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Abstract. This paper examines the anisotropies of a charged particle beam moving
into a linear focusing channel. Considering a high-intensity ion beam in space-
charge-dominated regime and large mismatched root mean square (RMS) initial
beam size, a fast increase in spatial beam anisotropy is observed. Calculations
presented here are strong evidence that this anisotropy is responsible for the
beam’s equipartition. It is shown that particle–particle resonances and wave-particle
resonances lead to anisotropization of the beam, i.e. both the envelope and emittance
ratios different from unity. It indicates that this anisotropy is responsible for the
beam’s equipartitioning and suggest that the beam remains equipartitioned even
when exhibiting a macroscopic anisotropy, which is characterized by the following
properties: the development of an elliptical shape with increasing size along one
axis, the presence of a coupling between transversal emittances and halo formation
along a preferential direction.

1. Introduction
It is known that nonlinear space-charge forces in space-charge-dominated ion beams
are responsible for the formation of filamentation pattern, in the beam spatial
distribution resulting in a 2-component beam consisting of an inner core and
an outer halo [1–4]. When this core is mismatched in a uniform linear focusing
channel, the envelope oscillates and the particles, represented by single test particles,
oscillate about and through the core. This mechanism is called particle-core model
since it consider test particles initially located outside the core. The test particles
execute betatron oscillations under the influence of space-charge field induced by
the oscillating core, and exhibit various nonlinear behaviors, including parametric
resonance. A number of numerical analysis and macroparticle simulations suggested
that the 2:1 parametric resonance between test particle oscillation and breathing
core oscillation is likely the main cause of halo formation [5–11].

Space-charge-induced coupling between different degrees of freedom can be
responsible for emittance growth or transfer of emittance from one phase plane
to another. In an analytical single-particle analysis Montague [12] pointed out that
the space-charge driven fourth-order difference resonance may lead to emittance
coupling. The theory of space-charge coupling resonances has been studied most
thoroughly by Hofmann using Vlasov equation [13]. Intrinsic coupling resonances
are an important consideration to be taken into account in linear acelerators, and
may also be of interest in rings when the tune separation is small [14]. The coupling
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resonances driven by the beam’s space-charge fields depend only on the relative
emittances or average focusing strengths. In anisotropic beams, the emittance and/or
external focusing force strength are different in the two transversale directions. Effects
of anisotropic cores on halo dynamics have been studied by Ikegami [15].

Most of the halo studies so far have considered round beams with axisymmetric
focusing. Some new aspects caused by anisotropy demonstrate an influence of the
mismatch on halo size [16, 17]. In fact, mismatch oscillations can drive particles
into the halo as the result of resonant interaction between these particles and the
mismatch mode [6]. So far only second-order round beams have been considered as
possible mismatch modes: the influence of anisotropic on second and higher order
mismatch modes is expected to be an important factor for halo formation.

Previous work has been done in this direction by means of nonlinear analysis
of the beam’s transport considering non-axisymmetric perturbations [18]. It was
shown that large-amplitude breathing oscillations of an initially round beam couple
nonlinearly to quadrupole-like oscillations. Such that the energy excess, which is
initially constrained to the axisymmetric breathing oscillation, is allowed to flow
back and forth between breathing and quadrupole-like oscillations. In this case, the
beam develops an elliptical shape with an increase in its size along one direction as
the beam is transported, representing a highly nonlinear phenomenon that occurs
for large mismatch amplitudes on the order of 100% [19].

This paper aims at quantifying the relationship between the anisotropy of the
beam and the equipartition and how this relationship is driven by anisotropic
processes. Analyzing the effect of the particle–particle resonances and wave-particle
resonances in the beam, it is shown that these resonances lead to the anisotropy of
the beam, that is, both the envelope ratio and the emittance ratio are different from
unity. The conjecture presented here is that this anisotropy is responsible for the
beam’s equipartitioning.

This paper is organized as follows. In Sec. 2 the models equations are derived,
while Sec. 3 describes the examination of the anisotropies in the ion beam in a linear
focusing channel. Finally, Sec. 4 discusses implications and possible extensions of
our results.

