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The dynamics of a plane interface separating two sheared, density and viscosity
matched fluids in the vertical gap between parallel plate electrodes are studied
computationally. A Couette profile is imposed onto the fluids by moving the rigid
plates at equal speeds in opposite directions. In addition, a vertical electric field is
applied to the shear flow by impressing a constant voltage difference on the electrodes.
The stability of the initially flat interface is a very subtle balance between surface
tension, inertia, viscosity and electric field effects. Under unstable conditions, the
potential difference in the fluid results in an electrostatic pressure that amplifies
disturbance waves on the two-fluid interface at characteristic wave lengths. Various
mechanisms determining the growth rate of the most unstable mode are addressed
in a systematic parameter study. The applied methodology involves a combination
of numerical simulation and analytical work. Linear stability theory is employed
to identify unstable parametric conditions of the perturbed Couette flow. Particular
attention is given to the effect of the applied electric field on the instability of
the perturbed two-fluid interface. The normal mode analyses are followed up by
numerical simulations. The applied method relies on solving the governing equations
for the fluid mechanics and the electrostatics in a one-fluid approximation by using a
finite-volume technique combined with explicit tracking of the evolving interface. The
numerical results confirm those of linear theory and, furthermore, reveal a rich array
of dynamical behaviour. The elementary fluid instabilities are finger-like structures
of interpenetrating fluids. For weakly unstable situations a single fingering instability
emerges on the interface. Increasing the growth rates causes the finger to form a
drop-like tip region connected by a long thinning fluids neck. Even more striking
fluid motion occurs at higher values of the electric field parameter for which multiple
fluid branches develop on the interface. For a pair of perfect dielectrics the vertical
electric field was found to enhance interfacial motion irrespective of the permittivity
ratio, while in leaky dielectrics the electric field can either stabilize or destabilize the
interface, depending on the conductivity and permittivity ratio between the fluids.
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1. Introduction
Recent progress in the design and utilization of micro-fluidic devices for fluid

transport has found many applications, ranging from the life-sciences industry for
pharmaceuticals and biological medicine (drug design, delivery and detection, and
diagnostic devices) to industrial applications of combinatorial synthesis and polymer
extrusion. Other areas of applications include aerospace and automotive industries,
and micro-reaction engineering. The most important new features introduced by the
small length scales of micro-fluidic devices are the significant role of interfacial forces
(adhesive forces, electric fields, van der Waals interactions), surface roughness, energy
dissipation and fluidic resistance.

Micro-fluidic flows with Reynolds numbers of order unity or smaller are often
stable and governed by viscous dissipation. As the Reynolds number increases the
presence of inertia introduces a nonlinearity to the problem which is a source of
flow instabilities. For example, devices for mixing and dispensing benefit from flow
instabilities, particularly due to the absence of turbulence at low Reynolds numbers,
and it has been suggested (El Moctar, Aubry & Batton 2003; Uguz, Ozen & Aubry
2008; Uguz & Aubry 2008 – see also the experiments of Ozen et al. 2006a) that
electric fields may be useful in enhancing instabilities in such flows even at small
Reynolds numbers.

The presence of multiple phases poses major challenges in both proper design and
reliable operation of flow devices. Typically, multi-fluidic systems are susceptible to
hydrodynamic instabilities, blockages and pressure and temperature fluctuations (see
e.g. Charles, Govier & Hodgson 1961; Hagerdon, Martyn & Douglas 2004). Hence,
the establishment of waves on an originally flat interface separating different fluid
phases has a strong impact on the overall performance of the assembly. For this
reason, the control and use of such fluid devices requires a clear insight into the
conditions at which waves form as well as their ultimate nonlinear evolution.

The stability of two superposed viscous fluids in plane channel flow has attracted
considerable theoretical and practical interest over many years. In a pioneering study,
Yih (1967) examined the linear stability of superposed Couette and plane Poiseuille
flows using a long-wave approach. He showed that viscosity stratification can generate
an interfacial instability (the interfacial mode) at any Reynolds number. In addition
to instability caused by viscosity stratification, hydrodynamic instability can also arise
from density stratification, curvature of the velocity profile or from shear effects
in one of the phases. In addition to the interfacial mode, Hooper & Boyd (1983)
found a viscous-inertial dominated instability mechanism in two-layer Couette flow,
primarily at short wavelengths. Two-layer Poiseuille flow also supports a shear-type
instability, closely resembling the modes of the single-phase Poiseuille flow. Renardy
(1985) carried out a full linear stability analysis and revealed the existence of unstable
parameter regions in channel flow of two stratified viscous fluids which had been
missed out by previous long or short wave asymptotic analyses. There exists a large
literature on the linear stability of two-layer flow in the absence of electric fields;
the reader is referred to Renardy (1987), Yiantsios, Brian & Higgins (1988), Hooper
(1989) and the references therein.

The electrohydrodynamic (abbreviated EHD hereafter) instability of superposed,
immiscible, viscous fluids has several applications particularly in ink-jet printing,
lithography and biological colloidal physics. The EHD activity of the fluid system
considered in this paper rests on the presence of mobile charges that move locally
under the influence of an external electric field and migrate onto the interface
inducing polarization forces. The strength of the electric fields in the dielectrics
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Interfacial instability in electrified plane Couette flow 157

depends on the polarizability of the fluids, expressed in the dielectric constants, ε.
With a mismatch of the polarizability between the two fluids, the electric field exerts
a force on the charges at the fluid interface. This electrostatic force can either be
normal or tangential to the interface depending on the conductivity and dielectric
properties of the fluids. For perfect dielectrics and conductors, the resulting force acts
perpendicular to the interface, thus pushing the interface in the direction with the
lower dielectric constant. The idealization of non-conducting perfect dielectric fluids
provides a useful leading-order approximation. However, most real non-conducting
fluids do not behave as perfect insulators, irrespective of how small their conductivity
is. Even a small conductivity allows electric charges to reach the interface and form
a diffuse charge layer there. Given the apparent importance of finite conductivities in
technological applications, we adopt the leaky dielectric model developed by Taylor &
Melcher (1969). In the Taylor–Melcher model, dielectric fluids have small but finite
conductivities and the change of the charge density by fluid motion is assumed
to be small and thus negligible in the conservation of charge equation. For this
reason, the electric field can be computed from the charge conservation equation
governing the electric potential. The Taylor–Melcher model allows for redistribution
and accumulation of free charges at interfaces and thus predicts tangential stresses
due to charge buildup there (see Saville 1997). It has been established that tangential
electric stresses can significantly affect the stability of multi-fluidic systems as they
induce convective flows and fluid deformations that cannot be generated by distributed
body forces.

It is well known that surface polarization forces can lead to the instability of
plane interfaces between two viscous fluids in a vertical uniform electrostatic field
(Melcher & Smith 1969). The case of two superposed conducting or non-conducting
fluids was examined by Melcher & Schwarz (1968). They considered a constant
electric field applied in the plane of the undisturbed interface and analysed the linear
stability of the two-phase systems showing that the influence of the electric field is
a dispersive regularization of short waves. Melcher & Schwarz (1968) also pointed
out that the electric field produces net surface forces due to the polarization that
tend to disrupt the interface and they studied the effect of an electric field on the
linear stability separating two non-conducting dielectric fluids of infinite extent. They
established that the electric field stabilizes and increases the propagation speed of
surface waves. This behaviour continues into the fully nonlinear regime as discovered
in the computations of Papageorgiou & Vanden-Broeck (2004a,b). The stability of
Couette–Poiseuille flow in the presence of a vertical electric field has been studied by
Ozen et al. (2006b), Li et al. (2007), Uguz et al. (2008) and Uguz & Aubry (2008)
when the field is either vertical or horizontal to the undisturbed interface. Both
perfect and leaky dielectric models are considered and it is shown that vertical fields
destabilize perfect dielectric fluid pairs, while for leaky dielectrics the situation is more
complicated in that there exist parameter ranges that depend on the permittivity and
conductivity ratios for which the flow can be stabilized. One of the main objectives
of the present study is to extend such linear theories into the nonlinear regime at
arbitrary Reynolds numbers.

Of interest to the present work are electrokinetic flows in microchannels in the
presence of conductivity gradients. Lin et al. (2004) consider instabilities (theoretically
and experimentally) in a rectangular channel driven by an electric field which
is perpendicular to a conductivity stratification gradient, building on earlier work
by Baygents & Baldessari (1998). Additional studies including the transition from
convective to absolute instability as well as work on colloidal suspensions can be
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found in Chen et al. (2005), Lin (2009), Posner & Santiago (2006) and Navaneetham &
Posner (2009). The physical problem in the cited studies is typically a single-phase
flow driven by spatio-temporal gradients in electrical conductivity in the absence of
sharp interfaces.

The present study is partly motivated by the micro-fluidic experiments of Ozen
et al. (2006a) at fairly small shear rates characterized by Reynolds numbers of order
O(10−2). They produced highly stable two-fluid Poiseuille flows in microchannels and
studied their stability under electric fields perpendicular to the mean-flow direction.
Ozen et al. (2006a) showed experimentally that electrohydrodynamically induced
instabilities can lead to a separation of the initially stable liquid layers into droplets
of one phase encapsulated in the second immiscible phase. This is achieved by
first producing an alternating series of liquid plugs of one fluid followed by the
second one, which then relax to Bretherton-like droplets when they are swept by the
flow outside the region where the field is acting. What is most striking, perhaps, is
that this nonlinear phenomenon is periodic and extremely robust thus producing a
monodisperse distribution of droplets. In a related theoretical work, Mählmann &
Papageorgiou (2009), consider the electrification of such an array of droplets of one
fluid in another under shear. Direct numerical simulations are carried out (using
level-set methods) that establish the role of the electric field to enhance stretching
of the drops and indeed destabilize steady deformed droplet shapes into ones that
are stretched indefinitely. Thaokar & Kumaran (2005) studied theoretically the effect
of vertical electric fields on the stability of the interface between two perfect and
leaky dielectric fluids in the zero-Reynolds-number limit. Using weakly nonlinear and
boundary integral analysis they focused on the nature of the initial bifurcation, which
cannot be addressed by the linear stability theory. Tomar et al. (2007) addressed
this problem at arbitrary Reynolds number using a coupled level set and volume-
of-fluid method. Moreover, Craster & Matar (2005) derived a coupled system of
evolution equations to investigate the stability of the interface between two thin leaky
dielectric fluid layers. By performing linear and nonlinear stability analyses they found
that decreasing the thickness ratio destabilizes the interface, giving rise to periodic
structures of decreasing wavelength.

