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This study refers to the article of Chicón, Castellanos & Martion (J. Fluid Mech., vol.
344, 1997, pp. 43–66), who presented a numerical study of electroconvection in a
layer of dielectric liquid induced by unipolar injection. An important characteristic of
the numerical strategy proposed by Chicón et al. lies in the fact that the Navier–Stokes
equations are never solved to obtain the velocity field, which is subsequently needed in
the charge density transport equation. Instead, the velocity field is explicitly provided
by an expression obtained with some assumptions about the flow structure and related
to the electric field (the imposed velocity field approach; IVF). The validity of the
above simplification is examined through a direct comparison of the solutions obtained
by solving the Navier–Stokes equations (the Navier–Stokes computation approach;
NSC). It is clearly demonstrated that, even in the strong injection regime (C = 10), the
results look very similar for a given range of the mobility parameter M; however, in
the weak injection regime (C = 0.1), significant discrepancies are observed. The rich
flow structures obtained with the NSC approach invalidate the use of the IVF approach
in the weak injection regime.

Key words: computational methods, convection, MHD and electrohydrodynamics

1. Introduction

In the configuration considered in the study of Chicón, Castellanos & Martion
(1997), when the applied voltage is high enough, the Coulomb force gives rise to
the development of an instability that puts the liquid into motion in the form of
electroconvective rolls. This strong and nonlinear coupling, as well as the complexity
of the mathematical problem, has prevented the development of any analytical solution.

† Email address for correspondence: philippe.traore@univ-poitiers.fr

c© Cambridge University Press 2013 727 R3-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

26
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:philippe.traore@univ-poitiers.fr
https://doi.org/10.1017/jfm.2013.267


P. Traoré and J. Wu

This inherent complexity has encouraged the use of numerical methods to gain
additional insight into physical phenomena. The first attempt to solve the whole
coupled system of partial differential equations with adequate numerical methods was
conducted by Castellanos & Atten (1987) and Castellanos, Atten & Perez (1987).
The authors solved the Navier–Stokes equations using the finite difference method
on a staggered grid combined with the SIMPLER algorithm (Patankar 1980). The
charge density transport equation was solved using the finite difference method and the
upwind differencing scheme for the convective term. However, the lack of precision in
their results made them change their method of solving the charge density transport
equation.

By neglecting the diffusion mechanism of charge transport, the charge density
equation becomes hyperbolic, and specific numerical schemes should be adopted due
to the noticeably steep gradients in the charge density distribution. Chicón et al.
(1997) developed an original particle-in-cell (PIC) method, which involves injecting
numerically charged particles in the bulk. Both weak and strong injection regimes
were considered. Vazquez, Georghiou & Castellanos (2006) compared the PIC method
to the integration of the charge density transport equation based on the flux-corrected
transport (FCT) scheme (Boris & Book 1973). However, in these papers the authors
tried to uncouple the complexity of the problem and only focus on the charge density
computation. Thus, the fluid velocity field is not computed from the Navier–Stokes
equations. Instead, the authors assumed that the flow adopts a convective roll
structure. The velocity field is then deduced from an analytical expression given by
the stream function associated with this roll structure. It is interesting to note that
such a simplification is quite popular in the numerical simulation of finite-amplitude
electroconvection due to unipolar injection (Castellanos & Atten 1987; Castellanos
et al. 1987; Chicón et al. 1997; Chicón, Perez & Castellanos 2002, 2003; Vazquez
et al. 2006; Vazquez & Castellanos 2011).

Despite the fact that it was later successfully solved by some authors (Vazquez,
Georghiou & Castellanos 2008; Kourmatzis & Shrimpton 2012; Traoré & Perez 2012),
the full and complete set of equations associated with electroconvective phenomena,
as well as the limitations and drawbacks of the imposed velocity field (IVF) strategy,
have never been reported.

The present paper reports on the limitations of the IVF with respect to the approach
of solving the full Navier–Stokes equations (the Navier–Stokes computation approach;
NSC). It is demonstrated that the use of the IVF approach may lead to completely
different results from those obtained with the NSC approach, especially in the weak
injection regime.

This paper is organized as follows. In the next section, the governing equations and
the numerical background used in the two approaches (NSC and IVF) are introduced
and described. Detailed and exhaustive numerical results are presented in § 3. Finally,
a conclusion is provided in § 4.

