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ESTIMATING THE QUADRATIC
VARIATION SPECTRUM OF NOISY
ASSET PRICES USING GENERALIZED

FLAT-TOP REALIZED KERNELS
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Aarhus University and CREATES

This paper analyzes a generalized class of flat-top realized kernel estimators for the
quadratic variation spectrum, that is, the decomposition of quadratic variation into
integrated variance and jump variation. The underlying log-price process is contam-
inated by additive noise, which consists of two orthogonal components to accom-
modate α-mixing dependent exogenous noise and an asymptotically non-degenerate
endogenous correlation structure. In the absence of jumps, the class of estimators is
shown to be consistent, asymptotically unbiased, and mixed Gaussian at the opti-
mal rate of convergence, n1/4. Exact bounds on lower-order terms are obtained,
and these are used to propose a selection rule for the flat-top shrinkage. Bounds on
the optimal bandwidth for noise models of varying complexity are also provided.
In theoretical and numerical comparisons with alternative estimators, including the
realized kernel, the two-scale realized kernel, and a bias-corrected pre-averaging
estimator, the flat-top realized kernel enjoys a higher-order advantage in terms of
bias reduction, in addition to good efficiency properties. The analysis is extended
to jump-diffusions where the asymptotic properties of a flat-top realized kernel esti-
mate of the total quadratic variation are established. Apart from a larger asymptotic
variance, they are similar to the no-jump case. Finally, the estimators are used to
design two classes of (medium) blocked realized kernels, which produce consistent,
non-negative estimates of integrated variance. The blocked estimators are shown to
have no loss either of asymptotic efficiency or in the rate of consistency relative
to the flat-top realized kernels when jumps are absent. However, only the medium
blocked realized kernels achieve the optimal rate of convergence under the jump
alternative.
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1. INTRODUCTION

The study of high-frequency financial data during the last decade has led to dra-
matic improvements in the understanding of financial market volatility and to an
impressive development of econometric techniques to handle an array of prob-
lems when sampling at the highest frequencies. Three well-established facts from
a vast literature seem to provide a general framework for asset return volatility
estimation. First, quadratic variation is an ideal measure of ex-post return varia-
tion, and its increments may be estimated efficiently using realized variance in a
continuous Brownian semimartingale framework.1 Second, the observable loga-
rithmic asset prices are comprised of a signal, the efficient price process, and an
additive noise caused by a host of market microstructure (MMS) issues.2 Third,
the underlying price process may have a discontinuous, or jump, part.3

The important role of asset return volatility in finance is indisputable, be it in,
e.g., asset and derivative pricing, hedging, portfolio selection and, more recently,
as a separately traded asset. For its study, it has been common practice to adopt
a continuous Brownian semimartingale framework, which implies an absence of
arbitrage opportunities and nests many continuous time models in financial eco-
nomics. In this setting, realized variance will estimate the ex-post return varia-
tion over a fixed time interval (i.e., increments of quadratic variation) perfectly
if prices are observed continuously and without measurement errors. However,
when working with high-frequency data, the notion of MMS noise, summarizing
a diverse array of market imperfections such as bid-ask bounce effects, asym-
metric information and strategic learning, and execution of block trades, causes
deviations from the no-arbitrage semimartingale framework. It is key to realize
that MMS noise introduces autocorrelations in the observable log-returns, lead-
ing standard volatility estimators such as realized variance to diverge. So far, most
theoretical developments of robust estimation techniques have maintained a work-
ing hypothesis of exogenous and i.i.d. noise dependence (see note 2), effectively
introducing an MA(1) unit root in the observable log-returns. Hansen and Lunde
(2006) show that this assumption is not too damaging if sampling occurs around
every minute (or every 15 ticks). However, Diebold and Strasser (2013), in a com-
prehensive econometric analysis of theoretical MMS models, show that a general
noise model, allowing for both exogenous and endogenous noise components with
polynomially decaying autocovariances, is needed to avoid concerns about the
underlying MMS mechanisms. These conjectures are supported by the empiri-
cal findings of Hansen and Lunde (2006), Kalnina and Linton (2008), Ubukata
and Oya (2009), Aı̈t-Sahalia, Mykland, and Zhang (2011), Kalnina (2011), Ikeda
(2015), and Varneskov (2016a) when sampling beyond the one-minute mark, thus
leaving room for desirable extensions of existing estimation methods to utilize all
available observations.

A second deviation from the continuous Brownian semimartingale setting is
the presence of large discontinuous movements, or jumps, in the underlying log-
price process. If the latter is allowed to follow more general jump-diffusions,
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its quadratic variation decomposes into variation stemming from its continuous
and discontinuous parts. This decomposition has spurred a literature on disen-
tangling the quadratic variation spectrum (Aı̈t-Sahalia and Jacod, 2012) into its
contribution from separate risk sources, volatility and jumps, and its implications
for volatility forecasting (Andersen, Bollerslev, and Diebold, 2007), option pric-
ing (Andersen, Fusari, and Todorov, 2015), and the characterization of investor
equity, variance and jump risk premia (Bollerslev and Todorov, 2011), among
others. While the econometric techniques to robustify against MMS noise and
to segregate volatility and jump variation have largely developed separately, the
aim of this paper is to provide a unified, rate-optimal methodology based on re-
alized kernel estimators to characterize the quadratic variation spectrum under
weak assumptions on the MMS noise, accommodating a wide variety of empirical
regularities.

There are multiple contributions of this paper. First, in the absence of jumps,
a generalized class of flat-top realized kernels is introduced and its asymptotic
properties are established in a general additive noise setting with two orthogonal
noise components that accommodate α-mixing dependent exogenous noise and
asymptotically non-degenerate endogenous correlations through a locally linear
model. Both components may exhibit polynomially decaying autocovariances.
Here, the class of flat-top estimators is shown to be consistent, asymptotically
unbiased, and mixed Gaussian at the optimal rate of convergence, n1/4. Relative
to the realized kernels of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008,
2011a), the estimators are designed with a slowly shrinking flat-top support that
exactly eliminates the leading noise-induced bias along with a data-driven choice
of lower-order bias terms, enabling optimal asymptotic properties. The fact that
the flat-top support is shrinking separates the estimators from the strictly less
efficient fixed flat-top kernel functions analyzed by Politis (2011) in the con-
text of spectral density estimation. Ikeda (2015) introduces the two-scale realized
kernel estimator, which may be interpreted as a realized kernel using a generalized
jack-knife kernel function, and establishes its asymptotic properties assuming that
the MMS noise is exogenous and α-mixing with exponential decay. The second
contribution is to show a higher-order advantage of the flat-top realized kernels
over the former in terms of bias reduction. Taken together, the seemingly small
flat-top tweak of existing estimation methods makes a big difference in terms
of asymptotic properties. Third, by using maximal inequalities to obtain exact
bounds on lower-order terms, a conservative mean-squared error optimal selec-
tion rule for the flat-top shrinkage is proposed. Fourth, bounds on the asymp-
totic variance and the optimal bandwidth are provided for MMS noise models of
varying complexity.

The implications of the present additive noise model on the pre-averaging
approach, e.g., Jacod, Li, Mykland, Podolskij, and Vetter (2009) and Podol-
skij and Vetter (2009), are also discussed. The latter, similarly to the realized
kernels of Barndorff-Nielsen et al. (2008, 2011a), is either inconsistent or suf-
fers from a bias in the asymptotic distribution as well as a suboptimal rate of
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consistency when the MMS noise is serially dependent. Hence, to complete
exposition, and of separate interest, a bias-corrected pre-averaging estimator is
provided in Section A of the appendix together with its asymptotic theory. In-
terestingly, the proposed estimator behaves like the two-scale realized kernel in
terms of bias and variance.

The analysis is extended to allow for finite activity jumps in the underlying
log-price process. Hence, the sixth contribution is to establish the asymptotic
properties of the flat-top realized kernels in this setting, providing the first for-
mal treatment of realized kernels in the presence of jumps. The asymptotic
properties of the estimators are similar to those achieved in the no-jump case
with the exception of two additional terms in the asymptotic variance, capturing
increased variation at the occurrences of the jumps. This demonstrates that the
total quadratic variation may be estimated consistently at the optimal rate of con-
vergence, without a bias in the asymptotic distribution.

Finally, their attractive bias properties make the flat-top realized kernels par-
ticularly well-suited for extending the realized kernel theory to estimate inte-
grated variance robustly in the presence of jumps, since such an extension relies
on a zero-mean martingale property of the estimation error. The last contribu-
tion is to use the flat-top realized kernels in designing two classes of (medium)
blocked realized kernels, which produce jump-robust estimates of integrated vari-
ance that are consistent and guaranteed to be non-negative, building on prior work
by Mykland and Zhang (2009) and Mykland, Shephard, and Sheppard (2012).
In particular, the two classes of blocked estimators use local flat-top realized ker-
nel estimates in conjunction with either power variation (Barndorff-Nielsen and
Shephard, 2004) or the medium realized variance estimator (Andersen, Dobrev,
and Schaumburg, 2012), and they are shown to estimate integrated variance with
no loss either of asymptotic efficiency or in the rate of consistency relative to
the flat-top realized kernels when jumps are absent. However, only the medium
blocked realized kernels achieve the optimal rate of convergence under the jump
alternative.

The outline of the paper is as follows. Section 2 introduces the Brownian
semimartingale framework and the MMS noise. Section 3 describes the flat-top
realized kernels, their asymptotic theory, and theoretical comparisons with alter-
native estimators. Section 4 extends the analysis to accommodate jumps, while
Section 5 provides some simulation results. Section 6 concludes. The appendix in
Sections A and B contains a new bias-corrected pre-averaging estimator and
the proofs of the main asymptotic results. Last, online supplementary material
provides additional theory, technical lemmas, and the remaining proofs.4 The fol-
lowing notation is used throughout: R, Z, and N denote the set of real numbers,
integers, and natural numbers; N

+ = N \ {0} and R+ = {x ∈ R : x > 0}; 1{·}
denotes the indicator function; O(·), o(·), Op(·), and op(·) denote the usual

(stochastic) orders of magnitude; “−→”, “
P−→”, “

d−→” and “
ds(X )→ ” indicate the limit,

the probability limit, convergence in law, and stable convergence in law with
respect to a generic σ -field X , respectively.5
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2. A SEMIMARTINGALE SETUP AND ASSUMPTIONS

The fundamental theory of asset pricing suggests that the efficient logarithmic
asset price, p∗

t , obeys a semimartingale process defined on a filtered probability
space

(O,F ,(Ft )t∈[0,1],P
)
, where O is the set of possible scenarios equipped

with a σ -algebra F , and P is the probability measure. The information filtra-
tion, Ft ⊆ F , is an increasing family of σ -fields satisfying P-completeness and
right continuity. In particular, let Pt be the σ -algebra generated by p∗

s and its
volatility σs , s ∈ [0, t], and define W⊥⊥

t ∈ R
d as another standard Brownian

motion, uncorrelated with (p∗
t ,σt ). Then, Ft is constructed using other filtrations

Ht , the σ -algebra generated by (p∗
s ,σs ,W⊥⊥

s ), s ∈ [0, t], and Gt where Ht ⊥⊥ Gs

∀(t,s) ∈ [0,1]2 as Ft =Ht ∨Gt such that Pt ⊂Ht ⊂Ft . The restriction t ∈ [0,1]
is without loss of generality and may correspond to the asset price movements
during one (trading) day.

Let N + 1 transaction prices be observed on an equally partitioned grid t ′i ∈
[0,1], i = 0, . . . ,N , then the observable logarithmic asset price is related to its
efficient counterpart by the signal-plus-noise model,

pt ′i = p∗
t ′i

+Ut ′i , Ut ′i = et ′i + ut ′i , i = 0, . . . ,N, (1)

where Ut ′i denotes the MMS noise term, which consists of both an endogenous
component, et ′i , and an exogenous component, ut ′i , to summarize an array of mar-
ket imperfections. As will be detailed below, the label “endogenous” will in this
setting signify that the noise component may be correlated with innovations of
the efficient price process. The decomposed triplet (Pt ,Ht ,Gt ) is used to define a
filtration that contains information about the three components in (1); Pt contains
information about the objects of interest; Ht also includes information about the
parts of the endogenous noise component, which are uncorrelated with (p∗

t ,σt );
and Gt about the exogenous noise component.

2.1. The Efficient Price Process

The efficient price process, p∗
t , is, initially, restricted to a class of continuous

Brownian semimartingales with stochastic volatility,

p∗
t = p∗

0 +
∫ t

0
μudu +

∫ t

0
σudWu, (2)

where μt ∈ R is a (Pt )-predictable stochastic process for which ∃�1 > 0 such
that ∀(t,w) ∈ [0,1] ×O : |μt (w)| ≤�1, Wt ∈ R is a standard Brownian motion,
and the stochastic volatility, σt , follows:

Assumption 1. Let σt ∈ R+ be a (Pt )-optional stochastic process, which fol-
lows a continuous time Brownian semimartingale of the form

σt = σ0 +
∫ t

0
μ#

udu +
∫ t

0
σ #

u dWu +
∫ t

0
v#

udVu,
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where Vt ∈ R is a standard Brownian motion independent of Wt , μ#
t ∈ R is a

(Pt )-predictable cádlág process, and both σ #
t ∈R+ and v#

t ∈R+ are (Pt )-adapted
and cádlág processes. Additionally, ∃�2 > 0 such that ∀(t,w) ∈ [0,1] ×O :
|μ#

t (w)|+σt(w)+σ #
t (w)+ v#

t (w) ≤�2. Finally, inft∈[0,1]σt > 0.

This setup is standard in the literature, see, e.g., Zhang, Mykland, and
Aı̈t-Sahalia (2005), Barndorff-Nielsen et al. (2008, 2011a) and Ikeda (2015). The
efficient price, p∗

t , evolves continuously, consistent with the absence of arbitrage.
The stochastic volatility, σt , is assumed to be spanned by two standard Brown-
ian motions, one being the same driving p∗

t , to accommodate both common and
idiosyncratic uncertainty as well as leverage effects, that is, nonzero correlation
between p∗

t and σt . The analysis is extended to allow for the possibility of price
jumps in Section 4. In this setting, however, quadratic variation of (2) is defined as

[
p∗, p∗]≡ plim

N→∞

N∑
i=1

(p∗
t ′i
− p∗

t ′i−1
)2 =

∫ 1

0
σ 2

t dt (3)

for any set of deterministic partitions 0 = t ′0 < t ′1 < · · · < t ′N = 1 with
supi{t ′i+1 − t ′i } = 0 as N → ∞, see, among others, Jacod and Shiryaev (2003,
pp. 51–53) for details.

2.2. The Noise Process

Denote by L and � = (1 − L) the usual lag and first difference operators,
respectively, then the two components of the noise, Ut ′i = et ′i + ut ′i ∈ R, satisfy
the following conditions:

Assumption 2. Let ut ′i = ζt ′i ūt ′i where ζt ′i is an (Ht ′i )-adapted, Lipschitz contin-

uous process, ζt ⊥⊥ (p∗
s ,σs ,es) ∀(t,s) ∈ [0,1]2, and ∀(t,w) ∈ [0,1]×O : ζt (w) ∈

(0,∞). The second term, ūt ′i , is a strictly stationary, (Gt ′i )-measurable α-mixing
sequence of random variables with mixing coefficient

αu(h)= sup
i∈N

sup
E1∈Gi ,E2∈G∞

i+h

|P(E1 ∩ E2)−P(E1)P(E2)| → 0 as h → ∞,

where Gt ′i = Gi and G∞
i+h = G∞ \Gi+h−1. Furthermore, ∀i = 0, . . . ,N : E[ūt ′i ] = 0,

and suppose ∃v > 4 : supi=0,...,N E[|ūt ′i |v ] < ∞ and ∃ru ∈ N
+ :

∑∞
j=1 j ruαu( j)

< ∞. Finally, denote the h-th autocovariance of ūt ′i by �̄(uu)(h), the long run

variance �̄(uu) = ∑
h∈Z �̄(uu)(h) and for indices j,k,l ∈ Z, let the third and

fourth-order cumulants of ūt ′i be denoted by κ̄3(0, j,k) and κ̄4(0, j,k,l), respec-
tively, and satisfy absolute summability conditions

∑
j,k∈Z |κ̄3(0, j,k)|<∞ and∑

j,k,l∈Z |κ̄4(0, j,k,l)|<∞.