There exists a large variety of computational models for moving interfaces, grossly
categorized into interface-capturing and interface-tracking methods. In interface-
capturing methods such as level-set (Osher & Sethian 1988) and phase-field methods
(Anderson, McFadden & Wheeler 1998), the interface is implicitly represented by a
contour of a scalar function, whereas interface-tracking methods (examples include
boundary integral, Pozrikidis 2001; volume-of-fluid, Hirt & Nichols 1981; front-
tracking, Glimm et al. 1998; Unverdi & Tryggvason 1992; immersed boundary,
Peskin 2002 and immersed interface methods, LeVeque & Li 1994; Lee & LeVeque
2003) use a Lagrangian approach to track the interface. The basic idea of the front-
tracking approach is the use of two different grids. The fluid equations are solved
on a fixed Eulerian grid, whereas Lagrangian coordinates are employed to explicitly
track the evolving interface and to accurately compute surface forces. Front-tracking
methods have shown several advantages in the computation of physical problems
such as the study of fluid interface instabilities (see Du et al. 2005). For this reason,
the front-tracking technique will be applied to the physical problem considered in this
study.

The main goal of the present work is to elucidate the physical mechanisms that
affect the interfacial instability in electrified two-layer Couette flow at arbitrary
Reynolds numbers and to follow the dynamics into the nonlinear regime in order to
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Figure 1. Schematic representation of an evolving interface in plane two-layer Couette flow
under the influence of a vertical electric field.

allow interfacial touchdown. Our methodology involves a combination of numerical
simulation and analytical work. Linear stability theory is employed to identify unstable
parametric conditions of the perturbed two-layer Couette flow, and is followed up
by numerical simulations of the transient response of the system to small amplitude
disturbances. The computational study addresses the combined effects of electric
fields, surface tension, and inertia on the interfacial dynamics and covers pairs of
perfect and leaky dielectric fluids. To identify the linear regime, we compare growth
rates of the evolving instability computed from the numerical data with theoretical
predictions based on the linear stability theory. Such disturbances are then followed
into the fully nonlinear regime computationally up to times when (if) the interface
touches one of the channel walls.

The remainder of this paper unfolds as follows: in § 2, we outline the physical
problem and formulate the governing equations for the fluid mechanics and the
electrostatics. The solution of the coupled system of equations yields transient
simulations for the motion of the perturbed interface in perfect or leaky dielectric
fluids. Furthermore, we summarize the linear stability equations and describe the
applied technique to solve the generalized eigenvalue problem. Section 3 presents
results of the numerical simulations and comparisons with the linear stability analysis
for a wide number of process parameters. In § 4, we summarize our conclusions.

2. Problem formulation
2.1. Governing equations and method of solution

In this section, we will first present the fundamental equations governing the
dynamics of a sheared two-fluid interface including electric field effects. A schematic
representation of the problem of interest is depicted in figure 1. We consider a system
of two superposed incompressible, density- and viscosity-matched fluids between two
rigid horizontal plates. The fluids are immiscible and separated by a deformable
sharp interface. The lower/upper fluids are referred to as fluids 1 and 2, respectively;
fluid j (j =1, 2) has undisturbed thickness, hj , dielectric permittivity, εj and electric
conductivity, σj . A Couette profile is generated by moving the parallel plates confining
the fluids at equal speeds U in opposite directions. In addition, a uniform electric
field is imposed on the system by applying a constant voltage potential difference
�V = V0 in the vertical gap between the plates. Gravitational effects are neglected in
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160 S. Mählmann and D. T. Papageorgiou

this study, which is a useful assumption in the regime of micro-fluidic flow scales.
The no-slip/no-penetration condition is imposed at the rigid plates. The infinite
horizontal extent of the flow is modelled by a periodic representation, where the
length of the computational domain l represents one wavelength of the imposed
disturbance. The mathematical description of the time-dependent interfacial dynamics
requires simultaneous solution of the fluid mechanics equations and the equations
of electrostatics. Introducing dimensionless variables that are constructed using the
material properties of the lower fluid as reference values, the velocity scale, U , and the
time scale, h1/U , we find that the problem is characterized by the Reynolds number,
Re, the surface tension parameter, T , and the electric field parameter, Ew , defined as
follows:

Re =
ρ1Uh1

µ1

, T =
γ

ρ1U 2h1

, Ew =
ε1ε0V

2
0

ρ1U 2h2
1

, (2.1)

where U is the speed of the plates of the Couette device, ρ is the density, µ is
the dynamic viscosity, γ is the coefficient of surface tension (assumed constant) and
ε0 is the permittivity of free space (ε0 = 8.85 × 10−12 C (V m)−1). We continue by
formulating the two sets of governing equations pertaining to the dynamics of the
two-layer Couette flow with the fluid motion of each phase described by a single
set of conservation laws. Furthermore, localized forces that arise due to the singular
nature of the two-fluid interface are treated by adding appropriate source terms to
the momentum equations. It follows that the dimensionless governing equations for
a quasi-one-fluid flow with spatially varying material properties read

∇ · u = 0, (2.2)

∂ρu
∂t

+ ∇ · ρuu = − ∇p + Re−1∇ · (2µDu) + Fs . (2.3)

Here, u is the velocity vector, p is the pressure and Du = (1/2)( ∇u + ∇uT) is the
deformation tensor. Fs represents the singular interface force, which is composed of
two parts in our study: (i) the surface tension force, Fγ

s , and (ii) the electrostatic
force density, Fe

s . Here, surface tension is represented by a distribution of singularities
along the interface

Fγ
s = T

∫
∂Ω

κnδ(x − xf ) ds, (2.4)

where κ is twice the mean curvature of the interface, δ is a three-dimensional delta-
function constructed as a tensor product of one-dimensional Dirac delta functions,
n is a unit vector normal to the interface, x is the point at which the equations are
evaluated and xf is the position of the front. Following Shin & Juric (2002), the
discrete numerical implementation of the surface integral (2.4) onto the fixed Eulerian
grid is approximated in the form of a sum over all interface elements∑

k

f kδ(x − xk)�sk, (2.5)

where �sk denotes the average of the straight line distances from point xf,k to the
two neighbouring points xf,k+1 and xf,k−1 and f k is the surface tension force given
by the Serret–Frenet formula. To transfer the front singularities to the fixed grid, the
sharp delta functions are approximated by smooth functions with compact support
on the grid. More precisely, we used the interpolation function proposed by Peskin
(1977) to interpolate the velocities and to distribute the surface forces onto the grid.
The standard diffuse-interface approximation is employed, where the discontinuous
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material fields q(x) are replaced by smoothed distributions defined in terms of a
smooth scalar function ϕ(x). This function takes the value of zero in fluid region 1,
the value of unity in region 2, and undergoes a gradual transition across the interface.
The permittivity and conductivity field qs = (ε, σ )s are approximated using the linear
interpolation

qs(x) = q1 + (q2 − q1)ϕ(x). (2.6)

By smoothing the delta function and taking the divergence of the resulting equation,
we derive a Poisson equation for the smooth function ϕ(x). The forcing term in the
right-hand side represents the divergence of a nearly singular vector field distributed
along the interface.

Next we consider the electric field problem and provide a formulation that is later
utilized in a diffuse interface numerical method. The starting point is the system of
Maxwell’s equations in regions 1 and 2 (e.g. Jackson 1962). In the problems of interest
here (either DC fields or AC fields at frequencies in the kHz range and system lengths
of the order of a metre or smaller), induced magnetic fields are small and can be
ignored. The equations in each region become (subscripts are suppressed for clarity)

∇ · (ε E) = q, (2.7)

∇ × E = 0, (2.8)

∂q

∂t
+ ∇ · J = 0, (2.9)

where E is the electric field, q(x, t) is the local charge density, J = σ E + qu is the
current density and ε and σ denote the permittivity and conductivity constants in
the specified region, respectively. Equation (2.7) is Gauss’s law, (2.8) states that the
electric field is irrotational since magnetic induction is negligible and (2.9) is a volume
charge density conservation equation. Eliminating J in favour of q ((2.7) is used also),
casts (2.9) into

∂q

∂t
+ u · ∇q +

σ

ε
q = 0, (2.10)

which simplifies considerably in a Lagrangian frame. Typical values (e.g. de-ionized
water) provide σ/ε ∼ 105 s−1 and hence a fast relaxation time scale compared to the
hydrodynamic one, which removes charges from the bulk since q → 0 exponentially
fast. To a good approximation, therefore, all charges will reside on the interface and
in regions 1 and 2 we can take q ≡ 0. It remains to find the electrically induced force
in the Navier–Stokes equations (2.3). For both perfect and leaky dielectric fluids, the
singular force density, Fe

s , is computed from the divergence form of the Maxwell
stress tensor, TM

Fe
s = Ew ∇ · TM. (2.11)

Following Landau & Lifshitz (1960) and assuming linear isotropic media, the
components of the Maxwell stress tensor, T M

ij , read

T M
ij = εε0EiEj − 1

2
εε0

[
1 − ρ

ε

∂ε

∂ρ

]
E · Eδij . (2.12)

The first term in the right-hand side of (2.12) represents the electrophoretic component
that originates from Coulomb stresses upon free charges and the second term
corresponds to dielectrophoric stresses (electrostrictive stresses are ignored since we
assume that ∂ε/∂ρ = 0). We also note the following equivalent form for the EHD
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force density, Fe
s (this is easily verified by starting from (2.11) and using Gauss’s law

(2.7))

Fe
s = q E − 1

2
(E · E) ∇ ε. (2.13)

This form of force density in single-phase flows with variable conductivities but
constant permittivities, so that only the first term in the right-hand side of (2.13)
enters, has been used in a series of studies on electrokinetic instabilities by Chen et al.
(2005), Lin et al. (2004), Lin (2009), Posner & Santiago (2006) and Navaneetham &
Posner (2009). In what follows we discuss the individual cases of perfect and leaky
dielectric fluids. We note that in all cases (2.8) is satisfied by introducing a voltage
potential, V , so that E = −∇V .

When the fluids are perfect dielectrics (insulators), the system (2.7)–(2.9) reduces to
the single quasi-one-fluid equation

∇ · (ε∇V ) = 0, (2.14)

where the permittivity ε is variable across the interface according to (2.6) and its
mollified version. Once the electric field is determined throughout the domain, the
electric force (2.11) (or equivalently (2.13)) in the Navier–Stokes equations drives the
EHD instabilities.