2. The model equations
An axially long unbunched beam of ions of charge q and mass m propagating with
average axial velocity βbcêz along an uniform solenoidal focusing field B(x) = Bz êz
are considered. Self-field interactions are regarded as electrostatic. The parameters

c and γb = 1/
√

1 − β2
b are the speed of light in vacuo and the relativistic factor,

respectively. We assume that the beam has an elliptical cross-section centered at
x = y = 0 and a vanishing canonical angular momentum Pθ ≡ 〈xy′ − yx

′ 〉 = 0,
where x and y are the positions of the beam’s particles. We consider a beam with
a non-uniform density in a space-charge-dominated regime with a initial emittance
such that εx = εy .

As demonstrated by Sacherer [20] and Lapostolle [19], the envelope equations
for a continuous beam are not restricted to uniformly charged beams, but are
equally valid for any charge distribution with elliptical symmetry, provided that the
beam boundary and the emittance are defined by root mean square (RMS) values.
Thus, we consider the parabolic density nb = 2Nb/πrxry[1 − x2/r2x − y2/r2x], where
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rx =
√

6〈x2〉 and ry =
√

6〈y2〉 are the ellipse semi-axis RMS. The parameter Nb is
the axial line density.

For a parabolic density n(x, y), the Poisson equation ∇2
⊥φ = −qn/ε0, ε0 being

the permittivity of free space, provides the basis to obtain the space-charge field
component (assuming a paraxial approximation). The density is assumed to be
zero outside of the ellipse and the solution has been given by Lapostolle [21]. The
electrostatic potentials inside the beam (φin) and outside the beam (φout) are given by

φin=
2qNb

πεo

{
x2

rx(rx + ry)
+

y2

ry(rx + ry)
− x4

[
2rx + ry

3r3x(rx + ry)2

]

−y4

[
2ry + rx

3r3y(rx + ry)2

]
− x2y2

[
1

rxry(rx + ry)2

]}
, (2.1)

φout=
q

4πε0
log

[
y2 + x2 + λ +

√
2yΔ+ +

√
2xΔ−]

+
q

2πε0λ2

[
y2 − x2 − y√

2
Δ+ +

x√
2
Δ−

]
, (2.2)

where λ = r2x − r2y, Λ =
√

(x2 − y2 − λ2)2 + 4x2y2 and Δ± =
√
Λ ± (x2 − y2 ∓ λ2).

The transverse orbit x(s) and y(s) of a beam particle satisfy the paraxial equations
of motion:

x
′′
+ κ2

0x=
−q

mγbβ
2
bc

2

∂φ

∂x
, (2.3)

y
′′
+ κ2

0y=
−q

mγbβ
2
bc

2

∂φ

∂y
, (2.4)

where s is the axial coordinate of the beam and the primes denote derivatives with
respect to s. The parameter κ0 = qBz/2γbβbmc

2 is the vacuum phase advance per
unit of axial length and it measures the focusing field strength.

The envelope of the beam is an elliptical cross-section with RMS radii rj (hence-
forth, j ranges over both x and y) that obey the RMS–KV envelope equations [22]:

r
′′

j + κ2
0rj − 2K

rx + ry
−

ε2
j

r3j
= 0. (2.5)

Here, K = q2Nb/π
2ε0γ

3
bβ

2
bmc

2 is the dimensionless perveance of the beam and

εj =
√

〈j2〉〈j ′2〉 − 〈jj ′ 〉2 is RMS emittance of the beam along the j plane.
εj can be calculated analytically following a model proposed to Lapostolle

et al. [23] for nonlinear space-charge forces, where these forces cause a change in the
momentum components, i.e. the product of the force and the amount of time over
which the force acts. The force depends on the spatial distribution of the particles,
and particle coordinates on which the force acts. In general, these changes in the
momentum components modify the phase-space distribution of the particles. From
the electrostatic potential, the transverse momentum impulse can be calculated and
this results in a new phase-space distribution and new RMS emittance [24, 25]. For
example, in the x plane the change in the momentum component is �px = qExL/vb,
where Ex = ∂φin/∂x is the electric field, vb is the beam velocity, and L is the length
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of the drift space. The impulse can also be expressed as a change in the divergence
angle, given non-relativistically in the paraxial approximation by �x

′
= qExL/mbv

2
b .

