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In this paper, we study a quasi-static frictional contact problem for a viscoelastic body with

damage effect inside the body as well as normal compliance condition and multi-valued

friction law on the contact boundary. The considered friction law generalizes Coulomb

friction condition into multi-valued setting. The variational–hemi-variational formulation

of the problem is derived and arguments of fixed point theory and surjectivity results for

pseudo-monotone operators are applied, in order to prove the existence and uniqueness of

solution.

Key words: viscoelastic body, sub-differential frictional condition of Coulomb type, damage,
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1 Introduction

In this paper, we study a mathematical model for a Kelvin–Voigt viscoelastic body, which

comes into a frictional contact with a rigid foundation and we assume normal compliance

condition on the contact boundary. The process is quasi-static as the volume forces and

tractions are assumed to vary slowly in time and the acceleration can be neglected. We

also assume that the damage inside the body may develop in the sense that micro-cracks

and micro-cavities may open and grow as a result of the internal strains and stresses. This

leads to the gradual or rapid decrease in the load-carrying capacity of the body, leading

eventually to its breaking.

The unknowns of the model are the displacement field u governed by a multi-valued

partial differential inclusion of the first order in time and the damage field β governed

by an evolution variational inequality. The damage field β measures the decrease in the
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load-bearing capacity of the material; it is assumed to have values in the interval [0, 1], if

β = 1, then the material is in its full capacity and when β = 0 it is completely damaged.

As the evolution of the displacement and damage may influence each other, the governing

relations for both quantities are mutually coupled. The evolution variational inequality

for damage that we use here, was introduced by Frémond (see for example [9, 10]) and

has been recently extensively studied for springs (see [2, 5]), beams (see [1, 14]) and for

three-dimensional deformable solids (see [4, 11, 15, 16, 20, 22]).

Contact conditions in the theory of (visco)-elasticity are usually expressed in the

form of multi-valued laws. Such laws are particularly useful to model the phenomena

associated with dry friction and normal contact. If the laws are monotone (such as the

Coulomb of Tresca friction laws), then the associated problems are governed by variational

inequalities. Sometimes, however, it is necessary to use non-monotone multi-valued laws.

In such cases, a tool used in the modelling is the Clarke sub-differential which is a multi-

function that generalizes the classical gradient to the class of locally Lipschitz functionals

on Banach spaces. For more information about the multi-valued contact conditions and

sub-differentials, see the monographs [6, 7, 17–19, 21].

The results of the present paper are closely related to [12] and [13] and can be viewed

as the generalization of the existence and uniqueness results of both those articles. The

difference between the present results and two mentioned papers lies in the choice of

friction contact laws, which relate the friction force στ with the tangential slip rate u̇τ.

In [12], the authors use the generalized Tresca type law on the contact boundary

−στ(t) ∈ F(u̇τ(t)), (1.1)

while in [13] the authors use the following Coulomb friction law

u̇τ(t) = 0 ⇒ ‖στ(t)‖�d � |σν(t)|

u̇τ(t)� 0 ⇒ −στ(t) = |σν(t)|
u̇τ(t)

‖u̇τ(t)‖�d

(1.2)

where, additionally the dependence on the normal stress σν is taken into account. Here,

we replace the above conditions with the generalized Coulomb law of multi-valued type

which encompasses (1.2) as a special case and involves the non-monotonicity effects as

(1.1)

−στ(t) ∈ |σν(t)|F(u̇τ(t)), (1.3)

In the laws (1.1) and (1.3), F is a certain multi-function, typically F(0) is a ball centred at

zero, its radius representing a friction threshold, and for ξ � 0 F(ξ) is single valued, with

‖F(ξ)‖�d being less than the friction threshold, which represents the fact that the maximum

static friction is typically greater than the kinetic friction. If we take F(ξ) =
ξ

‖ξ‖�d
, then

we get (1.2), where the kinetic friction is assumed to be always equal to the maximum

static friction and, in consequence, the multi-function F is monotone.

In contrast to (1.1), in (1.3), the friction force στ depends on the normal contact stress

σν , which is equal to the foundation reaction force. This reflects the fact that the harder

we press the body against the foundation, the higher the resultant reaction force is, and, in

consequence, the larger is the friction. Moreover, if there is no contact between the body
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and the foundation, when we use the law (1.1), the non-physical frictional forces can still

occur, while when we use the law (1.3), in such a case there will be σν = 0, and in con-

sequence στ = 0. Hence, while (1.1) remains a good approximation if the whole boundary

on which the contact can potentially occur is actually in contact with the foundation, and

the normal stresses are not too high, certainly (1.3) is more physically adequate.

Here, we need more restrictive assumptions on the problem data than those in [12].

Namely, the linear growth condition on the Clarke sub-differential of the friction potential

(see H(jτ)(c) in [12]) needs to be replaced with the boundedness of this sub-differential

(see H(j)(c) in the sequel). The second restriction we need to add here is the boundedness

of the normal compliance function (see H(p)(d) in the sequel), not present in [12].

Under these assumptions, using the fixed point technique, similarly to that of [12], we

are able to prove the existence and uniqueness of solution for the associated problem.

The rest of the paper is structured as follows. The model and the mathematical problem

are introduced in Section 2. Its weak formulation is described in Section 3, where the

assumptions on the problem data are listed. The proofs of the existence of the unique

solution of the variational-hemi-variational formulation of the model can be found in

Section 4, and summarized in Theorem 4.1. The proof is done in steps in which auxiliary

problems are introduced and solved by applying various fixed point arguments. Finally, in

appendix, various mathematical notions and tools used throughout the article are recalled,

and some details concerning the notation are provided.

2 The model

We consider a viscoelastic body occupying a domain Ω ⊆ �d (in applications d = 2, 3,

but mathematically any natural number d � 2 can be used) with a Lipschitz boundary

∂Ω. We assume that ∂Ω is divided into three mutually disjoint and relatively open sets

ΓD , ΓC , and ΓN such that ΓD ∪ ΓN ∪ ΓC = ∂Ω and meas d−1(ΓD) > 0. The body is held

fixed on ΓD and surface tractions of density fN act on ΓN . The part of surface that can

be in contact with the foundation is ΓC and the gap given by g is measured along the

outward normal.

Volume forces f0 act in Ω, and these and the tractions are assumed to vary slowly in

time so we can neglect the acceleration in the system and the process is quasi-static. We

describe the contact process with the normal compliance condition and a sub-differential

Coulomb friction condition. We use the viscoelastic constitutive law with damage effect.

The damage function β is governed by a parabolic differential inclusion and satisfies a

homogeneous Neumann boundary condition.

We denote by [0, T ] the time interval of interest, with T > 0, and use the notation

Q = Ω × (0, T ).

The model is given as follows.