When the conductivities are finite, we model the problem using the leaky dielectric
model. Noting the additional fast relaxation time limit mentioned earlier we observe
that the charge density, q , is non-zero on the interface alone. The quasi-one-region
equation that emerges is

∇ · (σ∇V ) = 0, (2.15)

where again σ varies across the interface (see (2.6)). Solution of (2.15) for V completely
determines the charge density in the vicinity of the interface and the resulting electric
force (2.11) that enters into the Navier–Stokes equations. Different but completely
equivalent versions of this force appear in the literature; for example, in the single-
phase electrokinetic studies with variable conductivity of Lin (2009) and references
therein, the force Fe

s appearing in (2.3) is seen to be ∇2V ∇V . This arises from
the term q E in (2.13) when q is eliminated in favour of V using the Gauss law
(2.7), assuming constant permittivity and scaling velocities on their electro-viscous
magnitude. In addition, it is easily seen from Gauss’s law coupled with (2.15) that
when the permittivity is constant as assumed in the single-phase electrokinetic studies,
the identity q = (ε/σ )∇σ · ∇V emerges. In our case, ε varies also in the vicinity of the
interface and the appropriate value is q = (ε/σ )∇σ · ∇V − ∇ε · ∇V which can be used
in (2.13) to give an alternative derivation of the electric density force used in our
computations.

The EHD equations are discretized on a fixed, staggered Cartesian grid. The moving
interface is represented by an ordered list of implicitly connected particles. In order
to keep the interface sharp the marker points are advected in a Lagrangian manner.
Since the interface propagates with the fluid flow, the velocity of the marker points
has to be interpolated from the fixed grid. Once the velocity of each marker point on
the interface has been found, its new position is determined by integration. As the
interface deforms and stretches during the simulation, the resolution of some parts of
the interface can become inadequate, while elements are accumulated in other parts.
To ensure adequate spatial resolution and to maintain regularity and stability of the
interface representation at all times, marker points are dynamically added and deleted
during the computation. When new marker points are introduced, their position is
computed by fourth-order interpolation with respect to an approximate arclength.
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At each time step, after the interface position has been updated, the discontinuous
material fields are reconstructed by the integration of the smooth grid-delta function.
The momentum equations are discretized using a conservative, second-order centred
difference scheme for the spatial variables and a second-order Adams–Bashforth
time integration scheme. Then, singular forces are added to the nodal values of
the momentum equations. Finally, an intermediate velocity field is calculated from
the momentum equations which is then projected onto the space of divergence-free
vector fields. The solution of the discretized Poisson equations required at each time
step is carried out using a multi-grid method (see also Mählmann & Papageorgiou
2009). The formulation used is analogous to that of Unverdi & Tryggvason (1992),
and notable differences include the multi-grid solvers utilized for the solution of the
Poisson problems for the pressure and electric potential, along with the necessary
modifications needed to incorporate the electric stress in the momentum equations,
as described above.

2.2. Linear stability theory

The EHD stability of the two-layer Couette flow is analysed by solving an
eigenvalue problem resembling the Orr–Sommerfeld one. Results of linear studies
have been reported elsewhere (Ozen et al. 2006b; Li et al. 2007; Uguz & Aubry
2008; Uguz et al. 2008) and for completeness, in what follows we give a brief
description of our numerical work since the results are used to test the validity
of linear theory. Introducing a perturbation streamfunction ψ (j )(x, y, t), we write
(u(j ), v(j )) = (Uj (y), 0) + η(ũ(j ), ṽ(j ))), where |η| � 1 is a linearization parameter and
(ũ(j ), ṽ(j )) = (∂ψ (j )/∂y, −∂ψ (j )/∂x), the streamfunction ψ is expressed in terms of
normal modes

ψ(x, y, t) = φ̂(y)eik(x−ct) + c.c., (2.16)

where c.c. denotes complex conjugate, φ̂(y) is the complex amplitude, k is the
dimensionless real wavenumber and c = cr + ici is the complex wave speed. The
real part cr is the phase velocity of the wave, while kci is its growth rate (the flow
is unstable if ci > 0, stable if ci < 0 and neutrally stable when ci = 0). Linearizing the
Navier–Stokes equations, eliminating the pressure, and using the definition (2.16),
yields the Orr–Sommerfeld system

(
d2

dy2
− k2

)2

φ(1) = ikRe1

{
(U1 − c)

(
d2

dy2
− k2

)
− d2U1

dy2

}
φ(1), −h1 < y < 0,

(2.17)(
d2

dy2
− k2

)2

φ(2) = (ikRe1ρ/m)

{
(U2 − c)

(
d2

dy2
− k2

)
− d2U2

dy2

}
φ(2), 0 < y < h2.

(2.18)
For generality, we have implemented the linear stability work for arbitrary density
and viscosity ratios and these appear in (2.18) above as the new parameters ρ = ρ2/ρ1

and m = µ2/µ1.
The boundary conditions expressing no-slip and no-penetration at the walls read

φ(1) =
dφ(1)

dy
= 0 at y = −h1 and φ(2) =

dφ(2)

dy
= 0 at y = h2. (2.19)

In addition to equations (2.17) and (2.18), four conditions are necessary to satisfy the
continuity of the velocity and stress components, both in the tangential and normal
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direction. These read, at y = 0,

φ(1) = φ(2), (2.20)

dφ(1)

dy
+

dU1

dy
φ(1)

/
c =

dφ(2)

dy
+

dU2

dy
φ(2)

/
c + ikReEwKT ŝ, (2.21)

(
d2

dy2
+ k2

)
φ(1) +

d2U1

dy2
φ(1)

/
c = µ

[(
d2

dy2
+ k2

)
φ(2) +

d2U2

dy2
φ(2)

/
c

]
, (2.22)

(
d2

dy2
− 3k2

)
dφ(1)

dy
− ikRe

(
c
dφ(1)

dy
+

dU1

dy

)
=

(
d2

dy2
− 3k2

)
dφ(2)

dy

−iρkRe

(
c
dφ(2)

dy
+

dU2

dy

)
+ ikRe

(
ρKF −

(
k2T φ(2)/c + EwKN

)
ŝ
)
. (2.23)

The amplitude of the interfacial perturbation ŝ in (2.21)–(2.23) is given by
ŝ = φ(1)(0)/(c − U (0)), and we define KF , KN, KT to represent the effects of density
stratification, and tangential and normal electric stresses in the conditions above

KF = (c − U (0))

(
1

ρ

dφ(1)

dy
− dφ(2)

dy

)
− φ(0)

(
1

ρ

dU2

dy
− dU1

dy

)
, (2.24)

KN =
1

(n + σ )2

[
(σ 2 − ε) − (σ − 1)

ε tanh kn + σ 2 tanh k

tanh kn + tanh σk

]
, (2.25)

KT =
(σ − 1)(ε − σ 2)

(n + σ )2
k

tanh kn + tanh k
, (2.26)

where n = h2/h1 denotes the ratio of the initial thicknesses of the fluids layers.
A derivation of these conditions in the absence of the electric field can be found
in Yih (1967), and we refer to Li et al. (2007) for details on the formulation of
the electric stress conditions. We also note that the formulation above describes the
general case of linear hydrodynamic stability of two superimposed fluids of different
viscosities and densities in the absence of gravitational effects. Equations (2.17) and
(2.18) together with the boundary and interface conditions (2.19) and (2.20)–(2.23)
constitute an eigenvalue problem which is not self-adjoint and non-trivial solutions
exist if and only if c and k satisfy a dispersion relation of the form

D(c, k, ρ, n, m, µ, ε, σ, Re, T , Ew) = 0. (2.27)

In order to determine the complex eigenvalue c, the eigenfunctions φ(j )(y) are
approximated by truncated Chebyshev expansions of the first kind

φ(j )(y) =

Nj∑
n=0

a(j )
n T i

n (y), (2.28)

where T i
n (y) is the nth Chebyshev polynomial, i denotes the ith derivative with

respect to y, aj
n are constants and Nj denote the number of collocation points in fluid

layers 1 and 2, respectively. The derivatives of the eigenfunctions can be found by
differentiating the Chebyshev polynomials in (2.28). Substitution of the Chebychev
expansions into the eigenvalue problem (2.17)–(2.23) yields the generalized matrix-
eigenvalue formulation

Aφ = cBφ, (2.29)

which is linear and homogeneous in a(j )
n . In this work, the matrices A, B have been

formulated using the D-2 scheme of Dongarra, Straughan & Walker (1996). In
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addition, modified Chebychev differentiation matrices have been employed to ensure
that the solution satisfies clamped boundary conditions at the walls (see Canuto
et al. 1988 and Trefethen 2000 for details). The matrices A, B are singular because
some of the boundary and interface conditions do not contain the eigenvalue c. This
singularity is handled by deflating the infinite eigenvalues using the standard QZ-
algorithm to solve (2.29). Grid convergence has been checked by varying the number
of collocation points Nj in each fluid layer. For the results shown in § 3, we have
set N1,2 = 128. Furthermore, the implemented algorithm has been validated against
benchmark problems published in Dongarra et al. (1996). In addition, we have made
extensive comparisons with the results of Li et al. (2007) to verify the effect of the
electric field on the stability characteristics. Excellent agreement was found in all
cases.

In this section, the mathematical method to solve the governing equations for the
fluid mechanics and the electrostatics has been outlined. The method yields a time-
dependent solution for the evolving two-fluid interface in the presence of background
shear and electric field effects. In addition, we have described a Chebyshev collocation
method for solving the eigenvalue problem that governs the stability of parallel two-
phase flow. Results of our computational study including comparisons with linear
stability analyses will be discussed in the following section.

2.3. Code validation

We begin by considering a simpler problem initially in order to validate the algorithms
developed in § 2. In this model problem, a motionless two-phase system of perfect
dielectrics is stressed by an electric field. The base state for the electric field is given
by the one-dimensional approximation of the Laplace equation (2.14), which reduces
to the ordinary differential equation (εVy)y = 0 with Dirichlet boundary conditions
on the lower and upper electrode, V (y = −1) = 0 and V (y = 1) = V0, respectively.
The solution has a jump in the electric field strength across the interface and is
accompanied with the development of an electrostatic pressure there. Using the jump
condition for the electric displacement ε1E1(0) = ε2E2(0), we find (in dimensional
terms)

V1(y) = V0

ε2 + ε2y

ε1 + ε2

, V2(y) = V0

ε2 + ε1y

ε1 + ε2

. (2.30)

It follows that the momentum jump condition simplifies to give the electrostatic
pressure difference across the interface

�p = p1 − p2 =
Ew

2

[
ε1E

2
1 − ε2E

2
2

]
. (2.31)

Figure 2 compares the analytical one-dimensional solutions (2.30) and (2.31) with
the numerical approximations computed on three different equidistant grids of 64,
128 and 256 nodes, respectively, using the front-tracking Navier–Stokes algorithm
described in the previous section. The electric field parameter is Ew = 10 and the ratio
of dielectric constants is ε2/ε1 = 2. It is evident that the jump of the electric field
across the interface is smeared over some computational cells. By grid refinement,
the thickness of the transitional zone decreases and the computed profiles collapse
onto the analytic solutions. Hence, the results demonstrate the capability of the
implemented numerical model to accurately capture electric field effects on the
interfacial stress balance in a two-layer flow.
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Figure 2. (a) Distribution of the electric field E = −Vy computed from (2.30) and (b) the
pressure given by (2.31) for the one-dimensional model problem at Ew = 10, ε =2.

