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The lattice Boltzmann method (LBM), which was originally designed for
near-incompressible Navier–Stokes flows, has been extended to rarefied gas flows with
high-order quadrature in recent years. Although the ability of the high-order LBM to
capture rarefaction effects has been demonstrated by many authors, its accuracy and
efficiency are often undermined by numerical dissipation introduced by the off-lattice
abscissas in Gauss–Hermite quadrature. Here, using the spontaneous Rayleigh–Brillouin
scattering problem as the benchmark, we assess the accuracy and efficiency of the
high-order LBM with on-lattice quadrature rules up to 39th order. The numerical error
comprises two parts, one due to the rarefaction effect and the other due to temporal-spatial
discretization, and we find that the former depends not only on the number of discrete
velocities, but also on their distribution in velocity space. With a quadrature of 29th order,
the error between the LBM and the discrete velocity method is found to be below 1 %
up to Kn = 2.0. Compared with a finite-volume Bhatnagar–Gross–Krook solver using
Gauss–Hermite quadrature, the on-lattice LBM has a numerical dissipation several orders
of magnitude lower, and achieves the same accuracy with fewer discrete velocities.

Key words: rarefied gas flow

1. Introduction

The Boltzmann equation is a fundamental model for the dynamics of dilute gas from the
continuum (hydrodynamic) to free-molecular flow regimes (Cercignani 1975). However,
it is challenging to find its numerical solution due to the intricate and high-dimensional
collision operator (Kogan 1969). Stochastic methods such as the direct simulation Monte
Carlo (DSMC) method are able to break the ‘curse of dimensionality’ and provide
accurate solutions efficiently for flows with high Mach and Knudsen numbers (Wagner
1992; Bird 1994). However, its efficiency is significantly reduced due to the statistical
noise in low-speed flows (Hadjiconstantinou et al. 2003). What is more, since in DSMC
the streaming and collision processes are handled separately, it becomes prohibitively
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

81
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-7929-9188
https://orcid.org/0000-0002-6435-5041
https://orcid.org/0000-0002-6350-9248
mailto:shanxw@sustech.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.813&domain=pdf
https://doi.org/10.1017/jfm.2020.813


907 A25-2 Y. Shi, L. Wu and X. Shan

expensive in simulating near-continuum flows, as the spatial cell size and time step should
be respectively smaller than (usually one-third of) the mean free path and mean collision
time of gas molecules in order to guarantee numerical accuracy.

In the framework of deterministic methods, the discrete velocity method (DVM)
using the regular discretization of velocity space is the most popular one to solve the
Boltzmann or Boltzmann model equation (Aristov 2012). Like DSMC, it can give accurate
results efficiently for high-Knudsen-number flows, but it has difficulties in simulating
near-continuum flows without a small time step and spatial cell size (Dimarco & Pareschi
2014). In order to remove these restrictions, several schemes have been proposed. The first
type is the asymptotic preserving scheme (Bennoune, Lemou & Mieussens 2008; Filbet
& Jin 2010; Xu & Huang 2010; Mieussens 2013; Guo, Wang & Xu 2015), where the time
step and/or cell size can be larger than the mean collision time and mean free path. The
second type is the multi-scale hybrid method (Sun, Boyd & Boyd 2003; Kolobov et al.
2007; Yang et al. 2020), where the gas kinetic equation is applied to the rarefied flow
region and the macroscopic hydrodynamic equations are applied to the near-continuum
flow regime. Recently, the general synthetic iterative scheme has been developed to get
rid of these constraints by combining the Boltzmann equation with macroscopic equations
that are exactly derived from the Boltzmann equation and asymptotically preserve the
Navier–Stokes limit (Su et al. 2020a,b).

Originated from a simple cellular-automaton (CA) model that mimics the motion
of fluids (Frisch, Hasslacher & Pomeau 1986), the lattice Boltzmann method (LBM)
has become a popular kinetic scheme not only for solving the near-incompressible
Navier–Stokes equations (Benzi, Succi & Vergassola 1992; Chen & Doolen 1998), but
also for modelling problems where the continuum hypothesis ceases to be valid (Nie,
Doolen & Chen 2002). The latter can be theoretically justified by the more recent
kinetic-theory-based formulation (Abe 1997; He & Luo 1997; Shan & He 1998; Shan,
Yuan & Chen 2006; Nie, Shan & Chen 2008a), which shows that the LBM can accurately
recover the dynamics of the moments of the distribution function up to an order jointly
dictated by the set of discrete velocities and the truncation order of the equilibrium
distribution. Without additional equations, higher-order moments can be retained in the
system by simply expanding the set of discrete velocity so that it forms a Hermite
quadrature rule of a higher order. A natural choice for such quadrature rules is the
Gauss–Hermite (GH) quadrature, which has the highest degree of precision per abscissa.
Nevertheless, its use in the LBM is limited by two factors. First, its optimality is only in
one dimension. Rules superior to the tensor products of one-dimensional (1-D) GH rules
do exist in higher dimensions (Stroud 1971). Second, except for the lowest few orders, the
GH abscissas do not coincide with the grid points (‘off-lattice’) and the advection step
has to employ some sort of interpolation that introduces additional numerical dissipation.
Alternatively, rules with abscissas that coincide with grid points (‘on-lattice’) can be
constructed by explicitly solving the quadrature or moment equations (Philippi et al. 2006;
Shan et al. 2006; Chen & Shan 2008; Chikatamarla & Karlin 2009; Surmas, Ortiz &
Philippi 2009; Karlin & Asinari 2010; Yudistiawan et al. 2010; Shan 2010, 2016). These
rules have higher degree of precision per abscissa than the tensor products of GH rules
and can be used with the ‘streaming-collision’ algorithm which effectively produces the
exact d’Alembert solution for the advection part and is known to have very low numerical
dissipation (Marié, Ricot & Sagaut 2009; Barad, Kocheemoolayil & Kiris 2017).

Numerical verification of the high-order LBM for rarefied gas flow has been carried
out with on-lattice rules (Zhang, Shan & Chen 2006; Niu et al. 2007; Tang, Zhang &
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Emerson 2008; Colosqui 2010; Meng & Zhang 2011a; Feuchter & Schleifenbaum 2016;
Ilyin 2020), GH rules (Ansumali et al. 2007; Kim, Pitsch & Boyd 2008; Meng &
Zhang 2011b; Meng, Zhang & Shan 2011; Meng et al. 2013; Shi, Yap & Sader 2014),
Gauss–Laguerre rules (Ambruş & Sofonea 2014) and half-space GH rules (Ghiroldi &
Gibelli 2015; Shi, Yap & Sader 2015; Ambruş & Sofonea 2016a,b, 2018; Shi, Ladiges &
Sader 2019). Ansumali et al. (2007) obtained the exact solution for planar Couette flow
up to the D2Q16 rule and concluded that applications of lattice Boltzmann methods to
microflows should be based on LBMs with larger velocity sets if one seeks a quantitative
prediction. As the rarefaction effects could be induced when the characteristic flow
frequency is comparable to or even larger than the mean collision frequency of gas
molecules, Shi et al. (2014) investigated the ability of the LBM with GH rules in the
description of the high-frequency behaviour of the gas flow. It was concluded that the
high-order LBM with GH quadrature can effectively and accurately describe the slightly
rarefied gas flow.