Assumption 3. Let αe(g) ∈ R+ be a sequence for which ∃re ∈ N
+ such that

αe(g)= O(1)1{|g|≤1}+ O
(|g|−(1+re+ε))1{|g|>1}, for some ε > 0, captures a poly-

nomial decay in the argument g. Then, the process et ′i , i = 0, . . . ,N , is assumed
to follow a linear specification with time-varying parameters θ(t ′i ,g), defined as
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et ′i =
∞∑

g=−∞
θ(t ′i ,g)(�t ′i−g)

−1/2�W̃t ′i−g
,

where W̃t ∈ R is a standard Brownian motion. Furthermore, assume there exists
a sequence of functions θt (g) : t ∈ [0,1] → R such that the components of et ′i
satisfy (1) d[W, W̃ ]t =ϒt dt whereϒt ∈R is a continuous stochastic process and
∃�3 > 0 such that ∀(t,w) ∈ [0,1]×O : |ϒt (w)| ≤�3, (2) supi=0,...,N |θ(t ′i ,g)| ≤
αe(g), (3) supt∈[0,1] |θt (g)| ≤ αe(g), (4) for some �4 ∈ (0,∞),

supg
∑N

i=0 |θ(t ′i ,g) − θt ′i (g)| ≤ �4, (5)
∑N

i=1

∣∣∣θt ′i (g)− θt ′i−1
(g)
∣∣∣ ≤ αe(g),

and (6) ϒt is Ht -adapted, and θ(t,g) and θt (g) are both Ht -measurable for g ≥ 0
and Ht−g-measurable for g < 0.

Assumption 4. Let n,m ∈ N
+, with n − 1 + 2m = N , and redefine the sam-

ple as pti = pt ′m+i−1
for i ∈ [1,n − 1] along with the averaged end-points

pt0 = 1
m

∑m
i=1 pt ′i−1

and ptn = 1
m

∑m
i=1 pt ′N−m+i

, where the end-averaging satisfies

m ∝ nξ for some ξ ∈ (0,1). The resulting, jittered, sample may be written as
follows:

pti = p∗
ti +Uti , i = 0, . . . ,n.

First, Assumption 4 is common to kernel-based estimators of quadratic vari-
ation since they require averaging at the end-points to eliminate end-effects, as
indicated by the jittering rate ξ . While jittering is important for the theoretical
analysis, Barndorff-Nielsen et al. (2008, 2011a) show that it may be disregarded
in practice. Before proceeding to a discussion of the exogenous and endogenous
noise components in Assumptions 2 and 3, respectively, the following definitions
are introduced to describe their local and average autocovariances and long run
variances.

DEFINITION 1. �(ee)
t (h)=∑∞

j=−∞ θt (h + j)θt( j),�(ee)(h)= ∫ 1
0 �

(ee)
t (h)dt,

�
(ee)
t = ∑

h∈Z�
(ee)
t (h), and �(ee) = ∑

h∈Z�(ee)(h) are the local and average
h-th autocovariance and long run variance of et .

DEFINITION 2. For (i,h) ∈ {1, . . . ,n} × Z, S+
h = max(h,0), and S−

h =
min(h,0) such that for {1, . . . ,n} ∩ {1 + S+

h , . . . ,n + S−
h } �= ∅, �(ep)

ti (h) =
θti (h)ϒti−h−1σti−h−1 is the local covariance between eti and �p∗

ti−h
. Further, let

�(ep)(h) = ∫ 1
0 �

(ep)
t (h)dt, �(ep)

t =∑
h∈Z�

(ep)
t (h), and �(ep) =∑

h∈Z�(ep)(h)
denote the corresponding average h-th covariance and local and average long
run covariance.

DEFINITION 3. Let �t (h) = �
(uu)
t (h) + �

(ee)
t (h), with �

(uu)
t (h) = ζ 2

t ×
�̄(uu)(h) denoting the local h-th autocovariance of ut , �(h) = ∫ 1

0 �t (h)dt,
�t =∑

h∈Z�t (h), and � =∑
h∈Z�(h) be the local and average h-th autoco-

variance and long run variance of the collective MMS noise Ut .
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Second, the exogenous noise is comprised of two terms, ζti and ūti , which
have different implications for its dynamics. In particular, the α-mixing prop-
erty of ūti , the implied polynomial mixing rate αu(h) = O

(
h−(1+ru+ε)), and

orthogonality between the filtrations Gt and Hs determine the temporal persis-
tence of the process and are used to establish marginal H1-stable central limit
theorems for all terms involving uti . The first term, ζti , allows the exogenous noise

to exhibit diurnal heteroskedasticity through �
(uu)
t = ∑

h∈Z�
(uu)
t (h), whose

importance is stressed by Kalnina and Linton (2008). Assumption 2 corresponds
to Aı̈t-Sahalia et al. (2011, Assumption 1) and Ikeda (2015, Assumption 2’) in
related work. In terms of persistence, however, it differs by allowing for a poly-
nomial, rather than exponential, mixing rate. Ikeda (2015) also accommodates
diurnal heteroskedasticity in the exogenous noise using a similar multiplicative
decomposition of terms. However, there are two additional differences between
the respective assumptions. The diurnal component, ζti , is here generalized to be
stochastic rather than deterministic, whereas ūti is assumed to be strictly station-
ary rather than fourth-order stationary. The use of strict stationarity shortens the
proofs below considerably by allowing results from Rosenblatt (1984) and Yang
(2007) to be invoked, but this may be relaxed.

Third, whereas both Aı̈t-Sahalia et al. (2011) and Ikeda (2015) allow for tem-
poral dependence in the MMS noise, they do not accommodate correlations be-
tween the latter and the efficient price process, that is, endogeneity in the noise.
This is important for capturing not only traditional bid-ask bounce effects, see
Roll (1984), but also for allowing these to be correlated with innovations in
the price process through, for example, asymmetric adjustments of bid and ask
quotes, see the discussion in Hansen and Lunde (2006). Moreover, such correla-
tions are also necessary to accommodate other MMS features, for example, asym-
metric information and strategic learning among market participants, Glosten and
Milgrom (1985) and Diebold and Strasser (2013), and the gradual jump model of
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009, p. C25). In this paper,
such endogenous features are captured by Assumption 3 with the specification
of a two-sided linear model for eti that has innovations, which are either con-
temporaneously or temporally correlated with �p∗

ti−h
. The model is inspired by

the work of Dahlhaus and Polonik (2009) and Dahlhaus (2009) on spectral anal-

ysis of locally stationary processes, noting that (�ti−g)
−1/2�W̃ti−g

d= N(0,1),
but with the addition of allowing for asymptotically non-degenerate correlation
between W and W̃ . In the literature on locally stationary processes, the construc-
tion with θ(ti ,g) and θti (g) reflects the need to make meaningful inference on
the time-varying parameters θ(ti ,g) by redefining the original time series sample
as triangular arrays and, then, locally approximate the parameters of this process
with curves θti (g), which are stationary in a neighborhood of the rescaled time
point ti . This allows replacing large n inference procedures with infill asymp-
totic limits, see also Dahlhaus (2012). Here, the dual parameterization, similarly,
allows for flexible correlation between eti and �p∗

ti−h
of, e.g., the time-varying
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ARMA type and the development of infill asymptotic results to describe its im-
pact on estimators of quadratic variation. In particular, Assumption 3(4) restricts
the distance between the time-varying parameters, θ(ti ,g), and the locally station-
ary approximation, θti (g), at the observable time grid, (5) imposes smoothness on
the parameter changes in the time direction, and (2)–(3) are absolute summability
conditions.6 The locally linear endogenous noise specification generalizes other
comparable noise models in the literature such as those in Kalnina and Linton
(2008, (3)) and Barndorff-Nielsen et al. (2011a, Assumption U) by accommodat-
ing a persistent and two-sided endogenous correlation structure, and by allowing
the data generating process to have generally time-varying parameters.7

Fourth, to quantify the impact of Assumptions 2 and 3 on the summability of
� and the persistence of �(h), let

α(h) = max(αe(h),αu(h)) and r = min(re,ru) ∈ N
+, (4)

then the bounds supt∈[0,1] |�t (h)| ≤ α(h) and supt∈[0,1]
∑

h∈Z |h|r |�t(h)| < ∞
are established in the process of proving Theorem 1 below. They show that the
MMS noise is allowed to exhibit polynomially decaying autocovariances, which
is required to capture a variety of MMS mechanisms, see, e.g., Diebold and
Strasser (2013, Table 3). Together with absolute summability conditions on the
third and fourth-order cumulants, this enables the derivation of the asymptotic
mean and variance of the kernel-based estimators in Section 3. Finally, note that
the two-sided eti is not Hti -adapted. It is, however, measurable with respect to H1,
which is important for establishing the marginal H1-stable central limit theory for
cross-product terms between eti and �p∗

ti−h
. Specifically, the lack of adaptedness

implies that traditional martingale difference-type arguments cannot be applied
directly for such cross-products. This problem, however, is solved by proposing a
modified Cramér–Wold argument.

Remark 1. Barndorff-Nielsen et al. (2011a, Assumption U) specify a noise
model with a similar decomposition Uti = eti + uti , where, however, the endoge-
nous noise is one-sided. Besides the latter and a summability condition, they im-
pose little structure on the two components. Lemma 1 below shows that this is not
needed in their case, since their realized kernel estimator relies on over-smoothing
of its bandwidth, resulting in simpler central limit theory, but also in suboptimal
asymptotic properties.

Remark 2. The sampling grid assumption may be relaxed following, e.g.,
Phillips and Yu (2007), Barndorff-Nielsen et al. (2011a), and Li, Mykland,
Renault, Zhang, and Zheng (2014) to allow for both random and endogenous
durations between observations. However, this requires some caution as Ikeda
(2015) and Varneskov (2016a) show that random durations increase the bias and
variance of the realized kernel estimator, in particular with endogenous MMS
noise present, whereas Li et al. (2014) find that endogenous sampling leads to an
asymptotic bias, even in the absence of MMS noise.
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3. THE REALIZED KERNEL APPROACH

The building blocks of the realized kernel approach are the realized autocovariances
of any two processes X and Z , defined as

h(X, Z)=
n+S−

h∑
i=1+S+

h

�Xti�Zti−h ∀h = −(n − 1), . . . ,−1,0,1, . . . ,n − 1, (5)

where h(X,X) = h(X). The first (and still predominant) high-frequency esti-
mator of ex-post return variation is the realized variance, defined as RV = 0(p).

In the absence of MMS noise, RV
P−→ ∫ 1

0 σ
2
t dt almost by definition in (3), and its

asymptotic central limit theory is established in Barndorff-Nielsen and Shephard

(2002). If MMS noise is present, RV
P−→ ∞ since the signal, �p∗

ti = Op(1/
√

n),
is swamped asymptotically by the noise, �Uti = Op(1), e.g., Bandi and Russell
(2008). However, the higher-order realized autocovariances, h(p) h �= 0, may
be used to offset the impact of �Uti , see, e.g., Hansen and Lunde (2006), thereby
achieving consistent estimators if their inclusion reduces the noise-induced bias and
variance sufficiently, cf. Zhang et al. (2005) and Barndorff-Nielsen et al. (2008).

The realized kernels, advanced by Barndorff-Nielsen et al. (2008, 2011a), uti-
lize this idea and reduce the impact of�Uti by weighting the realized autocovari-
ances, h(p), appropriately as

RK (p)= 0(p)+
n−1∑
h=1

k

(
h

H

)
{h(p)+−h(p)}, (6)

where k(·) is a kernel function and H ∝ nν , ν ∈ (0,1), is the bandwidth. By
design, the realized kernels are related to HAC and spectral density estimators,
see, e.g., Andrews (1991), Priestley (1981), and Politis (2011), but the lack of
scaling with 1/n in h(p) and the use of variables in first differences, separating
realized autocovariances from standard autocovariances, creates technical sub-
tleties. In the realized kernel framework, this estimation design works, however,
since Uti is (locally) stationary and has a transitory rather than permanent impact
on the observed price. This implies that�Uti is over-differenced and has an aver-
age long-run variance of zero, which is not the case for�p∗

ti in (3).

DEFINITION 4. K is a set of functions k: R → [−1,1]. Define k( j )(x) =
∂ j k(x)/∂x j , k(2)ã = limx→0 |x |−ã(k(2)(0) − k(2)(x)) < ∞, ∃ã ≥ 1, q =
maxã∈N+{ã ≥ 1 : k(2)ã ∈ (−∞,0)}, and let k(x) satisfy the following conditions:
(a) k(x) is twice continuously differentiable, k(2)(x) is differentiable at all but a
finite number of points, (b) k(x)= k(−x), (c) k(0)= 1, k(1)(0)= 0, k(2)(0) < 0,
(d) k( j j )≡ ∫∞

0 [k( j )(x)]2dx <∞ for j = 0,1,2, and for j = 3 almost everywhere,
and (e)

∫∞
−∞ k(x)e−ixλ ≥ 0, ∀λ ∈ R.

This class of kernel functions is analyzed for realized kernel-type estima-
tors in Ikeda (2015), and it shares similarities with the classes defined in, e.g.,
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Barndorff-Nielsen et al. (2011a) and, for HAC estimators, Andrews (1991). In
particular, the second-order smoothness condition (a) excludes the Bartlett ker-
nel, which is analyzed in Hansen and Lunde (2005). This is crucial for obtaining
rate-optimal estimators and deriving their asymptotic properties. Note that the
characteristic exponent q measures the smoothness of k(2)(x) around the origin,
rather than that of k(x), and, together with (c), condition (a) guarantees q ∈ N

+.
Conditions (c) and (e) ensure non-negativity of RK (p).

Next, to highlight some important properties of RK (p) with k(x) ∈ K, the
following lemma is stated without proof as it may be established along the same
lines of Theorem 1 below.

LEMMA 1. Let Assumptions 1–4 hold with q ≤ r ∈N
+, k(x)∈K, and H ∝ nν ,

ν ∈ (1/3,1),
RK (p)=

∫ 1

0
σ 2

t dt +Bn +En +Z(1+op(1)), Z ds (H1)→ M N
(

0, lim
n→∞Vn(k)

)
,

Bn = nH −2
∣∣k(2)(0)∣∣�+nH −(2+q)k(2)q

∑
h∈Z

|h|q�(h)+2n1/2 H −2
∣∣k(2)(0)∣∣∑

h∈Z
|h|�(ee)(h),

En = Op
(
mn−1)+ Op

(
(m H )1/2n−1)+ Op

(
m−1)+ Op

(
H 1/2(nm)−1/2)+ Op

(
m(H n)−1/2),

Vn(k)= 4H n−1k(00)
∫ 1

0
σ 4

t dt +4nH −3k(22)
∫ 1

0
�2

t dt +8H −1k(11)
∫ 1

0

(
�tσ

2
t +2

(
�
(ep)
t
)2)

dt.

Lemma 1 generalizes Barndorff-Nielsen et al. (2011a, Thm. 2) and Ikeda (2015,
Lemma 10) by relaxing the MMS noise assumption, and it provides new results
on end-effects, En , which will lead to stricter bounds on the required jittering
rate ξ in the next subsection. Specifically, the latter is a consequence of the
endogenous noise generalization, whose impact is also readily visible in the
asymptotic variance, Vn(k), by its dependence on the local long run covariance,
�
(ep)
t . Besides this, there are three important points embedded in this result. First,

the realized kernel estimator is consistent if ν ∈ (1/2,1). Second, since it relies
on over-smoothing to eliminate the leading bias term in Bn , it cannot achieve the
optimal rate of convergence, n1/4, derived by Gloter and Jacod (2001a, 2001b),
which requires setting ν = 1/2. Third, while the noise-induced bias is eliminated
asymptotically when ν > 1/2, the discretization term in Vn(k) of order Op(H n−1)
becomes dominant, leading to a bias-variance tradeoff that is balanced by the
mean-squared error (MSE) optimal choice ν = 3/5, resulting in a suboptimal rate
of convergence, n1/5, and a bias in the asymptotic distribution.