3. Numerical experiments
3.1. Preliminaries

With both linear and nonlinear computational tools at our disposal, we are in
a position to quantitatively evaluate the range of validity of linear theory and
provide numerical results that can be useful in the design of operating conditions for
different parameters. More importantly our code is capable of following the interfacial
evolution into the nonlinear regime up to the point it touches one of the bounding
walls, an event that is a singularity of the equations of motion since variables such
as the pressure, blow up locally. The dimensionless physical parameters governing
the flow characteristics are numerous (e.g. see expression (2.27)) and in our numerical
experiments, we restrict this phase space for reasons of computational feasibility.
Thus, we fix to unit value the density ratio, ρ, the undisturbed layer thickness ratio,
n, and the viscosity ratio, m, and allow parametric variations of the permittivity and
conductivity ratios, ε and σ , respectively, the Reynolds number, Re, the surface tension
parameter, T (this is an inverse Weber number) and the electric field parameter, Ew .
Even for this restricted set, we are faced with constructing solution spaces for five
parameters (four in the case of perfect dielectrics), a task that is quite challenging and
computationally intensive. In order to elucidate the nonlinear structures that emerge
and also to evaluate linear theory against them, our numerical experiments vary
each one of these parameters while holding the others fixed. A complete parametric
study in the five-dimensional phase-space is implausible computationally and such an
effort is of unclear benefit. The applied front-tracking method is capable of handling
higher property ratios. In addition to the computations presented next, we have
simulated conductivity ratios of 100 or larger and at weak electric field have found
no difficulties. However, we can conform that high electrical material property ratios
combined with strong electric fields cause numerical instabilities, especially if other
material properties (e.g. density and/or viscosity) jump across the interface. We have
also tried realistic density and viscosity ratios typically found in air–liquid systems
and no evidence of numerical instabilities was found (in the absence of electric fields).

The coupled set of governing equations is solved on a rectangular computational
domain with periodic horizontal boundary conditions (x = 0, l) and rigid walls at the
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top (y = h2) and the bottom (y = −h1), where we take h1 = h2 so that the undisturbed
interface is at y = 0. A Couette flow is generated by moving the parallel walls confining
the superposed fluids at equal but opposite speeds. Sensitivity studies revealed that a
computational grid of 128 × 128 nodes is sufficient to accurately capture the physics
governing the interfacial dynamics. The transient simulations are started at time t =0
from the basic Couette-flow solutions by impulsively perturbing the flat interface
with a periodic initial disturbance of the form si(x) = s0 cos(xk) and zero perturbation
velocity everywhere. (Random initial interfacial perturbations of small amplitude
were also used and in both cases we find that the dominant linearly unstable mode
emerges at large times.) If the flow is unstable, the interfacial perturbations grow in
time to nonlinear states that eventually impinge onto one of the rigid plates. At such
instants the system experiences a touchdown singularity. We note that computational
algorithm such as the present one cannot produce accurate solutions in the vicinity of
this singular event, nor can it continue the computations beyond this event. Therefore,
we terminate the simulations when the minimum distance between a wall and the
interface is below 0.005.

For small initial amplitudes, s0, we expect the early growth of the perturbations to
follow the linear results given by the dispersion relation (2.27) corresponding to the
wavenumber, k, of the imposed initial condition. An initial amplitude s0 = 5 × 10−5h1

has been chosen (unless stated otherwise) throughout this work and linear growth rates
computed using the numerical eigenvalue algorithm described in § 2.2 are compared
with Navier–Stokes simulations which evolve the system into the fully nonlinear
regime. We found through numerical experimentation, that an appropriate and useful
comparison can be made most effectively by extracting the exponential growth rate of
the interfacial perturbation, s/s0, versus time where s denotes the maximum amplitude
of the interface over the computational domain, by considering log-linear plots in the
vicinity of s/s0 = 100, i.e. when the perturbation has had a hundredfold increase in
amplitude (such plots are shown in the figures that follow). Note that the interfacial
amplitude at this stage is 5 × 10−3 and is, therefore, still small so that linear theory
can hold. Note also that such computations enable us to evaluate critical amplitudes
above which linear theory becomes inappropriate – as will be seen in the results that
follow, EHD Couette flow is described very well by linear theory even for amplitudes
having s/s0 = 100. Since the channel has length, l, and periodic boundary conditions
in the horizontal direction are used, only instabilities at wavenumbers which represent
periodic waves of lengths l/m with m an integer can develop over the computational
domain. For this reason, we compare the numerical results with the predicted fastest
growing wave, which has a length that matches the periodicity of the problem.

The vertical electric field generates Maxwell stresses that contribute to the stress
imbalance at the two-fluid interface. For perfect dielectric fluids, electric stresses
always enhance interfacial motion, while for leaky dielectrics the electric field can
either stabilize or destabilize the perturbed interface, depending on the combination
of the conductivity and permittivity ratios between the fluids. In contrast to this,
surface tension in two dimensions has a purely stabilizing effect and tends to restore
the interface to its originally flat state. The system is stable or unstable to linear
perturbations about the equilibrium state depending on the ratio of surface tension
to electric forces (in terms of our dimensionless groups (2.1) this ratio is equal to
T/Ew). Under unstable conditions, perturbations develop rapidly in time from the
imposed initial condition and the evolving interface induces motion in the fluid
layers; this motion in turn distorts the electric field due to the re-distribution of the
fluid, resulting in a complex nonlinear phenomenon. The dominant instabilities are
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Figure 3. (a) Effect of the wavenumber, k, of the imposed disturbance on the interfacial
instability in plane Couette flow. Temporal evolution of the interface perturbation, s/s0, and
(b) comparison between the numerically simulated growth rates, a, and the predictions of the
linear stability theory, cik, for a pair of perfect dielectrics at Re =10, T = 0.5, Ew = 10, ε = 5.

finger-like regions, in which fluid of one layer penetrates into the other, displacing
the original fluid sideways. The displaced fluid drains into large hydrodynamically
passive regions that form on either side of the penetrating finger. In these reservoirs,
incoming momentum diffuses rapidly due to the large amount of accumulated fluid
mass. Moreover, viscous stresses and fluid pressure gradients are generated due to
the flow fields and can also alter the dynamics of the interface substantially. In what
follows we describe results for perfect and leaky dielectric fluid pairs.

3.2. Computations for perfect dielectric fluids

In § 3.2, we focus on two-fluid systems where the permittivity of the upper fluid
layer is higher than that of the lower layer, i.e. ε > 1. It has been established that a
perturbed interface under the action of a vertical electric field deforms towards the
fluid with lower permittivity. Physically this is caused by the pressure jump induced
by the Maxwell stresses at the interface, which implies that in our simulations the
field will tend to distort the interface towards the lower plate electrode; this is indeed
the case as shown in the results that follow.

3.2.1. Effect of perturbation wavenumber – comparison between linear theory
and simulations

We begin by considering the nonlinear evolution of initial linear sinusoidal
disturbances having increasingly shorter wavelengths characterized by wavenumbers
kh1/π = 0.5, 1, 2, 4. For these computations, we fix the Reynolds number to Re = 10,
the surface tension parameter to T = 0.5, the electric parameter Ew = 10 and the
permittivity ratio ε = 5. In figure 3(a), we show the temporal evolution of the scaled
interfacial amplitude of s/s0 from t = 0 to times just before the interface touches the
wall (the position of the interface is given by y = s(x, t) if it is single-valued, for
example, with an arclength representation for more intricate shapes; in what follows
it should be understood that the notation s/s0 denotes the interfacial amplitude at
a given instant in time). Generally, the deformation of the interface at early times
evolves as the sum of exponentially time-dependent terms, and to identify such growth
the interfacial perturbations, s/s0, are plotted on log-linear scales as mentioned earlier.
Using such plots (see e.g. figure 3), we have extracted the exponential growth rates
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Figure 4. Effect of the wavenumber, k, of the imposed disturbance on the interfacial instability
in plane Couette flow. (a) Temporal evolution of the interface perturbation, s/s0, and (b) time
history of the maximum pressure on the lower plate for a pair of perfect dielectrics at
Re = 10, T =0.5, Ew = 10, ε = 5.

for perturbations with wavenumbers given by kh1/π = 0.5, 1, 1.5, 2, over a wide time
range and from the vicinity of s/s0 = 102 as indicated by an arrow in figure 3(a).
Note that in the case of the wavenumbers kh1/π = 0.5, 2 the evolution of s/s0 departs
from its linear behaviour just beyond s/s0 ≈ 2 × 102, whereas the linear behaviour is
retained for the perturbation wavenumbers kh1/π = 1, 1.5 for much of the duration
of the simulation, as can be seen from figure 3. Figure 3(b) depicts the growth rate cik

predicted by linear stability theory as solid curve. It is found that the interfacial mode
is long-wave unstable up to a cutoff wavenumber kch1/π ≈ 2.36 and has maximum
growth rate (cik)max ≈ 2.16 at kh1/π ≈ 1.2. Superimposed on this figure are the growth-
rate predictions of the direct numerical simulations determined using a least square
linear regression fit of the numerical data in the vicinity of the perturbation level
s/s0 = 102, where exponential growth is dominant. We observe a remarkable agreement
between the two sets of results and this serves as an additional accuracy check of our
numerical work. Additionally, it confirms that linear solutions can be used to describe
the flow accurately for amplitudes of s/s0 ≈ 102. We also carried out a numerical
convergence study to determine the behaviour of the computed growth rates on grid
resolution. The growth rate was computed for increasingly resolved grids having
64 × 64, 128 × 128 and 256 × 256 points, respectively. For weakly unstable systems,
grid refinement has no notable effect on the growth rate, while for highly unstable
systems, increases of 1 % at most were observed. In all our tests, the slight growth
rate increase is monotonic with grid refinement, and a grid of 128 × 128 is determined
to be sufficiently accurate without a sacrifice in efficiency.