Problem P : Find a displacement field u : Q → �d, a stress field σ : Q → �d and a

damage function β : Q → �, such that for all t ∈ (0, T ) we have

σ(t) = A(ε(u̇)(t)) + G(ε(u(t)), β(t)) in Ω, (2.1)

β̇(t) − κΔβ(t) + ∂ψ[0,1](β(t)) 	 φ(t, ε(u(t)), β(t)) in Ω, (2.2)
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Div σ(t) + f0(t) = 0 in Ω, (2.3)

∂β(t)

∂ν
= 0 on ∂Ω, (2.4)

u(t) = 0 on ΓD, (2.5)

σ(t)ν = fN(t) on ΓN, (2.6)

− σν(t) = p(uν(t) − g) on ΓC, (2.7)

− στ(t) ∈ |σν(t)|∂j(u̇τ(t)) on ΓC, (2.8)

u(0) = u0, β(0) = β0 in Ω. (2.9)

Here, �d denotes the space of second-order symmetric d×d matrices, ν represents the unit

outward normal on ∂Ω, ∂β/∂ν is the normal derivative on ∂Ω, Div denotes the divergence

operator, σν and στ stand for the normal and tangential traces of σ, respectively, uν and u̇τ
are the normal and tangential components of displacement u and velocity u̇, respectively.

The linearized strain tensor is given as the symmetric part of the displacement gradient

ε(u) = 1
2
(∇u + ∇u�) By ∂ψ[0,1] we denote the convex sub-differential of ψ, the indicator

function of [0, 1], and by ∂j we mean the Clarke sub-differential of j.

The viscoelastic constitutive law (2.1) depends on the velocity through the non-linear

viscosity operator A and on the displacement through the non-linear mapping G, which

also includes effect of material damage. The damage process is described here exactly

as in [12], namely, the evolution of the damage variable β is described by the parabolic

inclusion (2.2) with the damage source function φ and boundary condition (2.4). Since we

assume that the process is quasi-static, we use the equilibrium equation (2.3) to describe

the evolution of the mechanical state of the body. Equations (2.5) and (2.6) represent

the displacement and traction boundary conditions, respectively. The initial conditions

for displacement and damage are given by (2.9). Relation (2.7) is the so called normal

compliance condition. The function p models the relation between the normal distance from

the foundation uν −g and the normal stress σν . Usually, it is assumed that for non-positive

values of uν − g the function p is equal to zero, which means that if we are away from

the foundation there is no stress. If, in turn uν − g > 0, meaning that the foundation is

penetrated, then the function p typically has positive values, meaning that the reaction

force is directed away from the foundation and depending on the penetration depth.

Finally, the inclusion (2.8), which is the main novelty of this article in comparison to [12]

is the generalized Coulomb friction law, in which the tangential stress depends linearly on

the magnitude of the normal stress and, through the sub-differential frictional condition,

on the slip rate. In particular, if there is no contact between the body and the foundation,

i.e., uν � g, assuming that the function p is equal to zero for the negative argument, the

tangential stress is also equal to zero. In turn, if the foundation is penetrated, then the

magnitude of the friction force increases together with the normal reaction.

3 Weak formulation

We assume the following on the problem data. The notation used in the assumptions, and

throughout the following part of the article, is explained in details in the appendix.
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H(A): The viscosity operator A : Ω × �d → �d satisfies the following:

(a) A(·, ε) is measurable on Ω for all ε ∈ �d;

(b) A(x, ·) is continuous on �d for a.e. x ∈ Ω;

(c) there exist a0 ∈ L2(Ω), a0 � 0 and a1 > 0 such that for all ε ∈ �d and a.e. x ∈ Ω,

‖A(x, ε)‖�d � a0(x) + a1‖ε‖�d;

(d) there exists mA > 0 such that for all ε1, ε2 ∈ �d and a.e. x ∈ Ω

(A(x, ε1) − A(x, ε2)) · (ε1 − ε2) � mA‖ε1 − ε2‖2
�d ;

(e) A(x, 0) = 0 for a.e. x ∈ Ω.

H(G): The elasticity operator G : Ω × �d × � → �d is such that

(a) G(·, ε, β) is measurable on Ω for all ε ∈ �d, β ∈ �;

(b) there exists LG > 0 such that

‖G(x, ε1, β1) − G(x, ε2, β2)‖�d � LG(‖ε1 − ε2‖�d + |β1 − β2|)

for all ε1, ε2 ∈ �d, β1, β2 ∈ � and a.e. x ∈ Ω;

(c) G(x, 0, 0) ∈ L2(Ω; �d) for a.e. x ∈ Ω.

H(φ): The damage source function φ : Q× �d × � → � satisfies the following:

(a) φ(·, ·, ε, β) is measurable on Q for all ε ∈ �d, β ∈ �;

(b) there exists Lφ > 0 such that

|φ(x, t, ε1, β1) − φ(x, t, ε2, β2)| � Lφ(‖ε1 − ε2‖�d + |β1 − β2|)

for all ε1, ε2 ∈ �d, β1, β2 ∈ � and a.e. (x, t) ∈ Q;

(c) φ(x, ·, ε, β) is continuous on [0, T ] for all ε ∈ �d, β ∈ � and a.e. x ∈ Ω;

(d) |φ(x, t, 0, 0)| � φ(x) for all t ∈ [0, T ] and almost all x ∈ Ω where φ ∈ L2(Ω).

H(p): The normal compliance function p : ΓC × � → [0,∞) is such that

(a) p(·, r) is measurable on ΓC for all r ∈ �;

(b) there exists Lν > 0 such that for all r1, r2 ∈ � and a.e. x ∈ ΓC

|p(x, r1) − p(x, r2)| � Lν |r1 − r2|;

(c) p(·, r) = 0 for r � 0 on ΓC;

(d) p(·, r) � cp for all r > 0 on ΓC with a constant cp > 0.

H(j): The friction potential j : ΓC × �d → � satisfies the following:

(a) j(·, ξ) is measurable on ΓC for all ξ ∈ �d;

(b) j(x, ·) is locally Lipschitz on �d for a.e. x ∈ ΓC ;

(c) there exists cτ > 0 such that for all ξ ∈ �d and for a.e. x ∈ ΓC

max
η∈∂j(x,ξ)

‖η‖�d � cτ;
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(d) the one sided Lipschitz constant given by

L(x, ∂j) = inf
ξ1 ,ξ2∈�d,ξ1�ξ2

η1∈∂j(x,ξ1)

η2∈∂j(x,ξ2)

(η2 − η1) · (ξ2 − ξ1)

‖ξ2 − ξ1‖2
�d

satisfies L(x, ∂j) � −Lτ on ΓC , for certain Lτ � 0.

We remark that by ∂j(x, ξ) we mean the Clarke sub-differential of j taken with respect

to the second variable ξ. Often, for the sake of the ease of notation, we do not write

explicitly the dependence of various quantities on the variable x, i.e. in place of j(x, ξ) we

write only j(ξ).

The volume force density, surface traction density, gap function, initial functions and

constants in the above hypotheses are assumed to satisfy the following:

H0:

(a) f0 ∈ C([0, T ];L2(Ω)d);

(b) fN ∈ C([0, T ];L2(ΓN)d);

(c) g ∈ L∞(ΓC), g � 0;

(d) u0 ∈ V ;

(e) β0 ∈ H1(Ω) is such that 0 � β0 � 1 a.e. in Ω;

(f) cpLτ‖γΓC‖2 < mA.

