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Taylor blast wave (TBW) theory and geometrical shock dynamics (GSD) theory
describe a radially expanding shock wave front through an inert material, typically
an ideal gas, in the strong blast wave limit and weak acoustic limit respectively. We
simulate a radially expanding blast shock in air using a hydrodynamic simulation
code and numerically describe the intermediate region between these two limits.
We test our description of the intermediate shock phase through a two-dimensional
simulation of the Bryson and Gross experiment. We then apply the principles of GSD
to materials that follow the Mie–Gruneisen equation of state, such as plastics and
metals, and derive an equation that accurately relates the acceleration, velocity and
curvature of the shock through these materials. Along with detonation shock dynamics
(DSD), which describes detonation shock propagation through high explosive fluids,
we develop a hybrid DSD/GSD model for the simulation of heterogeneous explosives.
This model enables computationally efficient simulation of the shock front in high
explosive/inert mixtures consisting of simple or complex geometric configurations. We
simulate an infinite two-dimensional slab consisting of one half explosive, PBXN-9,
and one half aluminium and model the boundary angle conditions using shock polar
analysis. We also simulate a series of high explosive unit cells embedded with
aluminium spherical particles, and we compare the propagation of the detonation
shock front with a direct numerical simulation performed with the ALE3D code.

Key words: compressible flows, computational methods, detonation waves

1. Introduction
The theory of geometrical shock dynamics (GSD) was developed in the mid

1950s by Chisnell and Whitham, and it was originally applied to the development of
supersonic aircraft and hypersonic re-entry from orbit and near orbit (Chisnell 1955;
Whitham 1956, 1957). At the heart of GSD is the premise that a shock in an ideal gas
propagates in the direction normal to itself, and the shock is sensitive to conditions
only immediately behind the shock, which can be estimated from the Rankine–
Hugoniot conditions. GSD theory is based on the concept of weak shock curvature
in the sense that adjacent normal unit vectors on the shock are nearly parallel.

† Email address for correspondence: brandon.lieberthal@maine.edu
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Geometrical shock dynamics applied to condensed phase materials 105

These are rational approximations that assume that particle flow streamlines through
the shock vary slowly in the direction perpendicular to the shock normal and that the
flow is quasi-steady. Whitham’s extensive developments on GSD are well documented
in his classic text, ‘Linear and Non-linear waves’ (Whitham 2011).

The original theory was developed in the limit of weak shock waves, which
means that behind the shock the flow is nearly sonic. Hence the closure condition of
GSD, also known as Whitham’s characteristic rule, uses flow states estimated from
the Rankine–Hugoniot conditions and evaluates the forward characteristic to obtain
the shock surface motion rule. This step generates an intrinsic, shock-surface-based
evolution law, a relationship between flow area and Mach number, that is used to
compute the motion of the shock surface. The original formulas were developed for
an ideal gas.

Whitham demonstrated that the motion rule could be used to calculate the location
of the shock in cases of shock diffraction over regular and irregular surfaces. Even
though Whitham’s relationship between area and Mach number is valid only in
the acoustic limit of weak shock waves, it is reasonably predictive for significantly
large Mach numbers, well outside the domain of its asymptotic validity. Thus as an
engineering tool GSD has been very useful for analysing nonlinear shock diffraction
in many applications. In a sense, GSD is an early example of shock front tracking,
whereby the leading shock in the fluid is computed a priori, without recourse to a
numerical solution of the Euler equations.

Taylor blast wave theory (TBW) is another theory of shock dynamics that is based
on the opposite asymptotic limit – an infinitely strong shock disturbance. TBW theory
is based on a similarity solution of the Euler equations discovered independently by
Taylor, Sedov and von Neumann during World War II. Taylor used it to analyse
the yield of the first atomic blast, and his first unclassified paper on this problem
was published in 1950 (Taylor 1950). Similar to GSD, the analysis was carried out
for an ideal gas with applications to air shocks. Since the blast wave solution is
in fact an asymptotic solution of the full Euler equations, one not only finds an
asymptotic approximation to the motion of the lead shock, but also a self-similar
solution for the flow field behind the lead shock. Therefore, this theory makes a
prediction of the observed wind velocity at a fixed distance from the blast that is
related to the total energy released in the blast. By measuring the wind velocity, one
estimates the blast yield. Most importantly, since the radial shock displacement R(t) is
determined explicitly as being proportional to a power of time, t2/5, the radial normal
shock velocity and shock acceleration are also determined with relation to the shock
curvature κ = 2/R. TBW theory is valid in the limit of a very strong shock, and
like GSD, it generates an intrinsic shock motion rule that relates the shock curvature
to its normal speed and acceleration. Also like GSD, TBW theory is predictive and
an effective engineering tool for blast calculation in regimes that are outside the
asymptotic limits of its derivation.