If the second momentas of the particle distribution can be evaluated from the
expression for x and x

′
, the RMS emittance can be obtained. Assuming fixed

positions, with divergence x
′
= x/rx + qExL/mbv

2
b , the RMS emittance for parabolic

density yields [26]:

εx=
1

90

√
15KL

⎧⎪⎪⎨
⎪⎪⎩

(
rx
ry

)2
[
5
(

rx
ry

)2

+ 2 rx
ry

+ 5

]
(
1 + rx

ry

)4

⎫⎪⎪⎬
⎪⎪⎭

1/2

, (2.6)

εy =
1

90

√
15KL

⎧⎪⎪⎨
⎪⎪⎩

(
ry
rx

)2
[
5
(

ry
rx

)2

+ 2
ry
rx

+ 5

]
(
1 +

ry
rx

)4

⎫⎪⎪⎬
⎪⎪⎭

1/2

. (2.7)

One can see that the emittance depends on the beam’s perveance K and on the ratio
of the beam semi-axes. The first term corresponds to the filamentation effect caused
by the fourth-order term in the electrostatic potential. The second term comes from
the coupling, i.e the x component dependence of the potential on the y coordinate,
which produces the spreading of the initial filamentation. The last term is a cross
term between the filamentation term and the coupling term.

The KV distribution has been frequently taken as a theoretical basis of the
particle-core model since this implies that the space-charge forces are linear.
However, there is little doubt that intense beams are dominated by nonlinear
interactions. It may thus be reasonable to develop alternative particle-core models
with nonlinear core potentials. From this point of view, we propose here a parabolic
core under a simplifying assumption. The core is described by the RMS envelope (2.5)
and the halo particles are modeled using test particles. These are subjected to the
external force and the time-dependent nonlinear space-charge force associated with
the parabolic core. We assume that the parabolic-type density is roughly maintained
even for a mismatched beam, thus the spatial distribution is assumed to remain
unchanged as the beam propagates. The test particles do not affect the motion of
the core [27], which are described by (2.3) and (2.4), with the electrostatic potentials
φin and φout.

3. Ion beam anisotropies
It is easy to verify that there is a particular solution of the envelope (2.5) for
which rj(s) = rb0 = [(K + (K2 + 4κ2

0η
2)1/2)/2κ2

0]
1/2, where η = εx/εy is the emittance

ratio. This corresponds to the so called matched solution for which a circular
beam of radius rb0 preserves its shape throughout the transport along the focusing
channel. Then, we transform the equations to a dimensionless form introducing
the following dimensionless variables and parameters: τ = κ0s for the independent
variable, r̃x =

√
κ0/εyrx and r̃y =

√
κ0/εyry for envelope beam, x̃ =

√
κ0/εyx

and ỹ =
√
κ0/εyy for test particle, and K̃ = K/εyκ0 for the scaled space-charge

perveance. We introduce here the following anisotropy variables: the emittance
ratio η = εx/εy; the ratio of the envelope beam χ = rx/ry; the mismatch factor is
ν = rx/rb0 = ry/rb0.
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The beam is initially set in a state with K̃ = 3, κ0 = 1, ν = 2.4, L = 2
rj0 = νrb0, rx0 = ry0 and η = 1. The envelope (2.5) up to s = 50 are then integrated
and the corresponding evolution of the RMS emittances {εj} is calculated through
(2.6) and (2.7). It is convenient to introduce new canonical variables defined as
Xs = (rx + ry)/2 and Xa = (rx − ry)/2, in order to analyze the oscillation modes
of the beam. Note that Xs describes oscillations where rx(s) and ry(s) oscillate in
phase: the breathing modes. The variable Xa describes oscillations where rx(s) and
ry(s) oscillate with opposite phase: the quadrupole modes [18].

