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Abstract

We present a new dataset of zircon U–Pb ages that document igneous activity in the SW Japan
arc during middle Miocene time and discuss its relationship with the opening of the Japan Sea,
Philippine Sea plate migration, and subduction of the young hot lithosphere of the Shikoku
Basin. Precursory magmatism, characterized by dike and stock intrusions, started c. 15.6 Ma
in both Kyushu and the Kii Peninsula. Most plutonism occurred between 15.5 and 13.5 Ma
in an area 600 km long and 150 km wide. No along-arc trend was recognized in the U–Pb
ages of igneous activity near the trench. Our data indicate that all near-trench middle
Miocene igneous activity occurred immediately after the opening of the Japan Sea ceased,
i.e. after 16 Ma, implying that melt extraction and the emplacement of granites in the
near-trench region had some influence on the back-arc opening. Our data also imply that
the trench–trench–trench-type triple junction between the Japan arc and the Izu–Bonin–
Mariana arc must have reached the east side of the Kii Peninsula by 15.6 Ma. The wide
distribution of contemporaneousmagmatic activity along the arc requires a trench-parallel heat
source, such as the subduction of a trench-parallel ridge or a young and highly segmented
ridge–fracture zone system in addition to the hot wedgemantle condition related to the opening
of Japan Sea.

1. Introduction

In the SW Japan arc, igneous rocks of Miocene age are distributed in a belt 800 km long and
150 km wide (Figs 1, 2). During middle Miocene time, intensive magmatism took place in a
region closer to the Nankai Trench than the Quaternary volcanic front, just behind fore-arc
basins that are filled with middle to late Miocene sediments (Fig. 2). Such near-trench magma-
tism cannot be explained by the conventional model of magma generation in island arc settings
(e.g. Tatsumi, 1989). Instead, it is commonly thought to form as a consequence of ridge sub-
duction (DeLong et al. 1979; Iwamori, 2000; Kimura et al. 2005). The ‘blowtorch effect’ related
to the rise of asthenospheric mantle through slab windows (DeLong et al. 1979) may also
have enhanced slab melting by the subduction of a young and hot oceanic plate (Defant &
Drummond, 1990).

The origin of middle Miocene magmatism in the SW Japan arc is usually ascribed to the
subduction of hot lithosphere of the Shikoku Basin, the product of a spreading ridge in the
Philippine Sea plate, because the magmatism is almost coeval with the initiation of
Philippine Sea plate subduction, immediately after the opening of the Japan Sea and clockwise
rotation of SW Japan (Fig. 1) (Kimura et al. 2005; Tatsumi, 2006). Because spreading of the
Shikoku Basin continued until c. 15 Ma (Okino et al. 1999), subduction of this spreading ridge
and fracture zone system is thought to have taken place at the same time as the magmatism
(Maruyama, 1997; Kimura et al. 2005). This tectonic interpretation largely depends on the
assumption that the proto-Izu–Bonin–Mariana (IBM) arc had arrived near its present position
before magmatism began (Seno & Maruyama, 1984).

An alternative explanation is that the near-trench magmatism occurred as the trench–
trench–trench (TTT)-type triple junction of the Pacific, Philippine Sea and Eurasia plates
migrated eastward during the opening of the Shikoku Basin (Marshak & Karig, 1977). Some
plate reconstructionmodels that emphasize clockwise rotation of the Philippine Sea plate during
Miocene time based on the palaeomagnetic evidence favour this model (Hall et al. 1995; Hall,
2002; Sdrolias et al. 2004). Clift et al. (2013) provided independent evidence to support the
triple-junction migration model: middle Miocene sediments in the accretionary prism of the
Nankai Trough contain zircon crystals with wide age ranges, which implies that they were sup-
plied directly from the Yangtze River to the Shikoku Basin. Thus, at that time the Kyushu–Palau
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Ridge to the west of the Shikoku Basin was not a topographical
barrier that prevented direct inflow of sediments through the
East China Sea. Kimura et al. (2014) interpreted the eastward
migration of magmatism in middle Miocene time within the
framework of the triple-junction migration model, suggesting that
the migration was related to the movement of the proto-IBM arc.
However, because of most of their K–Ar ages with a low analytical
precision, more precise and consistent age data were needed to
trace the development of the SW Japan arc in detail.

In this paper, we present newly obtained zircon U–Pb ages of
near-trench felsic rocks in the SW Japan arc. These data were
obtained from an elongated area parallel to the trench more than
100 km across and 600 km long. Although Miocene magmatism
extends from the Ryukyu arc in the south to the Honshu–IBM
arc collision zone, we concentrated on the region between the
island of Kyushu and the Kii Peninsula, where the evidence of
Miocene magmatism has not been disturbed by later magmatism
related to the IBM arc collision.

2. Geological background

2.a. Outline of geology

The SW Japan arc is divided along the Median Tectonic Line into
the Outer Zone, on the south side nearer to the trench, and the
Inner Zone on the north side (Fig. 2). Quaternary volcanism has
occurred almost entirely north of the SW Japan arc except in
southern Kyushu. Miocene near-trench magmatism occurred
mainly in the Outer Zone and in the Setouchi province, part of
the Inner Zone (Fig. 2). The basement of the Setouchi province

consists of Jurassic accretionary complexes and Late Cretaceous
granitic intrusions (Maruyama, 1997), and the basement of the
Outer Zone consists of Triassic to Cretaceous metamorphic and
accretionary complexes. The Shimanto Belt, a Cretaceous to early
Miocene accretionary complex formed in cold hydrous fore-arc, is
distributed south of the Butsuzo Tectonic Line (Taira, 1988), in
the southernmost part of the Outer Zone. In Kyushu, the
Usuki–Yatsushiro Tectonic Line is regarded as the extension of
the Median Tectonic Line, though some researchers have disputed
this interpretation based on the distribution ofMesozoicmetamor-
phic complexes (Miyazaki et al. 2016).

Miocene near-trench magmatism is classified on the basis of
lithology and distance from the Nankai Trench into three prov-
inces, described below and summarized in Table 1.

2.a.1. Setouchi province
In the Setouchi province, the farthest from the trough, sporadically
distributed volcanic rocks such as pitchstone, garnet-bearing
dacite, and aphyric and glassy andesite compose the Setouchi
Volcanic Rocks (Tatsumi, 2006). They are characterized by the
production of high-Mg andesites, which are presumed to have
been formed by the reaction of slab melt with peridotite in the
mantle wedge based on their geochemical characteristics
(Tatsumi, 2006). This assumption is reinforced by the presence
of dacites and rhyolites with high Sr/Y ratios and depleted heavy
rare-earth element with no or small Eu negative anomaly profiles
consistent with slab melting (Shimoda & Tatsumi, 1999; Shinjoe
et al. 2007).

2.a.2. Outer zone granitic rocks
The second province, south of the Median Tectonic Line, consists
of voluminous felsic to intermediate igneous complexes here called
the Outer Zone Granitic Rocks (OZGs). These complexes are
mainly isolated plutons and volcano–plutonic complexes, some
of which formed large calderas. OZGs closer to the trench have
higher K2O contents and alumina saturation indexes (molar
Al2O3/(CaOþNa2Oþ K2O)) than those farther from the trench
(Nakada & Takahashi, 1979; Shinjoe et al. 2007). A regional zonal
gradation is recognized from S-type ilmenite-series granites near
the trench to I-type ilmenite-series granites away from the trench
(Ishihara, 1977; Takahashi et al. 1980; Murata & Yoshida, 1985).
They are described here from east to west.

OZGs in the southern Kii Peninsula include the Ohmine
Granitic Rocks (OGRs) and the Kumano Acidic Rocks (KARs)
(Fig. 2). The OGRs consist, from north to south, of the
Dorogawa, Shirakura, Kose, Asahi, Tenguyama and Shiratani
plutons along with many satellite stocks and dikes of granitic to
granodioritic composition. Murata (1982, 1984) classified the
Dorogawa and Shirakura plutons as I-type granites and the others
as S-type granites on the basis of their major-element compositions
and petrography.

Along the eastern coast of the Kii Peninsula, the KARs extend
over an area of ∼600 km2 and overlie early to middle Miocene
sedimentary rocks of the Kumano Group. They are composed,
in ascending order, of rhyolitic lava (Konogi rhyolite), ash-flow tuff
(Owase–Shirahama pyroclastic rocks; Kawakami & Hoshi, 2007)
and a laccolith of porphyritic granite (e.g. Aramaki & Hada,
1965; Miura & Wada, 2007). Based on their distribution, the
KARs are divided into northern and southern units, and a large
(41 × 23 km) trapdoor caldera structure, referred to here as the
Kumano caldera, is recognized in the southern unit (Miura,
1999). An arcuate pyroclastic dike (Kozagawa dike) is exposed

Fig. 1. Index map showing the tectonic setting of the Japanese Islands and the
location of the SW Japan arc (rectangle). Also indicated are Miocene tectonic events
including the rapid clockwise rotation of the SW Japan arc related to the opening of
the Japan Sea and the clockwise rotation of the Philippine Sea plate. An extinct
spreading ridge on the Philippine Sea plate that formed the Shikoku Basin is indicated
with dashed lines. Open triangles are Quaternary volcanoes. Localities in the study
area: A, Kii Peninsula; B, western Shikoku; C, Kyushu; MTL, Median Tectonic Line.
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along its southern margin (Mizuno, 1957; Hoshi et al. 2013). A
caldera collapse structure measuring 20 × 30 km is recognized in
the northern unit (Kawakami et al. 2007).