Remark 3. The additional restriction q ≤ r is a sufficient condition for the sec-
ond term of Bn to be of lower order, i.e., for H −qk(2)q

∑
h∈Z |h|q�(h)→ 0. If this

condition is violated as, for example, in the cases q = 1+r and q > 1+r , then it is
necessary to have a kernel function for which the characteristic exponent, q , also
satisfies q > 1/ν, respectively, q < r/(1 − ν). Note that this additional regularity
condition is a consequence of allowing for polynomially decaying autocovari-
ances in the MMS noise. This explains why a similar condition is absent in Ikeda
(2015), since it is trivially satisfied for exponentially decaying autocovariances
and q <∞.
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3.1. Flat-Top Realized Kernels

The suboptimal accuracy of kernel-based HAC estimators is also noted in the
context of spectral density estimation by, e.g., Politis and Romano (1995) and
Politis (2001, 2011), who discuss the notions of trapezoidal, infinite-order, and
flat-top kernel functions as remedies for bias-correcting spectral density esti-
mates and, thereby, achieving higher-order accuracy. The idea of tuning the
shape of the kernel function around the origin may also be utilized in this set-
ting. To see this, write the contribution of the MMS noise on the asymptotic
distribution as

n−1∑
h=−n+1

k

(
h

H

) n+S−
h∑

i=1+S+
h

�Uti�Uti−h = n

H2

n−1∑
h=−n+1

a

( |h|
H

)
1

n

n−1+S−
h∑

i=1+S+
h

Uti Uti−h + Op(m
−1),

(7)

where a(h/H )= −H 2�2k(h/H ) is the finite sample analogue of −k(2)(h/H ).
Clearly, (7) illustrates how the accuracy of realized kernel estimators as well as
their robustness against MMS noise depend on the properties of k(2)(h/H ), in
particular its smoothness and shape around the origin.

DEFINITION 5. Let c = H −γ ∝ n−γ ν for some γ ∈ [0,1], λ(x)∈K and define
K∗ as the set of functions k: R → [−1,1] characterized by

k(x)=
{

1 if |x | ≤ c,

λ(|x |− c) otherwise.

The difference between kernel functions from K and K∗ is a shrinking flat-
top region in the neighborhood of the origin, [−c,c], which eliminates the bias
from the dominant MMS noise autocovariances, as illustrated by (7). As such, K∗
resembles the flat-top kernel functions analyzed by Politis (2011) in the context
of bias-correcting spectral density estimates. However, it differs importantly by
letting the flat-top region shrink, that is, by having c = H −γ → 0 as n → ∞ for
γ ∈ (0,1], whereas Politis (2011, equation (4)) fixes c ∈ (0,1]. The implications
of this are discussed below. Moreover, the K∗ class of kernels encompasses the
realized kernel estimator in Barndorff-Nielsen et al. (2008) as a special case with
γ = 1. The latter assigns unit weight to the first realized autocovariance, which
exactly corrects the noise-induced bias when the MMS noise is i.i.d. However,
and as is formalized by Theorem 1 below, stronger conditions on γ are gen-
erally required for consistency and asymptotic normality in the present setting,
ruling out the γ = 1 selection. This is consistent with the simulation results in,
for example, Barndorff-Nielsen et al. (2011a, Table 8), which illustrate that flat-
top realized kernel estimators with γ = 1 are highly sensitive to deviations from
i.i.d. noise.

Finally, to avoid confusion from this point on, let realized kernels with
k(x) ∈ K∗ be denoted by RK ∗(p). The following theorem, then, establishes their
asymptotic properties.
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THEOREM 1. Let Assumptions 1–4 be satisfied.

(1) Furthermore, let H ∝ nν , ν ∈ (1/3,1) and ξ ∈ (0,(1 + ν)/2), then

E[RK ∗(p)|H1] =
∫ 1

0
σ 2

t dt + Op
(
nH−2α(cH)

)+ Op
(
n1/2 H−1αe(cH)

)+op(1),

V[RK ∗(p)|H1] = Vn(λ)+4Hn−1c
∫ 1

0
σ 4

t dt +op(Hn−1)+op(nH−3)+op(H
−1).

(2) For H = an1/2, a > 0, denote V(λ,a) = limn→∞ n1/2Vn(λ). Furthermore,
let ξ ∈ (1/4,1/2) and the flat-top shrinkage satisfy γ ∈ (0,(1/2 + r)/(1 +
r)), then

n1/4
(

RK ∗(p)−
∫ 1

0
σ 2

t dt

)
ds(H1)→ M N (0,V(λ,a)) .

Theorem 1 reveals several features of the flat-top realized kernel approach.
First, under weak conditions on the flat-top shrinkage, the estimator is consistent,
asymptotically unbiased, and mixed Gaussian at the optimal rate of convergence,
n1/4. Similar asymptotic properties have already been established for the multi-
scale realized variance estimator by Aı̈t-Sahalia et al. (2011) and the two-scale
realized kernel (TSRK) by Ikeda (2015) under stronger assumptions on the MMS
noise. However, as noted by Barndorff-Nielsen et al. (2008), the multiscale re-
alized variance estimator with optimally selected scale weights is asymptotically
equivalent to a realized kernel with a cubic kernel function, λ(x)= 1−3x2 +2x3,
which is strictly less efficient than realized kernels using, e.g., the Parzen kernel or
a class of modified Tukey-Hanning kernel functions. A more elaborate discussion
of the asymptotic similarities between the flat-top realized kernel and the TSRK
is deferred to Section 3.4.

Second, the characteristic parameters of λ(x) appear in V(λ,a) instead of those
from k(x) since the flat-top region is shrinking, i.e., by c = H −γ → 0. As a result,
once c has been tuned to eliminate the noise-induced bias, the intrinsic efficiency
of λ(x) controls the asymptotic efficiency of RK ∗(p). Hence, it is apparent from
Theorem 1(1) that the Politis (2011) class of flat-top kernel functions, if applied
in the present setting, will inflate the asymptotic variance by 4ac

∫ 1
0 σ

4
t dt , making

it strictly less efficient than flat-top kernels from K∗. Similar comments apply
to the asymptotic variance of a spectral density estimate due to its well-known
dependence on the characteristic parameter k(00). Third, while having no effect
on the asymptotic distribution, Theorem 1(1) shows that c may be chosen to
strike a balance between finite sample bias and variance, which is discussed in
Section 3.3 below. Fourth, Theorem 1(1) also demonstrates why the parsimo-
nious choice γ = 1, as in Barndorff-Nielsen et al. (2008), leads to an inconsis-
tent estimator unless ν > 1/2 (by having cH = 1), similarly to Lemma 1. Fifth,
using his class of flat-top kernel functions, Politis (2011, Thm. 2.1) shows that
both the rate of convergence and the asymptotic bias of spectral density estimates
depend on the underlying smoothness of the data, polynomial versus exponential
versus finite dependence, which is not the case in Theorem 1(2) above. When the

https://doi.org/10.1017/S0266466616000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000475


1470 RASMUS TANGSGAARD VARNESKOV

flat-top shrinkage is chosen suitably, the flat-top realized kernels are asymptoti-
cally unbiased and consistent at the optimal rate of convergence, as long as the
noise satisfies the polynomial dependence conditions of Assumptions 2 and 3.
Finally, the regularity condition q ≤ r in Lemma 1 has been replaced with a suf-
ficient condition on the flat-top shrinkage, γ ∈ (0,(1/2 + r)/(1 + r)), since the
latter not only removes the leading bias term, but also determines the “size” of
smaller-order bias components. Note, however, that q ≥ 1 is still necessary for
the formulation in (7).

Remark 4. Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011b) show
that subsampling a discontinuous kernel function increases its efficiency and
eventually results in n1/6-consistency by reshaping the weights into the flat-top
trapezoidal kernel of Politis and Romano (1995). However, the trapezoidal kernel
does not belong toK∗ since k(2)ã = 0 for λ(x) over the domain x ∈{x ∈R : |x |> c}.
Furthermore, they find that subsampling members of K leads to efficiency losses
that are strictly increasing in the number of subsamples, since it destroys the
smoothness of λ(x).

Remark 5. Barndorff-Nielsen et al. (2008, Prop. 4) noted that a kernel func-
tion with k(2)(0) = 0 and |k(3)(0)| <∞ will lead to an asymptotically unbiased
and rate-optimal estimator for an exogenous and stationary AR(1) noise compo-
nent. Hence, it is not surprising that the TSRK and the flat-top realized kernels
both work since they are designed such that k(2)(0) = 0 and q ∈ N

+ over the
domains x ∈ R \ {0} and x ∈ {x ∈ R : |x | > c}, respectively, which are sufficient
for |k(3)(0)|<∞.

Given Remarks 4–5 and the class of flat-top kernel functions in Politis (2011),
it is clear that the formalization of K∗ builds on these ideas. However, as Lemma 1
and Theorem 1 show, the seemingly small tweak makes a big difference in terms
of asymptotic properties compared with the realized kernel, RK (p). In addition
to analyzing a different estimation problem, K∗ provides strict efficiency gains
over the class of flat-top kernel functions in Politis (2011), and, as will become
apparent below, it provides higher-order advantages over the TSRK. Furthermore,
Theorem 1 offers refinements in end-point conditions, in particular the upper
bound ξ < 1/2 caused by the endogenous noise-induced term in Lemma 1 of
order Op(m(H n)−1/2), and weaker assumptions on the MMS noise.

3.2. Asymptotic Variance and Optimal Bandwidth Selection

One of the most important items to consider when implementing realized kernels
is selection of the bandwidth. Hence, for a detailed discussion, it is instructive to
define the noise-to-signal ratio and a measure of heteroskedasticity,

ψ2 = �(∫ 1
0 σ

4
t dt

)1/2 and ρ =
∫ 1

0 σ
2
t dt(∫ 1

0 σ
4
t dt

)1/2 ≤ 1,
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respectively, as well as the following three terms

j1 =
∫ 1

0 �
2
t dt

�2
≥ 1, j2 =

∫ 1
0 �tσ

2
t dt

�
∫ 1

0 σ
2
t dt

, and j3 =
∫ 1

0 (�
(ep)
t )2dt

�
∫ 1

0 σ
2
t dt

,

which capture the impact of having a diurnally heteroskedastic and endogenous
MMS noise. Then, the asymptotic variance in Theorem 1(2), V(λ,a), may be
rewritten as

V(λ,a) = 4
∫ 1

0
σ 4

t dt
[
aλ(00)+a−3λ(22)ψ4j1 +2a−1λ(11)ρψ2j2 +4a−1λ(11)ρψ2j3

]
.

(8)

This decomposition resembles the one originally analyzed by Barndorff-Nielsen
et al. (2008), and extended in Ikeda (2015), with the exception of j1, j2, and
j3. In particular, their results are recovered for j1 = j2 = 1 and j3 = 0, that is,
a serially dependent, stationary, and exogenous MMS noise. However, to fully
understand the effects of noise dynamics, let V̂(λ,a) denote the asymptotic vari-
ance corresponding to this special case, and, similarly, let Ṽ(λ,a) denote it for
the case j3 = 0, i.e., for an exogenous, serially dependent, however diurnally het-
eroskedastic MMS noise. Then, the following corollary to Theorem 1 illustrates
that the magnitude of the asymptotic variance along with the optimal bandwidth,
which may be found as H = a∗n1/2, where a∗ = b∗ψ and b∗ minimizes, e.g.,
V(λ,bψ)≡ V(λ,b) conditional on ρ, j1, j2, and j3, depend critically on the noise
dynamics.

COROLLARY 1. Under the conditions of Theorem 1(2), if j1 > 1, j2 > 1,
and j3 > 0, then V̂(λ,b) < Ṽ(λ,b) < V(λ,b). Furthermore, let b̂∗ be the optimal
bandwidth for V̂(λ,b), b̃∗ for Ṽ(λ,b), and b∗ for V(λ,b), then

b̂∗ =

√√√√√ρ λ(11)

λ(00)

⎧⎨
⎩1 +

√√√√1 + 3λ(00)λ(22)(
ρλ(11)

)2
⎫⎬
⎭, and b̂∗ < b̃∗ < b∗.

Corollary 1 illustrates that if the MMS noise is diurnally heteroskedastic, j1 > 1
and j2 > 1, both the asymptotic variance and the optimal bandwidth will be larger
than their counterparts for the benchmark stationary case, V̂(λ,b) and b̂∗. If it
additionally exhibits non-negligible correlations with the efficient price process,
that is, j3 > 0, these effects are amplified. The condition j2 > 1 implies that �t

and σ 2
t are positively correlated, which is consistent with the U-shaped patterns

of the estimated noise variance and squared intra-daily returns in, e.g., Kalnina
and Linton (2008, Figure 3). In the most general case, however, the optimal band-
width b∗ depends on ρ, j1, j2, and j3, making it harder to implement in practice.
Alternatively, the existing selection rule b̂∗ may be interpreted as providing a
lower bound on the bandwidth under more general assumptions on the MMS
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noise. Thus, if a feasible version of the existing bandwidth selection rule is to
accommodate increasingly realistic features in the noise, one may use â∗ = b̂∗ψ ,
but estimate ψ2 and ρ conservatively to balance the negative bias in b̂∗. Hence,
Corollary 1 provides theoretical justification for the empirical recommendation
of “making errors on the large side of a bandwidth,” e.g., Barndorff-Nielsen et al.
(2009).

Remark 6. In the special case j1 = j2 = 1 and j3 = 0, the use of the band-
width selection rule b̂∗ in conjunction with an optimally designed kernel function,
λ(x) = (1 + x)e−x , allows the flat-top realized kernels to reach the parametric
efficiency bound, see Barndorff-Nielsen et al. (2008, Prop. 1).

3.3. Selecting the Flat-Top Shrinkage

While optimal bandwidth selection has previously been discussed in the literature,
there exists no guidance for how to determine the flat-top region, or equivalently
the shrinkage. Politis (2011, Sects. 5 and 6) considers bandwidth selection condi-
tional on a flat-top region, c, but his choice of c ∈ (0,1] is ad hoc and varies with
kernel function. Setting H = an1/2, then from Theorem 1(1), it follows that the
flat-top shrinkage, γ , may be chosen to strike a balance between the squared bias
and variance terms of (lower) orders Op

(
n−(1−γ )(1+r+ε)) and Op

(
n−(1+γ )/2),

respectively. In general, r ∈ N
+ is unknown. However, for a given r , it follows

from Lemma 1 that the second (lower-order) bias term in Bn is decreasing in
the characteristic exponent, q , conditional on q ≤ r being satisfied. This sug-
gests that both q and γ can be used to asymptotically eliminate lower-order bias
components as long as γ ∈ (0,(1/2 + r)/(1 + r)). Hence, the following feasible
empirical strategy is proposed; derive a simple “conservative” MSE optimal
choice of γ , denoted γ (q), as an increasing function of q to balance the two types
of bias reduction, and then select a kernel function that simultaneously ensures
q ≤ r , e.g., q has to be small if the observed intra-daily returns are highly per-
sistent, and minimizes the asymptotic variance since its characteristic parameters
enter V(λ,a) in (8).

COROLLARY 2. Under the conditions of Theorem 1, if H ∝ n1/2, α(h) =
O
(
h−(1+r+ε)) for some ε > 0, and suppose q = r ∈ N

+, then limε→0 γ (q) =
(1/2 + q)/(3/2 + q) ∈ (0,(1/2 + q)/(1 + q)) is the MSE-optimal flat-top
shrinkage.

Specifically, Corollary 2 illustrates how to select γ (q) when the persistence of
the noise is characterized as α(h) = O

(
h−(1+q+ε)) for q ∈ N

+. Hence, as long
as the kernel function, λ(x), is selected such that the condition q ≤ r is ensured,
γ (q) = (1/2 + q)/(3/2 + q) satisfies the requirement for Theorem 1 and may
be interpreted as a conservative rule-of-thumb, rather than the optimal choice
of flat-top shrinkage for all noise generating processes. Besides bias reduction,
and due to the similarity between the asymptotic variance in (8) and its counter-
part in Barndorff-Nielsen et al. (2008), the efficiency properties of several kernel
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functions may be gauged in Tables 2–3 of the latter. For example, notable kernels
such as the Parzen kernel, the cubic kernel, which is asymptotically equivalent
to the multiscale realized variance estimator, and the modified Tukey-Hanning 2
kernel all have q = 1, implying that they can accommodate the strongest allowed
persistence in Assumptions 2–3 since r ≥ 1.

