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When facing small numbers of observations or rare events, political scientists often encounter separation, in

which explanatory variables perfectly predict binary events or nonevents. In this situation, maximum likeli-

hood provides implausible estimates and the researcher might want incorporate some form of prior infor-

mation into the model. The most sophisticated research uses Jeffreys’ invariant prior to stabilize the

estimates. While Jeffreys’ prior has the advantage of being automatic, I show that it often provides too

much prior information, producing smaller point estimates and narrower confidence intervals than even

highly skeptical priors. To help researchers assess the amount of information injected by the prior distri-

bution, I introduce the concept of a partial prior distribution and develop the tools required to compute the

partial prior distribution of quantities of interest, estimate the subsequent model, and summarize the results.

Separation, in which an explanatory variable perfectly predicts some binary observations,
remains a hurdle in political science research (e.g., DeRouen and Bercovitch 2008; Desposato
and Scheiner 2008; Heller and Mershon 2008; Smith and Fridkin 2008; Casellas 2009; Rauchhaus
2009; Ahlquist 2010; Cox, Kousser, and McCubbins 2010; Peterson and Drury 2011; Rocca,
Sanchez, and Morin 2011; Fuhrmann 2012; Cederman, Gleditsch, and Hug 2013; Minozzi and
Volden 2013; Barrilleaux and Rainey 2014a; Brown and Kaplow 2014; Leeman and Mares 2014;
Reiter 2014; Weisiger 2014; Bell and Miller 2015; Mares 2015; Vining, Wilhelm, and Collens
2015). Zorn (2005) offers the most principled solution to the problem of separation, suggesting
that researchers maximize a penalized version (Firth 1993) of the usual likelihood function (see
also Heinze and Schemper 2002). Zorn’s approach has the advantage of being automatic and easy
for researchers to use.

However, when implementing Zorn’s approach, substantive researchers face two major
problems. First, because the posterior distribution of the coefficients can be highly nonnormal
under separation, the usual asymptotic confidence intervals and p-values do not work well. While
a good method exists for finding confidence intervals and p-values for the model coefficients
(Heinze and Schemper 2002), this method does not extend to the typical quantities of interest,
such as first differences. Researchers must still rely on the poor asymptotic approximation to
simulate these quantities (King, Tomz, and Wittenberg 2000). Second, and perhaps most import-
antly, while the penalty suggested by Zorn has the attractive property of bias reduction in logistic
regression models (Firth 1993), it does not necessarily approximate a researcher’s prior informa-
tion (Western and Jackman 1994; Gelman et al. 2008). Some shrinkage toward zero is required to
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obtain finite estimates, but the appropriate amount of shrinkage depends on the substantive
problem and the prior information. To address these two problems, I suggest that researchers
use a range of priors, focusing on an informative prior, and use MCMC to simulate directly from
the posterior.

In this article, I introduce conceptual and computational tools that help researchers under-
stand the information provided by a given prior distribution and use that prior distribution to
obtain meaningful point estimates and confidence intervals. I make three specific contributions.
First, I use statistical theory and two applied examples to demonstrate the importance of
choosing a prior distribution that represents actual prior information and conducting robustness
checks using a variety of prior distributions. Second, I introduce the concept of a partial prior
distribution, a powerful tool in understanding and choosing a prior when facing separation.
Third, I introduce new software that makes it easy for researchers to choose an informative
prior distribution, simulates directly from the posterior distribution, and summarizes the
inferences.

I begin with a basic overview of the logistic regression model and summary of the impact of
separation on the maximum likelihood estimates. I then describe two default prior distributions
that researchers might use to handle separation. Next, I use a theoretical result and an applied
example to demonstrate the importance of choosing an informative prior. I then introduce re-
searchers to the concept of a partial prior distribution, which enables researchers to understand
complex prior distributions in terms of the key quantities of interest. To illustrate how these ideas
work in practice, I conclude with a replication of Rauchhaus (2009) and Bell and Miller (2015),
whose disagreement about the effect of nuclear weapons on war hinges, in part, on how to deal with
separation.

1 The Logistic Regression Model

Political scientists commonly use logistic regression to model the probability of events such as war
(e.g., Fearon 1994), policy adoption (e.g., Berry and Berry 1990), turning out to vote (e.g.,
Wolfinger and Rosenstone 1980), and government formation (e.g., Martin and Stevenson 2001).
In the typical situation, the researcher uses an n� ðkþ 1Þ design matrix X consisting of a single
column of ones and k explanatory variables to model a vector of n binary outcomes y, where
yi 2 f0; 1g, using the model PrðyiÞ ¼ Prðyi ¼ 1jXiÞ ¼

1
1þe�Xi�

, where � is a coefficient vector of
length kþ 1.

Using this model, it is straightforward to calculate the likelihood function

Prðyj�Þ ¼ Lð�jyÞ ¼
Yn
i¼1

1

1þ e�Xi�

� �yi

1�
1

1þ e�Xi�

� �1�yi
" #

: ð1Þ

Researchers routinely obtain the maximum likelihood estimate �̂
mle

of the coefficient vector � by
finding the coefficient vector that maximizes L (i.e., maximizing the likelihood of the observed
data). While this approach works quite well in most applications, it fails in a situation known as
separation (Zorn 2005).

2 Separation

Separation occurs in models of binary outcome data when one explanatory variable perfectly
predicts zeros, ones, or both.1 For a binary explanatory variable si (for separating explanatory
variable), complete separation occurs when si perfectly predicts both zeros and ones.2 Quasicomplete

1Separation can also occur when a combination of explanatory variables perfectly predicts zeros, ones, or both; see
Lesaffre and Albert (1989). See Geyer (2009) for a much more general view of the concept of separation.

2For simplicity, I describe complete and quasicomplete separation for a binary explanatory variable, which is more
explicable than the general case considered by Albert and Anderson (1984). My approach also follows the convention of
Heinze and Schemper (2002) and Zorn (2005). Indeed, in social science problems, binary explanatory variables more
commonly lead to separation, so little is lost.
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separation occurs when si perfectly predicts either zeros or ones, but not both (Albert and Anderson
1984; Zorn 2005). Overlap, the ideal case, occurs when there is no such si. With overlap, the usual
maximum likelihood estimates exist and provide reasonable estimates of parameters. However,
under complete or quasicomplete separation, finite maximum likelihood estimates do not exist
and the usual method of calculating standard errors fails (Albert and Anderson 1984; Zorn 2005).