The KARs have peraluminous compositions and commonly
contain cordierite and garnet phenocrysts (Aramaki & Hada,
1965; Shinjoe et al. 2007), as in the S-type granites of the OGRs.
A large batholith is inferred beneath the KARs and OGRs
(Miura, 1999; Miura & Wada, 2007) from magnetotelluric evi-
dence of a northward dipping high-resistivity rock mass beneath
the Kumano caldera (Fujita et al. 1997), and extends beneath
the OGRs where it connects with a deeper resistive body
(Umeda et al. 2003). Another large caldera, the Ohmine–Odai cal-
dera (Sato & YORG, 2006), is inferred from the presence of arcuate
faults and pyroclastic dikes. It extends NW of the northern unit of
the KARs where it overlaps exposures of the OGRs, the Nakaoku
dike swarm (Wada & Iwano, 2001), and the Ohmine dike (Kimura,
1986). Related to the OGRs is the Takamiyama porphyritic granite,
intruded along theMedian Tectonic Line. Its S-typemajor-element
composition and petrography (Wada & Araki, 1997) makes it an
exception to the zonal arrangement of S-type and I-type granites.

In NW Shikoku, the Ishizuchi Group covers a 35 × 10 km area
south of the Median Tectonic Line (Yoshida, 1984). In

stratigraphically ascending order it consists of the Takano pyro-
clastic flow deposits, Kuromoritoge andesite, Saragamine andesite,
Yoaketoge altered dacite and Tengudake pyroclastic flow deposits.
These are intruded by ring dikes and the central Omogo pluton, an
I-type granite. The upper three units are within the circular
Ishizuchi caldera, which is defined by a system of arcuate faults
c. 7 km in diameter (Yoshida, 1984; Takehara et al. 2017). In
western Shikoku, the Myojinyama-type Acidic Rocks (Tazaki
et al. 1993), felsic intrusions composed of holocrystalline dacite
and rhyolite, are distributed along theMedian Tectonic Line in len-
ticular exposures as long as 5 km. Southwesternmost Shikoku con-
tains S-type granitic plutons and some satellite stocks (Fig. 2). The
Okinoshima–Kashiwajima pluton, which intrudes Palaeogene
rocks of the Shimanto accretionary complex, is subdivided into
Tanijiri-type granodiorite and Mojima-type granite (Dai et al.
1993). The Uwajima pluton is composed of biotite granodiorite
containing cordierite-bearing and hypersthene-bearing lithologies,
although their order of intrusion is unclear (Shinjoe, 1997).

In Kyushu, the OZGs include caldera-forming volcano–
plutonic complexes in the north and batholithic plutons in the
south. In northern Kyushu, the caldera-forming Okueyama and
Osuzuyama complexes, among other small plutons, are generally

Fig. 2. Outline map of SW Japan showing the distribution of middle Miocene igneous rocks in the near-trench region of the SW Japan arc (compiled from Geological Survey of
Japan, 2015). Abbreviations of tectonic features: MTL, Median Tectonic Line; BTL, Butsuzo Tectonic Line; UYTL, Usuki–Yatsushiro Tectonic Line. Abbreviations of igneous bodies:
OGRs, Ohmine Granitic Rocks; KARs, Kumano Acidic Rocks; MM, Murotomisaki body; SG, Shingu alkali basalt dike; AS, Ashizuri igneous complex; TG, Tanegashima alkali dolerite
dike. Numbers next to igneous bodies correspond to their entries in Table 1. Black triangles represent Quaternary volcanoes. Light grey shading indicates the Setouchi
Volcanic Belt.
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Table 1. Summary of geological background of the near-trench igneous bodies in SW Japan analysed in this study

No.
Igneous body
name Country rocks Rock types Previous dating results*

Kii Peninsula

1 Shionomisaki Kumano Formation(Early to Middle
Miocene fore-arc basin sediment)

Tholeiitic basalt/gabbro, low K rhyolite
lava, granophyre and felsite intrusions

13.1–15.2 Ma (FT zr)

2 Kumano Kumano Formation(Early to Middle
Miocene fore-arc basin sediment) and
Shimanto belt (Late Cretaceous to
Oligocene accretionary complex)

Rhyolitic lava, welded tuff, granite
porphyry laccolith and ring dike
(S-type) composing two calderas

13.8 Ma (K–Ar wr), 14.4-14.2 Ma
(K–Ar bt), 11.8-18.0 Ma (FT zr)

3 Ohmine dike Shimanto belt (Late Cretaceous
accretionary complex)

Rhyolitic tuff dike composing the Ohmine
caldera

n/a

4 Shiratani Shimanto belt (Late Cretaceous
accretionary complex)

Granite pluton (S-type) 14.7–15.6 Ma (K–Ar bt),
14.1–17.5 Ma (FT zr)

5 Tenguyama Shimanto belt (Late Cretaceous
accretionary complex)

Granite pluton (S-type) 15.1–17.3 (FT zr),
14.5–14.7 Ma(K–Ar bt)

6 Kose Shimanto belt (Late Cretaceous
accretionary complex) and Chichibu
belt (Jurassic accretionary complex)

Granite pluton (S-type) 12.6–14.6 Ma (K–Ar bt),
14.2–15.2 Ma (FT zr)

7 Shirakura Shimanto belt (Late Cretaceous
accretionary complex) and Chichibu
belt (Jurassic accretionary complex)

Granodiorite pluton (I-type) 14.2 Ma (K–Ar hbl), 14.6 Ma
(K–Ar bt), 13.4 Ma (FT zr)

8 Dorogawa Chichibu belt (Jurassic accretionary complex) Granodiorite pluton (I-type) 11.6–12.1 Ma (K–Ar hbl, bt),
14.8–18.8 Ma (FT zr), 14.0 Ma

(K–Ar bt)

9 Nakaoku dike Chichibu belt (Jurassic accretionary complex) Rhyolitic tuff dike composing the Odai
caldera

14.7 Ma (FT zr)

10 Takamiyama Sanbagawa metamorphic belt
(Cretaceous high-pressure metamorphic
rocks) and Ryoke granite (Late Cretaceous)

Quartz porphyry stock (S-type) n/a

Western Shikoku

11 Okinoshima Shimanto belt (Eocene to
Oligocene accretionary complex)

Granite/granodiorite pluton (S-type) 15 Ma (K–Ar bt) , 14.4–16 Ma
(Rb–Sr wr)

12 Kashiwajima Shimanto belt (Eocene to Oligocene
accretionary complex)

Granite/granodiorite pluton (S-type) 16 Ma (Rb–Sr wr)

13 Uwajima Shimanto belt (Late Cretaceous
accretionary complex)

Granodiorite pluton (S-type) 12–14.0 Ma (K–Ar bt) 15.0 Ma (FT zr)

14 Ishizuchi Sanbagawa metamorphic belt (Cretaceous
high-pressure metamorphic rocks) and
Kuma Formation (Early to Middle Miocene
non-marine sediment)

Dacitic/rhyolitic welded tuff, andesite
lava, decitic welded tuff and granodiorite
pluton (Ishizuchi cauldron; I-type)

14 Ma (K–Ar bt), 12.8–15.4 (K–Ar wr,
pl), 14.21–14.80 Ma (U–Pb zr)

15 Ishidatami Sanbagawa metamorphic belt (Cretaceous
high-pressure metamorphic rocks)

Dacite intrusion 14.1 Ma (K–Ar wr)

16 Myojin-yama Izumi Formation (Late Cretaceous
fore-arc basin sediment)

Rhyolite intrusion 13.9–14.3 Ma (K–Ar wr)

Kyushu

17 Tanegashima Kumage Formation (Palaeogene
accretionary complex)

Quartz porphyry stock (S-type) 15.6 Ma (K–Ar wr)

18 Yakushima Kumage Formation (Palaeogene
accretionary complex)

Granite pluton (S-type) 12.9–15.7 Ma (K–Ar wr),
12.2–15.6 Ma (K–Ar bt),
14.2–15.3 Ma (K–Ar ksp)

19 Minami-Osumi Shimanto belt (Eocene to Oligocene
accretionary complex)

Granite pluton (S-type) 13.4–14.4 Ma (K–Ar–bt),
13.1–14.0 Ma (FT zr)

20 Takakumayama Shimanto belt (Late Cretaceous
accretionary complex)

Granite pluton (S-type) 16 Ma (K–Ar bt), 12.9 Ma (FT zr)

21 Nomamisaki Shimanto belt (Early to Late Cretaceous
accretionary complex)

Granodiorite stock (I-type) 12 Ma (K–Ar wr)

(Continued)
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S-type granites on the trench side (Yakushima, Minami–Osumi,
Takakumayama, Murasho and Osuzuyama) and I-type granites
on the back-arc side (Nakada & Takahashi, 1979). The
Okueyama complex is a deeply eroded Valles-type caldera nested
within a vertically zoned granitic batholith, and their combined
original volume is estimated to exceed 1000 km3 (Takahashi,
1986a; Takahashi et al. 2014). Three phases of activity are recog-
nized: formation of the Sobosan cauldron (18 × 13 km) and
Katamukiyama cauldron (12 × 6 km), development of andesite/
dacite composite volcanoes within the calderas, and formation
of the Okueyama cauldron (33 × 23 km), which was preceded by
the eruption of the Kunimidake rhyolitic tuff and followed by
intrusion of the Okueyama batholith (Takahashi, 1986a). The
Okueyama cauldron is surrounded by ring dikes of porphyritic
granite. The Osuzuyama volcano–plutonic complex is composed
of a porphyritic granitic intrusion accompanied by small granite
stocks and overlying volcanic breccia and welded tuff, all of which
are presumed to be comagmatic and derived from a single magma
chamber (Nakada, 1983). In southern Kyushu, the batholithic
Yakushima pluton (25 × 20 km) and Minami–Osumi pluton
(48 × 15 km) intrude Palaeogene rocks of the Shimanto accretion-
ary complex.