3.4. Relation to Jack-Knife Kernels

As an alternative strategy to eliminate the leading bias in Lemma 1, Ikeda (2015)
proposes the TSRK, which may be interpreted as a realized kernel with a gener-
alized jack-knife kernel function,

k(x,τ )= (
1 − τ 2)−1{

λ(x)− τ 2λ(x/τ)
}
,

for λ(x) ∈ K where τ = G/H , H = an1/2 and G = ng for g ∈ [(2q + 1)−1,1/2
]

with G < H . To characterize the TSRK, define the characteristic parameters of
k(x,τ ) as �( j j )(τ ) = λ( j j ) + fj (τ ) j = 0,1,2 where fj (τ ) ∈ R+ along with
fj (τ ) = O(τ 2) for j = 0,1 and f2(τ ) = O(τ ). Then, the online supplemen-
tary material shows that the central limit theory result for the TSRK in Ikeda
(2015, Lemma 10 and Thm. 2) holds under the weaker MMS noise Assumptions
2 and 3 if the sufficient condition q ≤ r ∈ N

+ is satisfied. In particular, that for
ξ ∈ (1/4,1/2),

n1/4
(

T S RK (p)−
∫ 1

0
σ 2

t dt

)
ds(H1)→ M N

(
lim

n→∞ Op
(
n−qg+1/4), lim

n→∞V(�,a)
)
.

As for Lemma 1, the Op
(
n−qg+1/4

)
order of the finite sample bias depends on the

characteristic parameter, q , and does not adapt to the underlying smoothness of
the MMS noise, measured by r ≥ q . In contrast, the finite sample bias of RK ∗(p)
in Theorem 1(2) is of order Op

(
n−(1−γ )(1+r+ε)/2+1/4

)
. Hence, if the shrinkage

parameter γ is chosen suitably, the flat-top realized kernels offer higher-order
advantages in terms of bias reduction, which are strictly increasing in r . This
property is highlighted by relating the TSRK with g = {1/(2q + 1),1/2}, that is,
the MSE optimal and the maximum bias-reducing choices of g, respectively, to
flat-top realized kernels. For this purpose, denote the bias, scaled with n−1/4, of
the two estimators by B[T S RK (p)|H1] and B[RK ∗(p)|H1].

PROPOSITION 1. Let the conditions of Theorem 1(2) hold, g = 1/2, α(h)=
O
(
h−(1+r+ε)) for some ε > 0 and q ≤ r ∈ N

+. If γ ∈ (0,(1 + r − q)/(1 + r)),
then (1) B[RK ∗(p)|H1] = op

(
n−1/2q

)
, and (2) V(λ,a) < limn→∞V(�,a).

PROPOSITION 2. Let the conditions of Theorem 1(2) hold, g = 1/(2q + 1),
α(h) = O

(
h−(1+r+ε)) for some ε > 0 and q ≤ r ∈ N

+. If γ (q) =
(1/2 + q)/(3/2 + q), then (1) B[RK ∗(p)|H1] = op

(
n−q/(2q+1)

)
, and

(2) V[RK ∗(p)|H1]/V[T S RK (p)|H1] = vn(q,ψ2,ρ), where vn(·) satisfies
∂vn(·)
∂ψ2 < 0, ∂vn(·)

∂ρ < 0, and plimn→∞vn(·)= 1.
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Propositions 1(1) and 2(1) illustrate the higher-order advantages of the flat-top
realized kernels in terms of bias reduction. Furthermore, Proposition 1(2) shows
that when compared to the TSRK using the maximum bias-reducing choice g =
1/2, these advantages even come with a lower asymptotic variance. For the MSE
optimal choice g = 1/(2q + 1), however, Proposition 2(2) shows that the relative
finite sample variance of the two estimators depends on q , the noise-to-signal ratio
ψ2, and the degree of heteroskedasticity, ρ. However, it is unclear whether or not
the higher-order advantages of the flat-top realized kernels adversely impact its
relative finite sample efficiency in this case. The finite sample properties of the
two estimators are, thus, elaborated upon in Section 5.

3.5. Relation to the Pre-Averaging Approach

The pre-averaging approach is a popular alternative to realized kernels. To relate
the two estimators, let M = θnκ , where θ > 0 and κ ∈ (0,1), be a sequence of
integers and define the modulated realized variance as

M RV (p)=
n−M∑
i=0

p̄2
ti , p̄ti =

M∑
j=1

g

(
j

M

)
�pti+ j ,

where g(x) is a nonzero, real-valued weight function g : [0,1] →R, which is con-
tinuous, piecewise continuously differentiable with a piecewise Lipschitz deriva-
tive g(1)(x), and for which g(0) = g(1) = 0. In other words, the modulated
realized variance is based on local (weighted) averages of the observable log-
returns to balance the asymptotic orders of �p∗

ti and �Uti . As a result, it has to
be combined with a correction factor to obtain n1/4-consistency, which depends
on the properties of the MMS noise. To clarify this point, define the constants
φ1(s)= ∫ 1

s g(1)(x)g(1)(x − s)dx , φ2(s)=
∫ 1

s g(x)g(x − s)dx for s ∈ [0,1],

ψ1 = φ1(0), ψ2 = φ2(0), �i, j =
∫ 1

0
φi (s)φj (s)ds, i, j = 1,2,

and make the following strengthenings of Assumptions 2 and 3:

Assumption 2∗. Let ut ′i = ūt ′i ∀i = 0, . . . ,N where ūt ′i satisfies the conditions
of Assumption 2.

Assumption 3∗. Let et ′i = 0 ∀i = 0, . . . ,N .

LEMMA 2. Let Assumptions 1, 2∗, 3∗, and 4 hold and set κ = 1/2, then

1

ψ2θn1/2
M RV (p)

P−→
∫ 1

0
σ 2

t dt + ψ1

θ2ψ2
�.

Lemma 2 relaxes the noise assumption of Hautsch and Podolskij (2013,
Lemma 1) from finite to polynomial mixing dependence, and it illustrates some
similarities between the pre-averaging approach and the realized kernels of
Barndorff-Nielsen et al. (2008, 2011a). First, as also noted by Hautsch and
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Podolskij (2013, pp. 173–176), it shows the need for a correction of the long-
run MMS noise variance. In fact, when correcting (ψ2θn1/2)−1 M RV (p) with

ψ1/(2θ2ψ2n)0(p), as (2n)−10(p)
P−→ �(0), there is a one-to-one correspon-

dence between the pre-averaging approach and the flat-top realized kernels with
γ = 1 of Barndorff-Nielsen et al. (2008), see Jacod et al. (2009), thus resulting in
an inconsistent estimator. Second, if a suitable estimator of � is unavailable, it is
necessary to choose κ ∈ (1/2,1), i.e., a larger pre-averaging window, to achieve
consistency. This corresponds to over-smoothing the bandwidth and results in a
suboptimal rate of convergence along with a bias in the asymptotic distribution,
see Christensen, Kinnebrock, and Podolskij (2010, Thm. 4). Third, relaxing exo-
geneity, as in Assumption 3, will lead to a more complicated bias correction that
depends on �(ep).

Hautsch and Podolskij (2013) suggest a correction factor for a finitely de-
pendent MMS noise component along with a test for a given order of serial
dependence. They show that this correction leads to an asymptotically unbiased
and n1/4-consistent estimator. However, consistency of this procedure hinges on
whether the noise, in fact, exhibits finite dependence, and, even if it does, it will
require sequential pre-testing of the data to determine the exact order. Alterna-
tively, to avoid such considerations, one may estimate � using realized kernel-
type estimators. Such a procedure, similar in spirit to the correction embedded in
the TSRK, is presented in Section A. Hence, and not surprisingly, the behavior
of the proposed bias-corrected pre-averaging estimator, both asymptotically and
in finite samples, is similar to the TSRK, implying that slight modifications of
Propositions 1 and 2 apply. Due to these similarities, the estimator will not be
treated separately in the simulation study below.

4. FLAT-TOP REALIZED KERNELS AND JUMPS

Extending the realized kernel theory to estimate and disentangle variation stem-
ming from continuous and discontinuous parts of more general jump-diffusions is
not straightforward. First, it requires establishing the asymptotic distribution the-
ory for flat-top realized kernels in the presence of jumps, which has been unavail-
able for any realized kernel estimator. Second, jump-robust measures based on
realized kernels must be developed. Such extensions are feasible, however, using
a blocking strategy, which has been advanced by Mykland and Zhang (2009) and
Mykland et al. (2012) in different contexts. As this strategy, or general theory,
relies on a zero-mean martingale representation of the estimation error within
each block, the higher-order advantage of the flat-top realized kernels in terms of
bias reduction makes them particularly well-suited for this purpose.

4.1. The Observable Price Process with Jumps

To set the stage, let y∗
t = p∗

t + Jt be a jump-diffusion where Jt is a finite
activity jump process, which will be described in detail below. First, however, the
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information filtration, Ft , is redefined. Let Ht and Gt be defined as in Section 2,
and let Jt be another σ -field generated by Jt . Then, assume Jt ⊥⊥ (Hs ,Gs)
∀(t,s) ∈ [0,1]2, and, finally, let Ut = Ht ∨Jt and Ft = Ut ∨ Gt . That is, the
information filtration is augmented with a separate, orthogonal filtration for Jt ,
which is needed to derive a U1-stable central limit theorem for the flat-top real-
ized kernels in the presence of jumps since this requires an additional layer of
conditioning. Note that all previous results hold under U1 as well.

Assumption 5. Jt = ∑Nt
s=1 ds is a Jt -adapted compound Poisson process

where Nt is a Poisson process with average intensity ηt t where ηt ∈ R+ is a
Jt -measurable Lipschitz continuous process, and ∀t ∈ [0,1] E[Nt ] < ∞. The
sequence of jump sizes, dt , is Jt -measurable, mins=1,...Nt |ds| ∈ (0,∞), and
∀s = 1, . . . ,Nt E[|ds |]<∞. Finally, Nt ⊥⊥ ds ∀(t,s) ∈ [0,1]2.

This setup resembles, e.g., Barndorff-Nielsen and Shephard (2004), Podolskij
and Vetter (2009), Andersen et al. (2012), and Mykland et al. (2012), who assume
the jump process to be of finite activity. The slightly stricter compound Poisson
assumption implies independent increments, �Jt ′i , and is particularly helpful for
establishing bounds on realized autocovariances of the jump process along with
marginal U1-stable central limit theory for cross-products involving jumps. Note
that the average jump intensity is allowed to be stochastic, whose importance is
stressed by, e.g., Andersen et al. (2015) in the context of option pricing, and that
E[Nt ]<∞ implies boundedness of ηt .

The inclusion of jumps in the underlying logarithmic asset price process, y∗
t ,

has implications for risk measurement as its quadratic variation over a period
t ∈ [0,1] decomposes as

[
y∗, y∗]=

∫ 1

0
σ 2

t dt +
∑

0≤t≤1

|dt |2, (9)

which provides an intriguing opportunity to segregate and analyze the variation
stemming from its continuous and discontinuous parts. However, since the ob-
servable price is still contaminated by additive MMS noise, that is, yt ′i = y∗

t ′i
+Ut ′i ,

i = 0, . . . ,N , the statistical properties of various jump-robust estimators of inte-
grated variance (see, e.g., note 3) will be corrupted, similar to the description in
the previous section. Hence, to develop jump and noise-robust realized kernel-
based estimators and to study the total quadratic variation in (9), including its
two separate components, the following theorem provides central limit theory for
flat-top realized kernels in the presence of jumps.

Assumption 4∗. Assumption 4 with yt ′i in place of pt ′i .

THEOREM 2. Under Assumptions 1–3, 4*, and 5, let the remaining conditions
of Theorem 1(2) hold, and let λ(x) be non-negative, then

n1/4 (RK ∗(y)− [y∗, y∗]) ds(U1)→ M N (0,V(λ,a, J ))
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where

V(λ,a, J )= V(λ,a)+ 4aλ(00)
∑

0≤t≤1

d2
t σ

2
t + 4a−1λ(11)

∑
0≤t≤1

d2
t �t .

Theorem 2 demonstrates that flat-top realized kernels may be used to estimate
the total quadratic variation in (9) with desirable asymptotic properties, similar to
those discussed following Theorem 1. The main difference is two additional terms
in the asymptotic variance, which capture the variation of cross-products between
jumps and both the continuous part of y∗

t as well as the MMS noise at the jump
times. The non-negativity restriction on λ(x) is innocuous since it is satisfied by
many popular kernel functions such as the Parzen and modified Tukey-Hanning
kernels, and it simplifies the proof. Aside from a heuristic discussion of the impact
of a single jump on realized kernels in Barndorff-Nielsen et al. (2008, Sect. 5.6),
this section, and Theorem 2 in particular, provides the first formal asymptotic
analysis of (flat-top) realized kernels in the presence of finite activity jumps.

4.2. Block Sampling and Jump-Robust Estimation

So far, flat-top realized kernel estimation has been carried out using all available
observations in the interval [0,1], and the asymptotic results are derived using the
approximation �p∗

ti ≈ σti−1�Wti . The main idea here is to extend this approxi-
mation to intervals of length �τi = L/n by equally partitioning the observations
as τi ∈ [0,1], i = 0,1, . . . ,nL , where nL = �n/L� and L is a sequence satisfying
L = β0n1−β with β ∈ (0,1) and β0 > 0, and, then, use local flat-top realized kernel
estimates as noise-robust proxies of the return variance within each block. If jumps
occur in a given local interval, Theorem 2 shows that their quadratic variation enters
additively. As such, this is similar to using squared log-returns when constructing
jump-robust estimators in the absence of MMS noise. Hence, the resulting noise-
robust sequence of local estimates may be used in conjunction with either power
variation (Barndorff-Nielsen and Shephard, 2004) or the medium realized variance
estimator (Andersen et al., 2012) to achieve jump-robustness, since the probabil-
ity of observing contiguous jumps tend to zero as the relative contribution of each
block �τi = β0n−β → 0. However, before formally defining the estimators, the
following lemma ensures non-negativity of the local inputs.

LEMMA 3. Under the conditions of Theorem 2, let RK T (z) =
max(RK ∗(z),0), z = {p, y}, then

RK T (p)= RK ∗(p)+ op(n
−1/4), RK T (y)= RK ∗(y)+ op(n

−1/4).

Lemma 3 demonstrates that a non-negativity restriction on the flat-top real-
ized kernels is asymptotically negligible. This results from the estimators being
consistent for quadratic variation, a strictly positive quantity, at the optimal rate
of convergence, n1/4, with an estimation error that has an asymptotic zero mean
such that the probability of a binding truncation vanishes sufficiently fast. Note
that, in the absence of jumps, Lemma 3 is a special case of Ikeda (2015, Prop. 1).
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Next, define RK T
i (y) as a local, non-negative flat-top realized kernel estimate

using only observations from the i -th block, tj ∈ (τi−1,τi ], then, in the absence of
jumps, i.e., y = p, its asymptotic properties, using Theorems 1–2 and Lemma 3
in conjunction with Itô’s formula, may be written on the form

RK T
i (p)= σ 2

τi−1
�τi +

∫ τi

τi−1

(t − τi−1)dσ
2
t +�M̃τi , i = 1, . . . ,nL , (10)

where the estimation error, M̃τi , is an asymptotically mean-zero and bounded
sequence of continuous martingales, whose variance depends on the instantaneous
asymptotic variance V(λ,a, t)= ∂V(λ,a)/∂ t . Here, the two sources of error lead
to a trade-off in block-size, i.e., the selection of β, between the biases due to MMS
noise (requires large blocks) and stochastic volatility (requires small blocks).
If jumps are present, that is, y = p+ J , Theorem 2 shows that their local quadratic
variation enters additively in (10) and that the asymptotic variance of the martin-
gale error increases.

As for squared log-returns in the absence of MMS noise, the sequence of local
estimates may be used to design two classes of estimators, the (medium) blocked
realized kernels,

B RK ∗(y,B)= L

(μL ,2/B)B

nL∑
i=B

B−1∏
j=0

(
RK T

i− j (y)
)1/B

, (11)

M B RK ∗(y)=
nL−1∑
i=2

med
(
RK T

i−1(y), RK T
i (y), RK T

i+1(y)
)
, (12)

for some fixed B ∈ N
+ where μL ,2/B = E

[
(χL)

2/B
]

with χL ∼ ∣∣χ2
L

∣∣1/2 and
“med” denotes the median of the three blocks. However, when L → ∞, then
L/
(
μL ,2/B

)B → 1 and a simplified version of B RK ∗(y,B)may be implemented
without the scale, see Mykland et al. (2012, (B.20)). While (11) bridges the
blocked power variation estimators in Mykland et al. (2012) with the flat-top
realized kernel approach, the proposed class (12) extends the medium realized
variance estimator in Andersen et al. (2012) by combining it with a block-
ing scheme and flat-top realized kernels such that the resulting estimators are
robust against MMS noise. In other words, and in analogy with the pre-averaging
approach, the local flat-top realized kernel estimates ensure noise-robustness of
the input, and the use of power variation or the medium realized variance esti-
mator asymptotically annihilates finite activity jumps since �τi = β0n−β → 0
ensures that the probability of observing them contiguously tends to zero. That is,
the potential presence of jumps suggests the selection of smaller blocks.