One can readily see in Fig. 1 that the beam develops an elliptical shape that
increases its size along the x direction. This effect follows the large initial mismatch
of the beam that couples to the previously described oscillation modes. This leads
to the perturbation of the nonlinear space-charge force and therefore induces the
coupling between different degrees of freedom and core–core resonances [16, 28].
Real core–core resonances [13] are observed for RMS mismatched beams fulfilling
internal resonance conditions between the planes. The mismatched size RMS beam
is the energy excess given to the system. In general, this excess appears as energy
oscillations in the degrees of freedom of the system. Space-charge coupling of these
degrees of freedom causes a resonance leading to energy transfer between the relevant
degrees of freedom. In Fig. 1 (bottom), it is shown that there is an increase of the
oscillation amplitude of the modes, featuring a resonance between the breathing
and the quadrupole mode. This resonance was analyzed through the numerical
calculations (Fourier analysis) of the dimensionless frequencies related breathing
and the quadrupole oscillation modes. The frequencies associated with the breathing
or the quadrupole mode correspond to the maximum in the Fourier transform.
Details about the implementation of the Fourier transform can be found in [29].
The breathing mode and quadrupole mode frequencies are ωXs

= ωXa
= 2.01334.

In the emittance dynamics analysis of (2.6) and (2.7), the initial transversal
emittances are set to εx0 = εy0 = 0.22360 [26]. The corresponding results for the
emittance dynamics are shown in Fig. 2. Here one can observe that the difference
between resonances results in a coupling of the emittances, which are driven by
the space charge [12, 30, 31]. This coupling is characterized by an emittance
exchange between both directions. Space-charge affects the net forces as seen by the
individual particles in such a way that they become nonlinear and dependent on
the density distribution of the beam. Furthermore, emittance exchange requires a
resonant coupling, which can take place only if an intrinsic resonance relationship is
fulfilled. In this scenario, a simplified approach consists of a single-particle resonance
difference where the condition lωx − mωy = 0 is fulfilled (l and m are integer
numbers), as suggested in [32]. In this case, ωx and ωy are the single-particle
frequency along the x and y directions, respectively. The motion is always bounded
in both x and y directions. This emittance coupling is an expression of the exchange
of energy between these directions, which is a common feature in linearly coupled
systems l = m = 1. In this work, the dimensionless frequencies ωx and ωy of 2500
test particles by were numerically computed by means of the Fourier transform.
Following, test particles were released along the x- and y-axis of the beam at positions
constrained between 0.01rj and 0.7rj spaced by 0.0004rj along both j directions – x

and y. It was observed that 2455 particles acquired the same frequency ωx = ωy =
1.05461 in both directions. Thus it can be argued that these 2455 test particles are
subject to the resonance condition ωx − ωy = 0. These results are illustrated by the
histogram in Fig. 4. Since a large fraction of test particles in resonance gives rise to
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Figure 1. (Colour online) The upper graph shows the evolution of the envelope obtained by
direct integration of (2.5). The variables rx and ry are represented by the red and blue lines,
respectively. The lower graph illustrates the evolution of the oscillation modes of the beam.
The variables Xs and Xa are represented by the red and blue lines, respectively.

the emittance coupling, which, thus, result in strong correlations between the particle
positions and the transverse momenta. The emittance oscillations are now driven by
variations of the space-charge force due to the beam compression and expansion. The
rapid emittance oscillations are due to the coherent transverse plasma oscillations
in the beam and are an expression of the periodic energy exchange between the
potential and the kinetic energy.
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Figure 2. (Colour online) Evolution of the emittance (top) obtained of (2.6) and (2.7). εx
and εy are represented by red and blue lines, respectively. Emittance and sum transversal
emittance (bottom) as a function of the ratio of the envelope beam χ = rx/ry . εx, εy , and
(εx + εy)/2 versus χ are represented by red, blue, and gray lines, respectively. Notice that
(εx + εy)/2 shows a much smoother anisotropic variable (χ) response.