2.a.3. Marginal zone igneous rocks
The third province, Marginal Zone Igneous Rocks (after
Takahashi, 1986b), is closest to the Nankai trough and consists
of intrusive alkaline and tholeiitic basaltic rocks, with or without
accompanying felsic intrusive rocks. Alkaline basaltic rocks are
present at three localities (Fig. 2): the Tanegashima alkali dolerite
dike on Tanegashima Island south of Kyushu (Taneda &
Kinoshita, 1972), the Ashizuri igneous complex in southernmost
Shikoku (Murakami et al. 1989), and the Shingu alkali basalt dikes

in north-central Shikoku (Uto et al. 1987). The Ashizuri complex is
accompanied by felsic lithologies such as syenite and alkali granite.
A tholeiitic gabbro sill 2 km long and up to 230 m thick intrudes
the Eocene to early Miocene accretionary complex of the Shimanto
Belt at Cape Murotomisaki in SE Shikoku (Akatsuka et al. 1999)
(Fig. 2), and a tholeiitic gabbro/basalt intrusion accompanies felsic
effusive and intrusive rocks at Cape Shionomisaki at the southern
tip of the Kii Peninsula (Miyake, 1985). These tholeiitic basalts
have mid-ocean ridge basalt (MORB)-like geochemical character-
istics and are thought to be the product of a subducted spreading
ridge during the waning stage of the opening of the Shikoku Basin
(Takahashi, 1986b; Yamaji & Yoshida, 1998; Kimura et al. 2005).

2.a.4. Samples
We collected samples fromMiocene felsic rocks of the Outer Zone,
from the Kii Peninsula to Kyushu, for zircon U–Pb age determi-
nations. Most samples were from OZGs. Samples were collected
from the Ashizuri igneous complex and Shionomisaki Igneous
Complex of the Marginal Zone Igneous Rocks, and zircon U–Pb
ages for the Ashizuri igneous complex have previously been
reported by Shinjoe et al. (2010). Two zircon-bearing mafic rocks
from the Shionomisaki Igneous Complex were also sampled for
U–Pb age determinations.

2.b. Geochemistry of felsic rocks of the Outer Zone

This section briefly describes the whole-rock geochemistry of the
felsic rocks of the Outer Zone. The SiO2 contents of the felsic rocks
range from 65 to 80 wt %, and major oxides are plotted against
SiO2 in Figure 3. In these variation diagrams, samples from the
Kii Peninsula, western Shikoku and Kyushu plot in almost the
same areas, forming broad trends with SiO2 content. Some of

Table 1. (Continued)

No.
Igneous body
name Country rocks Rock types Previous dating results*

22 Kimposan Shimanto belt (Early to Late Cretaceous
accretionary complex)

Granodiorite stock (I-type) 13.6 Ma (K–Ar wr), 14.6 Ma (FT zr)

23 Shibisan Shimanto belt (Early to Late Cretaceous
accretionary complex)

Granodiorite pluton (I-type) 15 Ma (K–Ar bt), 12.3–12.7 Ma
(FT zr)

24 Hioki Shimanto belt (Early to Late Cretaceous
accretionary complex)

Granodiorite stock (I-type) 12.2 Ma (K–Ar bt)23, 14.4 Ma
(FT zr)26

25 Akanita Shimanto belt (Late Cretaceous accretionary
complex)

Granodiorite stock (I-type) 20.1 Ma (K–Ar wr), 13.9 Ma
(FT zr)

26 NE Kumagatake Shimanto belt (Late Cretaceous accretionary
complex)

Granodiorite stock (I-type) n/a

27 Osuzuyama Shimanto belt (Eocene to Oligocene
accretionary complex)

Granodiorite porphyry, welded tuff,
volcanic breccia (S-type) composing
a caldera

13–15.6 Ma (K–Ar bt, wr) 14.9 Ma
(FT zr)

28 Murasho Shimanto belt (Eocene to Oligocene
accretionary complex)

Granite porphyry dike (S-type) 14.3 Ma (FT zr)

29 Ichifusayama Shimanto belt (Late Cretaceous to Oligocene
accretionary complex)

Granodiorite pluton (I-type) 13.31–14 Ma (K–Ar bt) 12.3–13.3 Ma
(FT zr)

30 Okueyama Shimanto belt (Late Cretaceous to Oligocene
accretionary complex) and Chichibu belt
(Jurassic accretionary complex)

Dacitic/rhyolitic welded tuff, rhyolite
lava, andesite lava, granodiorite
batholith (I-type), granite porphry ring
dike composing three calderas

13.8 Ma (K–Ar bt), 13.7 Ma
(Rb–Sr wr), 12.4–12.8 Ma(K–Ar wr)

*Reference and individual data are listed in the Supplementary Material (S10) (https://doi.org/10.1017/S0016756819000785). Abbreviations for the analysed samples are as follows: zr, zircon; wr,
whole rock; bt, biotite; pl, plagioclase; ksp, K-feldspar; hbl, hornblende.
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the felsic rocks of the Shionomisaki Igneous Complex have low
K2O contents that clearly differ from those of the S-type OZGs
in the same region (Shinjoe et al. 2007). Most of the samples have
alumina saturation index values greater than 1.0, except for those
with relatively low SiO2 content (Fig. 3).

Trace-element evidence that distinguishes four broad tectonic
categories (Pearce et al. 1984) shows that nearly all of our samples
fall in the field of volcanic arc granites (Fig. 4). The incompatible

element profiles of Outer Zone felsic rocks in the Kii Peninsula
(Shinjoe et al. 2007), shown in Figure 5, indicate that the I-type
and S-type granites of the OZGs are enriched in large-ion
lithophile elements and slightly depleted in Nb and Ta, whereas
Ba, Sr and Eu are depleted to various degrees depending on the
extent of feldspar fractionation. In the K-poor felsic rocks of the
Shionomisaki Igneous Complex, large-ion lithophile elements
are only weakly enriched.

Fig. 4. Y–Nb and (Yþ Nb) – Rb discrimination diagrams (Pearce et al. 1984) showing the classification of felsic rocks of the Outer Zone of the SW Japan arc.

Fig. 5. Whole-rock trace-element compositions
of selected felsic rocks in the Kii Peninsula (data
from Shinjoe et al. 2007), normalized to normal
MORB (Sun & McDonough, 1989).
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OZGs from the Kii Peninsula and Kyushu (Terakado et al.
1988) and the Uwajima pluton of SW Shikoku (Shinjoe, 1997)
have 87Sr/86Sr ratios of 0.7054–0.7066 for I-type granites
and 0.7061–0.7093 for S-type granites, and 143Nd/144Nd ratios
of 0.51252–0.51260 for I-type granites and 0.51230–0.51257
for S-type granites. These Sr and Nd isotopic compositions are
enriched compared to the present bulk Earth; however, these
granites have lower 87Sr/86Sr and higher 143Nd/144Nd ratios than
the sedimentary rocks of the Shimanto accretionary complex
(Fig. 6). It appears that the magma source for these OZGs, even
the S-type granites, included a mantle-derived component
(Shinjoe, 1997).

2.c. Previous geochronological constraints

Previous radiometric dates for the OZGs were mainly determined
using K–Ar methods (Shibata & Nozawa, 1967). Shibata (1978)
re-examined some samples with controversial ages and concluded
that the OZGs formed at 14 ± 1Ma. Later researchers have used
K–Ar and fission-track methods and obtained generally consistent
results (e.g. Sumii et al. 1998; Sumii, 2000; Iwano et al. 2007).
Previous radiometric ages for the OZGs are presented in Figure 7
and summarized for each igneous body in Table 1. Although
most of the ages are concentrated between 13 and 16 Ma, out-
liers extend from 12 to 22 Ma. This scatter may be the result
of excess Ar or Ar loss that affects samples in K–Ar dating. It
is noteworthy that all K–Ar ages represent cooling ages.
Hence it is crucial to constrain the age of magmatism by zircon
U–Pb dating, taking advantage of the higher closure tempera-
tures in zircon, to shed light on the relationship between
fore-arc magmatism and clockwise rotation of the SW Japan
arc during and after Miocene time.