For each of the wavenumber cases depicted in figure 3, we consider next the
spatio-temporal evolution of the interface along with the evolution of the maximum
pressure on the lower wall. Results are given in figure 4(a,b), respectively – all other
parameters are the same as in figure 3. All interfacial evolution results (see also figures
8, 10, 12, 14, 17 and 20) are constructed by following the initial perturbation into
the nonlinear regime and plotting snapshots of the interfacial position at times which
correspond to the set of successive interface minima ymin/h1 = 0.8, 0.6, 0.4, 0.2 and
0.05. As a result, there are 140 output times that have been recorded for the data
presented in these figures and for brevity these are not given here – they are available
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Figure 5. (a) Contours of the electric potential, V , and electric field lines and (b)
instantaneous streamfunction relative to the background flow for a pair of perfect dielectrics
at l/h1 = 2, Re = 10, T = 0.5, Ew = 10, ε = 5. The time of the snapshot is t = 4.85. The thick
solid line represents the position of perturbed interface.

from the authors upon request. As established above, the interface is linearly unstable
with the electric field causing an increase in pressure below an interfacial depression
and a decrease in pressure near interfacial elevations. As a result fluid motion ensues
from high- to low-pressure regions, sweeping fluid away from the depression and
thus enhancing the instability. As time progresses, the interface develops a fingering
instability of interpenetrating fluids from the seeded disturbance (this is a highly
nonlinear phenomenon). The finger region is initially centred at x/h1 = 1 and moves
towards the left as it grows due to the presence of background flow. The case
kh1/π = 0.5 is distinct from those having kh1/π = 1, 1.5, 2, in that it forms multiple
fingers before touchdown. The perturbed interface splits into two different branches
(in the absence of background flow these branches would possess fore aft symmetry).
In all cases, the downward elongating finger region induces secondary fluid motion
in its neighbourhood, which eventually affects the flow field close to the lower plate.
Figure 4(b) depicts the corresponding time histories of the maximum pressure on the
lower plate. As discussed above the interface approaches the plate via a relatively
fast moving finger that terminates in a touchdown singularity. Away from the finger
region, the system is quasi-static on the time scales of the active finger region. The
downward motion of the finger redistributes fluid material in its neighbourhood, and
eventually affects the pressure distribution on the plate. As seen from the results of
figure 4, the pressure retains its initial value as long as the interface is far away from
the plate, and then increases rapidly near touchdown terminating in a finite-time
singularity. We note that the qualitative nature of the results depends on both the
channel height and the initial amplitude of the disturbance.

It is instructive to discuss the structure of the distorted electric field in terms of the
voltage potential distribution, noting that in the unperturbed state the equipotential
surfaces are parallel to the plate electrodes. In figure 5(a), we show the equipotential
surfaces and corresponding electric field lines at time t = 4.85, which is close to the
touchdown event. The parameters are l/h1 = 2, Re = 10, T = 0.5, Ew = 10, ε = 5 and
this run corresponds to the results of the case kh1/π = 1 of figure 3. The electric field
is depicted with thick lines and the arrows indicate its local direction. Note that the
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Figure 6. Comparison of the simulated velocity perturbations ũ (a), ṽ (b) with the
corresponding fields reconstructed from the linear analysis for a pair of perfect dielectrics
at l/h1 = 2, Re = 10, T = 0.5, Ew =10, ε = 5.

electric potential is strongly perturbed along the interface on the right of the fluid
finger, whereas comparatively small distortions are visible on the left. It follows from
the electric boundary conditions of the present configuration that the equipotential
lines are curved near inclined interface sections, but remain mostly straight for vertical
and horizontal sections. According to the definition E = −∇V , the field lines and the
equipotential surfaces form a mutually orthogonal grid. This is evident in our results,
as well as the distortion of the electric field due to the presence of fluid regions of
different permittivities. The field lines are approximately vertical in the vicinity of the
plate electrodes as long as the interface is relatively far away. Close to the interface,
however, the slopes of the field lines vary with the local orientation of the interface
and differ on either side, explaining why the electric field has its maximum strength
in the finger region. In addition to the electric field distribution, the instantaneous
streamlines at t =4.85 are depicted in figure 5(b) (the streamlines shown represent
the perturbed flow – the base state has been subtracted). In general, dense and
inclined contour lines represent strong secondary flow, while widely spaced horizontal
or vertical lines indicate hydrodynamically passive flow regions. We can identify
relatively low perturbation levels near the upper plate and furthermore in the lateral
bulk regions that absorb momentum of the displaced fluid. Along the interface, large
variations in the streamfunction imply the presence of large perturbation velocities.
Note the crest-like patterns to the right and the circular region to the left of the fluid
finger, which show the presence of vortical motion.

The linear eigenfunctions of the generalized eigenvalue problem can be utilized to
reconstruct the perturbed velocity fields and compare them with the simulations, thus
providing additional physical insight into the dynamics of the unstable system at early
times. In figure 6(a), we compare the simulated perturbation field of the horizontal
velocity, ũ, with the reconstructed field based on the results of the linear stability
analysis at kh1/π =1, Re = 10, T = 0.5, Ew = 10, ε = 5. The numerical data have been
evaluated at the perturbation level s/s0 = 60, which corresponds to time t = 2 in the
simulation. The electric field pushes fluid material of the lower layer sideways, which
in turn causes a compensating motion of the upper layer towards the centre of
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Figure 7. Effect of the electric field parameter, Ew , on the interfacial instability in plane
Couette flow. (a) Temporal evolution of the interfacial perturbation, s/s0, and (b) comparison
between the numerically simulated growth rates, a, and the predictions of the linear stability
theory, cik, for a pair of perfect dielectrics at l/h1 = 2, Re = 10, T = 0.5, ε = 5.

the interpenetrating region. Moreover, the velocity field is not symmetric due to the
presence of background flow. A similar comparison is shown in figure 6(b) for the
perturbed vertical velocity, ṽ. The traversing interface induces strong downward fluid
flow in the finger region accompanied by weak upward motion on the sides of the
finger. For both velocity components we observe very good agreement between the
simulated and the reconstructed fields, given that the interface has evolved significantly
from its initial position. The results of figure 6, therefore, provide additional evidence
of the ability of linear theory to predict the early growth of the perturbed system.

3.2.2. Effect of the electric field parameter, Ew

The results of § 3.2.1 were carried out at a fixed strength of the background
electric field. Here we compute the flow to touchdown for a range of values of
Ew = 10, 20, 30, 40 and 50, and note that this is an important controlling parameter
because it can be changed by simply altering the voltage drop across the device,
all other parameters and material properties held fixed. The other parameters in
this set of simulations are l/h1 = 2 (the wavenumber of the initial perturbations is
kh1/π = 1), Re = 10, T = 0.5 and ε = 5. Results of the evolution of the interfacial
perturbation amplitude, s/s0, along with the theoretically predicted linear growth
rates and corresponding numerically simulated ones, are depicted in figure 7(a,b),
respectively. It can be seen that an increase of Ew leads to faster growth rates and
hence shorter times to wall touchdown – the early time slopes of the curves in
figure 7(a) (where linear theory holds) increase monotonically with Ew , while the
total duration of the computation until the interface comes to within 0.005h1 units
of the lower wall decreases monotonically. The results in figure 7(b) compare linear
theoretical growth rates with simulated ones estimated as explained earlier from results
in the vicinity of s/s0 = 102 as indicated by the arrow in figure 7(a), and agreement is
once again excellent. Furthermore there is a conditional instability criterion, namely
that the value of Ew must be higher than a threshold value of approximately 4. This
can be understood physically by considering the flow characteristics in the absence
of a field where the classical two-phase Couette problem holds. In our simulations,
the viscosity ratio is m =1 which makes the interfacial mode stable at all Reynolds
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Figure 8. Effect of the electric field parameter, Ew , on the interfacial instability in plane
Couette flow. (a) Temporal evolution of the perturbed interface shape and (b) time
history of the maximum pressure on the lower wall for a pair of perfect dielectrics at
l/h1 = 2, Re = 10, T = 0.5, ε = 5.

numbers including Re = 10 used in these results. A small electric field, therefore, is
incapable of overcoming interfacial damping, but can make the interface unstable if
it is sufficiently large, in complete agreement with the results of figure 7.

Next we consider the interfacial evolution to touchdown at the increasing sequence
of values of Ew = 20, 30, 40 and 50 (for comparison, analogous results for Ew =10
can be found in figure 4); the results are given in figure 8(a). For the two weakest
values Ew =10 and 20, a single finger of the penetrating upper fluid develops with
touchdown taking place at a single point. Increasing the field strength causes the initial
perturbation to spread laterally, leading to multiple fingers as can be seen from the
results. For Ew = 30, for example, two fingers are formed and are driven away from
the centre plane x/h1 = 1 leading to an almost simultaneous touchdown at the two
approximate positions x/h1 ≈ 0.25 and x/h1 ≈ 1.25; this in turn leads to the formation
of a smaller drop of the lower fluid, a nonlinear phenomenon reminiscent of satellite
drop formation in liquid jet breakup. (We have verified numerically – not shown –
that the number of fingers forming as Ew increases, is due to nonlinear effects because
the maximally unstable wavelength is of the order of the computational domain and
is rather insensitive to the electric field strength for Ew larger than about 10–20
and less than 50, approximately; at the same time the cutoff wavelength decreases
with increasing Ew as expected.) As Ew is increased further to a value of 40, two
fingers emerge again, but the right one grows significantly faster than the left one
and touches down first at a position x/h1 ≈ 1.25. This asymmetric growth originates
from the presence of the background flow and is amplified by the electric field. Even
though our computations must stop at touchdown, we anticipate that the left finger
will continue its trajectory to touchdown and will not be affected significantly by the
topological transition and contact line problem ahead, thus producing a satellite as
predicted in the case of Ew =30. The tendency of the interface to develop multiple
fluid branches is even more visible in the case Ew = 50, where the left branch becomes
stunted to a dimple on the interface, while the faster growing right branch clearly
dominates the structure of the evolving interface. In addition to these two fingers, a
third branch emerges on the right side of the fastest growing finger. The touchdown

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

41
55

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004155
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Figure 9. Effect of the Reynolds number, Re, on the interfacial instability in plane Couette
flow. (a) Temporal evolution of the interfacial perturbation, s/s0, and (b) comparison between
the numerically simulated growth rates, a, and the predictions of the linear stability theory,
cik, for a pair of perfect dielectrics at l/h1 = 2, T = 0.5, Ew = 10, ε =5.

position is also affected and occurs to the left of the mid-plane x/h1 = 1. Furthermore,
we note in passing that higher values of Ew lead to the formation of an even more
ramified interface with multiple fingers appearing.