For the binary explanatory variable si, complete separation occurs when si perfectly predicts both
zeros and ones. For example, suppose si, such that yi¼ 0 for si¼ 0 and yi¼ 1 for si¼ 1. To maximize
the likelihood of the observed data, the “S”-shaped logistic regression curve must assign
PrðyiÞ ¼

1
1þe�Xi�

¼ 0 when si ¼ 0 and PrðyiÞ ¼
1

1þe�Xi�
¼ 1 when si¼ 1. Since the logistic regression

curve lies strictly between zero and one, this likelihood cannot be achieved, only approached asymp-
totically as the coefficient �s for si approaches infinity. Thus, the likelihood function under complete
separation is monotonic, which implies that a finite maximum likelihood estimate does not exist.

Quasicomplete separation occurs when si perfectly predicts either zeros or ones. For example,
suppose that when si¼ 0, sometimes yi¼ 1 and other times yi¼ 0, but when si¼ 1, yi¼ 1 always. To
maximize the likelihood of the observed data, the “S”-shaped logistic regression curve must assign
PrðyiÞ ¼

1
1þe�Xi�

2 ð0; 1Þ when si ¼ 0 and PrðyiÞ ¼
1

1þe�Xi�
¼ 1 when si¼ 1. Again, since the logistic

regression curve lies strictly between zero and one, this likelihood cannot be achieved, only ap-
proached asymptotically. Thus, the likelihood function under quasicomplete separation also mono-
tonically increases as the coefficient of si increases, which again implies that the maximum
likelihood estimate does not exist.

For example, Barrilleaux and Rainey (2014a) find that no Democratic governors opposed the
Medicaid expansion under the Affordable Care Act (ACA), leading to a maximum likelihood
estimate of negative infinity for the coefficient of the indicator of Democratic governors.
Similarly, Rauchhaus (2009) and Bell and Miller (2015) finds no instances of states with nuclear
weapons engaging in war with each other, leading to an estimated coefficient of negative infinity for
the coefficient of the variable indicating nuclear dyads. To maximize the likelihood in these situ-
ations, the model must assign zero probability of opposition to Democratic governors and zero
probability of war to nuclear dyads. Because the logistic regression curve lies strictly above zero,
this cannot happen, though it can be approached asymptotically as the coefficient of si goes to
negative infinity.

For convenience, I say that the “direction of the separation” is positive if and only if si ¼ 1)
yi ¼ 1 or si ¼ 0) yi ¼ 0 and that the direction of separation is negative if and only if si ¼ 0)
yi ¼ 1 or si ¼ 1) yi ¼ 0. Thus, �̂

mle
¼ þ1 when the direction of the separation is positive, and

�̂
mle
¼ �1 when the direction of the separation is negative.

3 Solutions to Separation

The maximum likelihood framework requires the researcher to find the parameter vector that
“maximizes the likelihood of the observed data.” Of course, infinite coefficients always generate
separated data, whereas finite coefficients only sometimes generate separation. Thus, under separ-
ation, maximum likelihood can only produce infinite estimates.

Before addressing potential solutions to this problem, let me mention two unsatisfactory “solu-
tions” found in applied work. In some cases, researchers simply ignore the problem of separation
and interpret the large estimates and standard errors as though these are reasonable. However, this
approach leads researchers to overstate the magnitude of the effect and the uncertainty of the
estimates. Second, researchers sometimes “solve” the problem of separation by dropping the
separating variable from the model. Zorn (2005, 161–62) correctly dismisses this approach:

As a practical matter, separation forces the analyst to choose from a number of problematic alternatives for

dealing with the problem. The most widely used “solution” is simply to omit the offending variable or

variables from the analysis. In political science, this is the approach taken in a number of studies in

international relations, comparative politics, and American politics. It is also the dominant approach in

sociology, economics, and the other social sciences, and it is the recommended method in a few prominent

texts in statistics and econometrics. Of course, this alternative is a particularly unattractive one; omitting a

covariate that clearly bears a strong relationship to the phenomenon of interest is nothing more than

deliberate specification bias.
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One principled solution is to build prior information pð�Þ—the same prior information that leads
researchers to deem infinite coefficients “implausibly large”—into the model using Bayes’ rule, so
that

pð�jyÞ ¼
pðyj�Þ
zfflffl}|fflffl{likelihood

pð�Þ
z}|{prior

R
pðyj�Þpð�Þd�

: ð2Þ

In this case, the estimate switches from the maximum likelihood estimate to a summary of the
location of the posterior distribution, such as the posterior median. The current literature on
dealing with separation suggests researcher take an automatic approach by using a default prior
distribution, such as Jeffreys’ invariant prior distribution (Jeffreys 1946; Zorn 2005) or a heavy-
tailed Cauchy(0, 2.5) prior distribution (Gelman et al. 2008).

3.1 Jeffreys’ Invariant Prior

Zorn (2005) suggests that political scientists deal with separation by maximizing a penalized like-
lihood rather than the likelihood (see Heinze and Schemper 2002 as well). Zorn suggests replacing
the usual likelihood function Lð�jyÞ with the “penalized” likelihood function L�ð�jyÞ from Firth
(1993), so that L�ð�jyÞ ¼ Lð�jyÞjIð�Þj

1
2. It turns out that the penalty jIð�Þj

1
2 is equivalent to Jeffreys’

(1946) prior for the logistic regression model (Firth 1993; Poirier 1994). Jeffreys’ prior can be
obtained by applying Jeffreys’ rule (Jeffreys 1946; Box and Taio 2011, 41–60), which requires
setting the prior pð�Þ to be proportional to the square root of the determinant of the information
matrix, so that pð�Þ / jIð�Þj

1
2. Then, of course, applying Bayes’ rule yields the posterior distribution

pð�jyÞ / Lð�jyÞjIð�Þj
1
2, so that Firth’s penalized likelihood is equivalent to a Bayesian approach with

Jeffreys’ prior. The researcher can then sample from this posterior distribution using MCMC to
obtain the features of interest, such as the mean and standard deviation.

