.23)

Thus, provided that δ 6 1/1000 and that γ is sufficiently small, and together with (4.1)

and (4.5), it implies that (changing the value of C` if necessary)

E
[
(ZI)3/4

]
6 C`

l∏
j=1

γ

(i j − i j−1)
10
9
. (4.24)

We split the proof of (4.23) in three parts. The main part is to show that for M sufficiently

large and η sufficiently small, for all j ∈ {1, . . . , l − 1}, for all choices of f j−1 ( f0 = 0) and

d j+1 one has ∑
d j , f j∈Bi j

d j6 f j

√
K(d j − f j−1) u( f j − d j ) e−(M/2)1{ f j−d j>η`}

√
K(di+1− f j )

6 γ
[
(i j − i j−1)(i j+1− i j )

]δ−3/4
(4.25)
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where γ can be made arbitrarily small by choosing η small and M large. We also prove

that for all fl−1 we have

N∑
dl=(i j−1)`+1

√
K(dl − fl−1) u(N − dl) e−(M/2)1{N−dl>η`} 6

C`γ
(m− il−1)3/4−δ

. (4.26)

Finally, for all d1 ∈ Bi1 , we have that√
K(d1) 6

C`

i3/4−δ
1

. (4.27)

The result (4.23) follows by using (4.22) and multiplying the inequality (4.25), (4.26)

and (4.27). Note that (4.27) is obvious from the property of slowly varying functions. We

focus on the proof of (4.25) and then show how to modify it to get (4.26).

Proof of (4.25). Let us first consider only the terms of the sum with f j in the second

half of the block: f j > (i j − 1/2)`. We prove that if M is chosen sufficiently large and η

sufficiently small, we have for every (fixed) f j > (i j − 1/2)`

f j∑
d j=(i j−1)`+1

√
K(d j − f j−1) u( f j − d j ) e−(M/2)1{ f j−d j>η`} 6

1
8
γ

√
ϕ((i j − i j−1)`)

`1/4 (i j − i j−1)3/4 ϕ(`)
.

(4.28)

To see this we have to split the sum into two contributions: d j 6 (i j − 3/4)` and d j >
(i j − 3/4)`+ 1.

We observe first that, uniformly on d j > (i j − 3/4)`+ 1 (so that d j − f j−1 > 1
4

(i j − i j−1)`), we have (provided that ` is large enough)√
K(d j − f j−1) 6 4

√
ϕ((i j − i j−1)`)(
` (i j − i j−1)

)3/4 . (4.29)

Hence, by summing over d j > (i j − 3/4)`+ 1, and using that u(n) ∼ 1
√

nϕ(n) (see (2.26)),

we obtain that

f j∑
d j=(i j−3/4)`+1

√
K(d j − f j−1) u( f j − d j ) e−(M/2)1{ f j−d j>η`}

6 10
(
√
η+ e−M/2

) √`
ϕ(`)

√
ϕ((i j − i j−1)`)(
` (i j − i j−1)

)3/4 . (4.30)

Let us now treat the case of d j 6 (i j − 3/4)`, in which range f j − d j > `/4: one hence

has that

u( f j − d j ) > 3 `−1/2ϕ(`)−1.

Furthermore (one checks separately the cases i j − i j−1 = 1 and i j − i j−1 > 2), we have,

uniformly in f j−1,

(i j−3/4)`∑
d j=(i j−1)`+1

√
K(d j − f j−1) 6

4 `1/4√ϕ((i j − i j−1)`)

(i j − i j−1)3/4
. (4.31)
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Hence, provided η 6 1/4 (so that, for f j > (i j − 1/2)` and d j 6 (i j − 3/4)` considered,

the exponential term is always e−M/2), summing over d j we have

(i j−3/4)`∑
d j=(i j−1)`+1

√
K(d j − f j−1) u( f j − d j ) e−(M/2)1{ f j−d j>η`}

6 12 e−M/2

√
ϕ((i j − i j−1)`)

`1/4ϕ(`) (i j − i j−1)3/4
. (4.32)

Combining (4.30) and (4.32) concludes the proof of (4.28). Then, we are ready to sum

over f j > (i j − 1/2)`: similarly to (4.31), we have

i j `∑
f j=(i j−1/2)`+1

√
K(d j+1− f j ) 6

4`1/4√ϕ((i j+1− i j )`)

(i j+1− i j )3/4
. (4.33)

Hence, combining this with (4.28), we get that∑
d j , f j∈Bi j

d j6 f j f j>(i j−1/2)`

√
K(d j − f j−1) u( f j − d j ) e−(M/2)1{ f j−d j>η`}

√
K(di+1− f j )

6
1
2
γ

√
ϕ((i j − i j−1)`)

(i j − i j−1)3/4
1
ϕ(`)

√
ϕ((i j+1− i j )`)

(i j+1− i j )3/4
. (4.34)

Then we notice that, by symmetry, we can obtain the same bound for the sum over

d j , f j ∈ Bi j , d j 6 f j , d j 6 (i j − 1/2)`, and thus obtain∑
d j , f j∈Bi j

d j6 f j

√
K(d j − f j−1) u( f j − d j ) e−(M/2)1{ f j−d j>η`}

√
K(di+1− f j )

6 γ

√
ϕ((i j − i j−1)`)

(i j − i j−1)3/4
√
ϕ(`)

√
ϕ((i j+1− i j )`)

(i j+1− i j )3/4
√
ε(`)

. (4.35)

We deduce (4.25) by remarking that, for any δ > 0, and if ` is large enough, one has for

all a ∈ N
ϕ(a`)
ϕ(`)

6 aδ. (4.36)

To prove (2.16), we notice that the proof of (4.28) implies that

N∑
dl=(i j−1)`+1

√
K(dl − fl−1) u(N − dl) e−(M/2)1{N−dl>η`}

6 γ

√
ϕ((m− il−1)`)

`1/4ϕ(`) (m− il−1)3/4
6

C` γ
(m− il−1)3/4−δ

. (4.37)
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5. One block estimate: proof of Lemma 4.1

Due to translation invariance, we may focus on the first block, and for simplicity we write

X (ω) (resp. g(ω)) instead of X1(ω) (resp. g1(ω)). We fix d, f ∈ B1, with f − d > η`, and

we set

Pd, f (·) = P( · | d, f ∈ τ, τ ∩ (B1 \ [d, f ]) = ∅).

We also introduce the short-hand notation

δn := 1{n∈τ }.