As the interface evolves to touchdown on the lower plate, the pressure distribution
at the wall appears to be going singular in finite time, a phenomenon found earlier for
different parameters. The evolution of the maximum lower wall pressure is depicted
in the results of figure 8(b), and it is seen that the time to touchdown decreases
nonlinearly as Ew is increased. For example, doubling Ew from 10 to 20 results in
a decrease of the touchdown time from approximately 4.8 to 2.6, whereas a further
doubling of Ew to a value of 40 results in touchdown after t ≈ 1.6. These results are
in line with the linear growth rate predictions presented in figure 7. Recalling that
the computations are stopped when the interface evolves to a fixed small distance
from the wall (this distance is 0.005h1), we can also explain the fact that an increase
in the value of Ew is accompanied by an increase in the value of maximum pressure
attained when the interface reaches a fixed distance from the wall.

3.2.3. Effect of the Reynolds number, Re

In addition to the electric stresses that drive the instabilities described above in
perfect dielectric two-layer systems, inertial effects also play a significant role in the
stress balance and instability characteristics. In what follows we consider the effect
of the Reynolds number, Re, on the initial and long-time evolution of the flow, in
the presence of an electric field and all other parameters held fixed. In the numerical
experiments reported next we fix l/h1 = 2, T = 0.5, Ew =10 and ε =5, so that the
flow is unstable (at Re = 10 at least) as discovered from the results of figure 7.
As already mentioned, our study focuses on viscosity-matched fluids where viscous
effects appear as a momentum diffusion mechanism which stabilizes the interface
in the low-Reynolds-number regime where inertial effects are small. In figure 9(a),
we show the evolution to touchdown of the maximum interfacial perturbation, s/s0,
for the set of Reynolds numbers Re = 2.5, 5, 10, 25, 50 and 100, and it is seen that
exponential growth associated with linear theory is driving the system at early times
as expected. The growth rates increase monotonically with Re as seen from the results
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Figure 10. Effect of the Reynolds number, Re, on the interfacial instability in plane
Couette flow. (a) Temporal evolution of the perturbed interface shape and (b) time history
of the maximum pressure on the lower plate for a pair of perfect dielectric fluids at
l/h1 = 2, T =0.5, Ew = 10, ε = 5.

of figure 9(b) which compares theoretically predicted linear values with numerically
simulated growth rates for the chosen initial condition; agreement is once again
excellent. Interestingly, the growth of the interfacial perturbation at Re = 2.5 shows
a remarkable decrease, with s/s0 flattening out as the interface approaches the plate.
Since the growth rate at this Reynolds number is relatively small (see figure 9b), a
secondary flow field forms around the wider region of the evolving interface and the
rigid plate affects the evolution at earlier stages. As a result, the growth rate evidently
drops at the final stages when the interface comes very close to the lower plate. With
an increase in Reynolds number, the interfacial perturbations develop at higher rates
and due to the fast growth of the finger the secondary flow shrinks to a narrow region
around the evolving interface. This explains why at higher Reynolds numbers, the
presence of the plate affects the interfacial dynamics at smaller time intervals from
the touch-down event.

For completeness, we present the nonlinear evolution of the interface to touchdown
for the values Re = 2.5, 5, 25, 50 and 100 (for comparison with analogous results at
Re =10 we refer to figure 4). The results are given in figure 10(a). It is evident that
a single finger of interpenetrating fluid forms for this range of Reynolds numbers.
For small Reynolds numbers, i.e. Re = 5, the growth rates of the perturbed interface
are relatively small and the local background Couette flow effectively propagates
the slowly evolving finger towards the left. Increasing the Reynolds number leads to
higher growth rates (see figure 9), producing faster elongating fingers and altering
nonlinearly the horizontal base flow and the interplay between interfacial dynamics
and background flow. Moreover, inertia becomes locally important as the tip velocities
increase, and as a result a tapered finger forms with increasing Reynolds number
since fluid in the neck region cannot follow the fast growing finger tip. At the same
time, the flow around the finger tip causes a rapid increase in the pressure on the
lower plate immediately before the touch-down event occurs. Figure 10(b) shows the
corresponding time history of the maximum pressure on the lower plate and it can
be concluded that the pressure seems to encounter a singularity in finite time for all
cases except when Re = 2.5, where the numerical results indicate that it reaches a local
maximum just before the computation is stopped at a prescribed minimum distance
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Figure 11. Effect of the permittivity ratio, ε, on the interfacial instability in plane Couette
flow. (a) Temporal evolution of the interface perturbation, s/s0, and (b) comparison of the
numerically simulated growth rates, a, and the prediction of the linear stability theory, cik, at
l/h1 = 2, Re = 10, T = 0.5 and Ew =10.

from the wall. This particular case will be investigated in future work including
additional analysis in the Stokes flow regime.

3.2.4. Effect of the permittivity ratio ε = ε2/ε1

The physical effect of increasing the permittivity ratio is to produce stronger
Maxwell stresses, enhance the stress imbalance at the two-fluid interface and directly
affect the stability of the system. Figure 11(a) shows the temporal evolution to the
interfacial perturbation, s/s0, for the permittivity ratios ε = 5, 10, 15, 20 and 25. The
other parameters are fixed to l/h1 = 2, Re = 10, T =0.5 and Ew = 10. Figure 11(b)
depicts the growth rate as a function of ε and the comparison between linear theory
and simulation is once again excellent (the comparison for this run is made in
the vicinity of s/s0 = 100 as indicated on the figure). The critical value of ε below
which the flow is stable in the results of figure 11, is the result of the competition
between the stabilizing effect of surface tension and the vertical electric field, which
is inherently destabilizing for perfect dielectric systems. Reducing the surface tension
causes a more unstable system, where the critical instability threshold is shifted
towards smaller permittivity ratios, as confirmed here from both linear theory and
direct simulations of the Navier–Stokes equations. There are several notable features
in these results. First, the evolution to touchdown becomes monotonically faster as
ε increases and this can be seen clearly from the results in (figure 11a). Regarding
linear theory and corresponding simulations (figure 11b), such monotonic increase
corresponds to the monotonically increasing growth rates presented in the figure. As
ε becomes larger (e.g. approximately 15 and higher), the growth rate levels off and
the curves s/s0 become closer to each other as seen in figure 11(a). The physical
explanation for this is that for ε � 1 the lower fluid behaves as a perfect conductor,
to leading order, with the interface becoming an equipotential surface. It has been
established that such flows are unstable if the electric field is strong enough (see
Craster & Matar 2005), as is the case for the present set of parameters. The nonlinear
dynamics also tend asymptotically to those of the perfectly conducting case and this
has been computed and analysed by Tseluiko et al. (2008) in a related problem of
falling films over topographically structured substrates.
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Figure 12. Effect of the permittivity ratio, ε, on the interfacial instability in plane Couette
flow. (a) Temporal evolution of the interfacial perturbation, s/s0, and (b) comparison between
the numerically simulated growth rates, a, and the prediction of the linear stability theory, cik,
at Re = 10, T = 0.5, Ew = 10.

Spatial details of the evolving interface and the corresponding maximum pressure
time histories, are given in figures 12(a) and 12(b), respectively, with the values of ε

labelled in the figure. At low values of ε (e.g. ε =10) continuously tapering fingers
of the interpenetrating fluid emerge from the perturbed interface, while at larger
values of ε drop-like tips connected with long thinning fluid necks are found. In
addition to the drop-neck formation computed at large ε, a bifurcation takes place
with additional fingers emerging; this phenomenon is already evident at Ew =20
and 25 and becomes much more prominent at even higher permittivity ratios (not
shown). Considering the evolution of the maximum lower-wall pressure, we observe
that its final computed value (at a fixed equal distance from the wall) monotonically
increases with the permittivity ratio. In addition, the time to touchdown decreases
monotonically as ε increases and this is also supported by the growth rate calculations
presented earlier.

3.2.5. Effect of the surface tension parameter, T

We complete our parametric study of perfect dielectric fluid pairs by considering
variations in T , all other parameters fixed at l/h1 = 2, Re = 10, Ew = 10 and ε = 5.
Note that for T =0.5, the flow is unstable as described in previous sections. The
prominent physics of surface tension effects in two-dimensional interfacial flows are
stabilization of short waves (either damping or dispersive) due to the large size of the
curvature for short-wave features. A cutoff wavenumber kT exists, therefore, above
which the flow is linearly stable, and kT decreases as T increases. In this section,
we extend such linear notions into the nonlinear regime by simulating the flow and
discussing the results. Figure 13(a) shows the evolution of s/s0 and the results confirm
linear exponential growth for all values of T at early times. As expected, the linear
growth rate decreases with increasing values of T and for the lower values (e.g.
T =0.1, 0.25 and 0.5) the results indicate that linear theory is a very good predictor
until times close to touchdown, where nonlinearity must enter. It is interesting to
note that at the highest surface tension value considered (T = 1), the growth rate
attenuates after the perturbation has reached a level s/s0 ≈ 2 × 102 and eventually
increases again, a phenomenon that is clearly nonlinear. Figure 13(b) compares the
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Figure 13. Effect of the surface tension parameter, T , on the interfacial instability in plane
two-layer Couette flow. (a) Temporal evolution of the interfacial perturbation, s/s0, and (b)
comparison between the numerically simulated growth rates, a, and the predictions of the
linear stability theory, cik, for a pair for perfect dielectrics at l/h1 = 2, Re =10, Ew = 10 and
ε = 5.
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Figure 14. Effect of the surface tension parameter, T , on the interfacial instability in plane
two-layer Couette flow. (a) Temporal evolution of the interfacial perturbation, s/s0, and (b)
comparison between the numerically simulated growth rates, a, and the predictions of the
linear stability theory, cik, for a pair of perfect dielectrics at l/h1 = 2, Re = 10, Ew = 10 and
ε = 5.

numerically simulated growth rates with the linear stability results. Linear theory
for the given system predicts a stable regime for T > 1.19, and the growth rates
estimated from the simulation are once again in excellent agreement with theory (the
comparison is made at the value s/s0 = 102 as indicated in the figure). Physically, the
existence of a critical value of the surface tension parameter, T , above which the
flow is stable, stems from the stabilizing effect of surface tension on two-dimensional
interfacial disturbances.