However, Firth (1993) did not propose this prior to solve the separation problem. Instead, he
proposed using Jeffreys’ prior to reduce the well-known small sample bias in logistic regression
models. And while it is true that Firth’s correction does provide finite estimates under separation, it
remains an open question whether this automatic prior, justified on other grounds, injects a rea-
sonable amount of information into the model for particular substantive applications. In some
cases, Jeffreys’ prior might contain too little information. In other cases, it might contain too much.

3.2 The Cauchy(0, 2.5) Prior

Indeed, Gelman et al. (2008) note that Firth’s application of Jeffreys’ prior is not easily interpret-
able as actual prior information because the prior pð�Þ ¼ jIð�Þj

1
2 lacks an interpretable scale and

depends on the data in complex ways. Instead, they suggest standardizing continuous inputs to
have mean zero and standard deviation one-half and simply centering binary inputs (Gelman 2008).
Then, they suggest placing a weakly informative Cauchy(0, 2.5) prior on the coefficients for these
rescaled variables that, like Jeffreys’ prior, bounds the estimates away from positive and negative
infinity but can also be interpreted as actual prior information.3 Gelman et al. (2008, 1363) write:

Our key idea is that actual effects tend to fall within a limited range. For logistic regression, a change of 5

moves a probability from 0.01 to 0.5, or from 0.5 to 0.99. We rarely encounter situations where a shift in input

x corresponds to the probability of outcome y changing from 0.01 to 0.99, hence, we are willing to assign a

prior distribution that assigns low probabilities to changes of 10 on the logistic scale.

As with Jeffreys’ prior, the posterior distribution is not easily available analytically, but one can
use MCMC to simulate from the posterior distribution. Once a researcher has the MCMC

3Gelman et al. (2008) use a Cauchy(0, 2.5) prior for the coefficients but a Cauchy(0, 10) prior for the intercept. This
allows the intercept to take on a much larger range of values (e.g., from 10�9 to 1� 10�9).
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simulations, she can obtain the point estimates and credible intervals for the coefficients or
quantities of interest by summarizing the simulations.

Gelman et al. (2008) design their prior distribution to be reflective of prior information for a
range of situations. In many cases, their weakly informative prior might supply too little prior
information. In other cases, it might supply too much. In either case, it remains an open question
whether this general prior supplies appropriate information for particular research problems.

4 The Importance of the Prior

While default priors, such as Zorn’s suggested Jeffreys’ prior or Gelman et al.’s suggested Cauchy(0,
2.5) prior are often useful as starting points, choosing an informative prior distribution is crucial for
dealing with separation in a substantively meaningful manner. Further, whether a particular prior
is reasonable depends on the particular application.

In most data analyses, the data swamp the contribution of the prior, so that the choice of prior
has little effect on the posterior. However, in the case of separation, the prior essentially determines
the shape of the posterior in the direction of the separation. When dealing with separation, then, the
prior distribution is not an arbitrary choice made for computational convenience, but an important
choice that affects the inferences. We can see the importance in both theory and practice.

4.1 The Impact of the Prior in Theory

Although it is intuitive that the prior drives the inferences in the direction of the separation, it is
also easy to generally characterize the impact of the prior on a monotonically increasing likelihood.
Suppose quasicomplete separation, such that whenever an explanatory variable si¼ 1, a binary
outcome yi¼ 1, but when si¼ 0, yi might equal zero or one. Suppose further that the analyst
wishes to obtain plausible estimates of coefficients for the model

Prðyi ¼ 1Þ ¼ logit�1ð�cons þ �ssi þ �1xi1 þ �2xi2 þ :::þ �kxikÞ: ð3Þ

It is easy to find plausible estimates for the coefficients of x1; x2; :::; xk using maximum likeli-
hood, but finding a plausible estimate of �s proves more difficult because maximum likelihood
suggests an estimate of þ1. In order to obtain a plausible estimate of �s, the researcher must
introduce prior information into the model. My purpose here is to characterize how this prior
information impacts the posterior distribution.

In the general situation, the analyst is interested in computing and characterizing the posterior
distribution of �s given the data. Using Bayes’ rule, the posterior distribution of � ¼ h�cons; �s; �1;
�2; :::; �ki depends on the likelihood and the prior, so that pð�jyÞ / pðyj�Þpð�Þ. In particular, the
analyst might have in mind a family of priors centered at and monotonically decreasing away from
zero with varying scale �, so that pð�sÞ ¼ pð�sjsÞ, though the results below simply depend on having
any proper prior distribution. The informativeness of the prior distribution depends on �, which is
chosen by the researcher and “flattens” the prior pð�sÞ ¼ pð�sjsÞ, such that as � increases, the rate at
which the prior descends to zero decreases. In practice, one uses � to control the amount of shrink-
age. A small � produces more shrinkage; a large � produces less.

Theorem 1. For a monotonic likelihood pðyj�Þ increasing [decreasing] in �s, proper prior distribution
pð�jsÞ, and large positive [negative] �s, the posterior distribution of �s is proportional to the prior
distribution for �s, so that pð�sjyÞ / pð�sjsÞ. More formally, lim �s!1

½�1�

pð�sjyÞ
pð�sjsÞ

¼ k, for postive constant k.

Proof and details: See the Supplementary Technical Appendix.

Figure 1 provides the intuition of Theorem 1. In the top panel, we can easily see that multiplying
the likelihood times the prior, as required by Bayes’ rule, causes the likelihood to determine the
inferences in the direction opposite the separation and causes the prior to determine the inferences
in the direction of the separation. Notice that the right-hand side of the posterior barely changes as
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the prior switches from normal to Cauchy, but the shape of the prior essentially determines the
shape of the left-hand side of the posterior distribution.

Theorem 1 simply implies that for large values of �s the posterior distribution depends almost
entirely on the researcher’s choice of prior distribution. Thus, the choice of prior matters. While the
choice of prior might not affect the conclusion about the direction of the effect (i.e., one-sided
credible interval), it has a large impact on the conclusion about the magnitude of the effect (i.e., two-
sided credible interval). Credible intervals are crucial when discussing effect magnitudes (King,
Tomz, and Wittenberg 2000; Gross 2015; Rainey 2014), and the choice of prior essentially drives
the width of the credible interval.