With this notation, one has

E[g(ω)Zd, f ] = Ed, f

E[g(ω) exp
( f∑

n=d

(βωn − λ(β))δn

)] . (5.1)

Note that, given a fixed realization of τ , the exponential in the above quantity averages

to one under P and can thus be considered as a probability density. One introduces the

probability measure P̂τ whose density with respect to P is given by

P̂τ ( dω) := exp
( f∑

n=d

(βωn − λ(β))δn

)
P( dω), (5.2)

so that

E[g(ω)Zd, f ] = Ed, f
[
Êτ [g(ω)]

]
. (5.3)

Note that, under P̂τ , ω is still a sequence of independent random variables, but they

are no longer identically distributed as the law of (ωn)n∈τ∩{d,..., f } has been exponentially

tilted. This implies in particular a change of mean and variance: for d 6 n 6 f , we have

Êτ [ωn] = λ
′(β)δn, VarPτ [ωn] = 1+ (λ′′(β)− 1)δn (5.4)

where λ′ and λ′′ denote the first two derivatives of λ (2.2). Because of our assumptions

on the first two moments of ω, one has λ′(β) ∼ β and λ′′(β)→ 1 as β ↓ 0. One hence

has, for β sufficiently small,

λ′′(β) ∈ [1/2, 2] and λ′(β)/β ∈ [1/2, 2]. (5.5)

For the remainder of the paper, we always assume that β0 is such that (5.5) is satisfied

for all β < β0. We use the notation

mβ := λ
′(β). (5.6)

We need to estimate Ed, f
[
Êτ [g(ω)]

]
. With the definition (4.3), we have

g(ω) 6 1
{X (ω)6eM2

}
+ e−M ,

and hence

Ed, f
[
Êτ [g(ω)]

]
6 Ed, f

[
P̂τ
(
X (ω) 6 eM2)]

+ e−M . (5.7)

One therefore needs to show that under Pd, f , for most realizations of τ , X (ω) is larger

than eM2
with P̂τ -probability close to 1. We obtain this result by estimating the first

and second moment of X (ω). The proof of these two results is quite technical and is

postponed to §§ 5.1 and 5.2, respectively.
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Lemma 5.1. For any M > 0 and η > 0, there exists some β0 such that: for all β 6 β0,

and for all d and f with f − d > η `β,A,

Pd, f

(
Êτ [X ] > 2q

)
> 1− e−M . (5.8)

Lemma 5.2. There exists some β0 such that, for β 6 β0 one has

Ed, f Ê
[(

X − Êτ [X ]
)2]

6 3q . (5.9)

Note that, due to our definition of q(A, β), we have

lim
β→0+

q(A, β) = +∞, (5.10)

and hence one can always choose β0 sufficiently small to have

∀β ∈ (0, β0] eM2
6 2q−1.

Then, we have

Ed, f P̂τ (X 6 eM2
) 6 Pd, f

(
Êτ [X ] 6 2q

)
+Ed, f P̂τ

(
X − Êτ [X ] 6−2q−1

)
. (5.11)

We use Lemma 5.1 to bound the first term. The second term can be controlled using

Lemma 5.2 and Chebyshev’s inequality. In the end, one obtains

Ed, f P̂τ (X 6 eM2
) 6 e−M

+ 4(3/4)q . (5.12)

Hence, from (5.7) we have

Ed, f
[
Zd, f g(ω)

]
6 2e−M

+ 4(3/4)q 6 e−M/2, (5.13)

where the last inequality holds if β 6 β0 with β0 chosen sufficiently small.

5.1. Proof of Lemma 5.1

Let us introduce the notation

δi :=

q∏
k=0

δik =

q∏
k=0

1{ik∈τ }. (5.14)

We have

Êτ [X ] =
mq+1
β

`1/2 (D(t))q/2
∑

i∈J`,t
d6i0<iq6 f

U (i)δi . (5.15)

Notice that with our choices for q and ` we have

ϕ(`) 6 eq ,
√

D(t) 6 eq , and β2 > A/D(t). (5.16)

As mβ > β/2 > 1
2

√
A/
√

D(t), we have

Êτ [X ] >
(1

2

)(q+1)
A(q+1)/2 1

√
D(t)

1
√
` D(t)q

∑
i∈J`,t

d6i0<iq6 f

U (i)δi

>

(√
A

2e2

)q+1

×
ϕ(`)
√
` D(t)q

∑
i∈J`,t

d6i0<iq6 f

U (i)δi . (5.17)
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Recalling our choice A = 64e4, the r.h.s. becomes

4q+1 ϕ(`)
√
` D(t)q

∑
i∈J`,t

d6i0<iq6 f

U (i)δi . (5.18)

Hence, to prove Lemma 5.1, it is sufficient to show that

Pd, f

(
ϕ(`)
√
` D(t)q

∑
i∈J`,t

d6i0<iq6 f

U (i)δi > 2−q−2
)
> 1− e−M . (5.19)

Following [36, § 5], we show that we can replace the probability Pd, f by P and modify

slightly the set of indices J`,t . This allows to reduce the proving Lemma 5.3 below. For

the sake of completeness we recall the following steps.

(a) By translation invariance, the probability that we have to bound is equal to

P
(

ϕ(`)
√
` D(t)q

∑
i∈J`,t

16i0<iq6 f−d

U (i)δi 6 2−q−2
∣∣∣∣ f − d ∈ τ

)
. (5.20)

(b) In order to remove the conditioning, we restrict the summation to indices i such

that iq 6 ( f − d)/2 and we get an upper bound on the probability. Then we use [35,

Lemma A.2] which compares P( · | n ∈ τ) to P, to get that there exists a constant

c3 > 0 such that

P
(

ϕ(`)
√
` D(t)q

∑
i∈J`,t

16i0<iq6( f−d)/2

U (i)δi 6 2−q−2
∣∣∣∣ f − d ∈ τ

)

6 c3 P
(

ϕ(`)
√
` D(t)q

∑
i∈J`,t

16i0<iq6( f−d)/2

U (i)δi 6 2−q−2
)
. (5.21)

(c) Then, setting n` := 1
4η` 6

f−d
4 , we can restrict the summation to indices such that

i0 6 n, which automatically ensures that iq 6 n+ tq 6 ( f − d)/2, provided that `

is large enough (since tq � ( f − d)/4). Hence, we can replace J`,t with

J ′n,t :=
{

i = (i0, . . . , iq) ∈ Nq+1
| i0 6 n; ∀ j ∈ {1, . . . , q}, i j − i j−1 ∈ (0, t]

}
, (5.22)

and get an upper bound in the probability (5.21).

(d) Finally, from the definition of n we have, if ` is large enough

ϕ(`)
√
`

>
√
η

4
ϕ(n)
√

n
.

Hence, (5.19) holds provided that we can prove that for all n > η`

P
(

ϕ(n)
√

n D(t)q
∑

i∈J ′n,t

U (i)δi 6 η−1/22−q
)
6

1
c3

e−M . (5.23)
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Let us set

W` :=
ϕ(n)
√

n D(t)q
∑

i∈J ′n,t

U (i)δi , (5.24)

where the dependence in ` is also hidden in t , q and n. We are left to showing the following

result which easily yields (5.23) for β sufficiently small.

Lemma 5.3. Under probability P, we have

W`
`→∞
H⇒

1
√

2π
|Z |, (5.25)

where Z ∼ N (0, 1), and H⇒ denotes convergence in distribution.

Proof. First one remarks that the following convergence holds:

ϕ(n)
√

n

n∑
j=1

δ j
n→∞
H⇒

1
√

2π
|Z |, (Z ∼ N (0, 1)). (5.26)

This is a standard result, since
n∑

j=1

δ j < m

 = {τm > n},

so that

lim
n→∞

P

ϕ(n)√
n

n∑
j=1

δ j > t

 = P(σ1/2 > 1/t2),

where σ1/2 is an 1/2-stable subordinator at time 1 (such a remark was already made in

[36], see Equations (5.12)–(5.16)).