Remark 3.1 Every convex function j : �d → � satisfies assumptions H(j)(b) and (d) with

Lτ = 0. Then obviously, also H0(f) holds.

Remark 3.2 The condition H(j)(d) is equivalent to the fact that the functional j(x, ·) +

Lτ
‖·‖2

�d

2
is convex, or, equivalently, the multi-valued map of ξ → ∂j(x, ξ) + Lτξ is monotone.

Remark 3.3 The smallness assumption H0(f) is needed because of the approach based on the

Banach fixed point theorem. This guarantees not only the existence, but also the uniqueness of

the solution. It is an open problem, if without this assumption we have the solution existence

only.

We now derive the variational formulation of Problem P. The spaces V and H1 used

in the weak formulation, are, together with their norms, defined in the appendix. We

consider the function f : [0, T ] → V ∗, given by

〈f(t), v〉V ∗×V = (f0(t), v)L2(Ω)d + (fN(t), γΓNv)L2(ΓN )d for all v ∈ V , t ∈ [0, T ], (3.1)

and the set of admissible damage functions

K = {ζ ∈ H1(Ω) : 0 � ζ � 1 a.e. in Ω}.

Assume that (u, σ, β) are sufficiently smooth functions that solve (2.1)–(2.9), v ∈ V ,

ζ ∈ K and t ∈ [0, T ]. First, we use the equilibrium equation (2.3) and the Green formula
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(A 2) to obtain

(σ(t), ε(v))L2(Ω;�d) = (f0(t), v)L2(Ω)d +

∫
∂Ω

σ(t)ν · v dS. (3.2)

Taking into account the boundary conditions (2.5)–(2.8), in a standard way, we obtain

∫
∂Ω

σ(t)ν · v dS =

∫
ΓN

fN(t) · v dS

−
∫
ΓC

p(uν(t) − g)vν dS −
∫
ΓC

p(uν(t) − g)ξ(t) · vτ dS, (3.3)

for ξ(t) ∈ S2
∂j(u̇τ(t))

(for a multi-function F : ΓC → 2�d

we use the symbol S2
F to denote all

of its selections of class L2(ΓC)d). Hence, using (3.3) and (3.1) in (3.2), we have

(σ(t), ε(v))L2(Ω;�d) +

∫
ΓC

p(uν(t) − g)vν dS +

∫
ΓC

p(uν(t) − g)ξ(t) · vτ dS = 〈f(t), v〉V ∗×V .

Next, using the definition of the sub-differential of the indicator function ψ[0,1] and

integration by parts, we see that

0 � (φ(t, ε(u(t)), β(t)) − β̇(t), ζ − β(t))L2(Ω) − κ(∇β(t), ∇ζ − ∇β(t))L2(Ω)d .

Collecting these relations and inequalities leads to the following weak formulation of

Problem P.

Problem PV : Find u ∈ C1([0, T ];V ), σ ∈ C([0, T ]; H1) and β ∈ H1(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)) such that

σ(t) = A(ε(u̇(t))) + G(ε(u(t)), β(t)), (3.4)

(σ(t), ε(v))L2(Ω;�d) +

∫
ΓC

p(uν(t) − g)vν dS

+

∫
ΓC

p(uν(t) − g)ξ(t) · vτ dS = 〈f(t), v〉V ∗×V

for all v ∈ V and all t ∈ [0, T ], (3.5)

ξ(t) ∈ S2
∂j(u̇τ(t))

for all t ∈ [0, T ]; (3.6)

(β̇(t), ζ − β(t))L2(Ω) + κ(∇β(t),∇ζ − ∇β(t))L2(Ω)d

� (φ(t, ε(u(t)), β(t)), ζ − β(t))L2(Ω)

for all ζ ∈ K and all t ∈ [0, T ], (3.7)

β(t) ∈ K for all t ∈ [0, T ] (3.8)

u(0) = u0, β(0) = β0. (3.9)
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4 Existence and uniqueness results

The main existence result of this paper is the following.

Theorem 4.1 If hypotheses H(A), H(G), H(φ), H(p), H(j), H0, and H1 hold, then Problem

PV has a unique solution (u, σ, β).

The proof of the above theorem follows the lines of the proof of Theorem 5.1 in [12]

with some modifications that we stress here. Before we pass to the proof, however, we

formulate several auxiliary problems and we prove the existence and uniqueness of their

solutions. First, let us assume that the elastic part of the stress η ∈ C([0, T ];L2(Ω; �d))

and the damage source function θ ∈ C([0, T ];L2(Ω)) are given, and consider the following

two auxiliary problems.

Problem Pθ : Find βθ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) such that

(β̇θ(t), ζ − βθ(t))L2(Ω) + κ(∇βθ(t),∇ζ − ∇βθ(t))L2(Ω)d

� (θ(t), ζ − βθ(t))L2(Ω) for all ζ ∈ K and all t ∈ [0, T ] (4.1)

βθ(t) ∈ K for all t ∈ [0, T ] (4.2)

βθ(0) = β0. (4.3)

Problem P1
η : Find uη ∈ C1([0, T ];V ) and ση ∈ C([0, T ]; H1) such that

ση(t) = A(ε(u̇η(t))) + η(t), (4.4)

(ση(t), ε(v))L2(Ω;�d) +

∫
ΓC

p(uν(t) − g)vν dS

+

∫
ΓC

p(uν(t) − g)ξ(t) · vτ dS = 〈f(t), v〉V ∗×V

for all v ∈ V and all t ∈ [0, T ], (4.5)

ξ(t) ∈ S2
∂j(u̇τ(t))

for all t ∈ [0, T ], (4.6)

uη(0) = u0. (4.7)

We reformulate Problem P1
η in terms of the velocity wη = u̇η . Then,

uη(t) =

∫ t

0

wη(s) ds+ u0 for all t ∈ [0, T ]. (4.8)

We also introduce some auxiliary operators and functions. The operator A : V → V ∗ is

given by

〈A(w), v〉V ∗×V = (A(ε(w)), ε(v))L2(Ω;�d) for all v,w ∈ V ,
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R : C([0, T ];V ) → C([0, T ];L2(ΓC)) is given by

(Rw)(t) = p

(∫ t

0

wν(s) ds+ (u0)ν − g

)
for all w ∈ C([0, T ];V ) and t ∈ [0, T ],

and the function f̃ : [0, T ] → V ∗ is given by

〈f̃(t), v〉V ∗×V = 〈f(t), v〉V ∗×V − (η(t), ε(v))L2(Ω;�d) for all v ∈ V , t ∈ [0, T ].

Using this notation, we can rewrite Problem P1
η as follows.

Problem P2
η : Find wη ∈ C([0, T ];V ) such that

〈A(wη(t)), v〉V ∗×V +

∫
ΓC

(Rwη)(t)vν dS

+

∫
ΓC

(Rwη)(t)ξ(t) · vτ dS = 〈f̃(t), v〉V ∗×V (4.9)

for all v ∈ V and all t ∈ [0, T ], (4.10)

ξ(t) ∈ S2
∂j((wη)τ(t))

for all t ∈ [0, T ]. (4.11)

For given μ ∈ C([0, T ];V ), let zμ = Rμ. We define the function f : [0, T ] → V by

〈f(t), v〉V ∗×V = 〈f̃(t), v〉V ∗×V −
∫
ΓC

zμ(t)vν dS for all v ∈ V , t ∈ [0, T ],

and consider the following problem.