The interfacial evolution is depicted in figure 14(a) for the set T = 0.1, 0.25, 0.75
and 1.0. At the smallest value of T = 0.1, there exist many unstable modes and
the interface experiences a rich variety of nonlinear instability patterns; the initial
single-valued perturbation splits into two interpenetrating fingers at relatively early
times. Due to the presence of background flow, these fingers grow at different rates
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and different orientations with respect to the vertical. As a result, a downwards
moving, strongly elongated branch forms on the left, while the branch on the right
becomes stunted as it propagates upstream with respect to the direction of the local
background flow. We have found similar phenomena at T =0.2 (not shown) and the
complexity of these fingers increases in the limit T → 0. In contrast, at larger values
of T (T = 0.25, 0.75 and 1.0 and figure 4 for T = 0.5) single fingers form due to
surface tension stabilization and the emergence of a long-wave regime. Moreover, the
interpenetrating finger widens as the regularizing effects of surface tension increase
with increasing values of T . A change in slope, that delays touchdown, can be observed
in the evolution of the interfacial perturbation (figure 14a) for the two largest values of
T =0.75 and 1.0, during the nonlinear stages of the dynamics. The physical mechanism
responsible for this behaviour is the stabilizing influence of surface tension which is
promoted at these values of T and competes with the destabilizing EHD forces to
produce the observed nonlinear phenomena. We emphasize that the size and width
of the finger depends primary on the competing effects of surface tension, which
tends to restore the original flat interface and electric stresses, which tend to produce
elongated structures. We complete this case by discussing the effect of surface tension
on the time history of the maximum pressure on the lower plate (figure 14b). The
interfacial touchdown is eventually accompanied by a singularity in local pressure and
as expected the time to the singularity increases. The vigorous stabilization of surface
tension is evidenced by the doubling (approximately) of the time to touchdown by a
30 % increase in the value of T from 0.75 to 1.0.

3.3. Computations for leaky dielectric fluids

So far we focused on the EHD instability of interfaces separating perfect dielectric
fluids and established that a vertical electric field is destabilizing and causes touchdown
of the interface with the lower wall in finite time (the lower fluid has the smaller
permittivity in all our computations). Even a small amount of conductivity, however,
enables charges to reach the interface, form a diffuse charge layer there and modify
both the normal and tangential stress balances; the latter modification is absent
in both perfect conductors and perfect dielectrics and hence the model allows for
additional physical effects. In addition to Re, ε, T and Ew , the parameter σ = σ2/σ1

enters which measures the ratio of upper to lower fluid conductivities. The combined
effect of σ and ε creates a rich variety of interfacial instabilities in leaky dielectrics
and physically an additional coupling with the hydrodynamics enters through the
tangential stress balance which is now modified due to the Maxwell stresses. Our
objective is to quantify such effects into the nonlinear regime using direct simulations
along with comparisons with linear theory, where meaningful.

3.3.1. Effect of conductivity ratio, σ

The generalized eigenvalue problem described in § 2.2 is solved and results are
presented by constructing stability diagrams as the five parameters Re, ε, σ , T and
Ew vary. Figure 15 depicts lines of constant growth (cik = constant) labelled on
the diagram, in the σ–Ew space, for a pair of leaky dielectric fluids in a channel
with geometry l/h1 = 2 and fixed values of Re =10 and T = 0.5. Figure 15(a) has
permittivity ratio ε = 5, while figure 15(b) contains results at the higher value ε = 10.
By investigating the linear eigenvalue spectrum (cr, ci), we found that at large field
strengths the leaky dielectric system possesses one unstable mode, while all other
modes in the discrete spectrum are stable. By contrast, we identified two distinct
unstable modes at low conductivity ratios and weak electric fields (see the inset of
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Figure 15. Effect of the conductivity ratio, σ , on the interfacial instability in plane two-layer
Couette flow. Lines of constant growth (cik = constant) for (a) ε = 5 and (b) ε =10 for a pair
of leaky dielectric fluids at l/h1 = 2, Re = 10, T = 0.5.

figure 15 which shows results representing the growth rate at fixed Ew = 3 along the
dashed line 0 � σ � 10 indicated in the figure). More specifically, a highly unstable
mode (mode 1) emerges at σ = 0 and becomes rapidly stabilized as σ increases. In
turn, a second mode (mode 2) that is stable for small σ , loses stability and eventually
becomes the dominant unstable mode at sufficiently large values of σ (above 6
approximately). Near the crossing point, these two modes have nearly identical phase
velocities cr . A third mode (mode 3) is also depicted but this is stable over the whole
range of σ considered.

Increasing the permittivity ratio to ε = 10 does not modify the qualitative stability
characteristics as illustrated in figure 15(b). Overall, the lines of constant growth
rate have similar characteristics with those of ε = 5, with the exception of the low
conductivity ratio and weak electric field regimes. For the particular set of parameters
used in these calculations, the stable regime shrinks to smaller values of Ew , hence
instability is enhanced. It is also interesting to note that there is no mode crossing of
unstable modes for Ew = 3, in contrast to the lower permittivity case ε = 5, implying
that there is only one mode in the eigenvalue spectrum which becomes unstable in
this case. As seen in the details of the inset in figure 15(b), at small conductivity
ratios the dominant mode is the same as that found at the lower permittivity ratio
ε = 5 depicted in figure 15(a). We note that similar conditional stability results were
found by Posner & Santiago (2006) in a different context involving miscible electrolyte
solutions, and the effect was attributed to an electric Rayleigh number with diffusion
being important. In the present immiscible system, the conditional stability criteria
result from a competition between normal and tangential electrical stresses, the latter
being supported in immiscible leaky dielectric systems (see Li et al. 2007 for an
extensive discussion of such linear stability properties).

Guided by the linear stability results of figure 15, we compute the flow into the
nonlinear regime for different σ along the line Ew = 10 as indicated in figure 15(a)
(i.e. Re =10, ε = 5, T = 0.5 and Ew = 10). The linear theory predicts a window of
stability along this line between σ ≈ 1.8 and σ ≈ 2.7, and we present computations
at five different values of σ = 1, 3, 5, 7.5 and 10. Figure 16 shows the evolution of
the interfacial perturbation, s/s0, (a) and the corresponding growth rates (b) – both
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Figure 16. Effect of the conductivity ratio, σ , on the interfacial instability in plane two-layer
Couette flow. (a) Temporal evolution of the interfacial perturbation, s/s0, and (b) comparison
between the numerically simulated growth rates, a, and the theoretical predictions of the linear
stability theory, cik, for a pair of leaky dielectric fluids at l/h1 = 2, Re =10, T = 0.5, Ew = 10
and ε = 5.

from the simulations and the linear theory. The simulations and linear theory are in
excellent agreement at early times in figure 16(b) and the size of the growth rates is
found to have a non-monotonic behaviour with σ . Note especially the rather slow
growth of the perturbation for σ =3 due to its proximity to the stability window.
We note in passing that for σ =3, higher growth rates have been found in the
simulations at smaller permittivity ratios ε = 0.5 and 1 as well as higher permittivity
ratios ε = 5, 7.5 and 10, showing non-monotonicity as ε is varied also. A particularly
physically interesting result is the existence of a window of complete stabilization
that is revealed by the results in figure 16(b). It can be seen that there exists a region
1.788 � σ � 2.737 indicated in the figure, where the interface is linearly stable. Even
though this holds for ε = 5, the complete stabilization window will extend to other
neighbouring values of ε by continuity. Such linear results are not new and have been
discussed in Li et al. (2007), for example.

We turn next to the corresponding spatio-temporal interfacial evolution of the
results given in figure 16. Figure 17 shows such results for the four values σ = 1, 3, 7.5
and 10 (a) in conjunction with the lower plate maximum pressure evolution (b). For
σ = 1, the initially flat interface quickly becomes multi-valued and develops a pair of
fingers which propagate opposite to each other and opposite to the shearing direction
as seen in the figure. As time progresses a complicated, multi-valued interfacial shape
forms which is a result of topological transitions which the code is naturally capable of
describing. A striking result is that the horizontal motion of the evolving interface
propagates against the local mean-flow direction with the early time finger in the
region y > 0 propagating to the left while that in y < 0 propagates to the right.
Eventually, the interfacial sections appear to slide along the lower plate without
approaching it further, while the tip of the finger bends back towards higher vertical
positions. The simulations were carried out to times of over 400 time units as shown
in the insets and no touchdown was found. The rather slow growth rate predicted
by linear stability theory was confirmed by numerical simulation, but linear results
are quite meaningless in view of the highly complex evolution just described and
interfacial pinching that forms blobs of one phase suspended in the other. At larger
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Figure 17. Effect of the conductivity ratio, σ , on the interfacial instability in plane two-layer
Couette flow. (a) Temporal evolution of the perturbed interface shape and (b) time history
of the maximum wall pressure on the lower plate for a pair of leaky dielectric fluids at
l/h1 = 2, Re = 10, T = 0.5, Ew = 10 and ε = 5.

values of σ , the behaviour changes and the generic nonlinear phenomena are much
in line with what was found for perfect dielectrics, i.e. finger formation takes place
followed by a finite time touchdown of the lower wall. The width of the finger
decreases as σ increases – compare, for example the panel corresponding to σ = 3
with those for σ = 7.5 and 10. Elongated fingers develop and are accompanied by the
formation of large fluid reservoirs on either side. We note again that instantaneous
interfacial shapes at ε = σ = 5 are depicted in figure 4, since the equations for perfect
dielectrics are the same as those for leaky dielectrics when ε = σ . As the growth
rates increase with σ , e.g. σ = 10, this finger forms a drop-like tip connected by
a long thinning fluid neck, a finding which is in line with the results discussed in
the previous section for the pair of perfect dielectric fluids. The time history of the
maximum pressure on the lower plate (figure 4b) also reveals a strong dependence on
the growth rate of the perturbed system. For the present set of conductivity ratios,
the maximum plate pressure at the terminal time of the simulation is found at σ = 10.
Interestingly, the maximum pressure at σ = 1 is negative for a wide time range and
increases to small positive value at the very end of the simulation (no touchdown is
found here).