The lemma is thus proved if one can show that the difference

1W` :=
ϕ(n)
√

n

 n∑
j=1

δ j −
1

D(t)q
∑

i∈J ′n,t

U (i)δi

 , (5.27)

converges to zero in probability, thanks to Slutsky’s theorem. We simply prove that the

second moment of 1W` tends to zero. Set

J ′n,t ( j) :=
{
i ∈ J ′n,t | i0 = j

}
and

Y j := δ j −
1

D(t)q
∑

i∈J ′n,t ( j)

U (i)δi , (5.28)

so that 1W = ϕ(n)
√

n

∑n
j=0 Y j .
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Lemma 5.4. We have the following estimates:

(i) for | j1− j2| > tq, E[Y j1 Y j2 ] = 0;

(ii) there exists a constant C1 > 0 such that for all j > 0, E[Y 2
j ] 6 (C1)

qE[δ j ] =

(C1)
q u( j).

Using this result we have

E[1W 2
] =

ϕ(n)2

n

n∑
j1, j2=0

E[Y j1 Y j2 ] 6
2ϕ(n)2

n

n∑
j1=0

j1+tq∑
j2= j1

E[Y j1 Y j2 ]

6
2ϕ(n)2

n
(C1)

q
n∑

j1=0

j1+tq∑
j2= j1

u( j1)8/9u( j2)1/9, (5.29)

where in the first inequality, we used (i), and in the second one we used Hölder’s inequality,

together with (ii). Since there exists a constant c4 such that u( j) 6 c4(1+ j)−9/20 for all

j > 0, we have that, provided that ` is large enough,

E[1W 2
] 6

2c4ϕ(n)2

n
(C1)

q(tq + 1)
n∑

j1=0

(1+ j1)−2/5 6 10c4ϕ(n)2(C1)
q tqn−2/5. (5.30)

Note that with our choice of q,

(C1)
q
=

(
max

{
sup
x6`

ϕ(x), D(`)
})log C1

is a slowly varying function of `. Since t = b`1/4
c and n > 1

4η` we obtain

E[1W 2
] 6

(
10c4ϕ(n)2q (C1)

qη−2/5)
× `−3/20, (5.31)

which goes to 0 as n→∞.

5.2. Proof of Lemma 5.4

We introduce a new notation. If i and j are finite increasing sequences of finite cardinal

q + 1 and q ′+ 1 we let i j denote the increasing sequence whose image is given by the

union of that of i and j . Note that the cardinal of i j is not necessarily equal to q + q ′+ 2,

as it is possible that ik and jk′ coincide.

We also extend the definition U (i) to increasing sequences (ik)
06k6r of arbitrary (finite)

cardinal (recall that u(0) = 1 by convention)

U (i) :=
r∏

k=0

u(ik − ik−1). (5.32)

For item (i), we write

E[Y j1 Y j2 ] = E

Y j1δ j2

1−
1

D(t)q
∑

i∈J ′n,t ( j2)

U (i)δi

 . (5.33)
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Conditioned to δ j2 = 1, and assuming that j2 > j1+ tq, one has that Y j1 and1−
1

D(t)q
∑

i∈J ′n,t ( j2)

U (i)δi


are independent. The latter term have mean zero (conditionally on δ j2 = 1); hence the

conclusion.

For item (ii) conditioning to δ j = 1 and using translation invariance, one obtains

E[Y 2
j ] = E[δ j ]

 1
D(t)2q

∑
i,k∈J ′n,t (0)

U (i)U (k)E
[
δi δk

]
− 1

 . (5.34)

In order to keep track of the role of q in the definition of J ′n,t (0)(⊆ Nq+1), we now write

J ′n,t,q instead. We prove that there exists a constant C1 such that, for any couple q, q ′∑
i∈J ′n,t,q
k∈J ′n,t,q′

U (i)U (k)U (i k) 6 (C1)
q+q ′D(t)q+q ′ . (5.35)

This is obviously true if q = q ′ = 0, and we proceed recursively on q + q ′. We decompose

the sum into two components according to whether iq or kq ′ is larger. In the case iq > kq ′

one obtains∑
i∈J ′n,t,q−1
k∈J ′n,t,q′

U (i)U (k)U (i k)
iq−1+t∑

iq=max(iq−1,kq′ )

u(iq − iq−1)u
(
iq −max(iq−1, kq ′)

)
. (5.36)

Now, note that thanks to (2.25) there exists a constant c5 such that, for all m > n, one

has u(m) 6 c5u(n). Therefore, uniformly in the choice of i and k, we have that

iq−1+t∑
iq=max(iq−1,kq′ )

u(iq − iq−1)u
(
iq −max(iq−1, kq ′)

)

6 c5

iq−1+t∑
iq=max(iq−1,kq′ )

u
(
iq −max(iq−1, kq ′)

)2
6 c5 D(t). (5.37)

By symmetry, we conclude that

∑
i∈J ′n,t,q
k∈J ′n,t,q′

U (i)U (k)U (i k) 6 2c5 D(t)max


∑

i∈J ′n,t,q−1
k∈J ′n,t,q′

U (i)U (k)U (i k);
∑

i∈J ′n,t,q
k∈J ′n,t,q′−1

U (i)U (k)U (i k)


,

(5.38)

which in turns gives (5.35) by induction, with C1 = 2c5.
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5.3. Proof of Lemma 5.2

We set

ω̂i = ωi −mβδi 1{d6i6 f }.

Under P̂τ , the ω̂i ’s are independent, centered random variables, with E[ω̂2
i ] 6 2 (recall

(5.4)). We have

VarP̂τ
[
X
]
=

1
` (D(t))q

Êτ
[( ∑

i∈J`,t

U (i)
q∏

k=0

(ω̂ik +mβδik )

)2]
−

m2(q+1)
β

` (D(t))q

( ∑
i∈J`,t

U (i)δi

)2

.

(5.39)

One can develop the product, for some fixed i ∈ J`,t , d 6 i0 < iq 6 f

q∏
k=0

(ω̂ik +mβδik ) =

q+1∑
r=0

mr
β

∑
A⊆{0,...,q}
|A|=r

(∏
j∈A

δi j

)( ∏
k∈{0,...,q}\A

ω̂ik

)
, (5.40)

so that, when developing the square, and taking the expectation we have

Êτ
[( ∑

i∈J`,t

U (i)
q∏

k=0

(ω̂ik +mβδik )

)2]

=

∑
i,i ′∈J`,t

U (i)U (i ′)
q+1∑

r

m2r
β

∑
A,B⊆{0,...,q}
|A|=|B|=r

( ∏
j∈A
j ′∈B

δi j δi ′j ′

)
Êτ

 ∏
k∈{0,...,q}\A
k′∈{0,...,q}\B

ω̂ik ω̂i ′k′

 .
(5.41)

We have used the fact that only |A| and |B| with the same cardinality have nonzero

expectation. Note that the sum of the terms with r = q + 1 corresponds exactly to E
[
X
]2

and thus just cancels the second term in the r.h.s of (5.39).

To get a good bound on the expected value of (5.41) we must reorganize it. In the

process, we also add some positive term, but this is not a problem since we work on an

upper bound. In (5.41), because of the last factor, the nonzero terms have to satisfy

(ik)k∈{0,...,q}\A = (ik)k∈{0,...,q}\B .

For a given s, we define the set Ms , which includes all the values that can be taken by

(ik)k∈{0,...,q}\A, when q + 1− |A| = s.