However, the effect of GH quadrature is poor when the flow enters into the transition
regime, because there are not enough discretized velocity grids located in the region
where the velocity distribution function varies rapidly (Wu & Gu 2020). This problem
can be partially fixed in the on-lattice quadrature in this study. However, the capability
of the off-lattice LBM in the efficient and accurate simulation of hydrodynamic flow
is overlooked. That is, since the high-order GH quadrature usually produces off-lattice
discrete velocities, the simple streaming-collision algorithm in the traditional LBM is
replaced by the finite-volume method (FVM). Thus, this high-order LBM is essentially the
conventional DVM, which introduces large numerical dissipation and thus has difficulty in
capturing the correct hydrodynamic behaviour in the continuum regime, as small cell size
and time step are needed (Filbet & Jin 2010; Xu & Huang 2010; Mieussens 2013; Dimarco
& Pareschi 2014). Moreover, almost all the verification efforts focus on the benchmark
case of micro-channel flow, which depends sensitively on the implementation of the
multi-speed kinetic boundary condition (Ansumali & Karlin 2002; Sofonea 2009; Meng
& Zhang 2014; Ambruş & Sofonea 2014, 2016a,b). In the rarefied gas flow regime where
reliable and accurate measurements are relatively scarce, what happens at the solid wall in
the absence of sufficient collision is a complicated matter by itself. This complication from
the boundary condition has further eroded the conclusiveness of the available numerical
evidence on the accuracy and convergence of the high-order LBM in the rarefied gas flow
regime.

With the aim of quantitatively assessing the capability of the high-order LBM
for rarefied gas flow with minimum contamination from artifacts such as numerical
dissipation and various boundary condition complications, here we use the high-order
LBM to simulate the spontaneous Rayleigh–Brillouin scattering (SRBS) problem (Yip
& Nelkin 1964; Sugawara, Yip & Sirovich 1968; Tenti, Boley & Desai 1974), where,
since only a local volume inside the gas cell is probed by laser light, the influence
of gas–wall interaction is absent and the complications of boundary conditions can be
avoided. Furthermore, the study of the theoretical SRBS spectral line shape is of practical
relevance since it provides important information on physical properties, such as the sound
speed, temperature and bulk viscosity (Vieitez et al. 2010; Gu & Ubachs 2013, 2014), of the
illuminated gas samples. For example, the satellite ADM-Aeolus (Endemann et al. 2004),
which has been operated since 2018 by the European Space Agency, is used to measure
wind profiles in the Earth’s atmosphere by comparing the measured SRBS spectra with
the theoretical ones. Besides the exclusion of gas–wall interaction, the SRBS problem is
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essentially 1-D, where on-lattice rules of very high orders can be evaluated rapidly for
a convergence test against the result of a recent DVM calculation with adequate discrete
velocities (Wu & Gu 2020). In this study, by using a previously developed technique (Shan
2016), we derived 1-D on-lattice quadrature rules up to the 39th order with which accuracy
and convergence are studied for Knudsen number up to 2. By comparing with the reference
solution, the number of velocities needed for different Knudsen numbers are obtained. To
ascertain the effect of numerical dissipation introduced by the interpolation with off-lattice
rules, an FVM calculation using GH rules up to the 80th order was also carried out.

The rest of the paper is organized as follows. In § 2, the Boltzmann–BGK
(Bhatnagar–Gross–Krook) and SRBS spectra in the limits of continuum and
free-molecular flows are presented in detail. In § 3, the numerical methods, LBM and
FVM, are given. A detailed comparison of these two methods regarding their accuracy in
the continuum and rarefied regimes is given in § 4, followed by conclusions in § 5.

2. Theoretical background

In SRBS, light is scattered by the spontaneous density fluctuation in the gas, where the
intensity of scattered light is proportional to the spectral density function S(k, ω), i.e. the
spatial and temporal Fourier transform of the density correlation function G(r, t), which
describes the probability per unit volume of finding a particle at (r + r′, t + t′) given a
particle at (r, t), averaged over r′ (Reichl 2016). When the scattering wave is propagating
along the x direction, the correlation function and spectral density can be calculated as
(Van Hove 1954; Sugawara et al. 1968; Reichl 2016):

G(x, t) =
∫ ∞

−∞
ρ ′(l + x, t)ρ ′(l, 0) dl (2.1)

and

S(k, ω) =
∫ ∞

−∞

∫ ∞

−∞
G(x, t) exp(i(kx − ωt)) dx dt

= 2Re
[∫ ∞

0

∫ ∞

−∞
G(x, t) exp(i(kx − ωt)) dx dt

]
, (2.2)

where Re stands for the real part of a complex number, k is the scattering wavenumber and
ρ ′(x, t) is the perturbation density. Equation (2.2) holds because G(x, t) is even in t for
a classical system. (Note that G(r, t) is originally defined for both classical and quantum
systems. The character that G(r, t) is real-valued and even in t for a classical system was
rigorously proved in the work of Van Hove (1954).) In the numerical simulation, we let
ρ ′(x, 0) = εδ(x), where δ(x) is the Dirac delta function and ε is a small parameter such
that the scattering process can be described by the linear theory.

The spectral density depends significantly on the Knudsen number Kn, which is defined
as the ratio of the mean free path of gas molecules λ to the characteristic flow length Lc.
Here we take Lc to be the effective scattering wavelength 1/k, and the mean free path is
calculated as

λ = μ0
√

RT0

p0
, (2.3)
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where R, μ0, T0 and p0 are the specific gas constant, the reference shear viscosity, absolute
temperature and pressure, respectively. The Knudsen number is

Kn = λ

Lc
= μ0k

√
RT0

p0
. (2.4)

Note that this definition of the Knudsen number is 2π times the unconfined Knudsen
number used by Wu & Gu (2020).

2.1. Boltzmann–BGK equation
Since the scattering wavelength (frequency) could be comparable to the mean free path
(collision frequency) of gas molecules, one should resort to the gas kinetic theory to
describe the density fluctuation. The state of the gas is described by the one-particle
distribution function, f (r, ξ , t), in the phase space of (r, ξ), where r and ξ are, respectively,
the location and molecular velocity, and t is the time. In the present work, the following
Boltzmann equation with the BGK model (Bhatnagar, Gross & Krook 1954) is used to
describe the rarefied gas dynamics:

∂f
∂t

+ ξ · ∇f = Ω ≡ −1
τ

[ f − f (eq)], (2.5)

where τ is the relaxation time, f (eq) is the local Maxwellian

f (eq) = ρ

(2πRT)D/2
exp

(
−|ξ − u|2

2RT

)
, (2.6)

and D, ρ, u and T are the dimension of the space, macroscopic mass density, velocity and
absolute temperature, respectively. According to the Chapman–Enskog expansion (Huang
1987), the dynamic shear viscosity of the gas can be found as μ = τρRT = τp, where
p = ρRT is the hydrostatic pressure.