In Fig. 2, one also observe an increase in the maximum of emittance oscillations.
This effect is a direct consequence of nonlinearities in the particle oscillations
around their equilibrium positions. Excess energy is required in order to drive these
nonlinearities, which, on their turn, are caused by the energy anisotropy between
different degrees of freedom. Figure 2 (bottom) shows εx and εy versus the semi-axis
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ratio rx/ry , where εx increases and εy decreases with increasing rx/ry but εy increases
and εx decreases with decreasing rx/ry . The fact that εx increases as the the semi-axis
length increases may seem counterintuitive . This effect arises from space charge,
which increases as the beam size decreases. This can be explained by remembering
that the field components, and therefore the divergence kick in x and y, are insensitive
to the envelope, as follows: an elliptical beam with parabolic density present the
boundary field’s on the minor and major axes are not similar. In this case, we have
Ex = ∂φin/∂x → Ex(rx, 0) = 2q

πε0(rx+ry)
[1 − 2+ry/rx

3(1+ry/rx)
] and Ey = ∂φin/∂y → Ey(0, ry) =

2q
πε0(rx+ry)

[1 − 2ry/rx+1

3(1+ry/rx)
]. It can be seen that although these fields are not exactly

equal (except when the beam is round) they usually present comparable magnitudes.
However, the emittance is an area in phase space and is essentially the divergence
spread multiplied by the spatial extent of the plane in the phase space in which
the beam lies on. Therefore, if the divergence kicks are of comparable intensity
on both planes, the emittance becomes higher in the plane that presents a larger
envelope.

It is noteworthy to mention that space charge is responsible for inducing waves in
the beam, a collective effect. These waves are characterized by a plasma frequency,
and their effect is observed in the asymptotic evolution of the envelope and emittance,
as shown in Fig. 3. The exponential growth of the envelope and the emittance
exchange is characterized by an instable tilting mode of the beam in a space-
charge-dominated regime [13, 33]. The parabolic distribution is characterized by the
appearance of the tilting mode where emittances are periodically exchanged between
x and y, similar to a second-order difference resonance driven by skew quadrupoles.
This tilting instability on the x and y directions obviously requires some amount
of anisotropy. According to previous results by the author [18], breathing mode is
excited by the symmetric perturbation only, while the antisymmetric perturbation
excites only the quadrupole mode. When anisotropy is also considered, this is not the
case. We find a mixture of breathing and quadrupole modes. In the present model
both modes are resonant and space charge induces a coherent shift of the resonance
conditions lωx − mωy + Δω = 0, since the full ensemble of particles respond to the
resonance in a coherent way. Thus, the system may follow two distinct behaviors:
when Δω = 0 the beam is not affected by space charge [34], whereas when Δω = 0
space-charge effects are observed, activating the tilting mode [35]. In this situation,
the majority of the test particles launched along the x- and y-axis inside the beam
are in a resonant state. In this model the driving term for this resonance, is not a
skew quadrupole as in synchrotrons, but the internal space-charge force caused by
the exponentially growing tilting of the beam’s cross-section.

Nonlinear resonances may eventually yield RMS emittance growth as more and
more particles are launched outside of the core. Therefore, a halo is not generated
by a collective effect involving all the core particles, but by formation is the resonant
interaction between the particles and the mismatch modes. These resonances enable
the transfer of energy excess from one plane to another [16]. It is shown bellow that
this exchange occur with the halo formation along one preferential direction.

To understand how halo formation takes place, different beam resonances are
investigated. The computed frequencies ωXs

= ωXa
= 2.01334 for the breathing and

the quadrupole modes respectively represent a 1:1 resonance, whereas the Fourier
analysis of the test particles shows that 2455 of them obey the resonance condition
ωx − ωy = 0, with ωx = ωy = 1.05461 - while the other 45 have ωy = 1.00667.
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Figure 3. (Colour online) Asymptotic evolution of the envelopes (top) and emittance
(bottom) obtained of the (2.5) and, (2.6) and (2.7), respectively. rx (top), εx (bottom) and
ry (top) εy (bottom) are represented by red and blue lines, respectively.