We notice that

Ed, f

( ∏
j∈A
j ′∈B

δi j δi ′j ′

)
= 0

if one of the i j -s or i ′j ′-s is out of the interval [d, f ]. Hence if r > 0, the nonzero terms

must also satisfy

i0 > d − tq, iq 6 f + tq. (5.42)
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We include this condition in the definition of Ms

Ms :=
{
i ∈ Ns

| d − tq 6 i0 < · · · < is 6 f + tq,∀k, l ∈ {1, . . . , s}, |ik − il | 6 tq
}
. (5.43)

Note that this definition will result in adding extra terms in the sum if either d < tq or

f > `− tq (as we dropped the condition i0 6 0). Then, given i , we define Nr (i) which

includes all the values that can be taken by (i j ) j∈A with |A| = r . We say that an increasing

sequence of integer m = (m0, . . . ,ma) is t-spaced if

∀k ∈ {1, . . . , a},mk −mk−1 ∈ (0, t]. (5.44)

We set

Nr (i) := { j ∈ Nr
| d 6 j1 < · · · < jr 6 f, i ∩ j = ∅, i j is t-spaced}, (5.45)

where i ∩ j = ∅ means that the images of the sequences i and j are disjoint.

With this notation, and using (5.5) or more specifically

Êτ [ω̂2
ik
] 6 2 and mβ 6 2β,

we have

VarP̂τ
(
X
)
6

2q+1

` (D(t))q
∑

i∈J`,t

U (i)2+
4q+1

` (D(t))q

q∑
r=1

β2r
∑

i∈Mq−r

∑
j,k∈Nr (i)

U (i j)U (i k)δ jδk

(5.46)

where we isolated the term with r = 0, and we have used the concatenation notation

i j introduced in the proof of Lemma 5.4. The first term in the r.h.s. is equal to (recall

(4.19))

2q+1E
[

X2
]
6 2q+1. (5.47)

We end the proof by controlling the contribution to the sum of the others terms, which

turns out to be ridiculously small in expectation.

Lemma 5.5. There exist constants C2 and c6 such that for all r ∈ {1, . . . , q − 1}∑
i∈Mq−r

∑
j,k∈Nr (i)

U (i j)U (i k)Ed, f
[
δ jδk

]
6 c6 q (C2 D(t))q+r−1

√
t`

ϕ(t)ϕ(`)
. (5.48)

We have thus

4q+1β2r

` (D(t))q
∑

i∈Mq−r

∑
j , k∈Nr (i)

U (i j)U (i k)Ed, f
[
δ jδk

]
6 c6 q4q+1(C2)

2q(D(t))r−1β2r
√

t
√
`ϕ(t)ϕ(`)

. (5.49)

Now, by the definition (3.1) of ` we have β2 D(t) 6 2A. Using also that t 6 `1/4, the above

sum is smaller than

c6 qβ2(8C2
2 A)q+1 `−3/8

ϕ(t)ϕ(`)
6 `−1/4. (5.50)

https://doi.org/10.1017/S1474748015000481 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000481


Disorder relevance for the pinning model 331

The last inequality is valid provided that ` is large enough, since q, (8C2
2 A)q , ϕ(t) and

ϕ(`) are slowly varying functions. Hence, from (5.46), we have

Ed, f

(
VarP̂τ

(
X
))
= 2q+1

+ q`−1/4, (5.51)

which concludes the proof of Lemma 5.1, provided that ` is large enough.

Proof of Lemma 5.5. Remark that if i0 6 (d + f )/2, then jr , kr 6 (d + f )/2+ tq so that

f −max( jr , kr ) > ( f − d)/4 (provided ` is large enough). Since there exists a constant

c7 > 0 such that u(m) 6 c7u(n) whenever m > 1
4 n (recall (2.25)), one obtains

Ed, f

[
δ jδk

]
= U (d jk)

u( f −max( jr , kr ))

u( f − d)
6 c7U (d jk).

By symmetry, the contribution to the sum of (5.48) of i ∈ Mq−r such that i0 6 (d + f )/2
is equal to that of i ∈ Mq−r such that iq−r > (d + f )/2, and hence the whole sum is

bounded above by

2c7
∑

i∈Mq−r
d−tq6i06(d+ f )/2

∑
j,k∈Nr (i)

U (i j)U (i k)U (d jk)

6 2c7c5

d+ f/2∑
i0=d−tq

u(max(i0− tr − d, 0))
∑

i∈Mq−r (a)

∑
j,k∈Nr (i)

U (i j)U (i k)U ( jk), (5.52)

where we used that min{ j1, k1} > max{i0− tr, d}, so that u(min{ j1, k1}− d) 6
c5u(max{i0− tr, d}− d). We also used the notation

Ms(a) = {i ∈ Ms; i0 = a}.

Then, one has that there exists a constant c8 such that for any `

d+ f/2∑
i0=d−tq

u(max(i0− r t − d, 0)) 6
∑̀
n=0

u(n) 6 c8

√
`

ϕ(`)
, (5.53)

which follows from the fact that (d − f ) 6 ` and classical properties of regularly varying

functions. Combining this with (5.52), (5.53) and Lemma 5.6 below proves Lemma 5.5,

with the constant c6 = 4c7c5(c8)
2 and C2 = 3c5.

Lemma 5.6. For any a ∈ Z, and any s > 1, r1, r2 > 1∑
i∈Ms (a)

∑
j∈Nr1 (i)

∑
k∈Nr2 (i)

U (i j)U (i k)U ( jk) 6 (1+ s) (3c5 D(t))s+r1+r2−1
× 2c8

√
t

ϕ(t)
. (5.54)

We recall that the constant c5 is chosen such that for all couples of integers such that

m > n, we have u(m) 6 c5u(n), and the constant c8 appears in (5.53).

Remark 5.7. The result is proved by induction and we also have to consider the case

where either r1, r2 or s is equal to zero. When r1 or r2 are equal to zero, the definition of

Nr is extended as follows: N0(i) = {∅} if i is t-spaced and N0(i) = ∅ if not. We also use

the convention U (∅) = 1.
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Proof of Lemma 5.6. Note that there is in fact no dependence in a, and one can as well

set a = 0. We now proceed with a triple induction on the indices s, r1 and r2. Let us start

with the induction hypothesis. We set

Σ(s, r1, r2) :=
∑

i∈Ms (0)

∑
j∈Nr1 (i)

∑
k∈Nr2 (i)

U (i j)U (i k)U ( jk). (5.55)

(1) We first show that if r1, r2, s > 1, we have

Σ(s, r1, r2) 6 c5 D(t)
[
Σ(s, r1, r2− 1)+Σ(s, r1− 1, r2)+Σ(s− 1, r1, r2)

]
. (5.56)

To see this, we decompose the sum Σ(s, r1, r2) into three sums Σk , Σ j and Σi
corresponding to the respective contributions of the triplets i , j , k satisfying kr2 >
max(is, jr1), jr1 > max(is, kr2), and is > max( jr1 , kr2), respectively. As we are counting

several times the cases of equality between jr1 and kr2 , we have

Σ(s, r1, r2) 6 Σk(s, r1, r2)+Σ j (s, r1, r2)+Σi (s, r1, r2).