THEOREM 3 (Blocked Realized Kernels). Let the conditions of Theorem 2
hold. Moreover,

(1) suppose the absence of jumps: y∗
t = p∗

t ∀t ∈ [0,1], then
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(a) for β ∈ (1/4,1), B RK ∗(p,1)= RK ∗(p)+ op(n−1/4);

(b) for β = 1/4 and B ≥ 2, B RK ∗(p,B)= RK ∗(p)+ Op(n−1/4);

(c) for β ∈ (0,1/2), β̂ = min(1/2 − β,β) and B ≥ 2, B RK ∗(p,B) =
RK ∗(p)+ Op(n−β̂ ).

(2) suppose the presence of jumps: y∗
t = p∗

t + Jt ∀t ∈ [0,1], and let B ≥ 2, then

(a) for β = B/(4B − 2), B RK ∗(y,B) = RK ∗(p) +
Op(n−1/2+B/(4B−2));

(b) for β = (0,1/2), β̂ = min(1/2 − β,β(B − 1)/B), B RK ∗(y,2) =
RK ∗(p)+ Op(n−β̂ ).

THEOREM 4 (Medium Blocked Realized Kernels). Under the conditions of
Theorem 2, if β ∈ (1/4,1), then M B RK ∗(y) = RK ∗(p)+ Op(n−1/4) for both
y∗

t = p∗
t and y∗

t = p∗
t + Jt ∀t ∈ [0,1].

When no jumps occur and if β is chosen suitably, the blocked realized kernels
with B = 1 provide non-negative estimates of integrated variance that are without
loss of asymptotic efficiency relative to the flat-top realized kernels, whereas the
bi- and multi-power versions are consistent at the optimal rate if β = 1/4. Under
the jump alternative, however, the consistent estimators, B ≥ 2, suffer from slower
rates of convergence, which for the leading cases B = 2 and B = 3 are n1/6 and
n1/5, respectively. In contrast, the medium blocked realized kernels are consistent
at the optimal rate of convergence both with and without the presence of a finite
activity jump process, as long asβ∈ (1/4,1). The stronger asymptotic result for the
latter is obtained since the bias incurred by jumps is an order of magnitude smaller
than the corresponding bias for the blocked realized kernels, namely Op(n−β) vs.
Op(n−β(B−1)/B), and since the blocked realized kernels additionally suffer from
a noise-induced bias of order Op(n−1/2+β), imposing an upper bound β < 1/2.
In the absence of MMS noise, Andersen et al. (2012, (5)) show that the medium
realized variance estimator has a higher-order advantage over power variation
estimators in reducing the jump-induced bias. In the present setting, however, the
differences are much more pronounced, since jumps affect the rate of consistency
of the estimators. Note that, due to their attractive bias reduction properties, the
use of flat-top realized kernels in (11) and (12) implies that larger emphasis may
be placed on reducing the bias caused by stochastic volatility/jumps, i.e., the selec-
tion of smaller blocks. Moreover, their use in (11) increases the rate of consistency
relative to a similar class defined via realized kernels from K, see, e.g., Mykland
et al. (2012, Example 2), whose best attainable rates are n1/6 and n1/3−B/(6B−3)

in the absence and presence of jumps, respectively.
Finally, Theorems 2 and 4 show that jump variation may be estimated consis-

tently at the optimal rate of convergence, n1/4. This is summarized in the follow-
ing corollary.

COROLLARY 3. Under the conditions of Theorems 2 and 4, RK ∗(y)−
M B RK ∗(y)= [J, J ] + Op(n−1/4).
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5. SIMULATION STUDY

This section provides numerical results to complement the theoretical analysis
by studying the choice of flat-top shrinkage, the finite sample performance of
flat-top realized kernels relative to alternative estimators, and, finally, it illustrates
robustness of the blocked estimators against jumps.

5.1. Simulation Design

The simulation design follows Huang and Tauchen (2005) and Barndorff-Nielsen
et al. (2008, 2011a). The unit interval of a trading day is partitioned into N =
23,400 seconds.8 The efficient log-price process is, then, simulated by a one-
factor stochastic volatility model:

dp∗
t = μ1dt +σt dWt , where σt = exp(μ#

0 +μ#
1 ft ),

d ft = μ2 ft dt + dVt , dVt = ϕdWt +
√

1 −ϕ2d Bt and Wt ⊥⊥ Bt ,

where ϕ measures the leverage effect, and the parameter values are set in
accordance with the literature; μ1 = 0.03, μ#

1 = 0.125, μ2 = −0.025, ϕ = −0.3,

and μ#
0 = (μ#

1)
2/(2μ2) with the last condition ensuring that E[

∫ 1
0 σ

2
t dt] = 1.

The process is restarted on each trading day by drawing the initial observation
from its stationary distribution ft ∼ N(0,−1/(2μ2)). The MMS noise is added
as in (1) where the observable sampling grids are based on equidistant obser-
vations from sample sizes n = {390; 1,560; 4,680}, corresponding to calendar
time sampling with 1-minute, 15-second, and 5-second intervals, respectively.
The MMS noise is modeled using two different processes, Uti = φuUti−1 + η̃ti
and Uti = η̃ti + θu η̃ti−1 , where φu = {−0.5,0,0.5}, θu = {−0.5,0.5}, and η̃ti ∼
N(0,ωη) for which ωη = ψ2

√
N−1

∑N
i=1 σ

4
ti and the noise-to-signal ratio is

fixed at ψ2 = {0.001,0.005,0.01}. The various MMS noise specifications follow
Barndorff-Nielsen et al. (2011a, Sect. 6.1.2) and are consistent with the empiri-
cal findings in Ubukata and Oya (2009), Aı̈t-Sahalia et al. (2011), Diebold and
Strasser (2013), Ikeda (2015), and Varneskov (2016a). All simulations are per-
formed using 1,000 replications.

5.2. Selecting Bandwidth and Flat-top Shrinkage

The bandwidth is selected conservatively, following the advice in Section 3.2, de-
spite the absence of an endogenous noise component. This entails approximating
a∗ through ρ ≈ 1 and ψ2 ≈ �/

∫ 1
0 σ

2
t dt , thereby settling for a Jensen’s inequal-

ity bias. The approximation implies that tabulated values of b∗ may be found in
Barndorff-Nielsen et al. (2008, Table 2) for several well-known kernel functions.
The noise-to-signal ratio is estimated using �̂(p) = (|λ(2)(0)|nH −2)−1 RK (p)
with H = n1/3, which is shown by Ikeda (2015) to be an upward biased,
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n1/3-consistent estimator of �. The realized variance estimator with 20-minute
sparse sampling, subsampling and averaging

RV sub
20min(p)= 1

Ks

Ks∑
k=1

18∑
i=1

(
ptk+Ks (i−1) − ptk−1+Ks (i−1)

)2 (13)

with Ks = 1,200 is used as a pilot estimate of
∫ 1

0 σ
2
t dt . The subsampled real-

ized variance estimator relies on the maximal degree of subsampling to utilize
all available information, 20-minute intervals to ameliorate the effects of MMS
noise, and averaging to increase efficiency of the estimator.9

Corollary 2 provides some theoretical guidance on the choice of flat-top shrink-
age, γ . However, to gauge the sensitivity of this choice, the relative bias and root
mean squared error (RMSE) of the flat-top realized kernels, in percentages, are
depicted as a function of γ in Figures 1 and 2 for the four serially dependent
MMS noise specifications and the pair (n;ψ2)= (1,560; 0.005).

The sensitivity study is performed for three different kernel functions—the
Parzen kernel, the modified Tukey-Hanning kernel (Barndorff-Nielsen et al.,

FIGURE 1. Finite sample sensitivity to the choice of flat-top shrinkage, γ , for the Parzen,
the modified Tukey-Hanning, and the cubic kernel when the MMS noise follows a first-
order AR process with persistence parameters φu = {−0.5,0.5} and the observations are
equidistant. The simulations are implemented with the pair (n;ψ2) = (1,560; 0.005).
Panels A and C show the relative bias and RMSE for φu = 0.5. Panels B and D
show the relative bias and RMSE for φu = −0.5. All numbers on the y-axes are in
percentages.
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2008), and the cubic kernel, which share a common “conservative” MSE-optimal
flat-top shrinkage, γopt = 3/5. Figures 1 and 2 illustrate the bias-variance trade-
off that comes with the selection of γ ; selecting γ too high leads to a finite sample
bias, selecting γ too low increases the finite sample variance. Overall, however,
the finite sample properties of the estimators are fairly stable, and γopt seems to
offer useful guidance for all kernel functions.

5.3. Relative Finite Sample Performance of Realized Estimators

The finite sample performance of the flat-top realized kernels is compared to
that of alternative estimators, in particular, the subsampled realized variance
estimator using 5- or 20-minute intervals, the realized kernel, and the two-scale
realized kernel. The Parzen kernel function is used for all kernel-based estima-
tors. The flat-top realized kernel is configured with γ = {γopt ,2/5,4/5,1} where
γ = 1 corresponds to the realized kernel of Barndorff-Nielsen et al. (2008),
which, as emphasized previously, is inconsistent when the noise deviates from

FIGURE 2. Finite sample sensitivity to the choice of flat-top shrinkage, γ , for the Parzen,
the modified Tukey-Hanning, and the cubic kernel when the MMS noise follows a first-
order MA process with persistence parameters θu = {−0.5,0.5} and the observations are
equidistant. The simulations are implemented with the pair (n;ψ2) = (1,560; 0.005).
Panels A and C show the relative bias and RMSE for θu = 0.5. Panels B and D
show the relative bias and RMSE for θu = −0.5. All numbers on the y-axes are in
percentages.
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the i.i.d. case. The realized kernel and the two-scale realized kernel are imple-
mented with bandwidths H = 3.51ψ4/5n3/5 and H̃ = max{Ĥ ,G + 1}, respec-
tively, where G = ng for g = {1/3,1/2} and Ĥ is the conservatively selected
bandwidth described above, see Barndorff-Nielsen et al. (2011a) and Ikeda (2015)
for details. Note that the choices of g emphasize MSE and bias reduction, respec-
tively, and that neither the flat-top nor the two-scale realized kernel is guaranteed
to produce non-negative estimates of quadratic variation.10 The relative bias and
RMSE of the estimators are presented in Tables 1 and 3 for the pairs n = 1,560
and ψ2 = {0.001,0.005,0.01} and in Tables 2 and 4 for the combinations of
ψ2 = 0.005 and n = {390; 4,680}.

The general trends from Tables 1–4 are as follows. The realized variance-based
estimators are adversely affected by MMS noise in all cases. The realized kernel

TABLE 1. Relative bias of realized variance with either 5- or 20-minute sparse
sampling, subsampling, and averaging, denoted by RV sub

5min or RV sub
20min, respec-

tively, the realized kernel, RK , the two-scale realized kernel, T S RKj , with
j = {1,2} corresponding to g = {1/3,1/2}, and RK ∗

γ with γ = {γopt ,2/5,4/5,1}.
For all combinations, n = 1,560. All numbers are in percentages

Finite sample relative bias with varying noise-to-signal ratio

RV sub
20min RV sub

5min RK T S RK1 T S RK2 RK ∗
opt RK ∗

2/5 RK ∗
4/5 RK ∗

1

ψ2 = 0.001
AR(0) −9.46 12.56 −0.48 −0.29 −0.25 −0.98 −1.24 −0.86 −0.82
AR(−0.5) −8.32 17.65 −0.81 −0.60 −0.18 −0.76 −1.12 −0.04 −1.65
AR(0.5) −8.36 17.67 1.48 3.28 0.03 −0.13 −1.17 1.88 4.27
MA(−0.5) −8.59 16.38 −0.94 −0.95 −0.18 −0.87 −1.11 −0.81 −2.60
MA(0.5) −8.62 16.39 0.43 0.54 −0.18 −0.95 −1.23 −0.79 0.80

ψ2 = 0.005
AR(0) 4.17 73.81 3.58 1.76 0.96 0.24 −0.00 0.38 0.39
AR(−0.5) 9.85 99.33 2.49 0.43 1.26 1.37 0.52 4.27 −3.57
AR(0.5) 9.77 99.17 9.66 13.54 2.41 2.38 0.16 8.53 16.53
MA(−0.5) 8.47 92.98 1.90 −1.30 1.30 0.81 0.65 0.70 −8.29
MA(0.5) 8.40 92.82 6.50 4.67 1.41 0.39 0.08 0.58 5.89

ψ2 = 0.01
AR(0) 21.22 150.29 7.94 4.14 2.53 1.79 1.57 1.95 1.92
AR(−0.5) 32.58 201.38 6.46 1.66 3.09 4.06 2.45 9.38 −5.83
AR(0.5) 32.46 200.94 17.28 22.48 5.42 4.76 2.01 14.05 26.68
MA(−0.5) 29.81 188.68 5.36 −1.77 3.16 2.82 2.78 2.54 −15.25
MA(0.5) 29.70 188.27 12.43 8.78 3.45 2.16 1.84 2.38 10.61

ψ2 = 0
No noise −12.85 −2.83 −1.67 −0.88 −0.53 −1.30 −1.55 −1.19 −1.15
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TABLE 2. Relative bias of realized variance with either 5- or 20-minute sparse
sampling, subsampling, and averaging, denoted by RV sub

5min or RV sub
20min, respec-

tively, the realized kernel, RK , the two-scale realized kernel, T S RKj , with
j = {1,2} corresponding to g = {1/3,1/2}, and RK ∗

γ with γ = {γopt ,2/5,4/5,1}.
For all combinations, ψ2 = 0.005. All numbers are in percentages

Finite sample relative bias with varying sample size

RV sub
20min RV sub

5min RK T S RK1 T S RK2 RK ∗
opt RK ∗

2/5 RK ∗
4/5 RK ∗

1

n = 390
No noise −12.86 −2.85 −2.02 −1.91 −0.44 −2.44 −2.39 −2.35 −2.28
AR(0) 4.02 73.99 2.69 0.10 0.75 −1.31 −1.13 −1.26 −1.21
AR(−0.5) 9.84 102.57 1.53 −0.75 0.93 −1.80 −0.95 1.74 −3.38
AR(0.5) 9.49 96.26 9.46 11.26 2.90 1.19 −0.30 5.20 10.00
MA(−0.5) 8.45 93.15 1.17 −2.23 0.95 −0.60 −0.55 −0.99 −5.69
MA(0.5) 8.17 93.24 6.05 2.93 1.34 −1.17 −0.73 −0.97 2.66

n = 4,680
No noise −12.86 −2.83 −1.09 −0.68 −0.23 −0.85 −0.96 −0.80 −0.77
AR(0) 4.21 73.49 4.15 1.79 1.40 0.69 0.72 0.69 0.66
AR(−0.5) 9.89 98.90 3.16 0.52 1.76 1.62 1.14 3.84 −4.86
AR(0.5) 9.88 98.93 9.06 11.34 2.42 2.26 1.05 8.73 18.85
MA(−0.5) 8.48 92.57 2.49 −1.23 1.77 1.16 1.22 1.17 −12.14
MA(0.5) 8.46 92.57 6.66 4.22 1.80 0.97 0.96 0.93 7.13

and the MSE-optimal two-scale realized kernel are often biased in finite samples.
The bias is particularly pronounced for a positive AR(1) noise process, being
in the 10% range and sometimes higher, and it persists when the sample size is
increased to n = 4,680. The flat-top realized kernel with γ = 1 is clearly centered
around the wrong quantity when the noise deviates from the i.i.d. case, illustrating
its inconsistency. The flat-top realized kernels with γ = {γopt ,2/5} have biases,
which are of the same order of magnitude as the bias for the two-scale realized
kernel emphasizing bias reduction and often smaller when ψ2 = 0.01. The stable
bias control illustrates the higher-order advantage of the flat-top approach in terms
of bias reduction.