Non-dimensionalizing (Shan et al. 2006) using the characteristic velocity u0 ≡ √
RT0

and the characteristic time t0 ≡ Lc/u0, the Maxwellian, after normalizing by ρ0(RT0)
−D/2,

with ρ0 an arbitrary reference number density, becomes

f (eq) = ρ

(2πθ)D/2
exp

(
−|ξ − u|2

2θ

)
, (2.7)

with θ = T/T0. Equation (2.5) remains unchanged except that all quantities are
dimensionless with x scaled by Lc, ξ and u scaled by u0, and t and τ scaled by t0. In
particular, the dimensionless relaxation time is exactly the Knudsen number,

τ = μ

pt0
= μk

√
RT

p
= Kn. (2.8)

Hence, the dimensionless Boltzmann–BGK equation in one dimension can be written as

∂f
∂t

+ ξx
∂f
∂x

= − 1
Kn

[ f − f (eq)], (2.9)

where f (eq) is given by (2.7). To complete the equations, we note that the mass density ρ,
fluid velocity ux and internal energy density e are all velocity moments of the distribution
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function as follows:

ρ =
∫

f dξ , (2.10a)

ρux =
∫

f ξx dξ , (2.10b)

ρe = 1
2

∫
f (ξ − u)2 dξ , (2.10c)

where, by the energy equipartition principle, e is related to the temperature θ by e = Dθ/2.

2.2. The free-molecular limit
An analytical solution can be obtained in the free-molecular limit, where collisions are
rare and hence Ω = 0. Therefore, (2.9) is reduced to the following linear equation:

∂f
∂t

+ ξx
∂f
∂x

= 0, (2.11)

an obvious solution of which is

f (x, ξ , t) = f (x − ξx t, ξ , 0). (2.12)

Using the initial condition that the distribution at t = 0 is a local Maxwellian with θ = 1
and ρ = 1 + εδ(x), we have

f (x, ξ , t) = 1 + εδ(x − ξx t)
√

2π
3 exp

(
−ξ

2

2

)
, (2.13)

where we let D = 3. Then the density is

ρ(x, t) = 1 + ε

|t|√2π
exp

(
− x2

2t2

)
. (2.14)

On substituting (2.14) into (2.1) and performing some standard manipulations, we have

G(x, t) = ε2

|t|√2π
exp

(
− x2

2t2

)
. (2.15)

The spectral density in the free-molecular limit can be calculated as

S =
∫ ∞

−∞

∫ ∞

−∞

ε2

|t|√2π
exp

(
− x2

2t2

)
exp(i(x − ωt)) dx dt = ε2

√
2π exp

(
−ω

2

2

)
. (2.16)

It should be emphasized that k = 1 is only considered after normalization with itself in
the present work. Therefore, the spectrum in the free-molecular limit is

S(Kn, ω) = ε2
√

2π exp
(

−ω
2

2

)
. (2.17)
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2.3. The continuum limit
In the continuum flow regime where Kn � 1, the classical Navier–Stokes–Fourier (NSF)
equations are valid. To consider the small perturbation on a stationary base fluid, we write

ρ = ρ0 + ρ ′, ux = u′
x , θ = θ0 + θ ′, (2.18a–c)

where the subscript zero denotes the properties of the base flow and the prime denotes that
of the perturbation. Assuming that the flow is 1-D and all spatial derivatives except ∂/∂x
vanish, the linearized forms of the NSF equations are

∂ρ ′

∂t
+ ∂u′

x

∂x
= 0, (2.19a)

∂u′
x

∂t
+ ∂ρ ′

∂x
+ ∂θ ′

∂x
− 2(D − 1)Kn

D
∂2u′

x

∂x2
= 0, (2.19b)

D
2
∂θ ′

∂t
+ ∂u′

x

∂x
− (D + 2)Kn

2Pr
∂2θ ′

∂x2
= 0. (2.19c)

Hereinafter we set D = 3 to give the specific heat ratio of a monatomic gas.
On applying the following spatial and temporal Fourier transform to the quantities

M = [ρ ′, u′
x , θ

′]T,

Mk =
∫ ∞

−∞
M eix dx, M̂ =

∫ ∞

0
Mk e−iωt dt, (2.20a,b)

where the integral limit of the temporal Fourier transform is from 0 to +∞ because G(x, t)
is even in t, and noting that

∫ ∞

0

∂Mk

∂t
e−iωt dt = −Mk(t = 0)+ iωM̂, (2.21)

where the initial condition has been considered in the above equation, equations (2.19) can
be rewritten in the following matrix form (Wu & Gu 2020):

⎡
⎢⎢⎢⎢⎣

iω −i 0

−i iω + 4
3

Kn −i

0 −i
3
2

iω + 5
2Pr

Kn

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎣
ρ̂ ′

û′
x

θ̂ ′

⎤
⎥⎦ =

⎡
⎢⎣
ε

0
0

⎤
⎥⎦ . (2.22)

From this, the SRBS spectrum predicted by the NSF equations can be obtained as

S(Kn, ω) = ε2Re
{

6Kn(5 + 4Pr)ω − 2i(20Kn2 + 6Pr − 9Prω2)

5(4Kn2 + 3Pr)ω − 9Prω3 − 3iKn[5 − (5 + 4Pr)ω2]

}
. (2.23)

It should be noted that the expression above is only valid when Kn � 1.
On the other hand, by multiplying the numerator and denominator in (2.23) by the

complex conjugate of the denominator, neglecting the lower- and higher-order terms with
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respect to Kn and ω, respectively, and taking the real part, the asymptotic solution of (2.23)
at Kn � 1 and ω ≤ 1 can be obtained:

S(Kn, ω) = 24ε2Kn
9 + 16Kn2ω2

. (2.24)

Obviously, the dependence of S on ω does not tend to be Gaussian function dictated by
the SRBS spectrum (2.17) in the free-molecular limit. This difference is due to the failure
of the NSF equations to describe flows with large Knudsen numbers.

Below, in § 4.2, the spatial Fourier transform of the perturbation density ρ ′
k(t) will be

used to extract the kinematic viscosity ν and thermal diffusivity κ . Note that κ is related
to the thermal conductivity Γ by κ = Γ/(cpρ), where cp is the heat capacity at constant
pressure. It is obvious that ρ ′

k(t) can be derived by use of the inverse Fourier transform:

ρ ′
k(t) = 1

2π

∫ +∞

−∞
ρ̂ ′(ω) eiωt dω. (2.25)

It should be noted that the denominator of the right-hand side of (2.23) is the characteristic
polynomial of the linear hydrodynamic equations (Shan & Chen 2007). The corresponding
characteristic equation has three roots: one real root, ωt, that gives the thermal diffusion
mode; and a pair of complex ones, ω±, giving the two acoustic modes (Shan 2019). At the
small-Kn limit, one can write the dispersion relations of the three modes as

ωt = i
Kn

Pr
, (2.26a)

ω± = ±
√

5
3

+ i
(1 + 2Pr)Kn

2Pr
. (2.26b)

Therefore, the denominator of the right-hand side of the (2.23) can be expressed as

− 9Pr(ω − ωt)(ω − ω+)(ω − ω−). (2.27)