Problem Pημ : Find wημ ∈ C([0, T ];V ) such that

〈A(wημ(t)), v〉V ∗×V +

∫
ΓC

zμ(t)ξ(t) · vτ dΓ = 〈f(t), v〉V ∗×V

for all v ∈ V and all t ∈ [0, T ], (4.12)

ξ(t) ∈ S2
∂j((wημ)τ(t))

for all t ∈ [0, T ]. (4.13)

Lemma 4.2 Under the hypotheses of Theorem 4.1, Problem Pημ admits a unique solution

wημ.

Proof Fix t ∈ [0, T ]. Consider the operator Bt : V → 2V
∗

given by

Bt(v) = {η ∈ V ∗ : there exists ξ ∈ S2
∂j(vτ)

such that 〈η,w〉V ∗×V =

∫
ΓC

zμ(t)ξ · wτ dS for all w ∈ V }.
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We study the sum A + Bt. To this end, let us first remind the properties of the operator

A established in the proof of Lemma 5.3 in [12].

First, A is bounded, and we have

‖A(u)‖V ∗ �
√

2(‖a0‖L2(Ω) + a1‖u‖V ),

for all u ∈ V . Next, the operator A is coercive in the sense that

〈A(u), u〉V ∗×V � mA‖u‖2
V , (4.14)

for all u ∈ V . Moreover, the operator A is monotone, and, finally, A is continuous, i.e.,

if the sequence {un}n�1 ⊂ V is such that un → u in V , then A(un) → A(u) in V ∗. Since

the operator A is bounded, monotone and hemi-continuous, it is also pseudo-monotone

(see [17, Theorem 3.69(i)]).

From Theorem 5.6.39 of [7], we know that the set S2
∂j(vτ) is non-empty for any v ∈ V .

Hence, as by H(p)(c)-(d) we have zμ(t) ∈ L∞(ΓC ), the set Bt(v) is non-empty for any v ∈ V .

The fact that Bt(v) is convex for any v ∈ V follows in a straightforward way from the

fact that ∂j(x,w) is a convex set in �d for all w ∈ �d and a.e. x ∈ ΓC . We prove that

Bt(v) is closed in V ∗. To this end, let ηn ∈ Bt(v) be such that ηn → η in V ∗. There exists

ξn ∈ S2
∂j(vτ) such that

〈ηn,w〉V ∗×V =

∫
ΓC

zμ(t)ξn · wτ dS for all w ∈ V .

Since, by H(j)(c), we have ‖ξn‖L∞(ΓC )d � cτmeas d−1(ΓC), it follows that ξn is bounded also

in L2(ΓC )d and, for a subsequence, still denoted by the same notion,

ξn → ξ weakly in L2(ΓC)d

for certain ξ ∈ L2(ΓC )d. Since for w ∈ V we have zμ(t)wτ ∈ L2(ΓC)d, it holds
∫
ΓC
zμ(t)ξn ·

wτ dS →
∫
ΓC
zμ(t)ξ · wτ dS , and hence

∫
ΓC

zμ(t)ξ · wτ dS = 〈η,w〉V ∗×V for all w ∈ V .

Using Proposition A.10 from the fact that ξn → ξ weakly in L2(ΓC)d and ‖ξn(x)‖�d � cτ
it follows that

ξ(x) ∈ conv

(
lim sup
n→+∞

{ξn(x)}
)

for a.e. x ∈ ΓC,

where lim sup
n→+∞

is the Kuratowski–Painlevé upper limit of sets in the topology of �d.

Furthermore, we have

conv

(
lim sup
n→+∞

{ξn(x)}
)

⊂ conv

(
lim sup
n→+∞

∂j(x, vτ(x))

)
= ∂j(x, vτ(x)),

for a.e. x ∈ ΓC , and hence ξ ∈ S2
∂j(vτ), which completes the proof of closedness.
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Next, we observe that by H(p)(c)-(d) and H(j)(c) for any η ∈ Bt(v) we have

|〈η,w〉V ∗×V | � cpcτ
√

meas d−1(ΓC )‖γΓCw‖L2(ΓC )d � cpcτ
√

meas d−1(ΓC)‖γΓC‖‖w‖V ,

for w ∈ V and hence for any η ∈ Bt(v) we have

‖η‖V ∗ � cpcτ
√

meas d−1(ΓC)‖γΓC‖, (4.15)

so the multi-valued operator Bt is bounded.

Now we show that the operator Bt is generalized pseudo-monotone. Let {vn}n�1 be

a sequence of V such that vn → v weakly in V , let {v∗
n}n�1 be a sequence of V ∗ such

that v∗
n → v∗ weakly in V ∗, v∗

n ∈ Bt(vn) for all n � 1 and lim sup
n→+∞

〈v∗
n, vn − v〉V ∗×V � 0.

Since vn → v weakly in V , from the compactness of the trace operator γΓC it follows that

(vn)τ → vτ strongly in L2(ΓC )d, and, for a subsequence, still denoted with the same notion,

we have

(vn)τ(x) → vτ(x) for a.e. x ∈ ΓC.

From the definition of the operator Bt, there exists the sequence ξn ∈ S2
∂j((vn)τ) such that

〈v∗
n,w〉V ∗×V =

∫
ΓC

zμ(t)ξn · wτ dS for all w ∈ V .

Since, by H(j)(c) we have ‖ξn‖L∞(ΓC )d � cτmeas d−1(ΓC), it follows that ξn is bounded in

L2(ΓC )d and, passing to another subsequence if necessary, we have

ξn → ξ weakly in L2(ΓC )d

for certain ξ ∈ L2(ΓC)d. Since for w ∈ V we have zμ(t)wτ ∈ L2(ΓC )d, it holds∫
ΓC

zμ(t)ξn · wτ dS →
∫
ΓC

zμ(t)ξ · wτ dS

and hence ∫
ΓC

zμ(t)ξ · wτ dS = 〈v∗,w〉V ∗×V for all w ∈ V .

Using Proposition A.10 from the fact that ξn → ξ weakly in L2(ΓC)d and ‖ξn(x)‖�d � cτ
a.e. on ΓC it follows that

ξ(x) ∈ conv(lim sup
n→+∞

{ξn(x)}) for a.e. x ∈ ΓC.

Furthermore, we have

conv(lim sup
n→+∞

{ξn(x)}) ⊂ conv(lim sup
n→+∞

∂j(x, (vn)τ(x))),

for a.e. x ∈ ΓC . Since, by Proposition A.7 the multi-function ∂j(x, ·) : �d → 2�d

has a

closed graph, we have

lim sup
n→+∞

∂j(x, (vn)τ(x)) ⊂ ∂j(x, vτ(x)) for a.e. x ∈ ΓC.
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Hence,

ξ(x) ∈ ∂j(x, vτ(x)) for a.e. x ∈ ΓC,

and it follows that ξ ∈ S2
∂j(vτ), which means that v∗ ∈ Bt(v). Moreover, we have

〈v∗
n, vn〉V ∗×V =

∫
ΓC

zμ(t)ξn · vnτ dS →
∫
ΓC

zμ(t)ξ · vτ dS = 〈v∗, v〉V ∗×V ,

where, from the uniqueness of the limit, the convergence holds for the whole sequence. This

proves that the operator Bt is generalized pseudo-monotone and therefore, by Proposition

A.4 it is also pseudo-monotone.