3. Methodology

U–Pb ages of zircon were determined using a VG Plasma Quad 3
inductively coupled plasma mass spectrometer (ICP-MS) at the
Earthquake Research Institute of the University of Tokyo,
connected to a frequency quintupled (λ= 213 nm) Nd-YAG laser
ablation (LA) system (NewWave Research UP-213). Details of the
analytical protocol, precision and accuracy of the zircon U–Pb
dating are presented in Orihashi et al. (2008), and the analytical
conditions are listed in Table 2. The ISOPLOT 4.15 program
(Ludwig, 2012) was used for calculation of weighted means, mean
square weighted deviations (MSWDs) and probabilities and
for plotting data on a Tera–Wasserberg concordia diagram.
Replicate measurements of the 91500 zircon standard (n= 333)
during this study yielded a 238U–206Pb age of 1051.9 ± 3.3 Ma
(weighted mean age ±95 % confidence) and a 235U–207Pb age of
1063.5 ± 2.5 Ma (weighted mean age ±95 % confidence).
Deviations from the isotope dilution thermal ionizationmass spec-
trometry (ID-TIMS) data (1062.4 ± 0.4 Ma and 1063.5 ± 0.3 Ma,
respectively) reported by Wiedenbeck et al. (1995) are within
1 %. Replicate measurements of the OD-3 zircon standard
(n= 115) yielded a 238U–206Pb age of 32.73 ± 0.22 Ma (weighted
mean age ±95 % confidence) and a 235U–207Pb age of
33.44 ± 0.38 Ma (weighted mean age ±95 % confidence), which
are consistent with the weighted mean 238U–206Pb age
(33.0 ± 0.1 Ma) of multiple-laboratory comparison data (Iwano
et al. 2013) and the ID-TIMS value of 32.72 ± 0.16 Ma reported
by Lukács et al. (2015).

4. Results

Our U–Pb analyses emphasized the rims of euhedral zircon grains
to determine the magmatic age of the samples. To avoid inclusions

0.51200

0.51225

0.51250

0.51275

0.51300

0.705 0.708 0.711 0.714
87Sr/86Sr

14
3 N

d/
14

4 N
d

Kii I−type granite
Kii S−type granite

Kyushu I−type granite
Kyushu S−type granite
Shimanto sediment

Uwajima granodiorite

S-type granite

Shimanto sediment

I-type granite

Fig. 6. Sr andNd isotopic compositions of felsic
plutonic rocks in the Outer Zone of the SW Japan
arc (data from Terakado et al. 1988; Shinjoe,
1997).
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and fractures at the analytical points, zircon grains were monitored
under a transmitted light microscope during laser ablation.
Samples were observed by cathodoluminescence (CL) and back-
scattered electron images before or after analysis except for some

early samples. CL images showing representative zonal structures
including both I-type and S-type granitic rocks are presented in
Figure 8.

For each rock sample, 23–81 points were measured and
weighted means, shown in Table 3, were obtained from five or
more concordant 238U–206Pb ages of primary magmatic zircons.
Most of the samples comprise many discordant analytical points
explained in terms of Pb loss for older inherited grains or contami-
nation of common Pb. In this research, correction of common Pb
was not conducted. Hg contamination in the Ar carrier gas is
unavoidable in the LA-ICP-MS method, hence highly accurate
204Pb determination is very difficult due to the interference
of 204Hg. Common Pb correction using 208Pb/232Th ratio
(Anderson, 2002) is also not appropriate in our approach. The
analytical method by Orihashi et al. (2008) is used in this study,
optimized so that the ablation fractionation is minimized at the
206Pb/238U ratio. Under this analytical condition, error at the
208Pb/232Th ratio in repeated analysis of the standard reached up
to c. 15 % (2σ), resulting in analytical errors much larger than those
of 206Pb/238U age.

Rather than attempting to apply a common-Pb correction, we
have used a regression technique, treating our population of analy-
ses as representing mixtures between the common-Pb and
radiogenic-Pb components. First, we select only the concordant
analysis, then calculate the weighted mean of the 206Pb/238U age
for concordant analytical points. Concordant but older inherited
zircons in each sample were statistically distinguished from the
weighted mean data of primary magmatic zircons. After excluding
analytical points of inherited grains, the lower intercept age is
determined by regression. If this agrees with the weighted mean
of the concordant age of primary magmatic zircons within the
error range, and the 207Pb/206Pb ratio of the other end component
is close to that of common Pb (Stacey & Kramers, 1975), the
selected population of discordant points were considered to be
affected by common Pb for primary magmatic zircons. The agree-
ment between the lower intercept age and the weighted mean age
strengthens the legitimacy of the concordant analytical point
judged as ‘primary magmatic zircon’. Lower intercept ages are also
listed in Table 3, except for two samples for which an effective
regression line could not be obtained due to the poor population
affected by common Pb. Tera–Wasserburg diagrams including
regression line and plots showing the result of weighted mean
calculation for representative samples are shown in Figure 9.
Analytical data are listed in Supplementalry Material Tables
S3–S11 (https://doi.org/10.1017/S0016756819000785). Plots of
the Tera–Wasserburg diagram and weighted mean calculation
results for all samples are included in the Supplementary
Material S12 (https://doi.org/10.1017/S0016756819000785).

Relative density plots and histograms of 238U–206Pb ages for
each region are shown in Figure 10. 238U–206Pb ages of samples
from the Kii Peninsula (13.59–15.60Ma), Shikoku (14.14–15.23Ma)
and Kyushu (13.46–15.56Ma) are in good agreement. The narrower
age range of samples from Shikoku probably reflects the smaller num-
ber of data. The distribution of Miocene igneous rocks and the overall
results of U–Pb analysis of each region are shown in Figures 11–13.

4.a. Kii Peninsula

4.a.1. Shionomisaki igneous complex
The Shionomisaki Igneous Complex, at the southern tip of the Kii
Peninsula, is composed of mafic to felsic intrusive and extrusive
rocks (Fig. 14). Our zircon U–Pb analysis for three samples

Fig. 7. Probability density plots and histograms of previously reported radiometric
ages of the OZGs in the SW Japan arc: (a) Kii Peninsula (from Iwano et al. 2007),
(b) Western Shikoku (from Shinjoe & Sumii, 2001) and (c) Kyushu (from Shinjoe &
Sumii, 2003; Oikawa et al. 2006). Ages were determined by K–Ar or zircon fission-track
methods, plus a few obtained by the Rb–Sr whole-rock isochron method.
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(SP202, SP205 and SP212 in Table 3) yielded 238U–206Pb weighted
mean ages of a dolerite, a gabbroic intrusion and a rhyolite lava
ranging from 14.61 to 15.38 Ma. Our results refined zircon
fission-track ages reported by Hoshi et al. (2003) that ranged
from 13.9 to 15.2 Ma with the exception of a 13.1 Ma felsite dike
(Fig. 7).

4.a.2. OZGs in the Kii Peninsula
238U–206Pb ages were obtained for six samples from the KARs
yielded weighted mean ages ranging from 14.48 to 15.51 Ma
(Fig. 15).Welded tuff from the Owase-Shirahama pyroclastic rocks
(sample IuchiWT) recovered from a borehole that penetrated a
laccolith of porphyritic granite of the northern unit into the welded
tuff (Kitagawa et al. 2009). Granite porphyry sample KUM16,
collected from an isolated small peninsula of the southern unit,
yielded a weighted mean age that did not overlap with other data
within the error range, suggesting that precursory activity occurred
there before the majority of the KARs were emplaced.

We obtained 238U–206Pb ages of 14.88 ± 0.45 Ma and
14.67 ± 0.26 Ma for tuffite from the Ohmine dike (sample
TKG1) and the Nakaoku dike (sample D1), respectively. These
are within the age range of the KARs.

238U–206Pb ages of four S-type plutons of the OGRs ranged from
14.99 to 15.60 Ma. The Dorogawa pluton, the northernmost I-type
pluton, yielded a 238U–206Pb age of 14.13 ± 0.29 Ma, youngest
among the OGRs. Granodiorite of this pluton is characterized
by low FeO*/MgO ratios, high Cr and Ni contents, and enclaves
of high-Mg andesite-like diorite containing Cr-rich spinel, which
suggests that it was derived from a high-Mg andesite magma, as
reported for Setouchi Volcanic Rocks (Shinjoe et al. 2005). The
Takamiyama pluton yielded a 238U–206Pb age of 13.59 ± 0.22
Ma, ∼1Ma younger than the major igneous activity of the OGRs.

Overall, the 238U–206Pb ages from the KARs and OGRs of the
Shionomisaki Igneous Complex are in good agreement except
for the two northernmost plutons (Dorogawa and Takamiyama
plutons).

4.b. Western Shikoku

We obtained six 238U–206Pb ages from two S-type plutons
(Okinoshima–Kashiwajima and Uwajima plutons) in western
Shikoku (Fig. 11). In the Okinoshima–Kashiwajima pluton,
Tanijiri-type granodorite is intruded by Mojima-type granite
(Dai et al. 1993). For Tanijiri-type granodorite (samples OK2C
and KAS2) we obtained ages of 14.71 ± 0.45 Ma and
14.99 ± 0.32 Ma, and for Mojima-type granite (sample OK1B)
we obtained an age of 14.14 ± 0.18Ma. Although our results are
consistent with the order of intrusion, these ages accord with each
other within their 2σ errors. From theUwajima pluton we obtained
238U–206Pb ages for three samples with different mineral assemb-
lages. The weighted mean ages range from 14.93 to 15.23 Ma and
coincide with each other within their 2σ errors.