4.2 The Impact of the Prior in Practice

To illustrate the impact of the prior on inferences when dealing with separation, I replicate results
from Barrilleaux and Rainey (2014a, 2014b), who are interested in the effect of partisanship on
governors’ decisions to oppose the Medicaid expansion in their states under the Patient Protection
and ACA. As the authors note, no Democratic governors opposed the expansion, which leads to
separation. To see whether the choice of prior matters, I use MCMC to simulate from the posterior
using Zorn’s (2005) and Gelman et al.’s (2008) suggested default prior distributions.

Figure 2 shows the posterior medians and 90% credible interval for the two default priors.4

While the choice of prior does not affect the conclusion about the direction of the effect, it has a
large impact on the conclusion about the magnitude of the effect. This can be especially important
when researchers are making claims about the substantive importance of their estimated effects
(King, Tomz, and Wittenberg 2000; Gross 2015; Rainey 2014). For example, the Cauchy(0, 2.5)
prior leads to a posterior median that is over 30% larger in magnitude than the posterior median
from Jeffreys’ prior (�4.7 compared to �3.5). The posterior mean is more than 70% larger in
magnitude using the Cauchy(0, 2.5) prior (�6.8 compared to �4.0). Further, the 90% credible
interval is more than twice as wide for the Cauchy(0, 2.5) prior. The choice between two default
priors leads to a large change in inferences.

Likelihood Normal
Prior

Posterior

−20 −15 −10 −5 0 5 10

Coefficient for Separating Variable

Likelihood Cauchy
Prior

Posterior

Fig. 1 This figure provides an example monotonic likelihood, prior, and posterior that illustrate the key
idea of Theorem 1. Notice that the likelihood is highly informative about the right-hand side of the pos-

terior distribution, but not informative about the left-hand side of the posterior distribution. The choice of
normal or Cauchy prior essentially determines the shape of the posterior in the direction of the separation.

4The credible intervals I use throughout this article are 90% HPD (highest posterior density) credible intervals. One
could define many intervals that have a 90% chance of containing the true parameter. However, the HPD interval is
theoretically appealing because it is the shortest of these intervals. See Gill (2008, esp. 48–51) and Casella and Berger
(2002, esp. 448). An equal-tailed interval, one alternative to the HPD interval, tends to exacerbate the differences
between the priors.
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Figure 3 shows the posterior distribution for the coefficient of the indicator of Democratic
governors. Notice that these two default priors lead to different posterior distributions. In particu-
lar, the choice of the prior has a large impact on the right-hand side of the posterior, as suggested by
Theorem 1. The more informative Jeffreys’ prior leads to a more peaked posterior distribution that
nearly rules out coefficients larger in magnitude than about �7. The less informative Cauchy(0, 2.5)
prior leads to the conclusion that coefficients with much larger magnitudes, such as �15, are
plausible. These differences are not trivial—there are large differences in the posterior distributions,
and these differences can affect the conclusions that the researchers draw about the likely magni-
tude of the effect.

5 Choosing an Informative Prior

While is often sufficient to rely on default priors, this is not the case if one is interested in obtaining
reasonable estimates and measures of uncertainty under separation. Indeed, in the replication of
Barrilleaux and Rainey (2014a) above, I show that the overall posterior distribution, the width of

−20 −15 −10 −5 0

Coefficient for Democratic Governor Indicator

0.00

0.05

0.10

0.15

0.20

P
os

te
rio

r 
D

en
si

ty

Zorn's Default Jeffreys' Prior

−20 −15 −10 −5 0

Coefficient for Democratic Governor Indicator

Gelman et al.'s Default Cauchy(0, 2.5) Prior

Fig. 3 This figure shows the posterior distribution for the coefficient of the indicator for Democratic

governors in the model offered by Barrilleaux and Rainey (2014a) for different default prior distributions.
The gray shading indicates the 90% credible interval. Notice that the location and the spread of the
posterior depend on the prior chosen, especially the left-hand side of the distribution, as suggested by
Theorem 1.

Fig. 2 This figure provides the posterior medians and 90% credible intervals for the coefficient of the
indicator for Democratic governors in the model used by Barrilleaux and Rainey (2014a). Notice that
Jeffreys’ prior injects more information, as indicated by the smaller posterior median and credible

interval. The credible interval using Cauchy(0, 2.5) prior is about twice as wide as the credible interval
using Jeffreys’ prior. Further, the posterior median using the Cauchy(0, 2.5) prior is about 40% larger in
magnitude than the posterior median using Jeffreys’ prior.
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the 90% credible interval, and the posterior median largely depend on the prior one chooses. This
implies that researchers relying on default priors alone risk under- or overrepresenting their con-
fidence in the magnitude of the effect.

Data with separation fall into the category of “weak data” discussed by Western and Jackman
(1994)—data that “provide little information about parameters of statistical models.” Under sep-
aration, the data simply offer no information about the upper bound of the magnitude of the
coefficient of the separating variable. Any reasonable regularization, then, must come in the
form of an informative prior. But a researcher’s prior is not simply a spur-of-the-moment
feeling. Instead, we should think of the prior as representing other information relevant to the
estimation. This information can come from several sources, including quantitative studies of
similar topics, detailed analyses of particular cases, and theoretical arguments. As Western and
Jackman (1994, 415) note:

While extra quantitative information is typically unavailable, large and substantively rich stores of qualitative

information from comparative and historical studies are often present but not available in a form suitable for

analysis. Bayesian procedures enable weak quantitative information of comparative research to be pooled

with the qualitative information to obtain sharper estimates of the regression coefficients.

The best sources of prior information, though, depend on the substantive prior. The judgment of
the substantive researcher, based on their understanding of the substantive problem, is crucial.

When facing separation, I suggest researchers use a prior distribution that satisfies three
properties:

1. Shrinks the estimates toward zero. While the ultimate goal is to choose a prior distribution
based on actual prior information, the prior distribution should also be appropriately con-
servative. As mentioned before, the prior distribution largely drives the inferences in the
direction of the separation. In this case, a noncentral prior distribution in the direction of
the separation has an especially large impact on the inferences. For this reason, I focus on
prior distributions centered at zero to conservatively shrink coefficients toward zero
(Gelman and Jakulin 2007). The only choice the researcher needs to make is the amount
of shrinkage appropriate for a given substantive problem.

2. Allows plausible effects. The prior distribution should assign substantial prior probability to
estimates that are a priori plausible according to the researcher’s prior information.

3. Rules out implausibly large effects. The prior distribution should assign little prior probabil-
ity to estimates that are a priori implausible according to the researcher’s prior information.