In terms RMSE’s, Tables 3–4 demonstrate that the realized kernel is uniformly
dominated by the flat-top realized kernels with γ = {γopt ,4/5}, thus comple-
menting the asymptotic results in Lemma 1 and Theorem 1. Similarly, and as
Proposition 1(2) suggests, the two-scale realized kernel emphasizing bias
reduction suffers from higher RMSE’s relative to the flat-top realized kernels
for almost all cases. The MSE-optimal two-scale realized kernel has slightly
smaller finite sample RMSE’s than the flat-top realized kernels using γ =
{γopt ,4/5,1} for some MMS noise specifications, but these differences are dis-
appearing in ψ2 and n as Proposition 2(2) suggests. Moreover, since the for-
mer is unable to control the noise-induced bias for all data generating processes

https://doi.org/10.1017/S0266466616000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000475


ESTIMATING THE QUADRATIC VARIATION SPECTRUM 1485

TABLE 3. Relative RMSE of realized variance with either 5- or 20-minute sparse
sampling, subsampling, and averaging, denoted by RV sub

5min or RV sub
20min, respec-

tively, the realized kernel, RK , the two-scale realized kernel, T S RKj , with
j = {1,2} corresponding to g = {1/3,1/2}, and RK ∗

γ with γ = {γopt ,2/5,4/5,1}.
For all combinations, n = 1,560. All numbers are in percentages

Finite sample relative RMSE with varying noise-to-signal ratio

RV sub
20min RV sub

5min RK T S RK1 T S RK2 RK ∗
opt RK ∗

2/5 RK ∗
4/5 RK ∗

1

ψ2 = 0.001
AR(0) 26.83 18.00 17.69 13.35 21.87 15.57 17.97 14.17 13.37
AR(−0.5) 26.44 21.82 17.39 13.09 21.87 15.28 17.69 13.97 13.12
AR(0.5) 26.52 22.11 18.77 14.92 22.11 16.58 18.97 15.46 15.34
MA(−0.5) 26.53 20.79 17.34 13.05 21.84 15.27 17.62 13.86 13.16
MA(0.5) 26.57 20.97 18.24 13.90 21.97 16.05 18.51 14.66 14.01

ψ2 = 0.005
AR(0) 25.52 75.09 19.43 15.06 22.29 16.89 19.34 15.52 14.77
AR(−0.5) 27.00 100.34 18.25 13.92 22.42 15.92 18.33 15.49 14.05
AR(0.5) 27.31 100.49 24.51 23.73 23.66 20.56 22.65 21.44 25.69
MA(−0.5) 26.49 93.99 17.98 13.69 22.38 15.78 18.08 14.37 15.65
MA(0.5) 26.67 94.04 21.99 17.68 22.89 18.64 21.18 17.25 18.00

ψ2 = 0.01
AR(0) 33.01 151.10 22.24 17.48 23.36 18.67 21.13 17.31 16.59
AR(−0.5) 41.21 202.15 20.55 15.64 24.00 17.78 21.13 18.94 16.18
AR(0.5) 41.59 202.03 30.93 32.84 26.34 24.25 26.08 27.22 35.68
MA(−0.5) 39.00 189.38 20.10 15.34 24.17 17.46 19.77 15.97 21.33
MA(0.5) 39.20 189.18 26.60 21.99 24.62 21.28 23.86 19.94 22.47

ψ2 = 0
No noise 28.20 13.04 17.38 13.03 21.88 15.31 17.68 13.88 13.06

considered, the flat-top realized kernels offer the most desirable combination
of robustness and efficiency.

5.4. Finite Sample Behavior of BRK∗ and MBRK∗

This subsection illustrates that the (medium) blocked realized kernels may be used
to estimate integrated variance robustly against jumps. In particular, the estima-
tors are applied to processes that are simulated as in Section 5.1 with ψ2 = 0.001
and n = {4,680; 7,800}, and, in a similar setup, where a finite activity jump pro-
cess has been added to dp∗

t . Following Mykland et al. (2012), the jump process
consists of a single jump, which is uniformly distributed on i = 1, . . . , (23,400)

and whose size is drawn from the distribution �Jti ∼ N
(

0,0.1N−1∑N
i=1 σ

2
ti

)
,

https://doi.org/10.1017/S0266466616000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000475


1486 RASMUS TANGSGAARD VARNESKOV

TABLE 4. Relative RMSE of realized variance with either 5- or 20-minute sparse
sampling, subsampling, and averaging, denoted by RV sub

5min or RV sub
20min, respec-

tively, the realized kernel, RK , the two-scale realized kernel, T S RKj , with
j = {1,2} corresponding to g = {1/3,1/2}, and RK ∗

γ with γ = {γopt ,2/5,4/5,1}.
For all combinations, ψ2 = 0.005. All numbers are in percentages

Finite sample relative RMSE with varying sample size

RV sub
20min RV sub

5min RK T S RK1 T S RK2 RK ∗
opt RK ∗

2/5 RK ∗
4/5 RK ∗

1

n = 390
No noise 28.17 13.16 26.01 21.77 31.90 26.67 30.46 24.14 22.54
AR(0) 25.54 75.81 27.55 23.42 32.62 26.84 30.62 25.45 23.86
AR(−0.5) 27.14 104.27 26.36 22.45 32.45 26.84 30.62 24.78 22.95
AR(0.5) 27.72 98.69 31.66 29.57 34.08 31.03 34.47 29.37 29.45
MA(−0.5) 26.53 94.66 26.32 22.36 32.43 26.98 30.72 24.38 23.18
MA(0.5) 26.81 95.39 29.75 25.55 33.31 29.53 33.41 27.07 25.96

n = 4,680
No noise 28.20 13.02 12.65 8.72 16.34 9.76 11.24 8.96 8.53
AR(0) 25.46 74.64 15.35 10.92 16.98 11.72 13.40 10.92 10.51
AR(−0.5) 26.97 99.76 14.27 10.00 17.29 11.21 12.57 11.16 10.74
AR(0.5) 27.06 99.92 20.07 18.55 18.05 15.15 16.64 17.20 24.34
MA(−0.5) 26.49 93.47 14.00 9.88 17.43 10.87 12.44 10.08 15.47
MA(0.5) 26.53 93.54 17.81 13.27 17.45 13.41 15.20 12.58 14.53

implying that jump variation is 10% of integrated variance on average. The
blocked realized kernels are implemented for B = {2,3} with the number of
blocks being nL = {(16,18),(18,20)}, respectively, for n = {4,680; 7,800} and
the medium blocked realized kernel with nL = {16,20} for n = {4,680; 7,800}.
As the elimination of any within-block systematic finite sample noise-induced
bias is crucial, the flat-top shrinkage γ = 2/5 is selected over the “conservative”
MSE-optimal choice. Furthermore, due to the large block sizes, the scale in (11)
is excluded for simplicity, but the estimates for B = 3 and the medium blocked
realized kernels are scaled with nL/(nL −1) for finite sample comparability with
the B = 2 case. The relative bias and RMSE of the estimators are presented in
Tables 5 and 6.

Tables 5 and 6 illustrate that the (medium) blocked realized kernels generally
provide accurate estimates of integrated variance. As expected from Theorems 3
and 4, the medium blocked realized kernels perform well in terms of bias both
with and without the presence of jumps, and they display the smallest RMSE’s
across all noise specifications considered under the jump alternative, illustrating
their faster rate of convergence. This shows that flat-top realized kernels may be
used to construct estimators that are both jump and noise-robust. A detailed char-
acterization of the finite sample properties of the proposed estimators, however,
is left for future research.
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TABLE 5. Relative bias of B RK ∗(y,B) for B = {2,3} and M B RK ∗(y), where
the local flat-top realized kernel estimates are implemented with γ = 2/5. The
subscript on the estimators illustrates the various combinations of B RK ∗

B,nL
and

M B RK ∗
nL

. In all cases, ψ2 = 0.001. All numbers are in percentages

Finite sample relative bias of blocked realized kernels

N1 = 0 N1 = 1

AR(0) AR(−0.5) AR(0.5) MA(−0.5) MA(0.5) AR(0) AR(−0.5) AR(0.5) MA(−0.5) MA(0.5)

n = 4,680
B RK ∗

2,16 −6.46 −5.50 −3.94 −5.14 −5.38 −0.41 0.57 2.17 0.93 0.70
B RK ∗

3,16 −8.11 −7.02 −6.08 −6.66 −7.30 −2.91 −1.80 −0.83 −1.43 −2.08
B RK ∗

2,18 −4.92 −3.69 −1.97 −3.48 −3.69 1.01 2.25 4.04 2.46 2.28
B RK ∗

3,18 −6.59 −5.25 −4.15 −5.05 −5.63 −1.50 −0.13 1.02 0.07 −0.49
M B RK ∗

16 −5.48 −4.72 −2.09 −4.43 −3.91 −2.97 −2.27 0.71 −1.98 −1.27

N1 = 0 N1 = 1

AR(0) AR(−0.5) AR(0.5) MA(−0.5) MA(0.5) AR(0) AR(−0.5) AR(0.5) MA(−0.5) MA(0.5)

n = 7,800
B RK ∗

2,18 −4.66 −3.60 −2.78 −3.11 −3.69 1.22 2.31 3.12 2.80 2.19
B RK ∗

3,18 −5.96 −4.79 −4.57 −4.31 −5.24 −0.87 0.30 0.56 0.79 −0.14
B RK ∗

2,20 −3.79 −2.65 −1.52 −2.06 −2.63 2.03 3.15 4.35 3.77 3.22
B RK ∗

3,20 −5.19 −3.91 −3.50 −3.33 −4.34 −0.19 1.07 1.56 1.67 0.70
M B RK ∗

20 −2.42 −1.64 0.80 −0.96 −0.78 −0.39 0.31 3.21 0.97 1.48

TABLE 6. Relative RMSE of B RK ∗(y,B) for B = {2,3} and M B RK ∗(y),
where the local flat-top realized kernel estimates are implemented with γ = 2/5.
The subscript on the estimators illustrates the various combinations of B RK ∗

B,nL

and M B RK ∗
nL

. In all cases, ψ2 = 0.001. All numbers are in percentages

Finite sample relative RMSE of blocked realized kernels

N1 = 0 N1 = 1

AR(0) AR(−0.5) AR(0.5) MA(−0.5) MA(0.5) AR(0) AR(−0.5) AR(0.5) MA(−0.5) MA(0.5)

n = 4,680
B RK ∗

2,16 10.95 10.27 11.15 10.03 11.06 11.72 11.50 13.36 11.51 12.52
B RK ∗

3,16 12.12 11.29 12.30 11.02 12.27 11.49 11.05 12.77 10.98 12.15
B RK ∗

2,18 9.84 9.01 10.49 8.87 10.21 11.43 11.37 13.54 11.35 12.41
B RK ∗

3,18 10.90 9.90 11.36 9.74 11.24 10.92 10.59 12.54 10.53 11.72
M B RK ∗

16 10.85 10.34 11.16 10.17 10.96 10.35 9.99 11.57 9.91 10.92

N1 = 0 N1 = 1

AR(0) AR(−0.5) AR(0.5) MA(−0.5) MA(0.5) AR(0) AR(−0.5) AR(0.5) MA(−0.5) MA(0.5)

n = 7,800
B RK ∗

2,18 9.18 8.28 10.00 8.10 9.60 10.74 10.58 12.54 10.75 11.67
B RK ∗

3,18 9.98 8.94 10.85 8.72 10.43 10.10 9.69 11.78 9.76 10.97
B RK ∗

2,20 8.59 7.83 9.68 7.60 9.10 10.51 10.47 12.78 10.69 11.73
B RK ∗

3,20 9.42 8.46 10.42 8.17 9.91 9.75 9.46 11.72 9.55 10.81
M B RK ∗

20 8.79 8.17 10.44 8.02 9.63 8.81 8.40 11.26 8.41 10.03
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6. CONCLUSION

This paper analyzes a generalized class of flat-top realized kernel estimators of the
quadratic variation spectrum when the underlying price process is contaminated
with additive MMS noise, which is comprised of an endogenous and exogenous
component to accommodate a variety of empirical regularities. In the absence of
jumps, the class of flat-top estimators is shown to be consistent, asymptotically
unbiased, and mixed Gaussian with the optimal rate of convergence, n1/4. The
optimal asymptotic properties are attributed to a slowly shrinking flat-top support,
which exactly eliminates the leading noise-induced bias along with a data-driven
choice of lower-order bias terms. In theoretical and a numerical comparison with
alternative estimators such as the realized kernel, the two-scale realized kernel,
and a proposed bias-corrected pre-averaging estimator, the seemingly small flat-
top tweak is shown to have a big impact on the relative asymptotic and finite
sample properties.

The analysis is extended by allowing for finite activity jumps in the under-
lying log-price process. In this setting, the theoretical analysis shows that the
desirable asymptotic properties of a flat-top realized kernel estimate of the total
quadratic variation continue to hold, the difference being two additional terms in
the asymptotic variance. Finally, the favorable bias properties of the estimators
are utilized in designing two classes of (medium) blocked realized kernels, which
produce consistent, non-negative estimates of integrated variance. The estimators
are shown to have either no loss of asymptotic efficiency or in the rate of con-
sistency relative to the flat-top realized kernels when jumps are absent. However,
only the medium blocked realized kernels achieve the optimal rate of convergence
under the jump alternative.

NOTES

1. See the early work by Andersen, Bollerslev, Diebold, and Labys (2001), Barndorff-Nielsen and
Shephard (2002), Comte and Renault (1998), and see Andersen, Bollerslev, and Diebold (2010) and
Barndorff-Nielsen and Shephard (2007) for reviews.

2. See Hansen and Lunde (2006) and Bandi and Russell (2008) for analyses of MMS noise and
its impact on realized variance, as well as the work on robust estimation techniques such as the
two and multiscale realized variance, Zhang et al. (2005) and Zhang (2006), the realized kernel
of Barndorff-Nielsen et al. (2008), and the pre-averaging estimator of Jacod et al. (2009), who
either assume the noise to be exogenous and i.i.d. or conditionally (on the efficient price process)
independent.

3. See the work on bipower variation by Barndorff-Nielsen and Shephard (2004, 2006) and Huang
and Tauchen (2005), threshold realized variance by Mancini (2009) and Aı̈t-Sahalia and Jacod (2009,
2012), and nearest neighborhood truncation by Andersen, Dobrev, and Schaumburg (2014). While
none of these estimators are designed to alleviate the impact of MMS noise, the pre-averaged bipower
variation by Podolskij and Vetter (2009), the pre-averaged realized quantile estimator by Christensen,
Oomen, and Podolskij (2010), and the pre-averaged threshold realized variance by Aı̈t-Sahalia, Jacod,
and Li (2012) accommodate an exogenous and i.i.d., or conditionally independent, additive noise
component.

4. Further details are provided at Cambridge Journals Online. Readers may refer to the supple-
mentary material for this article as Varneskov (2016b), available at Cambridge Journals Online (jour-
nals.cambridge.org/ect).
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5. Stable convergence has been used in econometrics since Phillips and Ouliaris (1990). For details
consult, e.g., Jacod and Protter (1998), Barndorff-Nielsen et al. (2008, Appendix A), Mykland and
Zhang (2009) or Podolskij and Vetter (2010).

6. The online supplementary material provides additional details on locally stationary processes
and draws parallels between Assumption 3 and the corresponding assumptions in Dahlhaus and
Polonik (2009) and Dahlhaus (2009).

7. Kalnina and Linton (2008, p. 49) connect their diurnally heteroskedastic exogenous noise com-
ponent to locally stationary processes. Specifically, their specification is a special case of the latter,
which is independent over time.

8. Corresponding to a regular trading day on the New York Stock Exchange with 6.5 hours of
trading.

9. The value of 18 comes from �23,400/1,200�− 1 = 18, where 1,200 (seconds) correspond to
20-minute intervals. Note also that the Parzen kernel is chosen for �̂(p).