By means of the residue theorem and dropping some high-order terms in Kn, ρ ′
k(t) can be

obtained in an analytical form when the Knudsen number is small:

ρ ′
k(t) = 2ε

5
exp

(
−Kn

Pr
t
)

+ 3ε
5

exp
[
−(1 + 2Pr)Kn

3Pr
t
]

cos

(√
5
3

t

)
. (2.28)

It can be seen that the initial disturbance in the density can propagate but will be eventually
damped out by the viscous and thermal dissipative processes. In fact, the non-dimensional
kinematic viscosity ν and thermal diffusivity κ are, respectively,

ν = Kn and κ = Kn/Pr. (2.29a,b)

Figure 1 shows the typical SRBS spectra (2.23) as predicted by the NSF equations.
When Kn � 1, the spectrum shows three peaks (the third one is not shown due to
the symmetry about ω = 0) corresponding to different mechanisms (Reichl 2016). The
Rayleigh peak centred at ω = 0 is due to the thermal mode of gas molecules. The other
two Brillouin peaks centred at ω = ±cs = ±√

5/3 are related to the sound mode. As Kn
increases, the increased dissipation leads to larger width of all peaks. For comparison, the
spectrum (2.17) in the free-molecular limit is also shown. As Kn → ∞, the NSF spectrum
does not converge to it due to the failure of the continuum hypothesis.
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1.0 Kn = 0.01
Kn = 0.10
Kn = 0.30
Kn = 0.50
Kn = 1.00
Kn = 5.00
Kn → ∞, (2.17)

0.8

0.6

0.4

0.2

0

0 0.5 1.0 1.5 2.0 2.5 3.0
ω

S(
ω

)
/
S(

0
)

FIGURE 1. The normalized SRBS spectra calculated by the NSF equations for Kn = 0.01, 0.1,
0.3, 0.5, 1.0 and 5.0, and Pr = 1. The horizontal and vertical axes are the angular frequency and
S(ω)/S(0), respectively. The diamonds represent the spectrum (2.17) in the free-molecular flow
regime. Only half of the spectrum is shown due to the symmetry with respect to ω = 0.

3. Numerical methods for the kinetic equation

3.1. Reduction to one dimension
We examine the capability of the LBM to capture the rarefaction effects by solving
(2.9) numerically, where the molecular velocity space is three-dimensional. The reduced
velocity distribution functions are introduced to save computational cost (Chu 1965; Nie,
Shan & Chen 2008b; Sharipov & Kalempa 2008). Specifically, we solve the following two
equations:

∂ψi

∂t
+ ξx

∂ψi

∂x
= − 1

Kn
[ψi − hiψ

eq], i = 1, 2, (3.1)

where h1 = 1, h2 = 2θ , ψi are the reduced distributions

ψ1(x, ξx , t) =
∫

f dξy dξz, (3.2a)

ψ2(x, ξx , t) =
∫

f (ξ 2
y + ξ 2

z ) dξy dξz, (3.2b)

and ψ eq is the Hermite expansion of the Maxwellian. According to Meng et al. (2011), the
following second-order expansion is sufficient for linear problems:

ψ eq = ρω(ξx)[1 + uxξx + 1
2(u

2
x + θ − 1)(ξ 2

x − 1)]. (3.3)

In the equations above,

ρ =
∫
ψ1 dξx ,

ρux =
∫
ξxψ1 dξx ,

ρe = 3ρθ
2

= 1
2

[∫
(ξx − ux)

2ψ1 dξx +
∫
ψ2 dξx

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

Hereinafter the subscript x is dropped for simplicity.
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Following Shan et al. (2006), the above equations are discretized in velocity space. Let
wj and ξj, j = 1, . . . , d, be the weights and abscissas of a degree-q quadrature rule such
that the identity ∫

ω(ξ)p(ξ) dξ =
d∑

j=1

wjp(ξj) (3.5)

holds for any polynomial p(ξ) of an order not exceeding q. Defining

ψij(x, t) ≡ wjψi(ξj)

ω(ξj)
, i = 1, 2, j = 1, . . . , d, (3.6)

we have the following 1-D lattice BGK equations:

∂ψij

∂t
+ ξj

∂ψij

∂x
= − 1

Kn
[ψij − hiψ

eq
j ], (3.7)

where

ψ
eq
j = ρwj[1 + uξj + 1

2(u
2 + θ − 1)(ξ 2

j − 1)]. (3.8)

The macroscopic quantities are defined by

ρ =
d∑

j=1

ψ1j, ρu =
d∑

j=1

ξjψ1j, 3ρθ + u2 =
d∑

j=1

(ξ 2
j ψ1j + ψ2j). (3.9a–c)

As shown previously (Shan et al. 2006; Nie et al. 2008a), the equations above preserve
hydrodynamic moments up to the order of q − N for a distribution truncated to the Nth
order. It is therefore desirable to use a quadrature rule that is as accurate as possible.

3.2. The spatial and temporal discretization
Equation (3.7) is a set of 2 × d partial differential equations in the 1-D space–time
(x, t), representing a significant simplification of (3.1) in two dimensions. The continuous
space–time has to be discretized for the equations to be solved numerically. When the
discrete velocities form a Bravais lattice in the velocity space (also known as ‘on-lattice’),
the space–time discretization renders the Boltzmann equation a simple streaming-collision
process similar to the d’Alembert solution to the wave equation. The fact that the advection
of this process is exact greatly reduces numerical dissipation. However, as the abscissas
of the extremely efficient Gauss quadrature hardly form a Bravais lattice except for the
lowest orders, it is sometimes desirable to use them for the higher algebraic orders at the
same number of collocation points. The latter approach (often referred to as ‘off-lattice’)
involves some form of interpolation, which introduces additional numerical dissipation.
In the present work, we use the finite-volume (FVM) lattice Boltzmann formulation (Kim
et al. 2008; Meng & Zhang 2011a,b; Ambruş & Sofonea 2016a,b) with Gauss quadrature
to benchmark its numerical performance against that of the on-lattice streaming-collision
scheme. Below, we give the space–time discretization of both schemes.