2. Governing equations and numerical background

2.1. Governing equations
The system under consideration is a dielectric liquid layer of width H enclosed
between two electrodes of length L (figure 1). The emitter electrode is at the bottom
side of the cavity. The layer is subjected to a potential difference 1V = V0 − V1, which
will inject charges from the emitter electrode into the bulk. The injection is assumed to
be homogeneous and autonomous.
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FIGURE 1. Sketch of the physical domain.

The governing equations of such a problem are ruled by the electrohydrodynamic
(EHD) equations, which is a set of coupled partial differential equations including the
Navier–Stokes equations, the charge density transport equation and Gauss’s law for the
electrostatic potential. These equations can be written in dimensionless form using the
scales H, (V0−V1), ε(V0−V1)/H2 and K(V0−V1)/H for, respectively, length, potential,
charge density and velocity. Here ε and K stand for the permittivity and ionic mobility,
respectively (Chicón et al. 1997). Thus we have

∇ ·v= 0, (2.1)
∂v
∂t
+ (v ·∇)v=−∇p̃+ M2

T
1v+M2qE, (2.2)

∂q

∂t
+∇ · (q(v+ E))= 0, (2.3)

1V =−q, (2.4)

where v = [u, v] is the fluid velocity, q is the charge density, E is the electric field,
V is the electric potential and p̃ is the modified pressure, which includes the pressure
and the scalar term from which the electrostriction force is derived. As the fluid is
homogeneous and isothermal, the dielectric force vanishes and only the Coulomb force
qE acts on the fluid.

Three dimensionless numbers arise in the equations:

T = ε1V

ρ0ν K
, C = q0H2

ε1V
, M = 1

K

(
ε

ρ0

)1/2

, (2.5)

where T represents the ratio of Coulomb and viscous forces. Felici (1969) established
the existence of a linear stability criterion Tc associated with the growth of infinitely
small-amplitude perturbations. The existence of another stability criterion Tf (Tf < Tc),
corresponding to finite-amplitude velocity disturbances, was also highlighted, which
indicated the existence of a subcritical bifurcation characterized by a typical hysteresis
loop.

In the above, C is a dimensionless measure of the injection strength level, while M,
the mobility parameter, is the ratio between the so-called hydrodynamic mobility and
the true ion mobility K. M depends only on fluid properties, with typical values for
dielectric liquids lying in the range [3,∞[. In parameters T and M, ρ0 and ν stand,
respectively, for the density and kinematic viscosity of the fluid.
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2.2. Derivation and numerical methods

In the IVF approach, the fluid motion is assumed to be two-dimensional, in the form
of one roll. The velocity field is given by v = A(t,E, q)v0, where A(t,E, q) is the
amplitude of the velocity field, which is a function of time and the electric field and

v0 =
(
∂ψ0

∂y
,−∂ψ0

∂x

)T

, (2.6)

where ψ0(x, y) = (L/2π)(1 − cos 2πy) sin(πx/L) is the stream function, which
represents one convective cell structure contained within length L.

The derivation of the amplitude equation describing the time evolution of A(t,E, q)
is detailed in Chicón et al. (1997).

Given An, qn and En, the amplitude function, the charge density and the electric field
at time step n, the amplitude at time step n+ 1 can be expressed as

An+1 = An +1t

(
M2

T
c1An + c2M2

∫
cell

qnv0 ·En dx dy

)
, (2.7)

where

c1 =
∫
cell
‖v0‖2 dx dy= L3

4
+ 3L

16
,

c2 =
∫
cell

v0 ·1v0 dx dy=−π2

(
L3 + L

2
+ 3

16L

)
.

 (2.8)

Once the amplitude An+1 is determined, the velocity field is obtained with (2.6), and
equations (2.3) and (2.4) can be solved, leading, respectively, to the charge density
qn+1 and the electric potential Vn+1. Then En+1 = −∇Vn+1 can be computed for the
next time step n+ 1.

It should be noted that the accuracy of the IVF approach can only be guaranteed on
the condition that T is close to the linear stability criterion Tc.