Since the class of multi-valued pseudo-monotone operators is closed under addition of

mappings (see e.g., [17, Proposition 3.59]), we deduce that A+ Bt is pseudo-monotone.

Finally, we establish the coercivity of the operator A+ Bt. Using (4.15) and (4.14), for

all v ∈ V , we have

〈A(v) + Bt(v), v〉V ∗×V = 〈A(v), v〉V ∗×V + 〈Bt(v), v〉V ∗×V

� mA‖v‖2
V − cpcτ

√
meas d−1(ΓC)‖γΓC‖‖v‖V ,

and the coercivity follows.

Since we have checked that under our hypotheses, the operator A + Bt is bounded,

pseudo-monotone and coercive, we can apply Theorem A.5 and deduce that A+Bt : V →
2V

∗
is surjective and so for each t ∈ [0, T ] there exists wημ(t) ∈ V such that

A(wημ(t)) + Bt(wημ(t)) 	 f(t)

and it follows that wημ(t) is a solution of Problem Pημ.

Next, we show the uniqueness of wημ. For a fixed t ∈ [0, T ], assume that we have

w1(t),w2(t) ∈ V two solutions of Pημ. We write (4.12) for w1(t) and for w2(t), subtract two

equalities and take v = w1(t) − w2(t). We get

〈A(w1(t)) − A(w2(t)),w1(t) − w2(t)〉V ∗×V

+

∫
ΓC

zμ(t)(ξ1(t) − ξ2(t)) · ((w1)τ(t) − (w2)τ(t)) dS = 0.

Then, using hypotheses H(A)(d), H(j)(d), and H(p)(c)-(d) we obtain

mA‖w1(t) − w2(t)‖2
V � cpLτ‖γΓC‖2‖w1(t) − w2(t)‖2

V ,

so from hypothesis H0(f), we deduce that w1(t) = w2(t) for all t ∈ [0, T ].

To complete the proof of the lemma, we show that the mapping [0, T ] 	 t → wημ(t) ∈ V

is continuous. Let t1, t2 ∈ [0, T ] and let us denote ŵi = wημ(ti), ẑi = zμ(ti), f̂i = f(ti),

η̂i = η(ti), and ξ̂i = ξ(ti), for i = 1, 2. We write (4.12) for t = t1 and t = t2, subtract two

https://doi.org/10.1017/S0956792515000583 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000583


On quasi-static contact problem 637

resulting inequalities and take v = ŵ1 − ŵ2, which yields

〈A(ŵ1) − A(ŵ2), ŵ1 − ŵ2〉V ∗×V =

∫
ΓC

(ẑ2 − ẑ1)((ŵ1)ν − (ŵ2)ν) dS

+

∫
ΓC

(
ẑ2ξ̂2 − ẑ2ξ̂1 + ẑ2ξ̂1 − ẑ1ξ̂1

)
· ((ŵ1)τ − (ŵ2)τ) dS

+ 〈f̂1 − f̂2, ŵ1 − ŵ2〉V ∗×V + 〈η̂2 − η̂1, ε(ŵ1) − ε(ŵ2)〉L2(Ω;�d).

Using hypotheses H(A)(d), H(p), H(j)(c)-(d), we obtain

mA‖ŵ1 − ŵ2‖2
V � ‖ẑ1 − ẑ2‖L2(ΓC )‖γΓC‖‖ŵ1 − ŵ2‖V

+ cτ‖ẑ1 − ẑ2‖L2(ΓC )‖γΓC‖‖ŵ1 − ŵ2‖V + cpLτ‖γΓC‖2‖ŵ1 − ŵ2‖2
V

+ ‖f̂1 − f̂2‖V ∗ ‖ŵ1 − ŵ2‖V + ‖η̂1 − η̂2‖L2(Ω;�d)‖ŵ1 − ŵ2‖V .

Using hypothesis H0(f), we get

‖ŵ1 − ŵ2‖V � c
(
‖ẑ1 − ẑ2‖L2(ΓC ) + ‖f̂1 − f̂2‖V ∗ + ‖η̂1 − η̂2‖L2(Ω;�d)

)
From the continuity of zμ, f, η in appropriate spaces, it follows that the function

[0, T ] 	 t → wημ(t) ∈ V is continuous. This completes the proof of the lemma. �

Lemma 4.3 Under the hypotheses of Theorem 4.1, Problem P2
η has a unique solution wη .

Proof Let Λη : C([0, T ];V ) → C([0, T ];V ) be the operator defined by

Λημ = wημ for all μ ∈ C([0, T ];V ),

where wημ is the unique solution to Problem Pημ (see Proposition 4.2). We show that Λη
has a unique fixed point μ∗ ∈ C([0, T ];V ). Let μ1, μ2 ∈ C([0, T ];V ) and zi = zμi = Rμi ∈
C([0, T ];L2(ΓC )) for i = 1, 2. Let wi = wημi be the solutions to Problem Pημ for μ = μi
(i = 1, 2). Then,

‖(Λημ1)(t) − (Λημ2)(t)‖V = ‖w1(t) − w2(t)‖V for all t ∈ [0, T ]. (4.16)

Subtracting equation (4.10) written for w2(t) and w1(t), and taking the test function

v = w2(t) − w1(t), we get

〈Aw1(t) − Aw2(t),w1(t) − w2(t)〉V ∗×V

=

∫
ΓC

(z1(t) − z2(t))((w2)ν(t) − (w1)ν(t)) dS

+

∫
ΓC

(ξ2(t)z2(t) − ξ1(t)z2(t) + ξ1(t)z2(t) − ξ1(t)z1(t)) · ((w1)τ(t) − (w2)τ(t)) dS,
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638 L. Gasiński and P. Kalita

with ξ1(t) ∈ S2
∂j((w1)τ(t))

and ξ2(t) ∈ S2
∂j((w2)τ(t))

for all t ∈ [0, T ]. Using hypotheses H(A)(d),

H(p), H(j), we obtain

mA‖w1(t) − w2(t)‖2
V � ‖z1(t) − z2(t)‖L2(ΓC )‖γΓC‖‖w1(t) − w2(t)‖V

+cτ‖z1(t) − z2(t)‖L2(ΓC )‖γΓC‖‖w1(t) − w2(t)‖V
+cpLτ‖γΓC‖2‖w1(t) − w2(t)‖2

V ,

thus

(mA − cpLτ‖γΓC‖2)‖w1(t) − w2(t)‖V � (1 + cτ)‖γΓC‖‖z1(t) − z2(t)‖L2(ΓC ). (4.17)

Next, using the hypothesis H(p), we have

‖z1(t) − z2(t)‖L2(ΓC ) = ‖(Rμ1)(t) − (Rμ2)(t)‖L2(ΓC )