For the felsic rocks of the Ishizuchi Group, we obtained
238U–206Pb ages of 14.48 ± 0.16 Ma from a rhyolitic welded tuff
(sample EHI100) of the lowest horizon Takano pyroclastic
flow deposits and 14.35 ± 0.16 Ma from a granodiorite (sample
EHI38) of the Omogo central pluton (Fig. 12). For the
Myojinyama-type Acidic Rocks, we determined 238U–206Pb ages
of 14.37 ± 0.16 Ma and 14.49 ± 0.15 Ma from dacites of the
Ishidatami body (sample EHI105) and Myojinyama body (sample
EHI205), respectively. These ages coincide with those of the adja-
cent Ishizuchi Group and previous whole-rock K–Ar ages reported
by Tazaki et al. (1993) within their 2σ errors.

4.c. Kyushu

All of the analysed samples from Kyushu were collected from
OZGs. We selected 21 samples from representative lithologies of
14 igneous bodies (Table 3; Fig. 13). Two older ages
(15.48 ± 0.22 Ma and 15.56 ± 0.28 Ma) were obtained from quartz
porphyry dikes on Tanegashima and Yakushima islands (Fig. 2),
the nearest to the trench. These ages are comparable to the older
KARs and OGRs in the Kii Peninsula. The other ages are concen-
trated within a range of 1.5 Ma (13.46 to 14.93 Ma).

Table 2. Summary of LA–ICP–MS operating conditions

ICP-MS Laser ablation

Model Thermo Elemental Plasma Quad3 Model New Wave Research UP213

Forward power 1380 W Laser type UV 213 nm (frequency quadrupled Nd-YAG laser)

Lens VG CHICANE Lens Energy density 11–13 J cm−2

Ar gas flow rate Cool 13.5 L min−1 Crater size 30mm

Auxiliary 1.0 L min−1 Repetition rate 10 Hz

Nebuliser 0.9–1.1 L min−1 Pre-ablation 3 s

He gas flow rate 0.7–0.8 L min−1 Carrier gas He

N2 gas flow rate 0.8 mL min−1 Focus Fixed focus on sample surface

Expansion pump S-option

Scanning mode Peak jump

Integration time 20 s

Monitor isotope 202Hg, 204Pb, 206Pb, 207Pb, 208Pb, 232Th, 238U

Standard NIST SRM610
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Fig. 8. Cathodoluminescence images showing representative zonal structures of ana-
lysed zircon grains. (a) I-type granodiorite in western Shikoku (EHI38), (b) welded tuff of
the S-type Kumano Acidic Rocks in Kii Peninsula. We conducted LA-ICP-MS analysis mainly
on the rim of the zircon crystals to constrain the magmatic age of the samples. Generally,
most of the rim of the euhedral zircons of I-type granitic rocks yielded concordant primary
magmatic ages, though some grains have dark core in CL images (a). Discordant analytical
points (marked ‘d’) were presumed to be affected by common Pb (see Fig. 9). S-type gra-
nitic rocks usually contain a considerable amount of inherited zircons. For example, some
of the rims for euhedral grains in S-type rhyolitic welded tuff (b) show Mesozoic ages.
(c) Euhedral grains with concentric oscillatory zoning (from sample EHI100). These usually
yielded concordant magmatic ages (right-hand grain), although some showed discordant
results affected by common lead (analytical points marked ‘d’) or concordant older ages
(left-hand grain). (d) Euhedral grains with oscillatory zoning rims and homogeneous cores
(from sample IuchiWT) yielded concordant magmatic ages. (e) Euhedral grains with thin
(<20 μm) rims with oscillatory zoning and intricately zoned cores showing concordant
Cretaceous ages (from sample IuchiWT). (f) Euhedral grains showing concentric oscillatory
zoning (from sample TKG1) with concordant Permian ages. (g) Anhedral grains with rims
with oscillatory zoning yielded concordant magmatic ages (from sample TKG1).

For the batholithic Yakushima pluton, we analysed three zircon
samples from the main-facies granite (sample YMG), orthoclase
megacrysts (sample YKF) in the same granite, and a cordierite-
bearing granodiorite (sample YYG). Although the Sr–Nd isotopic
ratio of sample YYG implied strong sediment contamination
(Anma et al. 1998; Kawano et al. 2007) and the inclusion miner-
alogy suggested that the orthoclase megacrysts crystallized rela-
tively early (Kawachi & Sato, 1978; Anma, 1997), the three
results from this pluton coincided with each other within their
error ranges (Fig. 16). Two S-type plutons in the Osumi
Peninsula of southernmost Kyushu (Minami–Oshumi and
Takakumayama) yielded ages of 14.74 ± 0.17 Ma and
14.14 ± 0.31 Ma. Granite samples from the Ichifusayama pluton
contained no primary magmatic zircon, only inherited zircons
with ages ranging from Jurassic to Proterozoic.

Samples from four small plutons in southwesternmost Kyushu
(samples SA101A, SA102, SA106 and SA107) yielded 238U–206Pb
ages ranging from 14.25 to 14.93Ma, which refine the previously
reported older cluster ages of ∼20 to 22Ma (Fig. 2) obtained using
the zircon fission-track method (MITI, 1985).

From the Okueyama volcano–plutonic complex, we obtained
238U–206Pb ages of 14.09 ± 0.19 Ma for the Sobosan andesite
(sample MYA02), 14.00 ± 0.24 Ma for the Kunimidake rhyolitic
tuff (sample MYA01), 13.70 ± 0.13 Ma for a granite of the
Okueyama batholith (sample MYA03), and 14.28 ± 0.26 Ma for
a porphyritic granite of the ring dike (sample MYA05).

From the Osuzuyama volcano–plutonic complex, porphyritic
granodiorite stock yielded 238U–206Pb ages of 14.70 ± 0.37 Ma.
The youngest ages among the OZGs in Kyushu were obtained
for the Shibisan pluton (13.50 ± 0.15Ma and 13.46 ± 0.30 Ma),
the farthest from the trench axis.

5. Discussion

Our U–Pb dates for igneous rocks in the Outer Zone indicate that
magmatism was active at the same time along the SW Japan arc
from the Kii Peninsula to Kyushu, commencing at c. 15.6 Ma.
This finding has implications for the opening of the Japan Sea,
migration of the Philippine Sea plate and subduction of
young and hot lithosphere of the Shikoku Basin during Miocene
time, and the duration of caldera-forming eruptions in the
Outer Zone.

5.a. Chronological relationship with the opening
of the Japan Sea

Palaeomagnetic studies have established that both the SW and NE
Japan arcs underwent rapid rotation in early to middle Miocene
time. Early studies proposed that the SW Japan arc rotated
clockwise ∼50°, most of the rotation occurring between 16.1
and 14.2 Ma (Otofuji & Matsuda, 1983, 1987; Hayashida & Itoh,
1984; Otofuji et al. 1991). Subsequent research has pushed the
dates of this rotation back in time. Nakajima et al. (1990) used
K–Ar ages and palaeomagnetic evidence from Miocene rocks in
Fukui, in the NE part of the arc, to show that the rapid rotation
began at ∼17Ma and ceased at 15Ma. Similar evidence for the
rotation ending ∼15Ma was later reported from other sites in
the arc (Hoshi et al. 2000; Hoshi & Sano, 2013). More recently,
Sawada et al. (2013) re-examined the volcanic rocks in the
Matsue area on the north side of the arc, originally investigated
by Otofuji & Matsuda (1983) and Otofuji et al. (1991), and con-
cluded that the clockwise rotation began after 18Ma and ceased
at 16Ma, although their conclusion still depended on conventional
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Table 3. Results of zircon U–Pb ages

Weighted mean of 238U–206Pb ages Lower intercept age

No.

Igneous
body
name

Sample
code Latitude Longitude Rock type Occurrence

No.
total
data N*

age
(Ma)

Error
(95 %
conf.) MSWD

age
(Ma)

Error
(95 %
conf.) MSWD

Kii Peninsula

1 Shionomisaki SP202 33.4429° 135.7561° Dolerite Stock 30 14 14.60 ± 0.22 1.7 14.69 ± 0.29 5.4

SP205 33.4645° 135.7985° Rhyolite Lava 35 19 15.01 ± 0.19 2.7 14.92 ± 0.23 2.7

SP212 33.4460° 135.7689° Gabbro Stock 28 10 15.38 ± 0.29 1.9 15.21 ± 0.28 5.2

2 Kumano SP211 33.5354° 135.8117° Granite porphyry Ring dike 28 9 15.11 ± 0.69 14 15.02 ± 0.45 9.2

KUM11 33.8690° 135.9932° Rhyolite Lava 55 7 14.78 ± 0.25 3.5 14.79 ± 0.14 6.2

IuchiWT 33.8997° 136.1372° Rhyolitic welded tuff Welded tuff 57 18 15.02 ± 0.16 2.5 14.73 ± 0.26 4.3

KUM16 33.6509° 135.9562° Granite porphyry Pluton 80 14 15.51 ± 0.41 3.5 15.31 ± 0.30 6.8

KUMA8 34.1076° 136.1770° Granite porphyry Pluton 63 33 14.48 ± 0.19 3.1 14.61 ± 0.20 3.2

KUMA101 34.1313° 136.1490° Granite porphyry Pluton 70 14 14.76 ± 0.36 5.0 14.39 ± 0.24 4.6