To bound Σk from above, we notice that because of the restriction of the sum to the

i k which are t-spaced, we have

Σk(s, r1, r2) =
∑

i∈Ms (0)

∑
j∈Nr1 (i)

∑
j∈Nr2−1(i)

max(is ,kr2−1)+t∑
kr2=max(is+1, jr1 ,kr2−1+1)

u
(
kr2 −max(is, kr2−1)

)
u
(
kr2 −max( jr1 , kr2−1)

)
. (5.57)

Then for any value of is , kr2−1 and jr1 we have

max(is ,kr2−1)+t∑
kr2=max(is+1, jr1 ,kr2−1+1)

u
(
kr2 −max(is, kr2−1)

)
u
(
kr2 −max( jr1 , kr2−1)

)

6 c5

kr2−1+t∑
kr2=max(is+1, jr1 ,kr2−1+1)

u
(
kr2 −max(is + 1, jr1 , kr2−1+ 1)

)2
6 c5 D(t). (5.58)

In the case where r2 = 1, we just have to drop kr2−1 from the max and sum until is + t .
We therefore have that

Σk(s, r1, r2) 6 c5 D(t)Σ j (s, r1, r2) 6 c5 D(t)Σ(s, r1− 1, r2), (5.59)

and the exact same proof yields

Σ j (s, r1, r2) 6 c5 D(t)Σ(s, r1− 1, r2),

Σi (s, r1, r2) 6 c5 D(t)Σ(s− 1, r1, r2).
(5.60)

(2) Now let us treat the case where either r1, r2 or s are equal to 0. The technique of

splitting the sum according to the type of the largest index as above still works and gives

Σ(s, r1, 0) 6 c5 D(t)
[
Σ(s, r1− 1, 0)+Σ(s− 1, r1, 0)

]
,

Σ(0, r1, r2) 6 c5 D(t)
[
Σ(0, r1, r2− 1)+Σ(0, r1− 1, r2)

]
,

(5.61)
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provided that s > 1, r1 > 2 in the first case, and r2, r1 > 1 in the second case (note that

from Remark 5.7 we sum only over t-spaced i).
(3) To finish the induction we are left with proving bounds onΣ(0, r1, 0), andΣ(s, 1, 0).
a. For the first one, when r1 > 2, we split the sum into two contributions jr1 > 0 or

jr1 6 0. They are respectively equal to

Σ>0(0, r1, 0) =
∑

j∈Nr1−1(0)
jr1>0

U ( j)U (0 j)
max( jr1−1,0)+t∑

jr1=max(0, jr1−1)+1

u( jr1 − jr1−1)u( jr1 −max( jr1−1, 0)),

Σ60(0, r1, 0) =
∑

j∈Nr1−1(0)
jr160

U ( j)U (0 j)
j1∑

j0= j1−t

u( j1− j0)2.

And similarly in (5.58), it is sufficient to conclude that

Σ(0, r1, 0) 6 (c5+ 1)D(t)Σ(0, r1− 1, 0) 6 2c5 D(t)Σ(0, r1− 1, 0). (5.62)

Moreover, one also has that

Σ(0, 1, 0) 6 2
t∑

j1=1

u(| j1|) 6 2c8

√
t

ϕ(t)
. (5.63)

Then, one easily has by induction that for any r1 > 1 (a similar result holds for r2 > 1),

Σ(0, r1, 0) 6
(
2c5 D(t)

)r1−1
× 2c8

√
t

ϕ(t)
6
(
3c5 D(t)

)r1−1
× 2c8

√
t

ϕ(t)
. (5.64)

b. It is straightforward to check that

Σ(s, 0, 0) =
∑

i∈Ms (0)
i t-spaced

U (i)2 = D(t)s . (5.65)

Moreover, for all s > 1, decomposing the sum according to whether j1 or is is larger, we

have

Σ(s, 1, 0) 6
∑

i∈Ms (0)
i t-spaced

U (i)2
is+t∑

j1=is+1

u( j1− is)

+

∑
i∈Ms−1(0)
i t-spaced

∑
j∈N1i

U (i)U (i j)
max(is−1, j1)+1∑

is=max(is−1, js )+1

u(is − is−1)u(is −max(is−1, j1))

6 c8

√
t

ϕ(t)
Σ(s, 0, 0)+ c5 D(t)Σ(s− 1, 1, 0). (5.66)
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Therefore, combining (5.63)–(5.65)–(5.66), one easily gets by induction that, for any

s > 0,

Σ(s, 1, 0) 6 (1+ s) (c5 D(t))s × 2c8

√
t

ϕ(t)
6 (1+ s)

(
3c5 D(t)

)s
× 2c8

√
t

ϕ(t)
. (5.67)

(4) One is now able to complete the induction by combining (5.56)–(5.61) with

(5.64)–(5.67).

6. Upper bound of Theorem 2.3

In this section, we prove the following proposition.

Proposition 6.1. For every ε > 0, there exists some βε such that, for all β 6 βε, one has

hc(β) 6 D−1((1− ε)/β2)− 1
2 (1−ε).

In the case where limn→∞ ϕ(n) = cϕ, we have

lim sup
β→0

β2 log hc(β) 6 −
1
2
(cϕ)2. (6.1)

The proof we present here relies on ideas developed in [44] but we got rid of the use

of martingale result, to focus only on simple second moment estimates. We optimize it

here in order to obtain the exact order for log hc(β) when α = 1/2.

First of all, one establishes a finite-volume criterion for localization, see (6.7). Then,

one proves that the measure Pβ,h=0,ω
N is close enough to P (in some specific sense, see

Lemma 6.3), provided that the second moment of the partition function at h = 0 is not

too large. Then Lemma 6.4 provides an estimate on E[(Zβ,0,ωN )2], which, combined with

the finite-volume criterion, leads to an upper bound on the critical point.

In this section, for technical convenience, we work with the free-boundary condition.

We introduce the measure Pβ,h,ωN ,f , and its associated partition function Zβ,h,ωN ,f , which

corresponds to this boundary condition (in which the constraint 1{N∈τ } is dropped):

dPβ,h,ωN ,f

dP
(τ ) :=

1

Zβ,h,ωN ,f

exp

( N∑
n=1

(βωn + h− λ(β))δn

)
, (6.2)

with

Zβ,h,ωN ,f := E

[
exp

( N∑
n=1

(βωn − λ(β)+ h)δn

)]
. (6.3)

6.1. Finite-volume criterion for localization

We notice that we can obtain a bound on the free energy which is directly related to the

contact fraction at the critical point.
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Lemma 6.2. For all N sufficiently large, for all h > 0 and all β ∈ [0, 1] we have

F(β, h) >
h
N
EEβ,0,ωN ,f

[ N∑
n=1

δn

]
−

2 log N
N

. (6.4)

As a consequence, for all N sufficiently large, for all β ∈ [0, 1] we have

hc(β) 6
2 log N

EEβ,0,ωN ,f

[∑N
n=1 δn

] . (6.5)

Proof. It is the result of a simple computation (see [31, Ch. 4]) that there exists a constant

c10 such that, for all h > 0

Zβ,h,ωN 6 Zβ,h,ωN ,f 6 c10 Neβ|ωN | Zβ.h,ωN . (6.6)

Then, by super-additivity of the expected log-partition function, we have

F(β, h) = sup
N∈N

1
N
E log Zβ,h,ωN >

1
N
E log Zβ,h,ωN ,f −

log(c10 N )+β
N

(6.7)

the last inequality being valid for any N > 1. Finally, by convexity we note that for any

h > 0
log Zβ,h,ωN ,f > h ∂u log Zβ,u,ωN ,f |u=0+ log Zβ,0,ωN ,f . (6.8)

The last term is larger than

log P(τ1 > N ) > −log(N/c10)+ 1, (6.9)

provided N is large enough. Also, a basic computation yields

∂u log Zβ,u,ωN ,f |u=0 = Eβ,0,ωN ,f

[ N∑
n=1

δn

]
. (6.10)

Hence, we get the result by combining (6.7) and (6.8).