=

∥∥∥∥p
(∫ t

0

(μ1)ν(s) ds+ (u0)ν − g

)
− p

(∫ t

0

(μ2)ν(s) ds+ (u0)ν − g

)∥∥∥∥
L2(ΓC )

� Lν

∥∥∥∥
∫ t

0

|(μ1)ν(s) − (μ2)ν(s)| ds
∥∥∥∥
L2(ΓC )

� Lν‖γΓC‖
∫ t

0

‖μ1(s) − μ2(s)‖V ds. (4.18)

It follows from (4.16)–(4.18) and hypothesis H0(f), that

‖(Λημ1)(t) − (Λημ2)(t)‖V � c

∫ t

0

‖μ1(s) − μ2(s)‖V ds for all t ∈ [0, T ],

where c > 0 is a constant dependent only on the problem data. Theorem A.9 asserts that

the operator Λη has a unique fixed point μ∗ ∈ C([0, T ];V ). Thus, we have zμ∗(t) = (Rμ∗)(t),

wημ∗ (t) = μ∗(t) for all t ∈ [0, T ]. Writing (4.12) with μ = μ∗ we conclude that μ∗ is a

solution of Problem P2
η for certain ξ : [0, T ] → L2(ΓC)d with ξ(t) ∈ S2

∂j(μ∗
τ (t))

for all

t ∈ [0, T ]. Since every solution of Problem P2
η is be a fixed point of Λη , by the uniqueness

of this fixed point, the solution of Problem P2
η is unique, which completes the proof of

Lemma 4.3. �

Proposition 4.4 Under the hypotheses of Theorem 4.1, Problem P1
η admits a unique solution

(uη, ση) for every η ∈ C([0, T ];L2(Ω; �d)).

Proof Let wη ∈ C([0, T ];V ) be the unique solution of Problem P2
η . Defining

ση(t) = A(ε(wη(t))) + η(t) for all t ∈ [0, T ],

uη(t) =

∫ t

0

wη(s) ds+ u0 for all t ∈ [0, T ],

it follows that (uη, ση) is the unique solution to Problem P1
η . This completes the proof of

Proposition 4.4. �
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Now, we establish the existence and uniqueness of solution to Problem Pθ (with the

fixed damage source function θ).

Proposition 4.5 Under the hypotheses of Theorem 4.1, for every θ ∈ C([0, T ];L2(Ω)) and

β0 ∈ K , Problem Pθ admits a unique solution βθ .

Proof The proof follows from standard results for parabolic variational inequalities (see

e.g., Barbu [3, p. 124]). �

It remains to prove Theorem 4.1.

Proof of Theorem 4.1 Let

Λ : C([0, T ];L2(Ω; �d) × L2(Ω)) → C([0, T ];L2(Ω; �d) × L2(Ω))

be the operator given by

Λ(η, θ) =
(
G(ε(uη), βθ), φ(·, ε(uη), βθ)

)
for all (η, θ) ∈ C([0, T ];L2(Ω; �d) × L2(Ω))

where uη is the unique solution of Problem P1
η with the corresponding selec-

tion ξη(t) ∈ S2
(∂j(u̇η)τ(t))

(Proposition 4.4) and βθ is the unique solution to Problem

Pθ (Proposition 4.5). Note that Λ is well defined because by hypothesis H(G)(b)

we have G(ε(uη), βθ) ∈ C([0, T ];L2(Ω; �d)) and by hypotheses H(φ)(b) and (d)

we have φ(·, ε(uη), βθ) ∈ C([0, T ];L2(Ω)). We show that operator Λ has a unique

fixed point (η∗, β∗) ∈ C([0, T ];L2(Ω; �d) × L2(Ω)). To this end let (η1, β1), (η2, β2) ∈
C([0, T ];L2(Ω; �d) × L2(Ω)). We denote ui = uηi , wi = u̇ηi , ξi = ξηi βi = βθi for i = 1, 2.

Using hypotheses H(G)(b) and H(φ)(b), we deduce that for all t ∈ [0, T ],

‖Λ(η1, θ1)(t) − Λ(η2, θ2)(t)‖L2(Ω;�d)×L2(Ω)

= ‖G(ε(u1(t)), β1(t)) − G(ε(u2(t)), β2(t))‖L2(Ω;�d)

+‖φ(t, ε(u1(t)), β1(t)) − φ(t, ε(u2(t)), β2(t))‖L2(Ω)

� (LG + Lφ)
(
‖ε(u1(t)) − ε(u2(t))‖L2(Ω;�d) + ‖β1(t) − β2(t)‖L2(Ω)

)
= (LG + Lφ)

(
‖u1(t) − u2(t)‖V + ‖β1(t) − β2(t)‖L2(Ω)

)
. (4.19)

Since u1(0) = u2(0) = u0, using (4.8), we get

‖u1(t) − u2(t)‖V �

∫ t

0

‖w1(s) − w2(s)‖V ds for all t ∈ [0, T ]. (4.20)
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For s ∈ [0, t], subtracting (4.5) for w1(s) and w2(s), and taking the test function

v = w1(s) − w2(s), we get

(A(ε(w1(s))) − A(ε(w2(s))), ε(w1(s)) − ε(w2(s)))L2(Ω;�d)

=

∫
ΓC

(p((u2)ν(s) − g) − p((u1)ν(s) − g)) ((w1)ν(s) − (w2)ν(s)) dS

+

∫
ΓC

(
p((u2)ν(t) − g)ξ2(t) − p((u1)ν(t) − g)ξ2(t)

+ p((u1)ν(t) − g)ξ2(t) − p((u1)ν(t) − g)ξ1(t)
)

·
(
(w1)τ(s) − (w2)τ(s)

)
dS

+ (η2(s) − η1(s), ε(w1(s)) − ε(w2(s)))L2(Ω;�d).

Using assumptions H(A)(d), H(p), and H(j), we obtain

(mA − cpLτ‖γΓC‖2)‖w1(s) − w2(s)‖V
� Lν(1 + cτ)‖γΓC‖2‖u1(s) − u2(s)‖V + ‖η1(s) − η2(s)‖L2(Ω;�d), (4.21)

and hypothesis H0(f) implies

‖w1(s) − w2(s)‖V � c
(
‖u1(s) − u2(s)‖V + ‖η1(s) − η2(s)‖L2(Ω;�d)

)
(4.22)

for all s ∈ [0, t]. From (4.20), (4.22) and the Gronwall inequality, we obtain

‖u1(t) − u2(t)‖V � c

∫ t

0

‖η1(s) − η2(s)‖L2(Ω;�d) ds for all t ∈ [0, T ]. (4.23)

Writing the inequality (4.1) for β1(s) with ζ = β2(s), then for β2(s) with ζ = β1(s) and

adding the resulting inequalities, we obtain

(β̇1(s) − β̇2(s), β1(s) − β2(s))L2(Ω) + κ(∇β1(s) − ∇β2(s),∇β1(s) − ∇β2(s))L2(Ω)d

� (θ1(s) − θ2(s), β1(s) − β2(s))L2(Ω) for all s ∈ [0, T ].