3 Ohmine dike TKG1 34.0060° 135.8420° Tuff Ring dike 52 5 14.88 ± 0.45 2.5 15.20 ± 0.53 20

4 Shiratani ST5 34.0056° 135.8909° Granite Stock 81 34 15.60 ± 0.27 2.4 15.35 ± 0.30 3.9

5 Tenguyama TG2 34.0623° 135.8602° Granite Stock 49 17 15.39 ± 0.49 4.4 15.07 ± 0.42 5.0

6 Kose KSSP 34.2075° 135.9164° Granite Stock 66 23 14.99 ± 0.22 2.2 14.98 ± 0.21 3.7

7 Shirakura SK1B 34.2420° 135.9006° Granodiorite Stock 40 16 15.45 ± 0.28 1.5 15.16 ± 0.36 3.8

8 Dorogawa DO3C 34.2699° 135.9099° Granodiorite Stock 25 14 14.13 ± 0.29 2.0 14.08 ± 0.36 1.9

9 Nakaoku dike D1 34.3340° 136.0701° Tuff Ring dike 70 22 14.67 ± 0.24 2.9 14.47 ± 0.19 3.4

10 Takamiyama TA-1 34.4283° 136.0969° Granite porphyry Stock 32 11 13.59 ± 0.22 3.8 13.48 ± 0.48 17

Western Shikoku

11 Okinoshima OK1B 32.7410° 132.5453° Granite Pluton 55 25 14.14 ± 0.18 3.1 14.10 ± 0.17 4.2

OK2C 32.7261° 132.5667° Granodorite Pluton 35 11 14.71 ± 0.45 3.2 14.50 ± 0.36 2.7

12 Kashiwajima KAS2 32.7731° 132.6399° Granodorite Pluton 60 16 14.99 ± 0.32 2.1 14.54 ± 0.38 3.8

13 Uwajima UWA1 33.2095° 132.6235° Granodiorite Pluton 36 14 14.93 ± 0.34 3.7 14.13 ± 0.52 4.7

UWA5 33.2034° 132.6433° Granodiorite Pluton 46 20 15.23 ± 0.32 3.1 14.87 ± 0.39 4.4

UWA6 33.2006° 132.6454° Granodiorite Pluton 50 19 15.17 ± 0.29 4.0 14.88 ± 0.22 3.2

14 Ishizuchi EHI38 33.7217° 133.1003° Granodiorite Pluton 30 22 14.35 ± 0.16 1.2 14.14 ± 0.31 2.3

EHI100 33.7603° 132.9812° Rhyolitic welded tuff Welded tuff 30 13 14.48 ± 0.16 1.12 14.16 ± 0.27 1.6

15 Ishidatami EHI105 33.6352° 132.6111° Dacite Sheet 23 20 14.37 ± 0.16 3.0 14.21 ± 0.30 4.3

16 Myojin-yama EHI205 33.7178° 132.7223° Rhyolite Sheet 28 17 14.49 ± 0.15 2.5 14.49 ± 0.22 10.4
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Kyushu

17 Tanegashima TQP01 30.4707° 130.8506° Quartz porphyry Dike 36 12 15.48 ± 0.22 1.6 15.29 ± 0.17 3.9

18 Yakushima YQP01 30.3712° 130.6716° Quartz porphyry Dike 36 14 15.56 ± 0.28 3.4 Not available

YMG16 30.3792° 130.5059° Granite Batholith 62 45 14.71 ± 0.13 1.8 14.49 ± 0.17 2.0

YKF01 30.3792° 130.5059° Granite K-feldspar
megacryst

63 24 14.63 ± 0.18 3.3 14.47 ± 0.15 4.6

YYG01 30.3347° 130.5059° Granite Stock 85 20 14.60 ± 0.25 2.8 14.41 ± 0.22 4.8

19 Minami–Osumi OS01 31.3564° 131.0186° Granodiorite Batholith 36 11 14.74 ± 0.17 2.2 14.83 ± 0.22 5.7

20 Takakumayama TK01 31.4889° 130.7764° Granite Stock 27 12 14.14 ± 0.31 7.1 14.08 ± 0.28 6.4

21 Nomamisaki SA101A 31.4124° 130.1302° Granodiorite Stock 27 12 14.51 ± 0.30 4.9 14.44 ± 0.23 6.8

22 Kimposan SA102 31.4747° 130.3770° Granite Stock 27 14 14.32 ± 0.21 1.5 14.21 ± 0.30 2.3

23 Shibisan SA103 31.9729° 130.3510° Granite Stock 27 8 13.50 ± 0.15 0.97 13.46 ± 0.19 5.9

SA104 31.9563° 130.3567° Granite Stock 28 11 13.46 ± 0.30 4.0 13.42 ± 0.28 5.3

24 Hioki SA105 31.6108° 130.3699° Granite Stock 27 16 14.02 ± 0.23 4.9 14.07 ± 0.22 5.1

25 Akanita SA106 31.5208° 130.4170° Granite Stock 36 11 14.45 ± 0.26 4.0 14.32 ± 0.21 6.5

26 NE
Kumagatake

SA107 31.4581° 130.4701° Granite Stock 27 13 14.93 ± 0.29 11.5 Not available

27 Osuzuyama MYA13 32.3418° 131.6173° Granite porphyry Sheet or stock 30 8 14.71 ± 0.37 3.1 14.63 ± 0.31 3.9

28 Murasho MYA21 32.2295° 131.1601° Granite porphyry Dike 30 10 14.93 ± 0.26 1.9 14.80 ± 0.23 1.7

29 Ichifusayama IC01 32.3432° 131.0841° Granite Stock 36 None of primary magmatic zircon

KMJ02 32.3432° 131.0841° Granite Stock 45 None of primary magmatic zircon

30 Okueyama MYA02 32.7931° 131.2634° Andesite Lava 27 17 14.09 ± 0.19 3.1 13.94 ± 0.18 3.0

MYA01 32.8028° 131.2668° Rhyolitic welded tuff Welded tuff 27 7 14.00 ± 0.24 0.54 13.95 ± 0.14 1.03

MYA03 32.7098° 131.4929° Granite Stock 32 20 13.70 ± 0.13 2.0 13.58 ± 0.15 2.7

MYA05 32.6534° 131.4426° Granite porphyry Ring dike 33 13 14.28 ± 0.26 4.0 14.17 ± 0.20 3.5

*Number of concordant data only includes the primary magmatic zircon population.
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K–Ar and fission-track dating data with large analytical uncertain-
ties. Hoshi et al. (2015a) conducted an intensive palaeomagnetic
study of the Mizunami Group in the eastern part of the arc, where
depositional ages are well constrained by biostratigraphy, and con-
cluded that rapid clockwise rotation began after 17.5 Ma and
largely ceased before 15.8 Ma. The latest compilation by Hoshi
(2018a) concluded that the arc rotated clockwise by ∼40° between
18 and 16Ma. Thus, magmatism in the Outer Zone started
immediately after rotation of the SW Japan arc ceased.

Recent radiometric dating of Setouchi Volcanic Rocks, includ-
ing zircon U–Pb methods, has yielded ages ranging from 15.2 to
13.2 Ma (Tatsumi et al. 2010; Shinjoe & Orihashi, 2017). Shinjoe
et al. (2010) reported zircon U–Pb ages of ∼13Ma for the syenite
and alkali granite from the Ashizuri igneous complex in the

Marginal Zone (Fig. 12). Recent 40Ar–39Ar dating of the alkali
basalt/dolerite dikes in the Ashizuri, Shingu and Tanegashima
complexes has yielded ages ranging from 15 to 12Ma (Shinjoe
et al. 2018). Our new data indicate that, in both Kii Peninsula
and southern Kyushu, the magmatism started at ∼15.6 Ma. In
sum, high-precision radiometric dating shows that all middle
Miocene near-trench igneous activity took place just after the
opening of the Japan Sea ceased c. 16 Ma.

Since the early suggestion by Nakada & Takahashi (1979),
researchers have connected the origin ofMiocene fore-arc magma-
tism to the subduction of hot lithosphere of the Shikoku Basin.
Under that scenario, magmatism in the Setouchi Volcanic Belt,
including high-Mg andesites, has been ascribed to the interaction
of slab melt with mantle peridotite (Furukawa & Tatsumi, 1999;

(a) (b) (c)

Fig. 9. (a–e) Tera–Wasserburg concordia diagrams and plots of the result of weighted mean calculation of 238U–206Pb ages of concordant primary zircons of five representative
samples: (a) Dolerite (SP202) of the Shionomisaki igneous complex in Kii Peninsula; (b) S-type rhyolitic welded tuff (IuchiWT) of the Kumano Acidic Rocks in Kii Peninsula; (c) I-type
granodiorite (DO3C) of the Dorogawa pluton in Kii Peninsula; (d) S-type granodiorite (UWA6) of the Uwajima pluton in western Shikoku; (e) I-type granodiorite (EHI38) of Omogo
pluton in the Ishizuchi Group, western Shikoku. Tera–Wasserburg diagrams in the second row show the enlarged view including the primary magmatic zircon population together
with the regression line to estimate the contamination of common Pb. I-type granitic rocks and dolerite (a, c, e) comprise no or a few inherited zircon grains, and themain cause of
discordance is presumed to be common Pb contamination. On the other hand, S-type granitic rocks (b, d) contain a considerable amount of inherited zircon grains in addition to
grains affected by common Pb contamination. Grey symbols in the plots of the result of weighted mean calculation show the analysis statistically rejected from the calculation.
(f) Concordia diagrams of the zircons from an I-type granodirite (IC01) from Ichifusayama in Kyushu. No primarymagmatic zircon was found. The concordia diagram in the second
row is the enlarged view of the area younger than 200 Ma. Concordia diagrams and plots of the result of the weightedmean of 238U–206Pb ages of concordant primary zircons for all
of the analysed samples are presented in the Supplementary Material (S12) (https://doi.org/10.1017/S0016756819000785).
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Tatsumi, 2006). The results of this study suggest thatMiocene fore-
arc magmatism, in contrast, was connected to the cessation of the
opening of the Japan Sea.