The NSC approach involves directly solving the Navier–Stokes equations, and
couples the obtained velocity field to the electrostatic equations. We developed
a numerical algorithm for such incompressible flow based on the finite-volume
method (Patankar 1980). The velocity–pressure coupling algorithm is undertaken by
the augmented Lagrangian method (Fortin & Glowinski 1983) associated with the
Uzawa algorithm (Uzawa 1958). The key when solving the charge density equation
is the choice of the appropriate numerical scheme for solving hyperbolic equations.
This specific aspect related to total variation diminishing (TVD) schemes will not be
emphasized in this paper, since the way the charge density transport equation is solved
is similar for both the NSC and IVF methods. Indeed, only the computation of the
velocity field differs in the comparisons that are undertaken in this paper.

In all cases the second-order SMART (smooth monotonic algorithm for real
transport) scheme of Gaskel & Lau (1988) is chosen for computing the charge density
distribution. For interested readers, additional details concerning the implementation of
SMART can be found in Traoré & Perez (2012).

Our numerical approach has been successfully validated for the cases of the
electroconvection problem due to strong unipolar injection (Traoré & Perez 2012)
and electrothermoconvective phenomena due to both injection and thermal gradient
(Traoré et al. 2010).

727 R3-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

26
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.267


Imposed velocity field strategy for Coulomb-driven electroconvection

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0

1.5

2.0

2.5

3.5

10 20 30 40

Time
50 20 40 60 80

Time
10000

0.5

3.0

A

(a) (b)

FIGURE 2. Amplitude versus time for various M values, C = 10 and T = 178: (a) IVF; (b) NSC.

To conclude this section, we finally introduce the boundary conditions that have
been considered:

for x= 0 and x= L: u= 0; ∂v/∂x= 0; ∂q/∂x= 0; ∂V/∂x= 0;
for y= 0: u= 0; v = 0; q= C; V = 1;
for y= 1: u= 0; v = 0; ∂q/∂y= 0; V = 0.
We have chosen no-slip boundary conditions on the electrodes and symmetric

boundary conditions in the horizontal direction to fit exactly the same boundary
conditions that Chicón et al. (1997) have implemented in their paper. It is very
common for numerical simulations undertaken in electroconvection in a horizontal
layer to use such lateral boundary conditions (Castellanos et al. 1987; Vazquez et al.
2008)

Moreover, following Perez & Castellanos (1989), LeVeque (2002), Vazquez et al.
(2008) and Kourmatzis & Shrimpton (2012), due to the practical implementation, we
have used an additional condition, namely ∂q/∂y= 0 on the collector electrode.

3. Results and discussion

3.1. Strong injection regime C = 10
In all the numerical computations conducted in this paper, the length of the domain
is set to half of the wavelength of the most unstable mode. This wavelength has been
determined by linear stability analysis for several values of the injection parameter
C (Atten & Moreau 1972). Typical values of L in the strong (C = 10) and weak
(C = 0.1) injection regimes are 0.614 and 0.687, respectively.

In this paper, the flow structure obtained with two different strategies for computing
the velocity field is carefully analysed with regard to the M parameter, which is varied
over a wide range [3, 200].

In figure 2 the time history of the velocity amplitude A for various M values is
displayed. It is noted that the time development of the instability is similar for both
IVF and NSC strategies. After an exponential growth period, a steady state with one
cell structure is reached. We also noticed that the magnitude of A obtained at steady
state is almost the same for all M in the IVF approach, as expected for this method.
In the NSC approach, the scenario is bit different, and two cases must be considered.
Indeed, for M > 10, the amplitude at steady state remains constant with M and close
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FIGURE 3. Velocity profiles in the vertical mid-section for different M values, C = 10 and
T = 178: (a) vertical component profile; (b) longitudinal component profile.

to the value found using the IVF method. However, for M 6 10, the amplitude at
steady state decreases with decreasing M. This can be explained by recalling the
dimensionless form of the momentum equation:

∂v
∂t
+ (v ·∇)v=−∇p̃+ M2

T
1v+M2qE=−∇p̃+M2

(
1
T
1v+ qE

)
. (3.1)

For high M, the term M2((1/T)1v + qE) is dominant compared to the convective
or inertial term (v · ∇)v, and thus the flow becomes independent of M when
steady state is reached, as predicted by the stability analysis and well reproduced
by the IVF method. Only the transient phase will exhibit different behaviour. This
is readily observed in figure 2(a). However, for small M (3, 5, 10), the two terms
M2((1/T)1v+ qE) and (v ·∇)v are of the same order and M plays a more significant
role, which affects the resulting velocity distribution. As a consequence, the steady
state is no longer independent of M, as can be seen in figure 2(b).