Integrating this inequality over (0, t) for t ∈ (0, T ) and using integration by parts, we get

1

2
‖β1(t) − β2(t)‖2

L2(Ω) − 1

2
‖β1(0) − β2(0)‖2

L2(Ω) + κ

∫ t

0

‖∇β1(s) − ∇β2(s)‖2
L2(Ω)d ds

�

∫ t

0

‖θ1(s) − θ2(s)‖L2(Ω)‖β1(s) − β2(s)‖L2(Ω) ds for all t ∈ [0, T ].

Since β1(0) = β2(0) = β0, we get

‖β1(t) − β2(t)‖2
L2(Ω) �

∫ t

0

‖θ1(s) − θ2(s)‖2
L2(Ω) ds+

∫ t

0

‖β1(s) − β2(s)‖2
L2(Ω) ds,

for all t ∈ (0, T ). Using the Gronwall inequality yields

‖β1(t) − β2(t)‖2
L2(Ω) � c

∫ t

0

‖θ1(s) − θ2(s)‖2
L2(Ω) ds for all t ∈ [0, T ]. (4.24)
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Applying (4.23) and (4.24) in (4.19), we obtain

‖Λ(η1, θ1)(t) − Λ(η2, θ2)(t)‖2
L2(Ω;�d)×L2(Ω)

= c

∫ t

0

(
‖η1(s) − η2(s)‖2

L2(Ω;�d) + ‖θ1(s) − θ2(s)‖2
L2(Ω)

)
ds

� c

∫ t

0

‖(η1, θ1)(s) − (η2, θ2)(s)‖2
L2(Ω;�d)×L2(Ω) ds.

It follows from Theorem A.9 that Λ has a unique fixed point (η∗, θ∗).

We now establish the existence of a solution to Problem PV. Let (uη∗ , ση∗ ) be the solution

of Problem P1
η for η = η∗ (Proposition 4.4) and let βθ∗ be the solution of Problem Pθ for

θ = θ∗ (Proposition 4.5). From the definition of Λ, we have that

η∗ = G(ε(uη∗ ), βθ∗ ) and θ∗ = φ(·, ε(uη∗), βθ∗ ),

therefore, (uη∗ , ση∗ , βθ∗ ) is a solution of Problem PV. The uniqueness of solution for problem

PV follows, exactly as in Theorem 5.1 in [12] from the uniqueness of fixed point of Λ, the

fact that if (u, σ, β) is a solution of Problem PV, then (η, θ) = (G(ε(u), β), φ(·, ε(u), β)) is

a fixed point of Λ, and the uniqueness of solutions to Problems P1
η (Proposition 4.4) and

Pθ (Proposition 4.5). The theorem is proved. �

5 Conclusions

In this paper, we formulate a new quasi-static model of contact between a Kelvin–Voigt

viscoelastic body and a penetrable foundation. The normal compliance law is used for

the normal contract, while a generalized non-monotone version of the Coulomb law is

used to model friction. The equation for the displacement is mutually coupled with the

variational inequality describing the internal damage which takes place in the body. Using

the reasoning based on the Banach fixed point argument, we prove the main result of this

paper, Theorem 4.1, which establishes the existence and uniqueness of a weak solution.

The paper generalizes on one hand the results of Gasiński, Ochal, and Shillor [12], where

the simpler Tresca model is used instead of the Coulomb model, and on the other hand

the results of Han, Shillor and Sofonea [13] as the friction in our case can depend on the

slip rate.
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Appendix A

Here, we provide several definitions, notation, and results needed in the article. If X is a

reflexive Banach space, we denote by X∗ its topological dual and 〈·, ·〉X∗×X denotes the

duality pairing of X and X∗. A mapping A : X → X∗ is called bounded if A maps bounded

sets of X into bounded sets of X∗. It is called monotone if 〈Au − Az, u − z〉X∗×X � 0 for

all u, z ∈ X. Moreover, the operator A : X → X∗ is called to be pseudo-monotone if it is

bounded and if un → u weakly in X and lim sup
n→+∞

〈Aun, un − u〉X∗×X � 0 imply

〈Au, u− v〉X∗×X � lim inf
n→+∞

〈Aun, un − v〉X∗×X for all v ∈ X.
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Equivalently, a mapping A : X → X∗ is pseudo-monotone if and only if it is bounded and

if un → u weakly in X and lim sup
n→+∞

〈Aun, un − u〉X∗×X � 0 imply lim
n→+∞

〈Aun, un − u〉X∗×X = 0

and Aun → Au weakly in X∗.

Definition A.1 Let X be a reflexive Banach space and A : D(A) ⊂ X → 2X
∗

be a multi-

valued operator. We say that the operator A is monotone if 〈u∗ − v∗, u− v〉X∗×X � 0 for all

u, v ∈ D(A), u∗ ∈ Au, v∗ ∈ Av.

Definition A.2 Let X be a reflexive Banach space. We say that a multi-valued operator

A : X → 2X
∗

is pseudo-monotone if

(a) for every u ∈ X, the set Au ⊂ X∗ is non-empty, closed and convex;

(b) A is upper semi-continuous from each finite dimensional subspace of X into X∗ endowed

with its weak topology,

(c) for every sequences {un} ⊂ X and {u∗
n} ⊂ X∗ such that un → u weakly in X, u∗

n ∈ Aun
for all n � 1, and lim sup

n→+∞
〈u∗
n, un − u〉X∗×X � 0, we have that for every v ∈ X, there exists

u∗(v) ∈ Au such that

〈u∗(v), u− v〉X∗×X � lim inf
n→+∞

〈u∗
n, un − v〉X∗×X.

Definition A.3 Let X be a reflexive Banach space. A multi-valued operator A : X → 2X
∗

is

generalized pseudo-monotone if for any sequences {un} ⊂ X and {u∗
n} ⊂ X∗ such that un →

u weakly in X, u∗
n ∈ Aun for n � 1, u∗

n → u∗ weakly in X∗ and lim sup
n→+∞

〈u∗
n, un − u〉X∗×X � 0,

we have u∗ ∈ Au and

lim
n→+∞

〈u∗
n, un〉X∗×X = 〈u∗, u〉X∗×X.

The following result relates the notions of pseudo-monotonicity and generalized pseudo-

monotonicity (cf. [8, Proposition 1.3.66, p. 58–59]).

Proposition A.4 Let X be a reflexive Banach space and A : X → 2X
∗
a bounded generalized

pseudo-monotone operator. If for each u ∈ X, Au is a non-empty, closed and convex subset

of X∗, then A is pseudo-monotone.

The following surjectivity can be found in [8, Theorem 1.3.70].

Theorem A.5 If X is a reflexive Banach space, T : X → 2X
∗

is a multi-valued pseudo--

monotone operator which is coercive in the following sense:

〈u∗, u〉X∗×X � c(‖u‖X)‖u‖X for all u ∈ D(T ) and u∗ ∈ T (u), (A 1)

where c : �+ → � is a function such that c(r) → +∞ as r → +∞, then T is surjective.
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Let us recall some basic tools from convex analysis and non-smooth analysis, cf.

Clarke [6].