Granitic melts that originate by partial melting of subducted
slabs and their accompanying sedimentsmay form and rise to shal-
low levels, as suggested in the Chile Ridge subduction zone where
hot oceanic lithosphere is subducted (Anma et al. 2009; Anma &
Orihashi, 2013; Shin et al. 2015), as illustrated in the SW Japan arc
during the incipient stage of subduction of the Philippine Sea plate
according to structural, petrological and geochronological studies
(e.g. Anma, 1997; Anma & Sokoutis, 1997; Anma et al. 1998;
Kimura et al. 2014), and as experimentally demonstrated for sub-
ducted sediments (e.g. Patino Douce, 1996) and fluids (Iwamori,
1998, 2000). Such shallow melts or fluids in subduction zones
may act as lubricants that decrease friction between the subducting
slab and the overriding crust (Anma & Sokoutis, 1997). Thus, it
may have been relatively easy for the crust of the SW Japan arc
to move southward as the Japan Sea opened. As the melt or fluid
escaped, the plate interface between the hot, relatively buoyant sub-
ducting lithosphere of the Shikoku Basin and the SW Japan arc
crust would have become locked as the lubricating effect decreased.
Perhaps the plutons intruding into the SW Japan arc crust across
the plate interface contributed to the locking. Together, these

resistive mechanisms may have slowed or halted the southward
migration of the SW Japan arc crust and the opening of the
Japan Sea.

5.b. Philippine Sea plate reconstruction

Reconstructions of the configuration and motion of the Philippine
Sea plate must rely largely on palaeomagnetic evidence, because it
lacks active spreading zones or hotspot tracks that can be utilized in
global plate circuits (Seton et al. 2012). Palaeomagnetic studies
indicate that the Philippine Sea plate has moved northward by
∼20° of latitude and rotated clockwise as much as 110° since
Eocene time (e.g. Louden, 1977; Ali & Hall, 1995; Hall et al.
1995; Yamazaki et al. 2010). Yamazaki et al. (2010) presented a
model in which the Philippine Sea plate rotated 90° clockwise
between 50 and 15Ma, based on palaeomagnetic data of drilled
cores from the Kyushu–Palau Ridge and other localities. Wu
et al. (2016) noted in their compilation of palaeomagnetic data that
the major uncertainty in the rotation of the whole Philippine Sea
plate arises from the possibility of local rotation of neighbouring
plates or blocks at its margins. Since the early work by Seno &
Maruyama (1984), most palaeogeographic reconstructions of the
Philippine Sea plate have abandoned the anchored slab model that

(d) (e) (f)

Fig. 9. (Continued)
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assumes a fixed plate boundary and adopted a retreating-trench
model in which the palaeo-IBM arc migrated along the margin
of SW Japan as the Shikoku Basin continued to open. There are
two variants of this model, one in which the TTT triple junction
migrates early and the other in which it migrates late.
Emphasizing the clockwise rotation of the Philippine Sea plate,
the late migration model (Fig. 17a) involves the northern end of
the palaeo-IBM arc shifting eastward from Kyushu to the Izu

Peninsula (its present position) from 15 to 5Ma (e.g. Hall, 2002;
Sdrolias et al. 2004; Clift et al. 2013). However, Okino (1994)
reported that the Shikoku Basin has not rotated significantly since
16Ma, citing palaeomagnetic data from the Kinan seamount chain
in the middle of the Shikoku Basin.

Kimura et al. (2014) adopted the late migration model when
discussing the origin of near-trench magmatism in the SW
Japan arc. They presumed that near-trench magmatism produced
its variety of petrological characteristics through the combination
of the subduction of the active spreading ridge in the Philippine Sea
plate, plus its neighbouring hot lithosphere, and the collision of the
palaeo-IBM arc. They cited radiometric ages from the SW Japan
arc that indicated eastward younging of near-trench magmatism
to account for the contribution from the palaeo-IBM arc.
However, most of their data were conventional K–Ar or fission-
track ages, which represent cooling ages to ∼300 to 250 °C and
are subject to significant uncertainty. They also called upon the col-
lision of the palaeo-IBM arc to explain the coastal embayments
between capes Ashizurimisaki, Murotomisaki and Shionomisaki.
Raimbourg et al. (2017) investigated the collision of the palaeo-
IBM arc with the SW Japan margin by analysing deformation kin-
ematics and by mapping peak palaeotemperatures through Raman
spectra analysis of carbonaceous materials in Cretaceous to
Neogene sedimentary rocks of the accretionary Shimanto
Supergroup. They claimed that the collision of the palaeo-IBM
arc took place in early Miocene time, before near-trench magma-
tism began in the SW Japan arc. They recognized that the heating
event and most of the deformation recorded in the accreted unit
occurred in early Miocene time, followed by rapid subsidence
and deposition of the fore-arc basin sediments.

An alternative model proposes that a narrow wedge-shaped
western extension of the Pacific plate north of the Philippine
Sea plate was subducting beneath SW Japan before the Japan
Sea opened (Fig. 17b; Hibbard & Karig, 1990). In this model,
the Pacific plate extension was consumed as the trench retreated
during the rotation of the SW Japan arc, and the Philippine Sea
plate started to subduct in turn. Yamaji & Yoshida (1998) proposed
that this western extension of the Pacific plate was detached at
∼20Ma to form the Heike plate, which shared a divergent boun-
dary with the Philippine Sea plate (Fig. 17c). As the Heike plate was
subducted beneath the SW Japan arc, the hot trench-subparallel
spreading ridge between the Heike and Philippine Sea plates
was also eventually subducted beneath the SW Japan arc.

Our U–Pb age data from the Outer Zone show that near-trench
magmatism started simultaneously over the 600 km distance from
the Kii Peninsula to Kyushu at ∼15.6 Ma. Thus, the IBM arc must
have been east of the Kii Peninsula at 15.6 Ma, given that the mag-
matism arose from subduction of hot Shikoku Basin lithosphere.
Our data clearly do not support late migration models in which
the TTT triple junction migrated from Kyushu to the Kii
Peninsula after 15Ma (Fig. 17a).

The Heike plate hypothesis (Fig. 17c) can explain the timing
and extent of the near-trench magmatism, though a hypothesis
based on a completely vanished microplate may be difficult to test.
Moreover, if subduction of a trench-parallel spreading ridge did
occur, the young hot oceanic plate adjoining the ridge would have
been subducted first. This would have triggered near-trench
magmatism in advance of the main pulse of magmatism caused
by subduction of the spreading ridge. However, no such precursory
magmatism has been found in the study area.

Of all these proposed plate configurations, we favour a model
involving subduction of the Pacific plate before the rotation of the

Fig. 10. Probability density plots and histograms of 238U–206Pb ages of the middle
Miocene felsic rocks of the SW Japan arc from (a) the Kii Peninsula, (b) western
Shikoku and (c) Kyushu.
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SW Japan arc (Fig. 17b) because it maintains arc magmatism along
the Japanese Islands before the arc began to rotate (Fig. 18a). Wu
et al. (2016) based their discussion of Philippine Sea plate tectonics
on a 3D seismic tomographic model of the subducted slab, which
led them to address the Miocene tectonics of the Ryukyu and SW
Japan arcs. Their model presumed that the Pacific plate was sub-
ducting beneath the SW Japan arc before the arc began its rotation.
It also posited that a south-directed subduction zone on the
northern edge of the Philippine Sea plate led to the formation of
a volcanic arc there, the northern Philippine Sea arc (Fig. 18a).
Our model adopts this northern Philippine Sea arc and supposes
that it collided with the Ryukyu and SW Japan arcs in middle
Miocene time. Although our chronological data cannot directly
evaluate the presence of this arc, some geologic evidence in the
SW Japan arc margin, such as compressional deformation in the
early to middle Miocene Shimanto Belt in Kyushu and Shikoku
that is usually interpreted in terms of the late migration model
as the result of interactions with the palaeo-IBM arc, may instead
be related to the collision of the northern Philippine Sea arc. As the
SW Japan arc rotated clockwise, the wedge-shaped extension of the
Pacific plate was consumed. Next, the hot Shikoku Basin litho-
sphere in the Philippine Sea plate began to subduct beneath the
SW Japan arc, and widespread near-trench magmatism ensued
(Fig. 18b) as the palaeo-IBM arc impinged upon Japan and
approached its present position.

The question of when the collision of the palaeo-IBM arc began
is a controversial issue (e.g. Kimura et al. 2014), and models based
on late migration of the TTT triple junction depend on a young
(<10Ma) collision (e.g. Amano, 1991) as supported by geologic
evidence such as collision-related conglomerates. However, a
recent review of palaeomagnetic evidence has suggested that the
Kanto syntaxis, a deformation structure attributed to the collision

of the palaeo-IBM arc with Honshu (Fig. 18b), formed early,
between 17 and 15Ma (Hoshi, 2018b). This palaeomagnetic
argument is consistent with our radiometric age data indicating
that the SW Japan arc began to interact with the subducting
Philippine Sea plate before 15.6 Ma.