Different researchers will inevitably have different prior beliefs. For example, there is substantial
disagreement among international relations theorists about the likely effects of nuclear weapons on
conflict. Some optimists believe that nuclear weapons make peace much more likely. Mearsheimer
(1993, 57) argues that “nuclear weapons are a powerful force for peace” and observes:

In the pre-nuclear world of industrialized great powers, there were two world wars between 1900 and 1945 in which

some 50 million Europeans died. In the nuclear age, the story is very different. Only some 15,000 Europeans were

killed in minor wars between 1945 and 1990, and there was a stable peace between the superpowers that became

increasingly robust over time. A principal cause of this “long peace” was nuclear weapons.

Bueno de Mesquita and Riker (1982, 283) even theorize that the probability of conflict “decreases
to zero when all nations are nuclearly armed.”

On the other hand, some pessimists (e.g., Sagan 1994) believe that nuclear weapons do not deter
conflict, only make it more catastrophic. Mueller (1988, 68–69) writes:

Nuclear weapons may well have enhanced this stability—they are certainly dramatic reminders of how

horrible a big war could be. But it seems highly unlikely that, in their absence, the leaders of the major powers

would be so unimaginative as to need such reminding. Wars are not begun out of casual caprice or idle fancy,

but because one country or another decides that it can profit from (not simply win) the war—the combination

of risk, gain, and cost appears to be preferable to peace. Even allowing considerably for stupidity, ineptness,

miscalculation, and self-deception in these considerations, it does not appear that a large war, nuclear or

otherwise, has been remotely in the interest of essentially-contented, risk-averse, escalation-anticipating

powers that have dominated world affairs since 1945.
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The optimists and the pessimists have different prior beliefs about the likely effects of nuclear
weapons. These different beliefs must lead to different interpretations of the evidence because the
prior distribution has such a strong impact on the posterior distribution in the direction of the
separation. Because of this, researchers must clearly communicate the dependence of the inferences
on the choice of prior by transparently developing an informative prior distribution and providing
the inferences for alternative prior beliefs.

However, choosing a prior distribution is quite difficult, especially for multidimensional
problems. Gill and Walker (2005) provide an overview of methods of choosing a prior appropriate
to social science research. However, the most sensible approach for choosing a prior distribution
depends on the nature of the statistical model and the prior information.

In general, the researcher might assess the reasonableness of the prior distribution by examining
the prior distribution and asking herself whether the prior and model produce a distribution for the
quantities of interest that matches her prior information. Under the Bayesian framework, the re-
searcher has a fully specified model pnew ¼ pðynewj�Þpð�Þ and can simulate the quantity of interest
qnew ¼ qðpnewÞ from the model prior to observing the data. This works much like the Clarify algorithm
(King, Tomz, and Wittenberg 2000). By repeatedly simulating from the prior distribution ~� � pð�Þ,
calculating ~pnew ¼ pðynewj ~�Þ, and calculating ~qnew ¼ qð ~pnewÞ, the researcher can recover the trans-
formed prior distribution of qnew. Just as a researcher can use simulation to interpret the coefficient
estimates of nonlinear models, she can use simulation to interpret the prior distribution.

This simulation is entirely pre-data. The researcher does not need to fit the model to data to
simulation the quantities of interest. Instead, she can simulate from the prior distribution (rather
than the posterior), and use these prior simulations to interpret the prior distribution.

However, it is difficult to work with more than one dimension of the prior distribution.
Specifying the full prior distribution requires simultaneously choosing prior distributions for the
coefficients of the kþ 1 explanatory variables, as well as the relationships among these coefficients
(e.g., family, location, scale, and correlations of each coefficient). This process is intractably tedious,
because the researcher must evaluate the prior for each combination of each parameter set at a
range of values. Even if the researcher considers only independent normal priors centered at zero
and only ten values for each scale, then the researcher must examine 10kþ1 prior distributions. If the
researcher has eight control variables, so that k¼ 8 (e.g., Barrilleaux and Rainey 2014a), then the
researcher must evaluate one billion prior distributions.

But only specific regions of the kþ 1 dimensional prior distribution are practically important
when addressing separation. This allows the researcher to dramatically simplify the choice of prior.
In particular, the researcher can simplify the focus in two specific ways.

1. Focus only on the separated coefficient. Since the data swamp the prior for all the model
coefficients except �s, the only relevant “slices” of the prior distribution are those in which
all other coefficients are near their maximum likelihood estimates.

2. Focus in the direction of the separation. The likelihood also swamps the prior in the direction
opposite the separation. Unless the researcher has an extremely small data set [i.e., smaller
than Barrilleaux and Rainey (2014a), who have n¼ 50], then the likelihood essentially rules
out values less [greater] than zero when the direction of separation is positive [negative].

I refer to this simplified focus as the partial prior distribution.
Formally, we might write the partial prior distribution as p�ð�sj�s � 0; ��s ¼ �̂

mle

�s Þ when

�̂
mle

s ¼ þ1 and p�ð�sj�s � 0; ��s ¼ �̂
mle

�s Þ when �̂
mle

s ¼ �1. Much like the researcher can recover

the prior distribution of qnew implied by the prior distribution, she can recover the distribution of qnew
implied by the partial prior distribution by repeatedly simulating from the partial prior distribution

~�
�
� p�ð�sj�s � 0; ��s ¼ �̂

mle

�s Þ, calculating ~p�new ¼ pðynewj ~�
�
Þ, and calculating ~q�new ¼ qð ~p�newÞ.

The researcher should only use the partial prior distribution to study and interpret the prior
distribution, not to estimate the model. For estimating the model, researchers should use the full
prior distribution described below in Section 6.

This process requires the researcher to use the data twice—an initial fit using maximum likeli-
hood and a final fit using MCMC. First, the researcher fits the model using maximum likelihood to
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obtain a reasonable estimate of the coefficients or the nonseparating explanatory variables (upon
which the quantities of interest depend). The maximum likelihood estimation produces an estimate
of &	1 for the coefficient of the separation variable; this is akin to excluding the perfectly
predicted cases from the analysis or using the imperfectly predicted cases to estimate the coefficients
of the nonseparated explanatory variables. For example, even though no Democratic governors
opposed the Medicaid expansion, Barrilleaux and Rainey (2014a) can use the Republican states to
estimate the coefficients for their other explanatory variables, including the percentage of the state’s
residents who feel favorable toward the ACA, whether Republicans control the state legislature, the
percentage of the state that is uninsured, and others. This initial maximum likelihood estimation
only serves to identify the especially important region of the (multivariate) prior distribution: the
dimension for the coefficient of the separating explanatory variable in the direction of the separ-
ation with the other coefficients near their maximum likelihood estimates.