6.2. Estimating the contact fraction at criticality

Now, to estimate EEβ,0,ωN ,f

[∑N
n=1 δn

]
, we need to compare it with the pure system. The

underlying idea is the following: for the pure system (for h = 0 it is just the law P),

the number of contact is of order N 1/2ϕ(N )−1. We want to show that, as long as the

second moment of the partition function Zβ,0,ωN ,f is not too big, the order of magnitude

for the number of contacts remains the same for the disordered system.

Lemma 6.3. For all ε > 0, there exists some Nε such that, if N > Nε and E
[
(Zβ,0,ωN ,f )2

]
6 10/ε, then

E

[
Pβ,0,ωN ,f

( N∑
n=1

δn > N
2−ε

4

)]
>

ε

80
. (6.11)
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Proof. We denote AN =
{∑N

n=1 δn > N
2−ε

4
}

from (5.26) we have

lim
N→∞

P(AN ) = 1, (6.12)

and hence we can find Nε such that for all N > Nε

P(AN ) > 1− ε/160.

Then, we observe that

Pβ,0,ωN ,f (Ac
N ) 6 1

{Zβ,0,ωN ,f 61/2}+ 2E
[
1Ac

N
e
∑N

n=1(βωn−λ(β))δn
]
. (6.13)

Therefore, averaging over the disorder and using Paley–Zygmund’s inequality for Zβ,0,ωN ,f

(recall E[Zβ,0,ωN ,f ] = 1), we have that

E
[
Pβ,0,ωN ,f (Ac

N )
]
6 P(Zβ,0,ωN ,f 6 1/2)+ 2P(Ac

N ) 6 1−
1

4E
[
(Zβ,0,ωN ,f )2

] + ε

80
. (6.14)

Hence, if E
[
(Zβ,0,ωN ,f )2

]
6 10/ε, one concludes that

E
[
Pβ,0,ωN ,f (Ac

N )
]
6 1− ε/80. (6.15)

Given ε > 0, we set

Nβ,ε := max
{

N ;E
[
(Zβ,h=0,ω

N ,f )2
]
6 10/ε

}
. (6.16)

If β is chosen sufficiently small, we can ensure that Nβ,ε > Nε of Lemma 6.3. Hence, we

have

Eβ,0,ωNβ,ε,f

Nβ,ε∑
n=1

δn

 >
ε

80
N

2−ε
4

β,ε . (6.17)

And recalling Lemma 6.2, and in particular (6.5), one has

hc(β) 6
160
ε
(log Nβ,ε)N

−
2−ε

4
β,ε 6 N

−
1−ε

2
β,ε , (6.18)

where the last inequality holds provided Nβ,ε is sufficiently large.

To conclude the proof of Proposition 6.1, we need a control of Nβ,ε.

Lemma 6.4. For every ε > 0, there exists βε such that for all β ∈ (0, βε]

Nβ,ε > D−1((1− ε)/β2) > Nε. (6.19)
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6.3. Control of the second moment: proof of Lemma 6.4

One needs to control the growth of E
[
(Zβ,0,ωN ,f )2

]
: we show that if N is such that D(N ) 6

(1− ε)/β2, then E
[
(Zβ,0,ωN ,f )2

]
6 10/ε.

First of all, one writes

(Zβ,0,ωN ,f )2 = E⊗2

[
exp

( N∑
n=1

(βωn − λ(β))(δ
(1)
n + δ

(2)
n )

)]
, (6.20)

where τ (1) and τ (2) are two independent copies of τ , whose joint law is denoted by P⊗2

and δ(i) = 1{n∈τ (i)}. Therefore, since

logE[e(βωn−λ(β))p] =

 0 for p = 0 or 1,

λ(2β)− 2λ(β) for p = 2,
(6.21)

we have

E
[

Zβ,0,ωN ,f )2
]
= E⊗2

[
exp

( N∑
n=1

(λ(2β)− 2λ(β))(δ(1)n δ(2)n )

)]
. (6.22)

As

(λ(2β)− 2λ(β))
β→0
∼ β2,

there exists some βε such that, if β 6 βε, then

(λ(2β)− 2λ(β)) 6 (1+ ε2)β2.

Hence we have

E
[
(Zβ,0,ωN ,f )2

]
6 Z(1+ε

2)β2

N , (6.23)

where Zu
N is the partition function (with free-boundary condition) of a homogeneous

pinning model with parameter u and underlying renewal τ ′, obtained by intersecting two

independent copies of τ , τ ′ := τ (1) ∩ τ (2):

Zu
N := E⊗2[eu

∑N
n=1 1{n∈τ ′}

]
. (6.24)

We rewrite Zu
N in the following manner

Zu
N = 1+

N∑
k=1

(eku
− e(k−1)u)P⊗2(|τ ′ ∩ [0, N ]| > k). (6.25)

Then, to obtain an upper bound we use the following trivial fact

P⊗2(
|τ ′ ∩ [0, N ]| > k

)
6
(
P⊗2(τ ′1 6 N )

)k
. (6.26)

Hence we have

Zu
N 6 1+ u

N∑
k=1

exp
(

k
[
u+ log P⊗2(τ ′1 6 N )

] )
. (6.27)
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To estimate the tail of the distribution of τ ′1 we use [13, Theorem 8.7.3] (recall that

P⊗2(n ∈ τ ′) = u(n)2); we have that, since D(N ) is slowly varying,

N∑
n=1

P⊗2(n ∈ τ ′) = D(N ) H⇒ P⊗2(τ ′1 > n)
N→∞
∼

1
D(N )

. (6.28)

In the end, we obtain that, provided that N is large enough,

log P⊗2(τ ′1 6 N ) 6 −

(
1− ε

4

)
D(N )

, (6.29)

so that, from (6.27), we get

Zu
N 6 1+ u

N∑
k=1

e
k

D(N ) (u D(N )−(1−ε/4))
. (6.30)

Now recall that we wish to use the inequality for u = β2(1+ ε2). If D(N ) 6 (1− ε)/β2,

then D(N ) 6 (1− ε/2)/u provided that ε is small, and we have

u D(N )− (1− ε/4) 6 −ε/4.

In the end, we obtain

Zu
N 6 1+

u

1− exp
(
−

ε
4D(N )

) 6 1+
8
ε

u D(N ) 6 10/ε, (6.31)

where in the second inequality, we used that ε/(4D(N )) is small if N is large enough.

The last inequality is valid if D(N ) 6 (1− ε/2)/u, and ε is small enough.

7. Optimizing the lower bound for Theorem 2.3

In this section, we sharpen the argument of §§ 3–5, and prove the following proposition

(recall (2.29)).

Proposition 7.1. For all ε > 0, there exists βε > 0 such that, for all β 6 βε, one has

hc(β) > D−1((1+ ε)/β2)− 1
2 (1+ε).

As a consequence when limn→∞ ϕ(n) = cϕ, we have

lim inf
β→0

β2 log hc(β) > −
1
2
(cϕ)2. (7.1)

Comparing (7.1) to (3.3), we realize that we have to gain a factor 512 e4 in the

limit. One can gain a factor two by choosing h` to be such that ` is much closer

to the annealed correlation length 1/F(h) which is, up to slowly varying correction

asymptotically equivalent to h−2 (cf. (2.8)). We choose to have

h := `−(1+ε/2)
1
2 .
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A factor 64e4 is gained by choosing A = 1+ ε instead of 64e4. Also, instead of taking

t = `1/4, we choose t to be a power of ` as close as 1 as necessary: we take t = `1−ε2
,

which yields a extra gain of a factor 4.