3.3.2. Effect of permittivity ratio, ε

In this section, we fix l/h1 = 2, Re =10 and T = 0.5 and present results for two
different values σ = 5 and σ =10 as ε varies. Figure 18 depicts contour lines of
constant growth rate (cik = constant) in the ε–Ew plane (numbers on the curves
denote the value of the corresponding growth rate). The results reveal that the lowest
field strength that is required in order to induce interfacial instability at a given
growth rate, is found in the limit ε → 0. For finite permittivity ratios, the curves of
constant growth rates increase towards higher field strengths. Moreover, the slopes of
the lines cik = constant become vertical at sufficiently high values of Ew implying that
the interfacial growth rates converge to a constant in the limit of high field strengths.
The practical interpretation of this result is that for a pair of leaky dielectrics with
fixed permittivity ratio, an increase in the field strength beyond a certain threshold
value leads to a saturation instability level. We also note that the curve of marginal
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Figure 18. Effect of the permittivity ratio, ε, on the interfacial instability in plane two-layer
Couette flow. Contours of constant growth rate (cik = constant) for (a) σ = 5 and (b) σ = 10
for a pair of leaky dielectric fluids at l/h1 = 2, Re = 10 and T = 0.5.

stability (cik = 0) is almost independent of the permittivity ratio. By inspecting the
eigenvalue spectrum at Ew =3 (see the inset of figure 18), we find that there is mode
crossing in the stable regime (i.e. cik < 0) between the two most unstable modes 1 and
2, implying that mode 2 becomes the dominant unstable mode for ε > 5. Higher values
of Ew increase the growth rates of mode 1, while mode 2 becomes stable and crosses
with mode 3 instead. Increasing the conductivity ratio to σ = 10 (figure 18b) produces
nearly horizontal constant cik contour lines at low and moderate field strengths (with
respect to the chosen range of Ew), which implies a weakened dependence of the
growth rate on the permittivity ratio, ε. The first two least stable modes 2 and 3 cross
in the regime of low permittivity ratios, as shown in the insert constructed from the
indicated line Ew = 3. This mode crossing also causes a slight decrease of the growth
rate of the unstable mode 1. A crossing of mode 1 with any other stable mode does
not occur within the spanned ε–Ew space.

In figure 19, we show the effect of ε variations on the interfacial dynamics in leaky
dielectric systems, for a sequence of permittivity ratios ε = 1, 3, 5, 7.5 and 10 and a
fixed value of σ = 5, other parameters equal to those as given above. Figure 19(a)
shows the corresponding evolution of the maximum interfacial amplification s/s0, and
it can be seen that the exponential linear growth rate found at early times, decreases
monotonically as ε increases. This in turn suggests that the terminal touchdown
times increase monotonically with ε and this is indeed confirmed by the results. The
direct numerical simulation findings are in excellent agreement with the results of
linear stability analysis, as the comparison in figure 19(b) confirms. For a clearer
illustration of the instability regime considered here and its position in the phase
space of solutions, we have marked the range of ε values used to produce these
results as a dashed line in figure 18(a).

Our simulations reveal that variations in the permittivity ratio in leaky dielectric
systems have a striking effect on the temporal evolution of the perturbed interface.
This is quantified in the spatio-temporal evolution of the interface at a fixed
conductivity ratio σ = 5 and for a range of ε, found in figure 20(a). At the
smaller values of ε = 1 and 3, the relatively larger growth rates produce a single
interpenetrating finger which is swept by the flow upstream and touches the lower wall
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Figure 19. Effect of the permittivity ratio, ε, on the interfacial instability in plane two-layer
Couette flow. (a) Temporal evolution of the interfacial perturbation, s/s0, and (b) comparison
between the numerically simulated growth rates, a, and the predictions of the linear stability
theory, cik, for a pair of leaky dielectric fluids at l/h1 = 2, Re = 10, T = 0.5, Ew = 10 and σ = 5.
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Figure 20. Effect of the permittivity ratio, ε, on the interfacial instability in plane two-layer
Couette flow. (a) Temporal evolution of the perturbed interface shape and (b) time history
of the maximum pressure on the lower plate for a pair of leaky dielectric fluids at
l/h1 = 2, Re = 10, T = 0.5, Ew = 10 and σ = 5.

in finite time. The width of the finger increases as ε increases from 1 to 3. Increasing
ε to 7.5 and 10 reduces the growth rate and thus causes stronger interaction between
the finger region and the bulk fluid. As a result, the finger neck widens as is evident
from the results (note that corresponding interfacial shapes for ε =5 can be found
in figure 4(a) since σ = ε = 5 here). The physics behind the growth rate reductions
as the permittivity ratio is increased (as opposed to an increase in instability for
dielectric fluid pairs) is due to the induction of tangential electrical stresses which
couple to affect the flow in the bulk and hence the stability characteristics – see
also the detailed linear stability study of Li et al. (2007). The results also reveal
an interesting and distinct nonlinear phenomenon for the fingering instability at
ε = 7.5 and 10 as compared with the lower values of ε. The phenomenon is most
striking at ε = 10, where it is seen that the disturbance evolves as a large amplitude
nonlinear wave whose maximum is driven towards the upper wall and its minimum
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towards the lower wall (here we link the term nonlinear to the growth rate of the
developing instability and not its shape and note that the growth rate depends on the
amplitude since the wave is nonlinear). Touchdown is almost simultaneous and in the
computations for the present set of parameters, it takes place at the lower wall first.
Due to the horizontal periodicity of the flow, and allowing for a topological transition
and contact line motions, we can surmise that the upper part of the interface which
is already in close proximity to the upper wall, will touch the latter thus producing
an alternating periodic series of plug flows of fluid 1 follows by fluid 2. This is
reminiscent of the phenomenon described in the experiments of Ozen et al. (2006a),
where a monodisperse distribution of encapsulated droplets was produced using EHD
instabilities in micro-channels, but additional parameter studies are needed to quantify
the observations of our numerical experiments. We note that in regimes that do not
evolve with this canonical type of large amplitude undulations, a penetrating finger
forms instead which touches the lower plate (for our set of parameters) in finite time.
In such cases, the ultimate droplet formation and fluid separation is quite different
from that described in Ozen et al. (2006a). For completeness, we include in figure 20(b)
the effect of the permittivity ratio on the time history of the maximum pressure on
the lower plate. The maximum value decreases with the permittivity ratio and this is
clearly attributed to the reduction of both the growth rate and the tip velocity of the
finger instability. Moreover, since the finger-tip radius also increases, the sharp peak
of the temporal pressure distribution flattens out to a smoother variation.

4. Conclusions
Interfacial instabilities in electrified plane Couette flow have been studied using a

combination of numerical simulation and analytical work. Electric fields introduce
additional stresses and can modify both the normal and tangential stress balances
thus affecting the system’s stability and ultimate nonlinear dynamics. The base state is
unstable to disturbances with wavelengths for which the electrostatic force overcomes
the surface tension. At small amplitude, linear stability theory provides growth rates
arising from a normal mode analysis of the equations and solution of an allied
eigenvalue problem. The inclusion of electric fields yields a generalized eigenvalue
problem that resembles the two-layer Orr–Sommerfeld equation and this has been
solved to determine the growth rates and eigenfunctions of the most unstable modes
(see § 2.2). The linear theory has been followed by numerical simulations of the
interfacial dynamics. The applied front-tracking method embeds the fluid interface in
the bulk flow region through a narrow region with variable properties and a localized
force arising from the presence of surface tension and electrostatic effects at the
interface.

Given the large number of parameters and the complexity of the full scale
simulations, the simpler case of density and viscosity matched fluids with equal
unperturbed fluid layer thicknesses has been considered. A Couette profile was
generated by moving the parallel plates confining the fluids at equal speeds and
in opposite directions. In addition, an electric field was applied in the cavity by
imposing a constant potential difference between the horizontal plates confining the
fluids. The transient simulations were started from the analytic velocity field with
zero perturbation velocity as an exact solution of the Navier–Stokes equations, by
imposing a small-amplitude disturbance onto the initially flat interface. The initial
deformation causes perturbations to grow on the interface at different rates and
wavelengths. In addition, fluid motion ensues and generates patterns in the two-fluid
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system with the length of periodicity set by the characteristic length of the most
unstable mode.

By comparing transient numerical data with the results of the linear theory we have
shown that exponential growth dominates the evolution of the perturbed interface over
a wide time scale. Moreover, by tracking the evolution we show that the elementary
structures that typically emerge from the perturbed interface are single or multiple
fingers of interpenetrating fluid regions. The number and shape of these fingers were
found to mainly depend on the growth rate of the dominant instability mode in
the system. For weakly unstable systems a single, slowly growing fingering instability
develops on the interface. At higher growth rates, this finger narrows to a drop-like
tip connected by a long thinning fluid neck. The invading front induces fluid motion
in its neighbourhood followed by the formation of lateral bulk reservoirs. Eventually,
at highly unstable conditions, this fingering process yields multiple generations of
splitting leading to a very ramified interface. In almost all cases, the penetrating
fingers touch one of the walls in finite time, whereas the wall pressure tends to
approach a singular value at touchdown. The numerical simulations have revealed a
rich array of dynamical behaviour that arises from the present model of electrified
two-layer flow. In line with the findings of other authors, we have shown that the
presence of surface tension in such system causes the formation of distinct regions of
interpenetrating fluids instead of interfacial roll up into a structure like the classical
Kelvin–Helmholtz spiral. Inertia was found to enhance the instability of the system,
but does not alter the topology of the evolving interface in the considered parameter
range.

The computational tools described here have been applied to both perfect and leaky
dielectric immiscible fluid pairs. The numerical simulations confirm the theoretical
finding that a vertical electric field destabilizes the perturbed interface between
a pair of perfect dielectrics, irrespective of the permittivity ratio. Increasing the
strength of the electric field enhances the stress imbalance at the interface implying
faster growth rates and stronger elongated fingers. At even higher field strengths
localized dimples originate on the interface, which are quickly magnified into sets of
interpenetrating fingers. The time to touchdown decreases as the permittivity ratio
increases. By contract, the same electric field can either completely stabilize a system
of leaky dielectrics or even further enhance its instability depending on the particular
permittivity and conductivity ratio between the fluid pair. Moreover, by analysing
the linear eigenvalue spectrum of leaky dielectrics it was found that the existence of
a window of complete stability in parameter space, was caused by the interaction of
the most unstable modes in the system. In particular we have computed cases that
produce flows with interfacial pinching, but no touchdown so that blobs of one fluid
are encapsulated in the other – our algorithm is capable of following solutions beyond
a topological transition (see e.g. figure 17). Our computations also demonstrate that
the width of interpenetrating fingers can be controlled for leaky dielectrics: (i) a
decrease in width is achieved by an increase in σ for fixed ε (figure 17); (ii) an
increase in width is achieved by increasing ε for a fixed σ (figure 20). The latter
results indicate another phenomenon that could be useful in practical applications.
For the example case ε = 10 and σ = 5 (other parameters fixed as shown in figure 20)
a wide finger forms, an almost simultaneous touchdown of the upper and lower
electrodes is found, thus opening the way of using such systems to separate the
two fluids into an alternating train of fluid plugs. Such a mechanism is reminiscent
of the monodisperse drop formation experiments of Ozen et al. (2006a) and could
find applications in microfluidics (see Song, Chen & Ismagilov 2006). We note that
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the train of liquid plugs relaxes to a train of suspended droplets when it leaves the
electrified region. Additional computations at the precise experimental conditions are
required and are the subject of ongoing work by the authors.
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Forschungsgemeinschaft. The work of DTP was partly supported by grant DMS-
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