For example, Barrilleaux and Rainey (2014a) do not need to use prior information to obtain
reasonable estimates for their measures of need and public opinion. Further, because no
Democratic governors opposed the Medicaid expansion, they do not need the prior to rule out
large positive effects for Democratic partisanship. In these cases, the likelihood is sufficiently in-
formative. However, Barrilleaux and Rainey (2014a) do need to use the prior to rule out large
negative effects for Democratic partisanship, because the likelihood cannot effectively rule out
implausibly large negative effects. Indeed, the likelihood is monotonically decreasing in the coeffi-
cient of the indicator of Democratic governors. That is, the likelihood increases as the coefficient of
Democratic partisanship becomes more negative. The larger the negative effect, the more likely
separation would occur. The usual maximum likelihood estimator, therefore, provides implausibly
large negative estimates and unreasonable standard errors. Theorem 1 provides a more formal
treatment of this intuition, but prior information is essential to obtain reasonable estimates and
measures of uncertainty.

Choosing a prior, though, requires thoughtful effort. As I show above, default priors can lead to
much different conclusions, so it is essential to build actual prior information into the model. In
order to choose a reasonable, informative prior distribution, researchers can use simulation to
obtain the partial prior distribution of the quantity of interest. The following steps describe how
researchers can simulate from the partial prior distribution of a quantity of interest and use the
simulations to check the reasonableness of the choice.

1. Estimate the model coefficients using maximum likelihood, giving the coefficient vector �̂
mle

.
Include the separating variable si in the model. Of course, this leads to implausible estimates
for �s, but the purpose is to choose reasonable values at which to fix the other coefficients in
order to focus on a single slice of the full prior.

2. Choose a prior distribution pð�sjsÞ for the separating variable s that is centered at zero with
scale parameter �. One sensible choice is the scaled t distribution, which has the normal and
Cauchy families as special cases (df ¼ 1 and df ¼ 1, respectively).

3. Choose a large number of simulations nsims to perform (e.g., nsims � 10; 000) and for i in 1
to nsims, do the following:

(a) Simulate ~�
½i�

s � pð�sÞ.

(b) Replace �̂
mle

s in �̂
mle

with ~�
½i�

s , yielding the vector ~�
½i�
.

(c) Calculate and store the quantity of interest ~q½i� ¼ q ~�
½i�

� �
. This quantity of interest might

be a first-difference or risk ratio, for example.

4. Keep only those simulations in the direction of the separation (e.g., ~�
½i�

s � 0 when �̂
mle

s ¼ þ1

and ~�
½i�

s � 0 when �̂
mle

s ¼ �1).5

5In some situations, researchers may wish to skip this step. For example, if the numbers of perfectly predicted cases (e.g.,
states with Democratic governors or nuclear dyads) are relatively few, then the researchers can skip this step to evaluate
the prior in the direction of the separation as well as the opposite direction. However, a scale parameter that produces
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5. Summarize the simulations ~q using quantiles, histograms, or density plots. If the prior is inad-
equate, then update the prior distribution pð�sjsÞ by choosing a larger or smaller value of �.

Given that the inference can be highly dependent on the choice of prior, I recommend that the
researcher choose at least three prior distributions: (1) an informative prior distribution that rep-
resents her actual information, (2) a highly skeptical prior distribution that suggests the effect is
likely small, and (3) a highly enthusiastic prior that suggests the effect might be very large. Indeed,
Western and Jackman (1994, 422) note:

Still, the subjective choice of prior is an important weakness of Bayesian practice. The consequences of this

weakness can be limited by surveying the sensitivity of conclusions to a broad range of prior beliefs and to

subsets of the sample.

Combined with Zorn’s (2005) and Gelman et al.’s (2008) suggested defaults, these provide a range
of prior distributions that the researcher can use to evaluate her inferences.

6 Estimating the Full Model

Once the researcher obtains a reasonable prior distribution as well as several to use for robustness
checks, she can use MCMC (Jackman 2000) to obtain simulations from the posterior. Zorn (2005)
and Gelman et al. (2008) suggest variations on maximum likelihood to quickly obtain estimates and
confidence intervals, but the normal approximation typically used to simulate the parameters and
calculate quantities of interest (King, Tomz, and Wittenberg 2000) is particularly inaccurate under
separation (Heinze and Schemper 2002). As an alternative, I recommend the researcher use MCMC
to simulate directly from the posterior distribution. The researcher can then use these simulations to
calculate point estimates and confidence intervals for any desired quantity of interest. For the
informative pinfð�sÞ, skeptical pskepð�sÞ, and enthusiastic penthð�sÞ priors, I suggest the model:

Prðyi ¼ 1Þ ¼ logit�1ð�cons þ �ssi þ �1xi1 þ �2xi2 þ :::þ �kxikÞ ð4Þ

�s � pmð�sÞ; for m 2 finf; skep; enthg; ð5Þ

with improper, constant priors on the other model coefficients. Because the researcher is not
choosing the prior based on the desirable or undesirable features of the posterior, inference can
proceed in the usual way after the MCMC estimation.

In practice, Stan (Carpenter et al. 2016) makes the MCMC straightforward, especially when
combined with the R packages rstan (Stan Development Team 2016a) and rstanarm (Stan
Development Team 2016b). The MCMC using Jeffreys’ prior tends to be slow and difficult to set
up, so researchers may wish to omit Jeffreys’ prior for convenience.

7 Application: Nuclear Proliferation and War

A recent debate emerged in the conflict literature between Rauchhaus (2009) and Bell and Miller
(2015) that revolves around the issue of separation. Rauchhaus (2009, 262) hypothesizes that “[t]he
probability of major war between two states will decrease if both states possess nuclear weapons.”
Summarizing his empirical results, Rauchhaus writes:

The hypotheses on nuclear symmetry find strong empirical support. The probability of a major war between

two states is found to decrease when both states possess nuclear weapons (269).