Definition A.6 Let X be a Banach space and let ϕ : X → � be a locally Lipschitz function.

The generalized (Clarke) directional derivative of ϕ at x ∈ X in the direction v ∈ X,

denoted by ϕ0(x; v), is defined by

ϕ0(x; v) = lim sup
y→x
t↘0

ϕ(y + tv) − ϕ(y)

t

and the generalized gradient (sub-differential) of ϕ at x, denoted by ∂ϕ(x), is a subset of a

dual space X∗ given by

∂ϕ(x) = { ζ ∈ X∗ : ϕ0(x; v) � 〈ζ, v〉X∗×X for all v ∈ X }.

Proposition A.7 If ϕ : X → � is a locally Lipschitz function on a Banach space X, then

for every x ∈ X the generalized gradient ∂ϕ(x) is a non-empty, convex, and weak∗ compact

subset of X∗, and the graph of the generalized gradient ∂ϕ is sequentially closed in X×
(w∗–X∗)-topology, i.e., if {xn} ⊂ X and {ζn} ⊂ X∗ are sequences such that ζn ∈ ∂ϕ(xn) and

xn → x in X, ζn → ζ weak∗ in X∗, then ζ ∈ ∂ϕ(x).

Given a convex, lower semi-continuous (l.s.c.) function ϕ : X → (−∞,+∞] on a Banach

space, we recall that ϕ is proper if it is not identically +∞. The effective domain of ϕ is

denoted by domϕ = {x ∈ X : ϕ(x) < +∞}.

Definition A.8 Let X be a Banach space and let ϕ : X → (−∞,+∞] be a proper, l.s.c. and

convex function. The mapping ∂ϕ : X → 2X
∗

defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, v − x〉X∗×X � ϕ(v) − ϕ(x) for all v ∈ X}

for x ∈ X with ϕ(x) < +∞ and by ∂ϕ(x) = ∅ for x ∈ X with ϕ(x) = +∞, is called the

sub-differential of ϕ. An element x∗ ∈ ∂ϕ(x) (if any) is called a sub-gradient of ϕ at x.

The proof of the next fixed point theorem, which is be needed in the sequel, is similar

to that presented in Migórski-Ochal-Sofonea [17, pp. 107–108].

Theorem A.9 If X is a Banach space and Λ : C([0, T ];X) → C([0, T ];X) is an operator

for which there exist k ∈ �+ and c > 0 such that

‖(Λu)(t) − (Λv)(t)‖kX � c

∫ t

0

‖u(s) − v(s)‖kXds for all u, v ∈ C([0, T ];X), t ∈ [0, T ],

then Λ has a unique fixed point in C([0, T ];X).
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We use the notion of Kuratowski–Painlevé upper limit of a sequence of sets An ⊂ E,

where (E, τ) is a Hausdorff topological space, given by

τ- lim sup
n→∞

An = {x ∈ �m : x = lim
k→∞

xnk , xnk ∈ Ank , 0 < n1 < n2 < . . . < nk < . . . }.

We recall the following result on point-wise behaviour of weakly convergence sequences

(see Proposition 3.6 in [17])

Proposition A.10 Let (Γ ,Σ, μ) be a σ-finite measure space, and let d � 1 be a natural

number. Let un → u weakly in L2(Γ )d and un(x) ∈ G(x) for μ-a.e. x ∈ Γ and all n ∈ �,

where G(x) is a non-empty, bounded set for μ-a.e. x ∈ Γ , then

u(x) ∈ conv

(
lim sup
n→∞

{un(x)}
)
,

where lim supn→∞ stands for the Kuratowski–Painlevé upper limit of sets.

The indices i and j always run between 1 and d and the summation convention over

repeated indices is used. Also, an index following a comma indicates a partial derivative.

In �d by u · v = uivi, we denote the inner product and by ‖v‖�d =
√

v · v the

euclidean norm. On �d, we use the inner product σ · τ = σijτ ij and the associated norm

‖τ‖2
�d = τ · τ .

On the Hilbert space L2(Ω; �d), we consider the scalar product (σ, τ )L2(Ω;�d) =
∫
Ω

σ·τ dx

and the associated norm ‖ · ‖L2(Ω;�d). Defining the deformation operator ε : H1(Ω)d →
L2(Ω; �d) by

ε(u) =
1

2
(∇u + ∇u�),

we can equip the Hilbert space H1(Ω)d with the scalar product

(u, v)H1(Ω)d = (u, v)L2(Ω)d + (ε(u), ε(v))L2(Ω;�d).

The associated norm ‖ · ‖H1(Ω)d is equivalent to the standard H1 norm. Next, we introduce

the space H1 =
{

τ ∈ L2(Ω; �d) : (τij,j) ∈ L2(Ω)d
}
, which is a Hilbert space endowed with

the inner product

(σ, τ )H1
= (σ, τ )L2(Ω;�d) + (Div σ,Div τ )L2(Ω)d ,

and the respective norm ‖ · ‖H1
. Here, Div: H1 → L2(Ω)d is the divergence operator

defined by Div σ = (σij,j). For an element v ∈ H1(Ω)d, we denote by v its trace on ∂Ω

and by vν = v · ν and vτ = v − vνν its normal and tangential components on the boundary.

For an element σ ∈ H1, σν and στ denote the normal and tangential traces of σ, namely

σν = (σν) · ν and στ = σν − σνν .

The following Green formula holds

(σ, ε(v))L2(Ω;�d) + (Div σ, v)L2(Ω)d =

∫
∂Ω

σν · v dS, (A 2)
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for all v ∈ H1(Ω)d and σ ∈ H1. By V we denote the closed subspace of H1(Ω)d, given by

V =
{

v ∈ H1(Ω)d : v = 0 a.e. on ΓD
}
.

Since meas d−1(ΓD) > 0 and ∂Ω is Lipschitz, the Korn inequality holds

‖ε(v)‖L2(Ω;�d) � c‖v‖H1(Ω)d for all v ∈ V , (A 3)

where, here and below, c represents a positive constant, which may change from line to

line and may depend on the data. We define the norm on V by

‖v‖V = ‖ε(v)‖L2(Ω;�d) for all u ∈ V . (A 4)

It follows that ‖ ·‖H1(Ω)d and ‖ ·‖V are equivalent norms on V . Moreover, for a measurable

set Γ ⊂ ∂Ω we denote by γΓ : V → L2(Γ )d the trace operator, by ‖γΓ‖ its norm in

L (V ;L2(Γ )d) and by γ∗
Γ : L2(Γ )d → V ∗ the adjoint operator to γΓ .

Finally, for a real Hilbert space (X, ‖ · ‖X) we use the standard notation for Bochner–

Lebesgue spaces Lp(0, T ;X) (with 1 � p � +∞), Bochner–Sobolev spaces Hk(0, T ;X)

(with k ∈ �), space of vector-valued continuous functions C([0, T ];X) and space of

vector-valued continuously differentiable functions C1([0, T ];X). Moreover, if X1 and X2

are two real Hilbert spaces then X1 × X2 denotes the product space endowed with the

canonical inner product 〈·, ·〉X1×X2
and norm ‖ · ‖X1×X2

.
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