This implies to introduce some modifications to optimize the proof, which we

summarize below.

(i) In the definition of q, if we choose to multiply by a large factor, say ε−2, we can

avoid to losing the exponential factors in (5.16). The net benefit of the operation

is a factor e4 in the choice of A.

(ii) In (5.5), we can replace 2 and 1/2 by quantities which are arbitrarily close to 1
provided that β is chosen small enough (a factor 4 is gained). More precisely, we

fix βε such that for all β ∈ (0, βε)

λ′′(β) ∈
[
e−ε

2
, 1+ ε3/2

]
and

1
β
λ′(β) ∈

[
e−ε

2
, 1+ ε3/2

]
. (7.2)

(iii) In Lemmas 5.2 and 5.1, we do not need 2q and 3q and they can be replaced by

powers arbitrarily close to one.

(iv) In (5.19), we do not need 2−q−2, one can replace it with any quantity which tends

to zero (factor 4 again).

The change which has the more serious consequence is the modification of t : we need

some refinements to prove Lemmas 5.3 and 5.4. After this brief sketch we now present

the modifications in details.

We set

`β,ε := inf
{
n ∈ N | D(bn1−ε2

c) > (1+ ε)/β2}. (7.3)

Let us take hβ,ε := `
−

2+ε
4

β,ε , and prove that there exists some βε such that

∀β ∈ (0, βε], F(β, hβ,ε) = 0. (7.4)

This is enough to obtain Proposition 7.1 provided that ε is small enough to satisfy

(2+ ε) 6 2(1+ ε)(1− ε2).

7.1. Adaptation of the change of measure

The coarse-graining and fractional moment arguments are identical, and no modification

is needed there. The change of measure argument works also in the same manner: the

choice of gI is the same as in (4.3), and the functional X (ω) is also the same as in (4.16),

except for our choice of t and q,

t` := b`1−ε2
c;

q` :=
1
ε2 max

{
log

(
sup
x6`

ϕ(x)
)
; log D(`)

}
.

(7.5)

As (4.8) is obviously not valid for our choice of h, we have now to prove a variant of

Lemma 4.1, with a partition function which still includes the parameter h.
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Lemma 7.2. For any M > 10 there exists some η and some βε, such that for any β 6 βε,

d, f ∈ Bi , we have

E[gi (ω)Zh
d, f ] 6

 e−M/2 if f − d > η`,

2 if f − d 6 η`.
(7.6)

This results allows to show that, similarly to (4.22),

E[gI(ω)ZI
] 6 2|I|

∑
d1, f1∈Bi1

d16 f1

· · ·

∑
dl∈Bil

K(d1)u( f1− d1)e−(M/2)1{ f1−d1>η`}K(d2− f1)

· · · K(dl − fl−1)u(N − dl)e−(M/2)1{N−dl>η`} , (7.7)

and we can then follow the proof of § 4 to conclude.

The core of the proof of Lemma 7.2 is the use of adapted versions of Lemmas 5.1

and 5.2.

Lemma 7.3. With the updated choice of X (ω) (with ` as in (7.3), t and q as in (7.5)),

one has that, for any M > 11 and η > 0, there exists some βε such that, for all β 6 βε,

and all d 6 f with f − d > η`,

Pd, f

(
Êτ [X (ω)] > (1+ ε2)q

)
> 1− e−M .

Lemma 7.4. With the updated choice of X (ω) (with ` as in (7.3), t and q as in (7.5)),

there exists some βε such that, for β 6 βε one has

Ed, f Ê
[(

X − Êτ [X ]
)2]

6 (1+ ε3)q . (7.8)

Proof of Lemma 7.2. Let us start with the second case f − d 6 η`. Note that for any

choice of d, f , we have (as gi (ω) 6 1)

E[gi (ω)Zh
di , fi
] 6 Ed, f

[
eh
∑d− f

i=0 δi
]
. (7.9)

Up to a factor eh this corresponds to the partition function of the homogeneous pinning

model. Now, as we have chosen h such that f − d is much smaller than the correlation

length, we can use the bound from [25, Equation (A.12)] to obtain that for β small

enough, for all f − d 6 `β,ε.

Ed, f

[
e3h

∑ f
i=d δi δ f−d

]
6 2. (7.10)

For the case f − d > η` with the same definition of P̂τ as in (5.2), we have that, similarly

to (5.3),

E[gi (ω)Zh
d, f ] = Ed, f

[
eh
∑ f

n=d δn Êτ [g(ω)]
]
. (7.11)
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Hence, using the definition (4.3) of g(ω), one gets that

E[gi (ω)Zh
d, f ] 6 Ed, f

[
eh
∑ f

n=d δn P̂τ
(
X (ω) 6 eM2)]

+Ed, f
[
eh
∑ f

n=d δn
]
e−M

6 Ed, f
[
e3h

∑ f
n=d δn

]1/3Ed, f
[̂
Pτ
(
X (ω) 6 eM2)3/2]2/3

+ 2e−M

6 2Ed, f
[̂
Pτ
(
X (ω) 6 eM2)]2/3

+ 2e−M , (7.12)

where we first used Hölder’s inequality, and then (7.10). The smallness of the first term in

the r.h.s. can be established by using the moment estimates from Lemmas 7.3 and 7.4.

7.2. Modifications needed to prove Lemmas 7.3 and 7.4

Proof of Lemma 7.4. One needs to modify very little of the proof of Lemma 5.2 in order

to obtain Lemma 7.4. Indeed, one only has to use (7.2) which ensures that E[ω̂2
i ] 6 1+

ε3/2 (cf. (5.4)). Then we notice that the bound (5.49) remains valid, with 2q+1 replaced

by (1+ ε3/2)q+1. Since Lemma 5.5 also remains valid, we obtain

Ed, f

(
VarP̂τ

(
X
))

6 (1+ ε3/2)q+1
+

4q+1

`(D(t))q

q∑
r=1

β2r c6 q(C2 D(t))q+r−1
√

t`
ϕ(t)ϕ(`)

6 (1+ ε3/2)q+1
+ q2c6β

2(8C2
2)

q+1 1
D(t)ϕ(t)ϕ(`)

`−ε
2/2, (7.13)

where, in the last inequality, we used that D(t) 6 2/β2, and that t 6 `1−ε2
. Then, since

q2, (8C2
2)

q+1, D(t), ϕ(t), ϕ(`) are slowly varying functions, the second term goes to 0 as

` goes to infinity, and Lemma 7.4 is proven.

Proof of Lemma 7.3. First of all, one has more refined bounds than (5.16): thanks to

our choice of q and t in (7.5), we have that ϕ(`) 6 (eε
2
)q , D(t) 6 (eε

2
)q , and β2 >

(1+ ε)/D(t). Moreover, if β is small enough, one has that mβ > e−ε
2
β. Hence, one can

replace (5.17) with

Êτ [X ] >

(√
1+ ε

e3ε2

)q+1

×
ϕ(`)
√
` D(t)q

∑
i∈J`,t

d6i0<iq6 f

U (i)δi , (7.14)

and Lemma 7.3 follows if one shows that

Pd, f

(
ϕ(`)
√
` D(t)q

∑
i∈J`,t

d6i0<iq6 f

U (i)δi > (1− ε/4)q
)
> 1− e−M , (7.15)

where we used that for ε small enough,

(1+ ε2)×

(√
1+ ε

e3ε2

)−1

> 1− ε/4.
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Then, the steps (5.19)–(5.23) are identical, and one simply needs to show that the

following convergence still holds with our new choice of t (recall n` = 1
4η`),

W` :=
ϕ(n)
√

n D(t)q
∑

i∈J ′n,t
d6i0<iq6 f

U (i)δi
`→∞
H⇒

1
√

2π
|Z |, (Z ∼ N (0, 1)). (7.16)

Thanks to (5.26), one only needs to show that E[1W 2
] converges to 0 as `→∞, where

1W is defined in (5.27). To do so we need a finer control of the covariance terms E[Y j1 Y j2 ]

when | j2− j1| 6 tq (the definition of Y j is identical as in (5.28)). We prove the following

improvement of Lemma 5.4.