The dominant order of the resonance at ωx/ωy = 1 yields a significant emittance
exchange [36]. This creates a barrier between the region inside the beam and the
region outside the beam and the space-charge coupling force is responsible for the
energy transfer from core oscillations to the single-particle oscillations, yielding 2:1
particle-core resonances in both quadrupole and breathing modes, but only in the y

direction of the test particles [15]. As a consequence, the halo formation takes place
along the y direction, as illustrated in Fig. 5.
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Figure 4. (Colour online) The histogram of the frequencies ωx and ωy of 2500 test particles,
calculated numerically through the Fourier transform. The test particles were launched along
the x- and y-axis in specific regions inside the beam (between 0.01rx and 0.7rx spaced by
0.0004rx along the x direction, and between 0.01ry and 0.7ry spaced by 0.0004ry along the y
direction). The values obtained for the frequencies can be found in the text.
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Figure 5. (Colour online) Dynamical evolution of a single test particle. We assumed initially
that x = 0.5rx and y = 0.5ry . The variables x and y of the test particle are represented by
black and pink lines, respectively. The evolution of the envelopes rx and ry are represented
by red and blue lines, respectively.

For a large-size RMS mismatched beam with an initial ratio χ = 1 between
the envelopes, the ratio of oscillation energies in the x and y directions, given by
ξ = (ryεx)

2/(rxεy)
2 = 1 [37, 38], remains constant. This can be explained, since

ξ = η2/χ2 and for our model χ = η, following (2.6) and (2.7) and the definitions
of the anisotropic variables. As illustrated in Fig. 6, the quantities χ and η vary
in a discontinuous way, which characterizes an anisotropic beam [26, 39]. The
anisotropy leading to a coupling resonance [40, 41] in the presence of nonlinear
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Figure 6. (Colour online) The dynamical evolution of the ratio of oscillation energies ξ and
of the anisotropic ratios χ and η. The quantity ξ is represented by the red line, while χ and η
are represented by the blue line – χ appears superposed by η.

space-charge forces was suggested as a possible approach to the equipartitioning
problem [17, 28, 32], since collisions are not responsible for the energy transfer
in linacs. The collective oscillations of the space-charge density is the underlying
mechanism of the system, as they create nonlinear forces, similar to those magnetic
sextupoles, which lead to the resonant coupling as observed by Kandrup et al. [42].

4. Conclusions
In this paper we examined the anisotropies in the ion beam in a linear focusing
channel. The effects of the particle–particle resonances and of the wave-particle
resonances in the beam were analyzed. It was shown that these resonances lead to
the spatial anisotropization of the beam, that is, the envelope ratio, and therefore
the emittance ratio, are different from unity.

The nonlinear space-charge forces lead to the equipartitioning of energy between
the degrees of freedom. In space-charge-dominated beams, the Coulomb collisions
are not usually responsible for energy transfers. However, it has been shown that
space-charge waves are possible candidates to generate coupling between the degrees
of freedom [17, 28]. The equipartitioning of an anisotropic beam involves a nonlinear
energy transfer and the evolution toward a quasi-equilibrium state, as a consequence
of the resonant phase mixing [42, 43]. We used the Fourier transform in order
to compute numerically the frequencies, and the frequency of the breathing and
quadrupole modes were determined as ωXs

= ωXa
= 2.01334. The fact that both

modes have the same frequency means that are in a resonant state. This core-core
resonance is responsible for the elliptical shape of the beam and its increasing
size along the x direction [13]. ωx and ωy frequencies of 2500 test particles
were numerically calculated, resulting in 2455 of them in a resonance condition
characterized by ωx−ωy = 0. This is a direct consequence of the emittance coupling.
The remaining 45 test particles were observed with an ωy = 1.00667. The particle-
core 2:1 resonances are present in both the quadrupole and the breathing mode of
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the core oscillation, only within the y direction of these test particles [15]. Thus,
halo formation occurs along the y direction. The anisotropy leading to coupling
resonance [40, 41] in the presence of nonlinear space-charge forces was suggested as
an approach to the equipartitioning problem [17, 28, 32].

This series of phenomena suggest an direction for future research. We can develop
an approach to model locally anisotropic kinetic processes [44]. The generalization
of kinetic equations to anisotropics beams is not a trivial task. In order to consider
the anisotropic processes of microscopic or macroscopic natures it is necessary to
reformulate the kinetic theory in anholonomic frames. The modelling of kinetic
processes with respect to anholonomic frames is very useful with the aim of
elucidating flows of fluids of particles not in local equilibrium. The deduction
of the equation for one-particle distribution function in anisotropics phase-space
will be considered in a future work.
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