10. The two-scale realized kernel is, thus, truncated at zero by the realized kernel, following Ikeda
(2015, Prop. 1), whereas the flat-top realized kernel is truncated at zero, see Lemma 3. Neither of these
transformations impacts the asymptotic distribution of the estimators and neither was binding in the
simulations.
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APPENDIX A: A Bias-Corrected Pre-Averaging
Estimator

To correct the bias for M RV (p) in the presence of serially dependent MMS noise, define
the realized kernel-based long-run MMS noise variance estimator of Ikeda (2013, 2015),

T SN(p) = (
1− τ2)−1(|λ(2)(0)|nG−2)−1

(RK (p,G)− RK (p,H)) ,

where, again, τ = G/H , H = an1/2, and G = ng for g ∈ [(2q +1)−1,1/2
]

with G < H .
In contrast with the TSRK, this “two-scale noise” estimator uses a scaled realized kernel,
RK (p,G), to estimate the long-run noise variance, �, and a second realized kernel with
a larger bandwidth, RK (p,H), to bias-correct the former for the quadratic variation in
(3), which enters as a lower-order term. The design of the scale follows from the leading
bias term in Lemma 1, which is now the object of interest. Hence, motivated by Lemma 2,
define a bias-corrected pre-averaging estimator as

P RV (p)= 1

θψ2
√

n
M RV (p)− ψ1

θ2ψ2
T SN(p). (A.1)

THEOREM A.1. Under the conditions of Lemma 2, q ≤ r , and jittering
for both RK (p,G) and RK (p,H) with rate ξ ∈ (0,3/4), define VN ,n(λ) =
Op
(
ng−1) + Op

(
n4g−5/2) + Op

(
n3g−2) and CN ,n(λ) = Op

(
ng/2−3/4) +

Op
(
n2g−3/2)+ Op

(
n3/2g−5/4), then

(1)
E[P RV (p)|H1] =

∫ 1

0
σ 2

t dt + Op
(
n−qg)+op(1),

V[P RV (p)|H1] = 4

ψ2
2
√

n

(
�22θ

∫ 1

0
σ 4

t dt + �11

θ3
�2 + 2�12�

θ

∫ 1

0
σ 2

t dt

)
+VN +CN .

(2) Suppose additionally, ∀i = 0, . . . ,N : E[|ut ′i |
8] < ∞, g ∈ [(2q + 1)−1,1/2

)
, and

ξ ∈ (1/4,1/2), then

n1/4
(

P RV (p)−
∫ 1

0
σ 2

t dt

)
ds (H1)→ M N

(
0,

4

ψ2
2

(
�22θ

∫ 1

0
σ 4

t dt + �11

θ3
�2 + 2�12�

θ

∫ 1

0
σ 2

t dt

))
.

Proof. See Section 5.5 of the online supplementary material. �

Theorem A.1 shows that the bias-correction in (A.1) leads to an asymptotically un-
biased and n1/4-consistent estimator, similarly to the result in Hautsch and Podolskij
(2013, Thm. 1). However, this is achieved under weaker assumptions on the (exoge-
nous) MMS noise component, and it does not rely on prior knowledge nor on pre-testing
of the data. In addition, Theorem A.1 demonstrates that the respective finite sample
biases of P RV (p) and T S RK (p) are of the same order of magnitude, and it relates the
asymptotic and finite sample variance of P RV (p) to the corresponding for the flat-top
realized kernel estimator. Similarly to the results for the TSRK in Section 3.4, if max-
imal emphasis is placed on bias reduction, g = 1/2, then VN ,n(λ) = Op(n−1/2) and

CN ,n(λ) = Op(n−1/2), implying that the asymptotic variance will be inflated. If, on the
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other hand, g = (2q + 1)−1, the leading terms of VN ,n(λ) and CN ,n(λ) are of orders

Op
(
n−2q/(2q+1)) and Op

(
n−(3/2q−1/4)/(2q+1)), respectively, which are similar to the

orders Op (τ) and Op
(
τ2) for the TSRK, and smaller than Op(c). Together, these results

suggest that slight modifications of Propositions 1 and 2 will describe the bias-corrected
pre-averaging estimator in relation to the flat-top realized kernels.

APPENDIX B: Proofs of Main Asymptotic Results

Before proceeding, let S(2,h)={1+S+
h , . . . ,n−1+S−

h } and S(1,h)= S(2,h)\{1} for h ∈
Z. Moreover, define Zk = {−k, . . . ,−1,0,1, . . . ,k} for k ∈ N as well as ZK

k+1 = ZK \Zk
for K − k ∈ N. The proofs of the main asymptotic results below are supplemented with
Lemmas B.1–B.7, providing key marginal limit results, and Lemmas C.1–C.10, providing
additional technical results and stochastic bounds. These lemmas, including their proofs,
are provided in the online supplementary material together with the proofs of Propositions
1–2, Lemmas 2–3, and Theorem A.1. Finally, the online supplementary material also
establishes limit theory for the TSRK as well as outlines how to use results from Dahlhaus
and Polonik (2009) and Dahlhaus (2009) for locally stationary processes in the present
setting.

B.1. Proof of Theorem 1

The proof of Theorem 1 is given by analyzing each of the three right-hand-side terms of

RK ∗(p)= RK ∗(p∗)+ RK ∗(U)+ (RK ∗(p∗,U)+ RK ∗(U, p∗)), (B.1)

and then collecting results. Specifically, each term will first be decomposed into a main
component and jittered end-points; then, marginal H1-stable central limit theory will be
provided for the main components; and, finally, the joint moments and central limit theory
will be established.

Separating End-Points: First, let r∗
i =�p∗

ti and decompose RK ∗(p∗) as

RK ∗(p∗)= K (r∗)+ Z1(r
∗), Z1(r

∗)= (r∗
1 )

2 + (r∗
n )

2 +2
n−1∑
h=1

k

(
h

n

)(
r∗

h+1r∗
1 +r∗

n r∗
n−h

)
,

and where K (r∗) = ∑
h∈Zn−1

k(|h|/H)
∑

i∈S(1,h) r
∗
i r∗

i−h . Note that for all terms, Z( ·),
with a given subscript, is used to collect end-points. Next, recall that a(h/H) =
−H2�2k(h/H) denotes the finite sample analog of the function −k(2)(h/H), and
define the equivalents of the terms Vh and Zh , specified on Barndorff-Nielsen et al. (2011a,
p. 165), as

Vh =
n−1∑

i=h+1

Uti Uti−h +
n−h−1∑

i=1

Uti Uti+h = 2
n−1∑

i=h+1

Uti Uti−h ,

Zh = Utn Utn−h +Uth Ut0 +Utn−h Utn +Ut0 Uth = 2(Utn Utn−h +Ut0 Uth ),

for h = 1 . . . ,n −1. These definitions, in conjunction with Barndorff-Nielsen et al. (2011a,
Prop. A.1), provide the following representation for RK ∗(U),

RK ∗(U)= A(U)+ Z2(U), Z2(U)= 1

2
Z0 −

n−1∑
h=1

(k(h/H)−k((h −1)/H)) Zh , (B.2)
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and where A(U) = −�k(1/H)V0 −∑n−1
h=1�

2k((h +1)/H)Vh , in their notation, may be
further decomposed and written as A(U)= A1(U)+ A2(U), with

A1(U )= n

H 2

∑
h∈ZcH−1

a

(|h|
H

)
1

n

∑
i∈S(2,h)

Uti Uti−h , A2(U )= n

H 2

∑
h∈Zn−1

cH

a

(|h|
H

)
1

n

∑
i∈S(2,h)

Uti Uti−h .

This is convenient when establishing the marginal H1-stable central limit theory for A(U).
Finally, and similarly to (B.2), the cross-product term RK ∗(p∗,U)+ RK ∗(U, p∗)may be
decomposed by defining the function b(h/H) = H�k(h/H), which is the sample analog
of k(1)(h/H), and writing

RK ∗(p∗,U)+ RK ∗(U, p∗)= B(r∗,U)+ Z3(r
∗,U), (B.3)

where B(r∗,U)= B1(r
∗,U)+ B2(r

∗,U) and Z3(r
∗,U) are given by

B1(r
∗,U )= 2

H

∑
h∈ZcH−1

b

(|h|
H

) ∑
i∈S(1,h)

r∗
i Uti−h , B2(r

∗,U )= 2

H

∑
h∈Zn−1

cH

b

(|h|
H

) ∑
i∈S(1,h)

r∗
i Uti−h ,

Z3(r
∗,U )= 2

n−1∑
h=0

k

(
h

H

)(
Utn r∗

n−h −Ut0 r∗
h+1

)+ 2

H

n−1∑
h=1

b

(
h

H

)(
r∗

n Utn−h − r∗
1 Uth

)
.

Hence, K (r∗), A(U), and B(r∗,U) collect the main contributions from efficient log-
returns, MMS noise and cross-products between them, respectively, and Z1(r

∗), Z2(U),
and Z3(r

∗,U) contain end-point terms. For the latter, Lemmas C.3(b)–(d) establish the
following, uniform, stochastic bounds

Z1(r
∗)= Op

(
mn−1)+ Op

(
(Hm)1/2n−1), Z2(U)= Op

(
m−1) and (B.4)

Z3(r
∗,U)= Op

(
H1/2(nm)−1/2)+ Op

(
m(Hn)−1/2)+ Op

(
n−1/2), (B.5)

providing the end-point representation for En in Lemma 1.
Marginal Central Limit Theory: For the main components K (r∗), A(U), and

B(r∗,U), the following three marginal H1-stable limits hold:

√
n/H

(
K (r∗)−

∫ 1

0
σ 2

t dt

)
ds (H1)→ M N

(
0,4
(
λ(00)+ c

)∫ 1

0
σ 4

t dt

)
, (B.6)

(H3n−1)1/2
(

A(U)− Op
(
α(cH)nH−2)) ds (H1)→ M N

(
0,4λ(22)

∫ 1

0
�2

t dt

)
, (B.7)

H1/2(B(r∗,U)− Op
(
H−1n1/2αe(cH)

)) ds (H1)→ M N

(
0,8λ(11)

∫ 1

0

((
�
(ep)
t

)2 +�tσ
2
t

)
dt

)
.

(B.8)

The first result in (B.6) readily follows by applying Barndorff-Nielsen et al.
(2008, Thm. 1), who establish H1-stable central limit theory for the double sum∑

h∈Zn−1

∑
i∈S(1,h) r

∗
i r∗

i−h , in conjunction with Lemma C.2(a), establishing the limit of

the kernel sum, H−1∑
h∈Zn−1

k (|h|/H)2. The limit results in (B.7) and (B.8), on the
other hand, follow by Lemmas B.2 and B.3, respectively.

Joint Moments and Central Limit Theory: Having established (B.6)–(B.8) as well as
the stochastic bounds in (B.4)–(B.5), all that remains for Theorem 1(1) is the probability
limits for the H1-conditional cross-term covariances in (B.1). However, this simplifies as
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• H−1∑
h∈Zn−1

∑
g∈Zn−1

(
k (|h|/H)b (|g|/H)+b (|h|/H)a (|g|/H)

)−→ 2
(
λ(01)+

λ(12))= 0,

• H−1∑
h∈Zn−1

∑
g∈Zn−1

k (|h|/H)a (|g|/H)−→ −2λ(02) = 2λ(11),

see, e.g., Priestley (1981, pp. 450–457), where λ(01) = λ(12) = 0 follows from in-
tegration over odd and bounded functions, leaving only the contribution from 2 ×
Cov[RK (p∗), RK (U)|H1]. First, using Lemma B.1 in conjunction with (B.4), (B.6)–
(B.7), ν ∈ (1/3,1), and the Cauchy–Schwarz inequality, then

Cov[RK (p∗), RK (U)|H1] = Cov[K (r∗), A(U)|H1]+op (Z1(r
∗))+op (Z2(U)),

uniformly. Next, write its asymptotically non-negligible part as

Cov[K (r∗), A(U)|H1] = 1

H2

∑
h∈Zn−1

∑
g∈Zn−1

k

( |h|
H

)
a

( |g|
H

)

×
∑

i∈S(1,h)

∑
j∈S(1,g)

Cov
[
r∗
i r∗

i−h ,Utj Utj−g |H1
]
,

for which H1-conditional independence of r∗
i and the exogenous noise utj , ∀(i, j) ∈

S(1,h)× S(1,g), may be applied in conjunction with Brillinger (1981, Thm. 2.3.2) to make
the decomposition

Cov
[
r∗
i r∗

i−h ,Utj Utj−g |H1
]= Cov

[
r∗
i ,etj |H1

]
Cov

[
r∗
i−h ,etj−g |H1

]
+Cov

[
r∗
i ,etj−g |H1

]
Cov

[
r∗
i−h ,etj |H1

]
.

Then, as both terms on the right-hand-side are symmetric versions of the term (B.19.2),
defined in the proof of Lemma B.3 in the online supplementary material, it follows by the
same arguments given there that

2H ×Cov[K (r∗), A(U)|H1]
P−→ 8λ(11)

∫ 1

0
(�
(ep)
t )2dt .

Now, by invoking ν ∈ (1/3,1) and ξ ∈ (0, (1+ ν)/2), this establishes the H1-conditional
moments in Theorem 1(1). Moreover, using the latter, Theorem 1(2) follows by applying
the end-point bounds in (B.4)–(B.5), the H1-stable marginal limits in (B.6)–(B.8), and the
stronger conditions on ν and ξ in conjunction with Lemma C.1(c) and the stable Cramér–
Wold theorem in Lemma C.1(e). �

B.2. Proof of Theorem 2

Since Theorem 1 provides the stable central limit theory for y = p, Theorem 2 follows by
providing the remaining asymptotic results for the right-hand-side terms of the decompo-
sition,

RK ∗(y)− RK ∗(p)− [J, J ] = RK L(J )+ RK ∗(J, p∗)+ RK ∗(p∗, J )

+ RK ∗(J,U)+ RK ∗(U, J ), (B.9)
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where RK L(J ) = ∑n−1
h=1 k(h/H)(

∑n−S−
h

i=1+S+
h
�Jti�Jti−h + ∑n−S−

−h

i=1+S+
−h
�Jti�Jti+h ).

Before proceeding, however, note that �Jti = �Nti dti , E[Nt ] < ∞ ∀t ∈ [0,1] implies
supt∈[0,1]ηt <∞, and

E
[
�Nti

]=E
[
ηti−1

]
�ti (1+ O(n−1))≤ K�ti (1+ O(n−1)), for some constant K > 0,

(B.10)

which follows from Lipschitz continuity and boundedness of ηt over t ∈ [0,1]. By applying

(B.10), Lemma B.4 establishes RK L(J )= Op

(
H1/2/n

)
+Op((m H1/2)/n2), uniformly.

As for the remaining right-hand-side terms in (B.9), these will be treated similarly to the
terms in (B.1).

Separating End-Points: First, make two decompositions RK ∗(J, p∗)+ RK ∗(p∗, J )=
K (J,r∗)+ K (r∗, J )+2Z1(r

∗, J ) and RK ∗(J,U)+ RK ∗(U, J )= B(J,U)+ Z3(J,U),
where the main components of the terms, K (J,r∗) and B(J,U), as well as the end-
points, Z1(r

∗, J ) and Z3(J,U), are defined using the same notation as in Section B.1
(noting that the shorthand conventions K (r∗) = K (r∗,r∗) and Z1(r

∗) = Z1(r
∗,r∗) have

been applied in Section B.1). Then, Lemmas C.8(c) and (d) derive the following, uni-
form, stochastic bounds for the jump-induced end-effects: Z1(r

∗, J ) = Op((m/n)3/2)+
Op((m H)1/2/n) and Z3(J,U) = Op(n−1)+ Op(m/(H1/2n))+ Op(H1/2/(mn)1/2).
Hence, when ν = 1/2 and ξ ∈ (1/4,1/2), then |Z1(r

∗, J )|+|Z3(J,U)| ≤ op(n−1/4) and,
similarly, |RK L(J )| ≤ op(n−1/4).