To use an off-lattice set of discrete velocities, let the 1-D space be covered by cells of
uniform size δx and centred at xk. Integrating equation (3.7) over the kth cell and denoting
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the cell averaging by

ψ̄ij,k = 1
δx

∫ xk+δx/2

xk−δx/2
ψij dx, (3.10)

equation (3.7) can be cast into the FVM form

∂ψ̄ij,k

∂t
+ 1
δx

[Fk+1/2 − Fk−1/2] = − 1
Kn

[ψ̄ij,k − hiψ̄
eq
j,k], (3.11)

where the fluxes of ψij through the left and right boundaries of the kth cell are

Fk±1/2 ≡ ξjψij(xk ± δx/2). (3.12)

Using the forward Euler time stepping, we have

ψ̄ t+δt
ij,k = ψ̄ t

ij,k − δt
δx

[Ft
k+1/2 − Ft

k−1/2] − δt
Kn

[ψ̄ t
ij,k − ht

iψ̄
eq,t
j,k ]. (3.13)

Following Leveque (1996), the fluxes are

F+
k−1/2 = ξjψ̄ij,k−1 + C(ξj)(ψ̄ij,k − ψ̄ij,k−1)χ(ϑ

+),

F−
k−1/2 = ξjψ̄ij,k + C(ξj)(ψ̄ij,k − ψ̄ij,k−1)χ(ϑ

−),

}
(3.14)

where the superscripts + and − are the sign of ξj,

C(ξ) = |ξ |
2

(
1 − |ξ |δt

δx

)
(3.15)

and

ϑ+ = ψ̄ij,k−1 − ψ̄ij,k−2

ψ̄ij,k − ψ̄ij,k−1
and ϑ− = ψ̄ij,k+1 − ψ̄ij,k

ψ̄ij,k − ψ̄ij,k−1
, (3.16a,b)

with χ(ϑ) being the flux limiter of the form

χ(ϑ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, ϑ < 0,

2ϑ, 0 ≤ ϑ < 1
3 ,

1
2(1 + ϑ), 1

3 ≤ ϑ < 3,

2, ϑ ≥ 3.

(3.17)

Since the convective and collision terms in (3.13) are discretized into explicit form, the
time step in the FVM is restricted by both the Courant–Friedrichs–Lewy (CFL) condition
and relaxation time:

δt = min
(

Kn,
αδx

ξm

)
, (3.18)

where α is the CFL number and ξm is the maximum discrete velocity.
For an on-lattice set of discrete velocities, the streaming-collision algorithm can be

implemented and the collision term is discretized in a semi-implicit form. Specifically, on
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integrating equation (3.7) from t to t + 1 and applying the trapezoidal rule for the collision
term, we have

ψij(x + ξj, t + 1)− ψij(x, t) = 1
2 [Ωij(x + ξj, t + 1)+Ωij(x, t)]. (3.19)

Clearly, the right-hand side is implicit. The implicity can be removed by the change of
variable (He, Shan & Doolen 1998; Dellar 2001)

ϕij = ψij − Ωij

2
, (3.20)

and (3.19) can then be rewritten as

ϕij(x + ξj, t + 1)− ϕij(x, t) = 1
Kn + 1

2

[hiϕ
eq
j (x, t)− ϕij(x, t)], (3.21)

where
ϕ

eq
j = ρwj[1 + uξj + 1

2(u
2 + θ − 1)(ξ 2

j − 1)]. (3.22)

In fact, we directly track the distribution functions ϕ1 and ϕ2 instead of ψ1 and ψ2 in the
on-lattice LBM.

3.3. The 1-D on-lattice quadrature
There have been several approaches to recover the well-known lattices and develop new
lattices for the LBM (Philippi et al. 2006; Chen & Shan 2008; Chikatamarla & Karlin
2009; Surmas et al. 2009; Karlin & Asinari 2010; Yudistiawan et al. 2010). In this study,
as discussed before, quadrature in the form of (3.5) with abscissas forming Bravais lattices
in velocity space is often desirable. Here we apply the same procedure (Shan et al. 2006;
Shan 2010, 2016) to a very high order in one dimension. In fact, for any given abscissas,
one can always find a Hermite quadrature rule by solving the weights directly from (3.5)
for a set of base functions of the functional space of polynomials. For instance, we can
obtain the weights of a degree-q rule by solving (3.5) for p(ξ) = 1, ξ, ξ 2, . . . , ξ q, which
yields q + 1 linear equations and requires q + 1 points to have a solution. An equivalent
but much simpler way (Shan et al. 2006) is to use orthogonal polynomials, in this case the
Hermite polynomials H(n), as the base functions. The sufficient and necessary condition
for wi and ξi to be the weights and abscissas of a degree-q quadrature rule is

d∑
i=1

wiH(n)(ξi) =
∫
ω(ξ)H(n)(ξ) dξ =

{
1, n = 0,

0, n = 1, 2, . . . , q,
(3.23)

where the second equality is due to the orthogonality of H(n).
We note that, if ξi can be freely chosen, by the celebrated Gauss integration theorem,

the optimal choice is the set of N roots of H(N)(ξ), which yields the GH rule of degree
q = 2N − 1. The number of points required for degree q is thus (q + 1)/2, half of that for
fixed abscissas. If the abscissas are required to be symmetric and form a Bravais lattice,
the set of abscissas and weights can be written as {(±ck,wk) : k = 0, 1, . . . ,m}. Equation
(3.23) is automatically satisfied for all odd n, and we only need to solve wi and c for even
n with the additional condition that all wi must be positive to ensure numerical stability.
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FIGURE 2. Lattice constants of the 1-D on-lattice quadrature rules versus number of quadrature
points, d. For each d, two rules with clearly separated lattice constants exist. Within each of the
two groups, denoted as P1 and P2, the lattice constant decreases smoothly with d.
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FIGURE 3. Abscissa distribution in the velocity space and the magnitudes of the associated
weights for the two d-point on-lattice rules, D1QdP1 and D1QdP2, together with the d-point
GH rule, GHd. Here d = 17, 27 and 37. Only half of the discrete velocities are shown due to
the symmetry about ξ = 0. It is seen that these sets of weights almost collapse together, and the
abscissas of P1 are more compactly distributed than those of the corresponding GH around zero
velocity, which is in turn more compact than those of P2.

The mathematical structure of the solution has been extensively discussed previously up
to the ninth degree (Shan 2016). Here we use the same procedure in one dimension up to
m = 19, corresponding to q = 2m + 1 = 39. Exploiting the degree of freedom associated
with the lattice constant, c, one of the weights can be made zero to eliminate two of the
2m + 1 points, yielding degree-q rules with q − 2 points, three fewer than the q + 1 points
for fixed abscissas. It was also observed without proof that, for each given number of
abscissas, d = 2m − 1, two solutions of c exist. Shown in figure 2 are the lattice constants
versus d. They are clearly segregated into two groups, of which the one with smaller c
will be referred to as P1 and the other as P2. Again, it should be emphasized that the P1
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Quadrature D1Q5P1 D1Q5P2

c 7.826711399286465 × 10−1 1.649472406576153 × 100

w0 7.446420798503295 × 10−2 6.366469031260782 × 10−1

w1 4.185854122563142 × 10−1 1.814145877436858 × 10−1

w2 0 0
w3 4.418248375116930 × 10−2 2.619606932751435 × 10−4

TABLE 1. Lattice constant and weights of the five-point on-lattice quadrature rules D1Q5P1
and D1Q5P2. The abscissas corresponding to the weight wk are ±ck for k = 0, 1, 2, 3.

and P2 rules are constructed based on the belief of obtaining the highest-order on-lattice
quadratures with the fewest abscissas. Actually, there are infinite sets of prescribed-degree
on-lattice quadratures where all weights are greater than zero and the lattice constant
is between the minimum and maximum lattice constants, indicated by P1 and P2 rules,
respectively. This will be discussed in the future.