This is due to the fact that for small M the velocity distribution becomes M-
dependent, while this is not the case for large M. This result is clearly depicted in
figure 3, where we have plotted the vertical and longitudinal velocity profiles in the
vertical mid-section y = 0.5. Indeed, for M = 100, 150 and 200, the velocity profiles
are merged, while for M = 3, 5 and 10 different profiles are observed.

In the strong injection regime, since for all M values a final steady state is
reached with similar flow structures, we choose M = 40 as a representative example
in the following numerical experiments. In figure 4 we have depicted the stream
function and charge density isocontours. In both cases, the two strategies are able to
reproduce the charge-free region, which is a characteristic feature of Coulomb-driven
electroconvection flows. However, the respective shapes of this charge-free region for
the two cases exhibit slight differences, which are a direct consequence of the way the
velocity field is computed. The main difference between the two approaches is also
highlighted in the stream function, which is more symmetric in the IVF case compared
to the NSC case. It can be observed that the stream function in the NSC case is
tighter on the left side. This indicates an increase in the velocity magnitude in that
region, whereas the velocity is symmetrically distributed across the whole domain in
the IVF case.
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FIGURE 4. Stream function and charge density isocontours for T = 178 and M = 40: (a) IVF;
(b) NSC.

Figure 5 emphasizes the subcritical bifurcation highlighted by the hysteresis loop,
which is another important feature of electroconvective motion. Both IVF and NSC
approaches are able to characterize the linear and nonlinear criteria Tc and Tf . For
linear stability criteria, the numerical values with the IVF and NSC approaches are
162.5 and 163.2, which are remarkably close to the value (164.1) predicted by the
stability analysis (Atten & Moreau 1972).

For nonlinear stability criteria, the numerical values predicted by the IVF and NSC
approaches are 120.5 and 109.5, respectively. These results should be compared with
the analytical value of Tf (111.7) obtained with a Galerkin method (Atten & Lacroix
1979). The accuracy in the determination of the nonlinear value Tf is directly related to
the existence, shape and dynamics of the charge-free region in the charge density field
(Castellanos et al. 1987).

Although the IVF strategy cannot accurately estimate the nonlinear stability criteria,
this approach is able to capture the main characteristics of electroconvection in a
strong injection regime typically when M is larger than 50.

3.2. Weak injection regime C = 0.1

In this section the numerical experimentation concerns the weak injection regime with
C = 0.1. In figure 6 the time history of the velocity amplitude for different M values is
depicted.
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FIGURE 5. Hysteresis loops for C = 10 and M = 40 with: (a) IVF; and (b) NSC.
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FIGURE 6. Amplitude versus time for various M values, C = 0.1 and T = 30 000: (a) IVF;
(b) NSC, M = 10; (c) NSC, M = 20; (d) NSC, M = 50.

Note that the IVF or NSC approaches yield completely different time developments
of the instability. In the case of the IVF strategy, the time developments of the
amplitude for various M are similar to those observed in the strong injection case.
A steady-state one-cell structure can always be reached. However, with the NSC
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FIGURE 7. Stream function and charge density isocontours for C = 0.1 and T = 30 000:
(a) IVF, M = 10; (b) NSC, M = 10; (c) NSC, M = 50.

approach, the final steady states exhibit different characteristics, which are strongly
dependent on M. For M = 10 we observe a steady state; for M = 20, a regular
periodic state is reached after an irregular oscillation transition period; and for M = 50,
the signal is strongly unsteady and appears to be chaotic. Apparently, in the weak
injection regime, the IVF approach is totally invalid since it is not able to capture the
unsteadiness of the flow over a wide range of the M parameter.

The charge density distribution and stream function contours are depicted in figure 7.
For the case M = 10 (see figure 7a,b), the two solutions are of the same order and just
slightly different. A more significant discrepancy occurs for M = 50. For this case, a
two-cell structure occurs (see figure 7c), and this behaviour has already been reported
by Vazquez et al. (2008). It is interesting to note that such a chaotic two-cell structure
is similar to the fully chaotic regime when inertial effects are dominant in the strong
injection case (Traoré & Perez 2012).