Marginal Central Limit Theory: Before proceeding to the marginal U1-stable central
limit theory for K (J,r∗)+ K (r∗, J ) and B(J,U), it is convenient to define the filtration
Ũt,s =Jt ∨Hs , for which Ũt,t = Ut by convention. In particular, Ũ1,1 =U1. This filtration
is used to carry out an extra layer of conditioning (on the independent jumps, �Nti = 1).
Now, the U1-stable limits√

n/H
(
K (J,r∗)+ K (r∗, J )

) ds(U1)→ M N
(

0,4(λ(00)+c)
∑

0≤t≤1

d2
t σ

2
t

)
, (B.11)

H1/2 B(J,U)
ds(U1)→ M N

(
0,4λ(11)

∑
0≤t≤1

d2
t �t

)
, (B.12)

follow by invoking Lemmas B.5 and B.6, respectively.
Joint Moments and Central Limit Theory: For a joint characterization of (B.9), it is

necessary to consider cross-term covariances. As in Section B.1, this simplifies by terms
vanishing, leaving only the conditional covariance between K (J,r∗) and either K (r∗) or
A(U) as well as between B(J,U) and B(r∗,U). First, using Lemma B.1, r∗

i = r̂∗
i (1 +

op(n−1/2)), r̂∗
i = σti−1�Wti , one may write

n1/2Cov[K (J, r̂∗),K (r̂∗)|J1] = n1/2
∑

h∈Zn−1

∑
h∈Zn−1

k

( |h|
H

)
k

( |g|
H

)

×
∑

i∈S(1,h)

∑
i∈S(1,g)

�JtiE
[
r̂∗
i−hr̂∗

j r̂∗
j−g

]
,

where only the uncentered third moment of r̂∗
i remains for h = g = 0 and i = j , and this is

zero for Gaussian increments. That is, Cov[K (J,r∗),K (r∗)|J1] = op(n−1/2). Similarly,
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n1/2Cov[K (J, r̂∗), A(U)|J1] = n1/2

H2

∑
h∈Zn−1

∑
h∈Zn−1

k

( |h|
H

)
a

( |g|
H

)

×
∑

i∈S(1,h)

∑
i∈S(1,g)

�JtiE
[
r̂∗
i−h etj etj−g

]
,

where, for E[r̂∗
i−h etj etj−g ], it follows by definition of etj in Assumption 3 that

etj etj−g

n
= 1

n

∞∑
z=−∞

θ(tj , z)(�tj−z)
−1/2�W̃tj−z

∞∑
s=−∞

θ(tj−g,s)(�tj−g−s)
−1/2�W̃tj−g−s

=
∞∑

(z,s=z−g)=−∞
θ(tj , z)θ(tj−g, z − g)(�W̃tj−z )

2

+
∞∑

(z,s �=z−g)=−∞
θ(tj , z)θ(tj−g,s)�W̃tj−z�W̃tj−g−h ,

implying that E[r̂∗
i−hetj etj−g ] = nθ(tj , j − i +h)θ(tj−g, j − i +h − g)E[r̂∗

i−h (�W̃ti−h )
2]

by independence of the standard Gaussian increments. Then, by the law of iterated expec-
tations and Lemma B.1,

E
[
r̂∗
i−h (�W̃ti−h )

2]= E
[
E
[
�Wti−h |�W̃ti−h

]
σti−h−1(�W̃ti−h )

2]
= E

[
σti−h−1ϒti−h−1

]
E
[
(�W̃ti−h )

3]n−1(1+ Op (n
−1/2)),

which, as above, is zero by the uncentered third moment of Gaussian increments, imply-
ing that Cov[K (J,r∗), A(U)|J1] = op(n−1/2). The result Cov[B(J,U), B(r∗,U)|J1] =
op(n−1/2) follows using the same arguments. When conditioning on, and summing over,
Ũ1,ti instead of J1, the results follow, similarly, by applying independence of the Brown-
ian increments with the law of iterated expectations. Now, using these results and asymp-
totic negligibility of the jump-induced end-effects, the joint U1-stable distribution theory
in Theorem 2 follows by combining Theorem 1(2) for RK ∗(p), (B.11) and (B.12), Lemma
C.1(c), and the stable Cramér–Wold theorem in Lemma C.1(e). �

B.3. Proofs of Theorems 3 and 4

The following definitions are used to prove the asymptotic approximations below:

Mi+ j−1 = {
w ∈ O : med

(
RK T

i−1(p), RK T
i (p), RK T

i+1(p)
)= RK T

i+ j−1(p)
}
, for j = 0,1,2,

and Pi+ j−1 = P[Mi+ j−1]. The proofs of Theorems 3 and 4 are based on a strong path-
wise approximation, advanced by Mykland and Zhang (2009) and, in particular, Mykland
et al. (2012). The latter establish some results for power variation-type estimators in the
absence of jumps. However, they use end-averaged combinations of estimators, leading
to different Taylor expansions than those developed here and, thus, different derivations of
second-order results. A more direct approach is taken below, which necessitates the deriva-
tion of some first-order results that are also used to prove Theorem 4. Finally, Theorem 2 is
used to establish the asymptotic approximations in the presence of jumps. (Whereas some
of the steps in the proofs below resemble the corresponding in Mykland et al. (2012), their
results are nowhere relied upon. Hence, the proofs can be read without mapping the present
notation to the latter.)
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B.3.1. Proof of Theorem 3. Before proceeding to the proof, note that all results are
established without consideration of the scale factor since L/(μL ,2/B)

B → 1 as L → ∞.
Furthermore, the proof is divided into two parts that separately analyze the properties of
the estimators both with and without the presence of jumps.

No Jumps: First, consider the case B = 1. Denote RK ∗(p) = ∫ 1
0 σ

2
t dt +MZ where

MZ = n−1/4Z + op(n−1/4), then it suffices to show n1/4
∣∣RK ∗(p)− B RK ∗(p,1)

∣∣ =
op(1) for β ∈ (1/4,1). To this end, let �M̃τi be the martingale estimation error in (10)
(see also Lemma B.7), write∣∣∣∣RK ∗(p)−

nL∑
i=1

RK T
i (p)

∣∣∣∣≤
∣∣∣∣
∫ 1

0
σ 2

t −
nL∑

i=1

∫ τi

τi−1

σ 2
t dt

∣∣∣∣+
∣∣∣∣MZ −

nL∑
i=1

�M̃τi

∣∣∣∣
by the triangle inequality, and use Itô’s lemma to make the decomposition

∫ τi
τi−1

σ 2
t dt =

σ 2
τi−1

�τi + ∫ τi
τi−1

(τi − t)dσ 2
t . Then, by Lemma C.9(a), |∑nL

i=1

∫ τi
τi−1

(τi − t)dσ 2
t | ≤

Op(n−β), providing the stochastic bound n1/4|∫ 1
0 σ

2
t −∑nL

i=1

∫ τi
τi−1

σ 2
t dt | ≤ Op(n1/4−β)

since
∑nL

i=1 σ
2
τi−1

�τi
P−→ ∫ 1

0 σ
2
t dt sufficiently fast by Riemann integration under Assump-

tion 1. For the second term, as

E

⎡
⎣n1/2

∣∣∣∣∣MZ −
nL∑
i=1

�M̃τi

∣∣∣∣∣
2
⎤
⎦= E

⎡
⎣n1/2M2

Z + n1/2

∣∣∣∣∣
nL∑
i=1

�M̃τi

∣∣∣∣∣
2

− 2n1/2
nL∑
i=1

�M̃τi MZ

⎤
⎦ P−→ 0

(B.13)

by Lemma B.7, this implies n1/4|MZ −∑nL
i=1�M̃τi | ≤ op(1) by the Burkholder–Davis–

Gundy (BDG) inequality, see, e.g., Protter (2004, p. 195), thus providing the result in
Theorem 3(1) (a).

Next, for the cases B ≥ 2, define h(xi , xi−1, . . . , xi−B+1) = xi −
(xi xi−1 . . .xi−B+1)

1/B , and write

B RK ∗(p,1)− B RK ∗(p, B)− (B −1)× Op(n
−β)=

nL∑
i=B

h
(
RK T

i (p), RK T
i−1(p), . . . , RK T

i−B+1(p)
)
,

(B.14)

where the (B − 1)× Op(n−β) term is caused by the first B − 1 blocks in the sum for
B RK ∗(p,1). The uniform stochastic order follows, as above, using Itô’s lemma. The
asymptotic results for the right-hand-side are established using a Taylor expansion of
h(RK T

i (p), RK T
i−1(p), . . . , RK T

i−B+1(p)) around h(σ 2
τi−B

�τ,σ 2
τi−B

�τ,. . . ,σ 2
τi−B

�τ),

noticing �τi = �τ . Denote h(1)i−s (·) = ∂h(·)/∂xi−s , for some s ∈ [0,1, . . . , B − 1], and

h(2)i−s,i−g (·) = ∂2h(·)/(∂xi−s∂xi−g ), similarly for g ∈ [0,1, . . . , B − 1], as the first and

second derivatives, then h(z, z, . . . , z)= 0, h(1)i (z, z, . . . , z)= 1− B−1, h(1)i−s (z, z, . . . , z)=
−B−1 for s > 0, and

h(2)i−s,i−s (z, z, . . . , z)=
B −1

B2

1

z
, h(2)i−s,i−g (z, z, . . . , z)=

−1

B2

1

z
, s �= g.

Collecting terms for the (second-order) Taylor expansion of the right-hand-side
in (B.14),
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h
(
RK T

i (p), RK T
i−1(p), . . . , RK T

i−B+1(p)
)

= 1

B

B−1∑
j=1

(
RK T

i (p)− RK T
i− j (p)

)+Ri,h

+ 1

2B2

1

σ 2
τi−B

�τ

B−2∑
j1=0

B−1∑
j=1+ j1

(
RK T

i− j1
(p)− RK T

i− j (p)
)2
, (B.15)

where Ri,h captures the higher-order residual. (The steps of the expansion and collec-
tion of terms are written out in the online supplementary material. As noted above, this
Taylor expansion differs from the proofs of Mykland et al. (2012, Thms. 10 and 11)
since no linear end-averaging of the blocks is performed. This results in the simple rep-
resentation, which only depends on the first and second-order effects of the difference
RK T

i− j1
(p)− RK T

i− j (p), since Ri,h is shown to be of lower stochastic order.) Then, by
applying Lemmas C.9(c) and C.10 to establish uniform stochastic bounds for the right-
hand-side terms of (B.15),
nL∑

i=B

h
(
RK T

i (p), RK T
i−1(p), . . . , RK T

i−B+1(p)
)≤ Op(n

−1/2+β)+ Op(n
−β)+op(n

−1/4)+
∣∣∣ nL∑
i=B

Ri,h

∣∣∣.
Finally, using arguments similar to Mykland et al. (2012), Section 6.2 of the online sup-
plementary material shows that |∑nL

i=B Ri,h | = op(n−1/2+β)+op(n−β), providing The-
orems 3(1) (b)–(c).

Jumps: Let d̄2
τi

denote d[J, J ]τi . If Jt �= 0 for some t ∈ (τi−1,τi ], it follows by The-

orem 2, in conjunction with Itô’s lemma, that RK T
i (y) = d̄2

τi
+ Op(n−β). Moreover, for

some finite number of blocks, B ≥ 2, it follows by the same argument as in Andersen et
al. (2012, Sect. A.3) that since E[Nt ] < ∞, RK T

i (y), RK T
i−1(y), . . . , RK T

i−B+1(y) will
(asymptotically) at most contain one block with jumps. Hence,

B RK ∗(y, B)− B RK ∗(p, B)= Op

(
n−β B−1

B

)
+op

(
n−β B−1

B

)
,

where B ≥ 2. This, together with the results above, provides the remaining parts of
Theorem 3. �

B.3.2. Proof of Theorem 4. The following holds for the median function except at the
null set

{
(x1, x2, x3) ∈ R

3|x1 = x2 = x3
}

and is used in later derivations,

lim
ε→0

1

ε

[
med(x1, x2, x3 +εz)−med(x1, x2, x3)

]=
{

z if x1 < x3 < x2 or x2 < x3 < x1,

0 otherwise.

No Jumps: Define the function f (xi−1, xi , xi+1)= xi −med(xi−1, xi , xi+1) and write

B RK ∗(p,1)− M B RK ∗(p)−2× Op(n
−β)=

nL−1∑
i=2

f
(
RK T

i−1(p), RK T
i (p), RK T

i+1(p)
)
,

(B.16)

where, as in (B.14) above, the 2 × Op(n−β) term is caused by the first and last block
in the sum for B RK ∗(p,1), and Itô’s lemma is used to establish the uniform stochas-
tic order. Before expanding the function f

(
RK T

i−1(p), RK T
i (p), RK T

i+1(p)
)

around
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f
(
στi−2�τ,στi−2�τ,στi−2�τ

)
, however, note that f (z, z, z) = 0, f (2)l,s (z, z, z) = 0 for

(l,s)= [0,1,2]2 where f (2)l,s (·)= ∂2 f (·)/∂xi+l−1∂xi+s−1, and

f (1)l=1(z, z, z)=
{

0 if Mi ,

1 otherwise,
f (1)l=[0,2](z, z, z)=

{
−1 if Mi±1,

0 otherwise,

where f (1)l (·)= ∂ f (·)/∂xi+l−1. Hence, slight algebraic manipulation gives

nL−1∑
i=2

f
(
RK T

i−1(p), RK T
i (p), RK T

i+1(p)
)=

nL−1∑
i=2

2∑
l=0

(
RK T

i (p)− RK T
i+l−1(p)

)
1{Mi+l−1}.

As RK T
i (p)− RK T

i+l−1(p) = 0 ∀i = 2, . . . ,nL − 1 when l = 1, it suffices to establish a
stochastic bound for one of the right-hand-side components of the decomposition, e.g.,

(
RK T

i (p)− RK T
i−1(p)

)
1{Mi−1} =

(∫ τi

τi−1

σ 2
t dt −

∫ τi−1

τi−2

σ 2
t dt

)
1{Mi−1 } + (�M̃τi −�M̃τi−1

)
1{Mi−1},

since the analogous result for (RK T
i (p)− RK T

i+1(p))1{Mi+1} follows immediately. By
Itô’s lemma

nL −1∑
i=2

(∫ τi

τi−1

σ 2
t dt −

∫ τi−1

τi−2

σ 2
t dt

)
1{Mi−1 } =

nL −1∑
i=2

(∫ τi

τi−1

(τi − t)dσ 2
t −

∫ τi−1

τi−2

(t − τi−2)dσ
2
t

)
1{Mi−1 }

≤
∣∣∣∣∣∣
nL −1∑
i=2

∫ τi

τi−1

(τi − t)dσ 2
t 1{Mi−1 }

∣∣∣∣∣∣
+
∣∣∣∣∣∣
nL −1∑
i=2

∫ τi−1

τi−2

(t − τi−2)dσ
2
t 1{Mi−1}

∣∣∣∣∣∣ ,

which is Op(n−β) using Lemma C.9(a). Next, denote M̃ = ∑nL−1
i=2

(
�M̃τi −

�M̃τi−1

)
1{Mi−1}, then

E

[(
n1/4M̃)2] ≤ E

⎡
⎣n1/2

nL−1∑
i=2

(
�M̃2

τi
+�M̃2

τi−1

)⎤⎦

−2E

⎡
⎣n1/2

nL−1∑
i=2

�M̃τi 1{Mi−1}
nL−1∑
i=2

�M̃τi−1 1{Mi−1}

⎤
⎦≤ Op(1),

where the first inequality follows by independence of the martingale increments, and
the second by Lemma B.7. Hence, |M̃| ≤ Op(n−1/4) by the BDG inequality, which,
together with the results above, provides the approximation B RK ∗(p,1)− M B RK ∗(p)≤
Op(n−β)+ Op(n−1/4) and, in conjunction with Theorem 3(1), completes the proof of the
first part.

Jumps: As in the proof of Theorem 3, RK T
i−1(y), RK T

i (y), RK T
i+1(y) will (asymptot-

ically) at most contain one block with jumps since E[Nt ]<∞, whose quadratic variation
enters additively. Hence,
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∣∣∣∣
nL∑
i=2

med
(
RK T

i−1(p), RK T
i (p), RK T

i+1(p)
)−med

(
RK T

i−1(y), RK T
i (y), RK T

i+1(y)
)∣∣∣∣

≤
nL∑
i=2

2∑
l=0

∣∣RK T
i+l−1(p)− RK T

i+l−1(y)
∣∣∣∣1{Mi+l−1 }

∣∣≤ Op(n−β),

since RK T
i+l−1(p) − RK T

i+l−1(y) cancels if no jump occurs, E[Nt ] < ∞, and

|1{Mi+l−1 }| ≤ Op(n−β). To see the latter, since convergence in L1 implies convergence in

probability, it suffices to show E[|1{Mi+l−1 }|] = Pi+l−1 ≤ Op(n−β). Suppose Jt �= 0 for
some t ∈ (τi−2,τi−1], then

Pi−1 ≤ P
[
RK T

i−1(y) < RK T
i (p)

]+P
[
RK T

i−1(y) < RK T
i+1(p)

]≤ Op(n
−β)

by the Markov inequality. As this holds true for the more general case Pi+l−1, l = 0,1,2
if Jt �= 0 occurs for some t ∈ (τi+l−2,τi+l−1], this provides the final result. �
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