The lattice constant stretches the velocity space. To show the effective distribution of the
abscissas in the velocity space and the magnitudes of their weights, we plot in figure 3 the
weights of the two d-point rules, D1QdP1 and D1QdP2, against ξ = ck, the discretized
microscopic velocity. Here d = 17, 27 and 37 for simplicity. Meanwhile, the weight of
the d-point GH rule, GHd, is also plotted for comparison. Note that GH quadrature is
of a much higher degree than the other two with a same number of abscissas. Rather
surprisingly, the weights coincide with each other quite well. However, in the case of the
same number of abscissas, the abscissas of P1 are more compactly distributed around zero
velocity that those of the corresponding GH, which in turn is more compact than those
of P2. We suspect that the relative compactness might explain the difference in numerical
performance reported below in § 4.

The full details of D1Q5 and D1Q37 are listed in tables 1 and 2, respectively.

4. Results and analysis

In this section we numerically assess the capability of on-lattice LBM to describe the
continuum and rarefied gas flows. First, a complete evaluation of the accuracy of the
on-lattice LBM and FVM with the GH rule in the rarefied regime is performed. Next,
we quantitatively investigate the abilities of the on-lattice LBM and FVM for the kinetic
equation to describe the continuum flow using the same set of on-lattice discrete velocities.

The velocity distribution function at t = 0 is the local Maxwellian with θ = 1, u = 0
and ρ = 1 + εδ(x):

f (x, ξ , t = 0) = 1 + εδ(x)
√

2π
3 exp

(
−ξ

2

2

)
. (4.1)

The computational domain is across one wavelength from x = −π to x = π, with periodic
boundary condition imposed. After obtaining the density perturbation field ρ ′(x, t), the
spectrum of SRBS can be calculated by substituting ρ ′(x, t) into (2.2) (with k = 1 in the
dimensionless form).
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Quadrature D1Q37P1 D1Q37P2

c 4.355636628492463 × 10−1 5.447387276251415 × 10−1

w0 1.737630955791577 × 10−1 2.173193102211211 × 10−1

w1 1.580410196912773 × 10−1 1.873535749968602 × 10−1

w2 1.188972308616924 × 10−1 1.200474624383090 × 10−1

w3 7.399490448677612 × 10−2 5.717041140835294 × 10−2

w4 3.809019567520187 × 10−2 2.023564183037203 × 10−2

w5 1.622066370924112 × 10−2 5.323410825365217 × 10−3

w6 5.713152563785341 × 10−3 1.040855199892778 × 10−3

w7 1.664882001666580 × 10−3 1.512578706972972 × 10−4

w8 4.011714524694098 × 10−4 1.633702528266420 × 10−5

w9 8.002310418200597 × 10−5 1.311460806990981 × 10−6

w10 1.318278053505464 × 10−5 7.824650866161686 × 10−8

w11 1.802986422954287 × 10−6 3.469780895234647 × 10−9

w12 2.021980229534072 × 10−7 1.143577963039508 × 10−10

w13 1.917403474367266 × 10−8 2.801318221736242 × 10−12

w14 1.419953939043167 × 10−9 5.099588422630139 × 10−14

w15 1.009026872850698 × 10−10 6.907952089278567 × 10−16

w16 3.935238332045249 × 10−12 6.868047017444263 × 10−18

w17 3.207766676923445 × 10−13 5.755146718685926 × 10−20

w18 0 0
w19 5.878093413487544 × 10−16 8.376176424330308 × 10−24

TABLE 2. Lattice constant and weights of the 37-point on-lattice quadrature rules D1Q37P1
and D1Q37P2. The abscissas corresponding to the weight wi are ±ck for k = 0, 1,
2, . . . , 19.

4.1. Accuracy of the LBM with high-order on-lattice quadrature in the rarefied regime
In this subsection, we assess the accuracy and convergence of the high-order on-lattice
LBM in the rarefied flow regime against the semi-analytical result of a recent DVM
calculation (Wu & Gu 2020) that employs a set of 201 discrete velocities evenly distributed
in the interval [−8, 8] determined by Newton–Cotes quadrature. This method does not
require spatial and temporal discretization but only gives the steady-state SRBS spectra.
Benchmarks of DVM against Yip & Nelkin (1964) are shown in figure 4, where excellent
agreement is evident.

We first investigate the behaviour of the LBM as the number of velocities increases.
Shown in figure 5 are the SRBS spectra for a range of Kn from 0.1 to 2.0 as computed by
the LBM using rules with an increasing number of velocities of both P1 and P2 groups.
For reference, the DVM result and the theoretical predictions for the continuum and
free-molecular flow limits, (2.23) and (2.17), respectively, are also shown. At Kn = 0.1,
all are in good agreement. As Kn increases beyond 0.5, when the rarefaction effect starts
to become significant, as indicated by the deviation between the DVM and NSF solutions,
all the way up to Kn = 2.0, when DVM almost agrees with (2.17), the results of the LBM
using higher-order rules, especially those in the P1 group, track those of the DVM quite
well, while the LBM results using lower-order rules depart from those of the DVM.

To reveal the trend of increasing Kn for particular rules, shown in figure 6 are the SRBS
spectra by the LBM with the two D1Q37 rules for the same range of Kn. All can be seen
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FIGURE 4. The validation of the accuracy of the DVM (markers) with the reference results
in Yip & Nelkin (1964) (solid line). The vertical axis is the spectrum normalized by ε2. Here
Kn = 0.353, 0.707, 1.414 and 3.536 are considered. Note that Kn is related to the rarefaction
parameter y used in Yip & Nelkin (1964) by Kn = 1/( y

√
2).

to be in good agreement with the DVM, except that the result using the P2 rule starts to
deviate at Kn = 2.0.

To quantify the deviation, we define the overall relative error as

error =

∫ ∞

0
|S − SDVM| dω∫ ∞

0
SDVM dω

, (4.2)

and show in figure 7 the errors for the same range of Kn by the two groups of rules. For the
purpose of demonstrating the error sources, results at two spatial resolutions, 100 and 500,
are shown. First of all, at Kn = 2.0, the error monotonically decreases with the increasing
number of velocities independent of spatial resolution for both P1 and P2 rules. This can be
explained as that the overall error at this Kn is mainly due to the strong rarefaction effect’s
not being adequately captured by the LBM system. The discretization error is small and
overshadowed. Also to be noted is that the P1 rules consistently outperform the P2 rules,
which will be explained later in the section. At lower Kn, the decreases of the errors are
more rapid as the rarefaction effect is weaker and can be captured by the LBM system with
fewer number of velocities. The decreases stop at some points that depend on Kn and then
the errors start to increase slowly. At this stage, the errors depend strongly on the spatial
resolution, indicating that they are mainly due to spatial discretization.