Despite using the same data, Bell and Miller (2015, 9) claim that “symmetric nuclear dyads are
not significantly less likely to go to war than are nonnuclear dyads.” Their disagreement hinges, in
part, on whether and how to handle separation, because no nuclear dyad in Rauchhaus’s data

reasonable prior distribution in the direction of the separation should usually also lead to a reasonable prior distribution
in the direction opposite the separation. In most cases, though, the likelihood is informative that the coefficient is
probably in the same direction of the separation, so excluding simulations in the opposite direction of the separation
simplifies the process.
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engages in war.6 Rauchhaus (2009) ignores the separation and estimates that nonnuclear dyads are
about 2.7 million times more likely to go to war than symmetric nuclear dyads. Bell and Miller
(2015), on the other hand, use Jeffreys’ (1946) invariant prior, as suggested by Zorn (2005), and
estimate that nonnuclear dyads are only about 1.6 times more likely to engage in war. Because these
authors use very different prior distributions, they reach very different conclusions.7 This raises
important questions.

1. First, would a reasonable, informative prior distribution support Rauchhaus’s position of a
meaningful effect or Bell and Miller’s position of essentially no effect?

2. Second, how robust is the conclusion to a range of more and less informative prior
distributions?

To address these questions, I reanalyze these data (Bell and Miller 2011) with special attention to
the prior distribution.

7.1 Prior

The first step in dealing with the separation in a principled manner is to choose a prior distribution
that represents actual prior information. To choose a reasonable prior, I follow the process above
to generate a partial prior distribution for the risk ratio that Bell and Miller (2015) emphasize. I
experimented with a range of prior distributions, from a variety of families, but settled on a normal
distribution with mean zero and standard deviation 4.5. This serves as an informative prior and
represents my own prior beliefs. I chose this prior distribution because it essentially rules out risk
ratios larger than 1000—effects that I find implausibly large—and treats risk ratios smaller than
1000 as plausible. Figure 4 and Table 1 summarize the partial prior distributions for this normal
distribution with standard deviation 4.5.

To evaluate the robustness of any statistical claims to the choice of prior, I also selected a highly
skeptical and highly enthusiastic prior. I chose a normal distribution with mean zero and standard
deviation 2 to serve as a skeptical prior that represents the belief that any pacifying effect of nuclear
weapons is small (e.g., Mueller 1988). This skeptical prior distribution essentially rules out risk
ratios larger than 25 as implausibly large. Finally, I selected a normal distribution with mean zero
and standard deviation 8 to serve as an enthusiastic prior that represents the belief that the
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Fig. 4 This figure shows the partial prior distribution for the risk ratio of war in nonnuclear dyads to
nuclear dyads. The risk ratio tells us how many times more likely war is in nonnuclear dyads compared to

nuclear dyads. Notice that the informative prior treats effects smaller than about 1000 as plausible, but
essentially rules out larger effects. The skeptical prior essentially rules out effects larger than 25, whereas the
enthusiastic prior treats effects between 1 and 100,000 as essentially equally likely.

6Bell and Miller (2015) also disagree with Rauchhaus’s (2009) coding of the 1999 conflict in Kargil between India and
Pakistan, which both possessed nuclear weapons. This conflict is excluded from Rauchhaus’s data set, but Bell and
Miller argue that it should be included as a war between two nuclear-armed states, eliminating the problem of
separation.

7Rauchhaus (2009) does not use a formal prior distribution, but uses generalized estimating equations, which we might
interpret as having an improper, uniform prior on the logistic regression coefficients from minus infinity to plus infinity.
The estimate is finite only due to a stopping rule in the iterative optimization algorithm.
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pacifying effects of nuclear weapons might be quite large (e.g., Mearsheimer 1993). This enthusi-
astic prior, on the other hand, treats risk ratios as large as 500,000 as plausible. Figure 4 shows the
partial prior distributions for the informative, skeptical, and enthusiastic prior distributions. For
convenience, Table 1 provides the deciles of the partial prior distributions shown in Fig. 4.

Notice that the skeptical prior suggests that risk ratios above and below 4 are equally likely (i.e.,
50th percentile of the partial prior distribution is 3.9), whereas the enthusiastic prior suggests that
effects above and below 220 are equally likely. The informative prior, on the other hand, suggests
(more reasonably, in my view) that the effect is equally likely to fall above and below 20. These
three prior distributions, along with the defaults suggested by Zorn (2005) and Gelman et al. (2008),
provide a range of distributions to represent a range of prior beliefs.

7.2 Posterior

Figure 5 shows the posterior distributions for the coefficient of the indicator of nuclear dyads using
the informative, skeptical, enthusiastic, and two default prior distributions. The areas shaded gray
indicate the 90% credible intervals. Notice that the location (e.g., peak or mode), shape, scale, and
credible interval depend on the choice of prior. While the magnitude of this coefficient is not easily
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Fig. 5 This figure shows the posterior distribution for the logit coefficient of the indicator of nuclear dyads
using each of the five prior distributions. The gray shading indicates the 90% credible interval. Notice that
the choice of prior has a large effect on the inferences. For example, using the enthusiastic prior suggests the
coefficient might be as large as �15, whereas using the skeptical prior suggests the coefficient is probably

not larger than �4. Importantly, notice the similarity between the posterior using Zorn’s (2005) suggested
default prior and the skeptical prior, in terms of their peak (i.e., mode), shape, and credible interval.

Table 1 Deciles of the prior distribution

10% 20% 30% 40% 50% 60% 70% 80% 90%

Informative Normal(0, 4.5) Prior 1.8 3.3 6 10.6 22 48.6 118.8 377.5 1975.1
Skeptical Normal(0, 2) Prior 1.3 1.7 2.2 2.9 4 5.5 8 13.3 28.7
Enthusiastic Normal(0, 8) Prior 2.6 7.7 21 63.7 206.8 803.9 3408.1 21,438.6 335,395.4

Notes: This table provides the deciles of the prior distribution for the risk ratio of war in nonnuclear and nuclear dyads. The risk ratio tells
us how many times more likely war is in nonnuclear dyads compared to nuclear dyads. Notice that the informative prior suggests a median
risk ratio of about 20, which is a large, but plausible, effect. The skeptical prior suggests a median ratio of about 4 and the enthusiastic
prior suggests a median ratio of over 200.
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interpretable, notice that Gelman et al.’s (2008) suggested default prior is somewhat similar to the
informative prior, but Zorn’s (2005) suggested default is quite similar to the skeptical prior. Thus,
these distributions illustrate that the prior is important when dealing with separation. Indeed, it is a
critical step in obtaining reasonable inferences.