The origin of near-trench magmas in the SW Japan arc is
usually ascribed to the subduction of the Shikoku Basin litho-
sphere and its active spreading ridge (e.g. Kimura et al. 2005).
Underplating of basaltic magmas from the subducting ridge
may have been a heat source for crustal melting in the near-trench
region. Additionally, the basaltic magmas may have contributed
the mantle-derived component of the felsic magmas that is
evident from their Sr–Nd isotopic compositions. Other support-
ing evidence includes the intrusion of MORB-like tholeiitic
basaltic rocks in the Shionomisaki and Murotomisaki igneous
bodies near the trench (Section 2.a.3) and the presence of basaltic
enclaves in the porphyritic granite of the KARs in the Kii
Peninsula (Harada, 1961). However, the trench-normal fossil
spreading ridge in the Shikoku Basin (the Kinan seamount
chain) is now subducting underneath the Nankai Trough at
the position of the channel between the Kii Peninsula and
Shikoku (Fig. 1; Okino et al. 1999). If subduction of this
trench-normal ridge was the major heat source of the near-trench
magmatism, the centre of magma production should have
followed the position of the subducting ridge as it migrated along
the SW Japan arc. One such example is the along-arc progression
of Cretaceous granitic rocks in SW Japan evident in K–Ar and
Rb–Sr ages (Nakajima et al. 1990) and U–Pb ages (Iida et al.
2015), which has been ascribed to the subduction of the
Kula–Pacific ridge. However, no such trend is apparent in our
U–Pb ages for the near-trench Miocene felsic rocks in the SW
Japan arc.
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Fig. 11. Outline map of the Kii Peninsula show-
ing the distribution of near-trench igneous rocks
and their zircon U–Pb ages. Sample identifica-
tions are the same as those listed in Table 3.
MTL, Median Tectonic Line.
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The uniformity of magmatism ages along the arc might be
explained by segmentation of the Shikoku Basin spreading ridge.
Okino et al. (1999) showed from the bathymetry and magnetic
anomalies of the Philippine Sea plate that this ridge was highly seg-
mented by ∼19Ma, when the ridge’s spreading direction changed
from E–W to NE–SW. Sets of en echelon ridges meeting at the
margin of the SW Japan arc might have supplied heat to a wide
region along the arc.

Another explanation for the uniform ages of near-trench mag-
matism is that the mantle wedge was uniformly hot just after the
rotation of the SW Japan arc and formation of the Sea of Japan.
Although the primary cause of the back-arc rifting is controversial,
back-arc basin formation is accompanied by upwelling of astheno-
spheric mantle, such that temperatures in the mantle wedge are

higher than in subduction zones without back-arc basins
(Tatsumi et al. 1990). High-Mg andesites are widely found in
the Setouchi Volcanic Rocks, distributed north of the Median
Tectonic Line just outside the Outer Zone (Fig. 2). Their genesis
has been ascribed to the partial melting of subducted Shikoku
Basin lithosphere, subsequent melt–mantle interactions, and
equilibration with the uppermost mantle (e.g. Shimoda et al.
1998; Tatsumi, 2006). Melt production from the hot Shikoku
Basin slab probably also occurred in the Outer Zone (Orihashi
et al. 2000). In areas of the Outer Zone near the trench where
bodies of S-type granite predominate, pervasive melting of sedi-
ments above the subducting slab must have occurred, as the plate
interface is filled with fertile accreted sediments. Metasedimentary
xenoliths in the S-type granites record metamorphic conditions

Fig. 12. Outline map of western Shikoku showing the distribution of near-trench igneous rocks and their zircon U–Pb ages. Sample identifications are the same as those listed in
Table 3. MTL, Median Tectonic Line. U–Pb zircon ages for the Ashizuri igneous complex are shown for comparison (Shinjoe et al. 2010).
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close to the solidus of sediment and pressures up to 0.74 GPa
(Murata, 1984; Shinjoe, 1997) that correspond to the depth of
the bottom of the large batholith inferred from a magnetotelluric
survey in the Kii Peninsula (Fujita et al. 1997; Umeda et al. 2003).
In the area where OZGs are distributed, the mantle wedge might
not have beenmature enough for widespreadmafic to intermediate

magnesian magmas to form via slab melt–mantle reactions.
However, enclaves of magnesian andesite to dacite have been spo-
radically reported from OZGs (Nakada, 1983; Shinjoe, 1997;
Shinjoe et al. 2005); thus slab melt interacting with mantle wedge
peridotite may have contributed a heat source and mantle-derived
components to some of the OGRs (Shinjoe, 1997).
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Fig. 13. Outline map of Kyushu showing the
distribution of near-trench igneous rocks and
their zircon U–Pb ages. UYTL, Usuki–Yatsushiro
Tectonic Line. U–Pb zircon ages for the Ohno
Volcanic Rocks, a member of the Setouchi
Volcanic Rocks, are listed at the top for compari-
son (Shinjoe & Orihashi, 2017).

Fig. 14. Lithological map of the Shionomisaki
Igneous Complex at the southernmost tip of
the Kii Peninsula showing sample localities
and U–Pb ages. Zircon fission-track ages
(Hoshi et al. 2003) and sample locations are
shown for comparison.
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Fig. 15. Lithological map of the Kumano Acidic Rocks in the SE Kii Peninsula showing sample localities and U–Pb ages. Previous dating results are shown for comparison: K–Ar
ages are marked ‘1’ (Sumii et al. 1998) and zircon fission-track ages are marked ‘2’ (Iwano et al. 2007).

Fig. 16. Lithological map of the Yakushima
pluton in Yakushima Island, south of Kyushu,
showing sample localities and U–Pb ages. K–Ar
ages from MITI (1992) are shown for comparison.
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6. Conclusions

Our new dataset of zircon U–Pb ages for the middle Miocene near-
trench volcanic and plutonic rocks of the SW Japan arc sheds light
on the relationship between igneous activities and the tectonic
events of the time, including the opening of the Japan Sea and

the migration and early subduction of hot young lithosphere of
the Philippine Sea plate. Our major findings are listed below.

1. Precursory magmatism, characterized by dike and stock
intrusions, started ∼15.6 Ma in both Kyushu and the Kii
Peninsula.

Fig. 18. Plate configuration model of the SW Japan arc in middle Miocene time. (a) At ∼20 Ma, before the opening of the Japan Sea and rotation of the SW Japan arc, the Pacific
plate subducted beneath the entire length of the Japanese islands and formed a volcanic arc well inboard of the trench (arc position from Kano et al. 1991, and Hoshi et al. 2015b).
No magmatism took place near the trench in the SW Japan arc. (b) At ∼15 Ma, clockwise rotation of the SW Japan arc led to consumption of the wedge-shaped section of the
Pacific plate and hot lithosphere of the Shikoku Basin in the Philippine Sea plate subducted beneath the SW Japan arc to cause near-trench magmatism (black stars) from Kyushu
to the Kii Peninsula starting ∼15.6 Ma. The simultaneous onset of near-trench magmatism over this part of the trench requires that the palaeo-IBM arc was located east of the Kii
Peninsula, where its collision with Honshu formed the Kanto syntaxis before 15 Ma (Hoshi, 2018b).

Fig. 17. Miocene plate configuration models around SW Japan. IBA, palaeo-IBM arc; KPR, Kyushu–Palau Ridge. (a) Late TTT triple junction migration model (e.g. Sdrolias et al.
2004; Kimura et al. 2014). The palaeo-IBM arc migrates along the margin from Kyushu to the Izu Peninsula from 15 to 5 Ma during near-trench magmatism in the SW Japan arc.
(b) Plate configuration showing subduction of the Pacific plate before the rapid rotation of SW Japan (e.g. Hibbard & Karig, 1990). (c) Plate configuration based on the Heike plate
hypothesis (Yamaji & Yoshida, 1998) before the rapid rotation of SW Japan.
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2. Most plutonism occurred between 15.5 and 13.5 Ma, in an
area 600 km long and 150 km wide.

3. The precursory magmatism ∼15.6 Ma occurred in the region
closest to the trench. Youngest plutons are distributed in the
region further to the trench.

4. No trends are apparent in U–Pb ages along the length of the
arc.

5. All of the middle Miocene igneous activity took place shortly
after the opening of the Japan Sea ended at c. 16 Ma.

From these findings, we argue that the extraction of melts from
the slab affected the frictional properties on the plate interface and
allowed the overriding crust to migrate. Later emplacement of
granite plutons from a relatively buoyant hot slab in the near-
trench region may have counteracted this change.

Our data also imply that the TTT triple junction between the
Japan and IBM arcs must have reached a position east of the Kii
Peninsula by 15.6 Ma, because otherwise a clear younging trend
from west to east should have resulted from the migration of
the spreading ridge in the Shikoku Basin on the Philippine Sea
plate, now fossilized as the Kinan seamount chain.

The widespread contemporaneous magmatic activity along the
SW Japan arc requires a wide heat source extending parallel to the
trench. Our favoured candidates for this heat source include sub-
duction of a trench-parallel ridge such as that whichmay have once
existed between the extinct Heike plate and the Philippine Sea
plate, or subduction of a young and highly segmented ridge system
on the Philippine Sea plate, that developed by ∼19 Ma as its
spreading direction shifted from E–W to NE–SW in addition to
the hot wedgemantle condition related to the opening of Japan Sea.
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