Shown in figure 8 are the numbers of velocities needed for the relative error between the
LBM and DVM to be within 1 % as a function of Kn. For comparison, the same numbers
are also shown for the FVM solution of (3.7) using GH rules as detailed in § 3.2. In order to
analyse the performance of discrete velocity quadratures, sufficient spatial cells should be
employed to avoid possible contamination. As expected, the P1, P2 and GH rules can reach
high accuracy with sufficient number of velocities. Particularly, P1 rules with 19 points can
be within 1 % of the DVM for Kn up to 1.7. Also to be noted is that, at high Kn, the FVM
with GH rules requires significantly more velocities to reach the same accuracy level even
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FIGURE 5. Normalized SRBS spectra predicted by the LBM with quadrature rules of various
orders. From top to bottom, the Knudsen number in each row is respectively 0.1, 0.5, 1.0 and 2.0.
The LBM results (markers) using the P1 and P2 rules are shown in the left and right columns,
respectively. The reference result using the DVM (dashed line), theoretical predictions from the
NSF equations (2.23) (solid line) and free-molecular flow (2.17) (dash-dotted line) are also shown
for comparison. Here 100 spatial cells are used and the perturbation density intensity is ε = 10−5

in the LBM.
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FIGURE 6. Normalized SRBS spectra calculated by the LBM (empty markers) with D1Q37P1
(a) and D1Q37P2 (b) compared with reference DVM results (solid line).
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FIGURE 7. Relative error of the LBM-predicted SRBS spectra with respect to the DVM results.
Shown in the left and right columns are results using cell number N = 100 and 500, and in
the top and bottom rows are results using the P1 and P2 rules. Note the interplay of the error
due to rarefaction, which decreases monotonically with the increasing number of velocities but
is independent of the spatial resolution, and that due to spatial discretization, which depends
strongly on the spatial resolution but only weakly on the number of velocities.

though GH rules have degrees of precision twice those of P1 and P2. The phenomenon
that GH rules have a relatively poor effect in capturing the rarefaction behaviour was also
observed in Wu & Gu (2020).
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FIGURE 8. The number of minimum discrete velocities to achieve the convergence against Kn.
The red, blue and green lines are, respectively, the results of the LBM with P1 and P2, and the
FVM with GH rules. A uniform mesh of 100 cells is used in the LBM, while 640 cells is used
in the FVM, with one exception of 2560 cells at Kn = 0.1 because of strict convergence criteria.
The CFL number is set to 0.2 in the FVM.
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FIGURE 9. The real part of the Fourier-transformed perturbation distribution function
φ̂1(ξ,Kn, ω) when Kn = 2.0: (a) ω = 0.0; (b) ω = 2.0. Circles, squares, triangles and solid
lines are, respectively, the results of the LBM with D1Q27P1, LBM with D1Q27P2, FVM with
GH27, and DVM. Note that φ̂1 is normalized by ε2.

To give a possible explanation for the different accuracy characteristics among the three
classes of quadrature rules, we show in figure 9 the real part of the spatial and temporal
Fourier-transformed perturbation distribution function at Kn = 2.0:

φ̂1(ξ,Kn, ω) =
∫ ∞

0

∫ ∞

−∞
ei(x−ωt)[ψ1 − ψ(0)] dx dt. (4.3)

Note that the SRBS spectrum is the integral of the real part of φ̂1(ξ,Kn, ω) with respect
to ξ , namely

S(Kn, ω) = 2
∫ ∞

−∞
Re[φ̂1(ξ,Kn, ω)] dξ. (4.4)
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FVM

Kn N CFL = 0.2 CFL = 0.4 CFL = 0.6 CFL = 0.8 CFL = 0.95 LBM

0.5 20 5.321 × 10−2 5.154 × 10−2 4.994 × 10−2 4.836 × 10−2 4.734 × 10−2 3.673 × 10−2

40 2.566 × 10−2 2.484 × 10−2 2.404 × 10−2 2.322 × 10−2 2.258 × 10−2 8.949 × 10−3

80 1.304 × 10−2 1.264 × 10−2 1.223 × 10−2 1.180 × 10−2 1.153 × 10−2 2.217 × 10−3

100 1.052 × 10−2 1.022 × 10−2 9.893 × 10−3 9.561 × 10−3 9.341 × 10−3 1.417 × 10−3

1.0 20 4.771 × 10−2 4.579 × 10−2 4.398 × 10−2 4.227 × 10−2 4.100 × 10−2 9.965 × 10−3

40 2.380 × 10−2 2.271 × 10−2 2.161 × 10−2 2.048 × 10−2 1.974 × 10−2 2.545 × 10−3

80 1.207 × 10−2 1.156 × 10−2 1.104 × 10−2 1.052 × 10−2 1.017 × 10−2 6.380 × 10−4

100 9.659 × 10−3 9.282 × 10−3 8.906 × 10−3 8.528 × 10−3 8.270 × 10−3 4.085 × 10−4

2.0 20 4.897 × 10−2 4.753 × 10−2 4.617 × 10−2 4.484 × 10−2 4.401 × 10−2 4.488 × 10−3

40 2.502 × 10−2 2.420 × 10−2 2.338 × 10−2 2.256 × 10−2 1.202 × 10−2 4.151 × 10−3

80 1.314 × 10−2 1.276 × 10−2 1.238 × 10−2 1.200 × 10−2 1.174 × 10−2 4.163 × 10−3

100 1.076 × 10−2 1.048 × 10−2 1.020 × 10−2 9.906 × 10−3 9.703 × 10−3 4.168 × 10−3

TABLE 3. Relative error of the LBM- and FVM-predicted SRBS spectra with respect to the
DVM results for a range of Kn, i.e. 0.5, 1.0 and 2.0. Here the D1Q37P1 rule is used in both
methods for fair comparison; and N denotes the cell size.

It can be observed that the distribution function is non-negligible roughly in the velocity
interval of [−5, 5] in which the number of discrete velocities is different among the three
groups of rules. There are more velocities in P1 situated in this interval than in GH and P2.
To verify the influence of velocity interval, we note from figure 8 that GH40 can achieve
convergence at Kn = 2.0 with the minimum velocity interval 0.4937, which is close to the
lattice constant 0.4854 of D1Q27P1.

4.2. Comparison of the LBM and FVM
In this subsection, we evaluate the performance of the LBM and FVM in the whole
regime in terms of accuracy and computational efficiency. It has been recognized that
the traditional FVM, where the time step and cell size are limited by the mean collision
time and mean free path of gas molecules, work well for highly rarefied gas flow (Dimarco
& Pareschi 2014).

Shown in table 3 is the relative error of SRBS spectra using the LBM and FVM in
comparison with the DVM reference results in the rarefied regime. For fair comparison,
the D1Q37P1 rule is implemented in the LBM and FVM. Because of the large mean
collision time in the rarefied regime, the time step in the FVM is limited only by the CFL
condition. For the unsteady problem, the total physical time is set to 120 such that the
density perturbation is sufficiently close to 0 and the SRBS spectra are accurate enough.
It can be found that good accuracy can be achieved with the FVM as long as CFL < 1.0.
Interestingly, the error of the FVM decreases monotonically with the increase of the CFL
number at the same mesh size. In addition, it is observed that the LBM can give more
accurate results than the FVM with the same mesh size when Kn = 0.5, 1.0 and 2.0.
To study the computational time, we run the simulations involved on a PC with an Intel
Xeon 2.6 GHz CPU. The efficiency comparison of the LBM and FVM is displayed in
figure 10. Since the computational time is independent of the Knudsen number, only
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FIGURE 10. Computational time of the FVM and LBM using D1Q37P1 rule at Kn = 0.5. Since
the computational time is inversely proportional to the time step, only the cases of CFL number
α = 0.95 are present.
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FIGURE 11. Typical time histories of ρ′
k(t)/ρ

′
k(0) as predicted by the LBM and FVM at Kn =

10−4. Here the D1Q5P1 rule and cell number N = 40 are used in both the LBM and FVM. The
density impulse intensity ε = 10−6 and quadruple precision are used in the above computation.
The CFL number α = 0.01 in the FVM. The blue, green and red lines denote the results of the
FVM, LBM and NSF solutions of (2.28), respectively.

the case Kn = 0.5 is presented. It can be seen that, when the grid number is large,
the computational times of the FVM and LBM are directly proportional to the square
of the grid number, which can be explained as that the time step is inversely proportional
to the grid number. What is more, the computational time of the FVM is approximately
10 times that of the LBM with the same cell size, though the CFL number is 0.95 in the
FVM. Hence, it can be concluded that the LBM has advantages over the FVM in capturing
the rarefaction effects in terms of accuracy and computational efficiency.