I now turn to the posterior distribution of the risk ratios—the key quantity of interest in the
debate between Bell and Miller (2015) and Rauchhaus (2009). Figure 6 presents the posterior
medians and the 90% credible intervals for each prior. An initial glance at the figure shows sub-
stantial variation in the point estimates and the width of the intervals. However, these risk ratios
and credible intervals are plotted on the log scale (otherwise the wider intervals dominate the plot),
so the figure tends to understate the variation in the inferences across priors. Notice that the
informative prior suggests the true risk ratio has about a 90% chance of falling between about
0.1 and about 2000, with a posterior median of about 25. The skeptical prior, on the other hand,
suggests the risk ratio has about a 90% chance of falling between 0.1 and 30, with a posterior
median of about 4. The enthusiastic prior suggests the risk ratio has about a 90% chance of falling
between 0.1 and 400,000. The inferences from these priors are very different.

Further, the 90% credible interval using Zorn’s (2005) default is much narrower than the in-
formative prior, and the posterior median of Zorn’s suggested default prior is even smaller than the
skeptical prior. For this particular application, Gelman’s suggested default more closely matches
the informative prior, though notice that the point estimate from Gelman’s prior is about half of
the point estimate from the informative prior and the upper bound of the credible interval is about
1000 times larger.

Finally, I use the posterior distributions from each prior to calculate the probability that the
presence of nuclear weapons makes war less likely (i.e., the probability that the risk ratios shown in
Fig. 6 are greater than one). Recall Rauchhaus’s hypothesis that nuclear weapons decrease the
chance of war. These probabilities can be thought of as the probability that Rauchhaus’s hypothesis
is correct. Following the standard of p � 0:05 as offering strong evidence against the null hypoth-
esis, it is reasonable to take PrðRR > 1Þ � 0:95 as strong evidence for the research hypothesis.
Figure 7 shows the probability that the hypothesis is correct for each prior distribution. Notice
that while only the enthusiastic prior falls above the 0.95 standard, the evidence for the claim is at
least suggestive. Perhaps most importantly for my purposes, Zorn’s suggested default leads to the
least evidence in favor of Rauchhaus’s hypothesis—even the skeptical prior provides more evidence
for Rauchhaus’s claim.

Fig. 6 This figure shows the posterior median and 90% credible intervals for the risk ratio using each of

the five prior distributions on the log scale. Notice that the choice of prior has a huge effect on the inferences
about the risk ratio. For example, the skeptical prior suggests the ratio might be as large as about 30,
whereas the enthusiastic prior suggests the ratio might be as large as about 400,000. Also, notice that the

posterior median from Zorn’s proposed default prior is smaller than the posterior median from the skeptical
prior.
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7.3 Conclusion

Separation is a relatively common situation in political science. It is also an unusual “problem”

because the effects in the sample are “too big” for maximum likelihood. In this situation, dropping
the separating variables (i.e., deliberate specification bias) or interpreting the implausible coeffi-

cients and standard errors are particularly unattractive options. But even the most principled
solution to date, the incorporation of prior information via default priors (Zorn 2005; Gelman

et al. 2008), has shortcomings.
First, the normal approximations necessary to simulate quantities of interest after using these

methods perform poorly. While it is possible to use profile likelihood methods to obtain more

accurate confidence intervals for the coefficients (McCullagh and Nelder 1989; Heinze and
Schemper 2002; Zorn 2005), it is difficult to translate these intervals into confidence intervals for

quantities of interest. I provide the computational tools to simulate directly from the posterior
using both Zorn’s (2005) and Gelman et al.’s (2008) suggested default priors.

Second, the applications examining the effect of nuclear weapons and the effect of governors’

partisanship illustrate what Theorem 1 proves—under separation, the choice of prior affects sub-
stantive conclusions. Even the predominant default priors used to deal with separation can provide

very different inferences. A carefully chosen, informative prior is an essential step in the process of
obtaining reasonable inferences when dealing with separation. But what does this mean for applied

researchers? I suggest two implications:

1. When facing separation, the choice of prior matters. Researchers must carefully choose a
prior that represents actual prior information. Otherwise, the point and interval estimates

will be too small or too large.

2. In addition to carefully choosing an informative prior that represents her own beliefs, the
researcher should show how the inferences change for a range of prior distributions. In the

debate between Bell and Miller (2015) and Rauchhaus (2009), the choice of prior almost
completely drives the inferences about the likely magnitude of the risk ratio. Thus, to the

extent that there is disagreement about the prior, there will be disagreement about the
results. In particular, I suggest that in addition to focusing on an informative prior, re-

searchers report the key quantities of interest for a skeptical prior, an enthusiastic prior,
and the two default priors suggested by Zorn (2005) and Gelman et al. (2008).

0.0 0.2 0.4 0.6 0.8 1.0

Pr(RR > 1)

Informative Normal(0, 4.5) Prior 0.93

Skeptical Normal(0, 2) Prior 0.86

Enthusiastic Normal(0, 8) Prior 0.96

Zorn's Default Jeffreys' Prior 0.79

Gelman et al.'s Default Cauchy(0, 2.5) Prior 0.91

Fig. 7 This figure shows the posterior probability of the hypothesis that nonnuclear dyads are more likely
to engage in war than symmetric nuclear dyads for each of the five prior distribution. From a hypothesis

testing perspective, the evidence for the hypothesis is borderline or suggestive for each prior. However,
notice that the skeptical prior, perhaps held by a researcher who believes the pacifying effect of nuclear
weapons is small or nil, yields greater evidence for the hypothesis than Jeffreys’ invariant prior suggested as
a default by Zorn (2005).
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When facing separation, researchers must carefully choose a prior distribution to nearly rule out
implausibly large effects. This article introduces the concept of a partial prior distribution and the
associated computational tools to help researchers choose a prior distribution that represents actual
prior information for their particular research problem. By presenting results using several prior
distributions, including an informative prior, researchers can increase the transparency, credibility,
and accuracy of their inferences when dealing with separation.
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