Lemma 7.5. We have:

(i) If | j1− j2| > tq, then E[Y j1 Y j2 ] = 0;

(ii) There exists a constant C3 > 0 such that, if j2 > j1 and j2− j1 6 tq, one has

E[Y j1 Y j2 ] 6 (C3)
qE[δ j1δ j2 ] = (C3)

qu( j1)u( j2− j1).

Thanks to this lemma, one obtains, similarly to (5.29)

E[1W 2
] =

ϕ(n)2

n

n∑
j1, j2=0
| j2− j1|6tq

E[Y j1 Y j2 ] 6 2
ϕ(n)2

n
(C3)

q
n∑

j1=0

u( j1)
j1+tq∑
j2= j1

u( j2− j1). (7.17)

Then, one uses that
∑k

i=0 u(i) 6 c8ϕ(k)−1
√

k for all k > 0, to get that

E[1W 2
] 6 2

ϕ(n)2

n
(C3)

qc2
8

√
n

ϕ(n)

√
tq

ϕ(tq)
6

2c2
8
√

q(C3)
q

ϕ(n)ϕ(tq)
√
η
× `−ε

2/4, (7.18)

where we used that t 6 `1−ε2/2 and that n > η` to get the last inequality. One therefore

gets that E[1W 2
] converges to 0 as n goes to infinity, since

√
q, ϕ(n), ϕ(tq) and (C3)

q

are slowly varying functions.

Proof of Lemma 7.5. Conditioning on δ j1 , and denoting m = j2− j1, one has

E[Y j1 Y j2 ] = E[δ j1 ]E
[
δm

(
1−

1
D(t)q

∑
i∈J ′n,t (0)

U (i)δi

)(
1−

1
D(t)q

∑
k∈J ′n,t (m)

U (k)δk

)]

6 E[δ j1 ]
1

D(t)2q E
[ ∑

i∈J ′n,t (0)
k∈J ′n,t (m)

U (i)U (k)δi k

]
+E[δ j1 ]E[δm]. (7.19)

Now, similarly to (5.35), we prove by induction that there exists a constant C3 > 0 such

that, for any couple q, q ′ and any m > 0,∑
i∈J ′n,t,q (0)

k∈J ′n,t,q′ (m)

U (i)U (k)U (i k) 6 (C3)
q+q ′ D(t)q+q ′ u(m), (7.20)

which is enough to prove Lemma 7.5.
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(0) The case q = 0 is trivial: one has i = {0}, so that one has the bound∑
k∈J ′n,t,q′ (m)

U (k)U (0k) = u(m)
∑

k∈J ′n,t,q′ (m)

U (k)2 6 u(m)D(t)q . (7.21)

We now assume that q > 1.

(1) We first show by induction on q that there exists a constant C4, such that when

q ′ = 0 (so that k = {m}), ∑
i∈J ′n,t,q (0)

U (i)U (i m) 6 (C4)
q D(t)qu(m). (7.22)

We decompose the sum according to whether iq−1 > m, iq−1 < m 6 iq or iq−1 < iq < m.

a. If iq−1 > m, one trivially has that
∑iq−1+t

iq=iq−1+1 u(iq − iq−1)
2 6 D(t), so that∑

i∈J ′n,t,q (0)
iq−1>m

U (i)U (i m) 6 D(t)
∑

i∈J ′n,t,q−1(0)
iq−1>m

U (i)U (i m). (7.23)

b. If iq−1 < m 6 iq , then using that u(iq − iq−1) 6 c5u(iq −m), one gets that

iq−1+t∑
iq=m

u(iq −m)u(m− iq−1)u(iq − iq−1) 6 c5 D(t)u(m− iq−1), (7.24)

so that ∑
i∈J ′n,t,q (0)

iq−1<m6iq

U (i)U (i m) 6 c5 D(t)
∑

i∈J ′n,t,q−1(0)
iq−1<m

U (i)U (i m). (7.25)

c. Now, if iq−1 < iq < m, we have that there exists a constant c9 such that

min(iq−1+t,m)∑
iq=iq−1+1

u(m− iq)u(iq − iq−1)
2 6 c9 D(t) u(m− iq−1). (7.26)

Indeed, if we denote x = m− iq−1, we can decompose the above sum into whether

iq 6 iq−1+ x/2 or iq > iq−1+ x/2. If iq 6 iq−1+ x/2, then m− iq > 1
2 (m− iq−1), so that

u(m− iq) 6 c7u(m− iq−1) (c7 is a constant such that u(m) 6 c7u(n) whenever m > 1
4 n).

Then
min(iq−1+t,iq−1+x/2)∑

iq=iq−1+1

u(m− iq)u(iq − iq−1)
2 6 c7u(m− iq−1)

iq−1+t∑
iq=iq−1+1

u(iq − iq−1)
2

6 c7u(m− iq−1)D(t).

On the other hand, if iq > iq−1+ x/2, then u(iq − iq−1) 6 c7u(m− iq−1), and since m−
iq 6 x/2 6 iq − iq−1, one also has that u(m− iq) 6 c5u(iq − iq−1). One then has that

min(iq−1+t,m)∑
iq=iq−1+x/2

u(m− iq)u(iq − iq−1)
2 6 c7c5u(m− iq−1)

min(iq−1+t,m)∑
iq=iq−1+x/2

u(iq − iq−1)
2

6 c7c5u(m− iq−1)D(t).
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Hence, we showed that∑
i∈J ′n,t,q (0)
iq−1<iq<m

U (i)U (i m) 6 (c7+ c7c5)D(t)
∑

i∈J ′n,t,q−1(0)
iq−1<m

U (i)U (i m), (7.27)

which is (7.27) with c9 = c7+ c7c5.

Combining (7.23)–(7.25)–(7.27), and setting C4 := max(c5, c9), we have that∑
i∈J ′n,t,q (0)

U (i)U (i m) 6 C4 D(t)
∑

i∈J ′n,t,q−1(0)

U (i)U (i m), (7.28)

which by iteration gives (7.22).

(2) Then, assume that q ′ > 1. As in the proof of (5.35), we decompose the sum into

two components, according to whether iq or kq ′ is larger, and one obtains, exactly as in

(5.38),∑
i∈J ′n,t,q (0)
k∈J ′n,t,q′ (0)

U (i)U (k)U (i k) 6 2c5 max
{ ∑

i∈J ′n,t,q−1(0)
k∈J ′n,t,q′ (0)

U (i)U (k)U (i k);
∑

i∈J ′n,t,q (0)
k∈J ′n,t,q′−1(0)

U (i)U (k)U (i k)
}
,

(7.29)

which in turns gives (7.20) by induction, thanks to (7.21), (7.22), with C3 := max(2c5,C4).
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