Shown in figure 11 is the comparison of the accuracy of the LBM and FVM at
Kn = 10−4 in a qualitative way. Unlike the cases in the rarefied regime, the initial density
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FIGURE 12. Grid convergence of the LBM and FVM. Plotted are the relative errors in viscosity
and thermal diffusivity using the D1Q5P1 rule on an L cell ranging from L = 20 to L = 320.
The density impulse intensity ε = 10−6 and quadruple precision are used in the computations.
Shown in the left and right columns are the relative errors of viscosity and thermal diffusivity,
and in the top and bottom rows are results when Kn = 10−3 and 10−4, respectively.

perturbation is set to 10−6 to avoid the nonlinear effect as much as possible and quadruple
precision is used in the continuum regime. It can be observed that the results of the LBM
show good agreement with the theoretical solution (2.28). Nevertheless, the results of
the FVM exhibit a strong dissipation and deviate seriously from the theoretical solutions.
A quantitative analysis on the accuracy of the LBM and FVM is performed by extracting
the viscosity and thermal diffusivity from numerical simulation results. First, ρ ′

k(t) is
obtained by performing the spatial Fourier transform on the density perturbation field at
each time step. Then it is fitted with the theoretical model (2.28) and (2.29a,b) using the
Levenberg–Marquardt algorithm to determine the viscosity and thermal diffusivity. Note
that the total time is set to 960 in the LBM and FVM so as to extract reliable parameters.

A well-known issue with the FVM scheme of (3.13) is its high numerical dissipation in
the continuum regime that results in small time step and cell size. Since the convective and
collision terms of the Boltzmann model equation are discretized into a completely explicit
form shown in (3.13), the time step (3.18) and cell size have to be constrained by the
relaxation time and mean free path in order to have acceptable stability and accuracy. If the
spatial cell size is not smaller than the mean free path, the numerical transport coefficients,
e.g. viscosity and thermal conductivity, might be much larger than the physical ones (Wang
et al. 2018; Su et al. 2020a,b). On the contrary, the collision term in the LBM is integrated
by use of the trapezoidal rule shown in (3.19), which is a semi-implicit time discretization;
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FIGURE 13. Computational time of the FVM and LBM using D1Q5P1 at Kn = 10−3.
For simplicity, only the cases of CFL number α = 0.01 are shown.

Viscosity Thermal diffusivity

FVM 1.178 × 10−3 (1.078 × 101) 6.217 × 10−4 (5.217 × 101)

FVM without limiter 1.498 × 10−4 (4.98 × 10−1) 1.491 × 10−4 (4.91 × 10−1)

LBM 1.012 × 10−4 (1.20 × 10−2) 1.003 × 10−4 (3.0 × 10−3)

TABLE 4. The extracted viscosity and thermal diffusivity obtained by the FVM, the FVM
without limiter and the LBM using the D1Q5P1 rule on the cell number 40 when Kn = 10−4. In
parentheses are shown the relative errors of viscosity and thermal diffusivity. The CFL number
α = 0.01 is employed in the FVM and the FVM without limiter.

therefore, the restriction that the time step should be smaller than the mean collision time
is removed. More importantly, the advection operator is solved exactly with the on-lattice
LBM. Thus, it can be predicted that the on-lattice LBM can give better results than the
FVM at the same grid resolution.

The relative error is defined as ζ ∗ = |ζ − ζt|/ζt, where ζt is the theoretical transport
coefficient, which is summarized in figure 12 as a function of the number of grid
resolutions when Kn = 10−3 and 10−4. Obviously, the relative error is a direct measure
of the numerical dissipation. According to the Chapman–Enskog expansion, D1Q5P1
with a seventh-order quadrature is sufficient to recover the linearized NSF equations. As
expected, the on-lattice LBM shows a second-order spatial accuracy. The relative errors
of viscosity and thermal diffusivity obtained by the FVM, however, are approximately
two orders of magnitude more than that by the LBM at Kn = 10−3 and the differences
further increase to three orders of magnitude when Kn = 10−4. Additionally, the numerical
dissipation in the FVM decreases when the CFL number changes from 0.01 to 0.001, which
is consistent with the requirement of a small time step to achieve better accuracy.

The computational times of the FVM and LBM are shown in figure 13, and the
computational time of the FVM with CFL = 0.01 is more than two orders of magnitude
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longer than that of the LBM at Kn = 10−3. Therefore, it can be concluded that the LBM
is much superior to the FVM in describing the continuum flow behaviour in terms of
accuracy and efficiency. Finally, we perform a comparison of numerical dissipation of the
FVM and the FVM without limiter with cell number N = 40 and CFL number α = 0.01 at
Kn = 10−4. Table 4 shows that the FVM without limiter has a lower numerical dissipation,
while it is still at least one order of magnitude more than that of the LBM.

5. Conclusion and discussion

In summary, two kinds of 1-D high-order on-lattice quadratures P1 and P2 have been
devised and the accuracy of the on-lattice LBM has been evaluated in the continuum
and rarefied regimes by solving the Boltzmann–BGK equation for the spontaneous
Rayleigh–Brillouin scattering problem. Our results show that the high-order on-lattice
LBM can capture the rarefaction effect accurately and, since more discrete velocities in
P1 are distributed in the domain where the distribution function is not negligible, P1
performs better than P2 and GH rules in the rarefied regime. That is, to achieve the same
level of accuracy, the on-lattice LBM with P1 quadrature needs less discretized velocity
grids than P2 and GH rules. In comparison with the FVM, the on-lattice LBM has a much
lower numerical dissipation and can capture the hydrodynamic behaviour accurately and
efficiently without requiring small time step and spatial cell size in the continuum regime.

In this work we mainly focus on the case without the gas–wall interaction, which is an
important aspect of rarefied gas flow, to evaluate the accuracy of the high-order on-lattice
LBM, and the cases with gas–wall interaction will be considered in the future. In addition,
we note that half-range quadrature is more advantageous than full-range quadrature to
capture the effects of gas–wall interaction (Ambruş & Sofonea 2016a,b); the method of
constructing the present on-lattice quadrature can also be applied to design the half-range
high-order on-lattice quadrature.
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