For T = 24 500, which is very close to the analytical Tc value (24 147.57; Atten &
Moreau 1972), a steady state was expected. In contrast, the numerical results obtained
by the NSC approach show a very chaotic unsteady state (figure 8a). It is surprising to
note that, even very close to the threshold Tc, the flow went from a motionless state to
a chaotic one without crossing an intermediate steady state. A spectral analysis of the
fluctuations of the velocity amplitude confirms the chaotic behaviour, by a broadband
spectrum (figure 8b) with an exponential decay. Such an interesting phenomenon has
been predicted and explained by Atten & Elouadie (1995). In their analysis, they
thought that the critical T parameter with weak injection was so high that the non-
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FIGURE 8. (a) Time evolution of the velocity amplitude for C = 0.1, M = 50 and T = 24 500.
(b) The corresponding semilog plot of power spectra curve.
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FIGURE 9. Hysteresis loops for a weak injection system (C = 0.1, M = 50) with: (a) IVF;
(b) NSC.

dimensional electric Reynolds number R = T/M2 was greater than the transition value
(a reference value is 10) between the regions dominated by the viscous effect and the
inertial effect. Our numerical findings here support their viewpoint.

Figure 9 displays the hysteresis loop obtained with the IVF and NSC approaches
for M = 50. In the weak injection regime, the linear criterion Tc is more accurately
determined with the NSC approach. However, the nonlinear value Tf is nearly twice
as high as the value predicted by the expression Tf = TcC developed by Felici (1969)
with his hydraulic model, which should give 2417.4.

In their paper, Chicón et al. (1997) have found a Tf value close to the result
predicted by the hydraulic model. Our results obtained with the IVF approach are
consistent with those of Chicón et al. (1997) (see figure 9a). However, this apparent
agreement is misleading. Indeed, the inertial regime observed in weak injection for
M = 50, which neither the IVF approach nor the hydraulic model can reproduce,
explains the discrepancy noticed in the Tf value. This inertial regime is ascribed to the
interaction of the two cells observed in the case of the NSC approach. The Tf value
determined by the NSC approach is consistent with the kind of regime highlighted in
weak injection. Indeed, the two-cell structure induces a strongest mixing in the charge
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density distribution and the charge-free region is less stable and also thinner. As a
result the flow loses its stability sooner and the Tf value will be greater compared to
a flow with only a one-cell structure. The accuracy of the criteria for the numerical
determination of Tc and Tf can be improved by controlling the numerical diffusion.
The key parameters are the grid resolution, the time step and the numerical scheme
employed for solving the charge density transport equation. The accuracy of the
determination of Tf is particularly sensitive (unlike Tc) to these sources of numerical
diffusion.

It is worth mentioning that, as the regime is strongly unsteady, the amplitude A in
figure 9(b) for a given T is averaged over the whole time period of the simulation.

In fact the IVF approach cannot capture the complex flow structure characteristic of
cases in which M is higher than 20. So this assumption that the velocity field would
adopt a one-cell electroconvective structure is wrong for moderate values of M. We
found from our computations that the flow adopts a one-cell convective structure only
over a narrow range M ∈ [5, 10].

The reason why the IVF method fails in weak injection, whereas acceptable results
may be obtained in strong injection, is linked to the fact that nonlinear effects are
more dominant in weak injection, especially for high M values. The complexity
and richness of the flow motion in this case, which are the consequences of the
development of nonlinear effects, cannot be described with a one-cell structure.

4. Conclusion

In this paper, the validity of the numerical strategy proposed by Chicón et al. (1997)
to solve electroconvection flows between two parallel plates has been meticulously
examined using several selected numerical experiments.

The numerical solutions obtained with such a simplified approach were directly
compared to those obtained by solving the entire set of Navier–Stokes equations. Both
strong and weak injection cases were considered. It is shown that, in the strong
injection regime, the IVF approach can lead to consistent results compared to those
obtained from solving the Navier–Stokes equations. However, in weak injection we
have observed different behaviour that depends strongly on the M parameter, and that
the IVF was completely unable to capture. For M = 50, the flow structure is made of
two electroconvective cells that interact together in a strongly chaotic manner.

Although agreement has been corroborated only over a narrow range of M values
[5, 10], we point out that the IVF approach is totally unsuited to moderate M values,
and its use cannot be recommended in the numerical simulation of Coulomb-driven
convection in weak injection regimes.
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FELICI, N. 1969 Phénomènes hydro et aérodynamiques dans la conduction des diélectriques fluides.
Rev. Gén. Electricité 78, 717–734.
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