As an interesting exercise in the theory of compressible flow, we investigate if it
is possible to link the theory of GSD that is valid in the acoustic limit of weak
shock waves, and the TBW theory that is valid for infinitely strong shock waves. Both
theories, as shown below, have distinct motion laws for the lead shock that relate the
normal shock velocity, the normal shock acceleration and the local curvature. We ask
if one can link them together in the regime of intermediate shock strength, in which
the shock Mach number is significantly greater than unity but not infinite. If this is
possible and shown to be predictive, then one has an extended form of Whitham’s
GSD theory that can be used to make improved predictions in engineering applications.
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There is precedent to using empirical models to extend GSD theory, such as shock
propagation in water (Cates & Sturtevant 1997) and in gases with complex geometries
(Aslam & Stewart 1999).

A key application of interest is the design of explosive systems, which are any
multi-part or multi-component systems that have both pure molecular explosives, such
as the nitramines HMX or RDX, that are embedded with confining materials such as
metals or plastics. Such explosive systems are used in defence, aerospace and various
mining and demolition applications. They function by initiating explosive charges in
such a manner that detonation waves sweep through the explosive domain, becoming
bound by the inert particles. As a practical matter, modelling and numerically
simulating explosive systems is a very difficult, multi-scale problem. The detonation
front in the explosive materials has a thin chemical reaction zone that lies behind the
leading shock. In almost all technological applications the thickness of the reaction
zone is extremely thin, often O(10−3) or less compared to the characteristic flow
dimensions (Bdzil & Stewart 2012).

Standard engineering practice to model explosive systems relies on a reduced
model called ‘program burn’ (PB), originally invented by Wilkins et al. (1963), that
uses a simple motion rule, equivalent to the Huygens construction of geometric
optics, to propagate a detonation in the explosive material regions of the device.
Self-propagating detonation shocks mainly travel at speeds close to the Chapman–
Jouguet detonation velocity DCJ , such that the flow at the end of the supporting
reaction zone is sonic in the frame of the lead normal shock. The model simulation
specifies the initial location of the detonation shock, then computes the motion of
the shock according to the detonation shock propagation law. At each point in the
explosive domain of the device, a time of arrival (TOA) of the detonation shock can
be computed from the transient solution of the shock motion, and in practice once
the shock crosses a computational cell its TOA value is stored in that cell. Strictly
speaking, the TOA is a spatial field of the form TOA (x, y, z). The TOA field depends
on the geometry of the explosive, the placement of the inerts in the device and the
location of the initial shock front or detonation points.

Early PB algorithms used the simple rule that the shock normal velocity is equal
to the constant DCJ for each explosive region, and this computed the TOA field a
priori. The PB model simulation used the stored TOA values to ‘light’ the explosive at
the appropriate times, when the detonation shock is supposed to cross each unreacted
material node. A change in the equation of state is made at that material point, that
corresponds to the amount of energy that would be released due to the reaction of
the material. The action of material volume expansion then generates fluid motion in
the ‘burnt’ regions where energy has been deposited to increase the fluid pressure and
change the density. Computational models that use PB are effectively treating the pre-
computed shock front as a propagating surface with a delta function forcing of the
states across the propagating lead shock (Bdzil, Stewart & Jackson 2001; Kapila, Bdzil
& Stewart 2006). The rational asymptotic theory of detonation shock dynamics (DSD)
replaces the simple constant velocity Huygens construction with a motion rule that
relates the normal shock velocity to its total curvature and leads to a modified PB
algorithm that uses the DSD motion rules for the explosive shock (Bdzil & Stewart
2012).

Even though DSD modifications lead to dramatic improvements, the PB algorithm
fails to be predictive when the sweeping detonation shock encounters an embedded
inert. The transmitted shock passage time through that inert, after collision with the
detonation shock, is shorter than the pre-calculated TOA time that only considers
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propagation in the explosive regions. The resolution is to compute the shock in the
inert and the explosive both, to account for this discrepancy in the TOA times. This
issue presents the practical need to compute both the dynamics of the detonation shock
in the explosive and the dynamics of the lead shock in the inerts. This motivates the
development of a theory of GSD for inerts that can be used for condensed phase
materials. From this we can develop new hybrid algorithms to account for the motion
of the lead shock wave in the explosive system, whether it be a detonation shock
or an inert shock. This can lead to a vastly improved algorithm that can accurately
approximate the states at the lead front of the system.

In § 2 we offer a mathematical summary of TBW and GSD theories, showing how
we can describe both theories with a Ḋn–Dn–κ equation of the same form. We follow
up in § 3 with a numerical simulation of a radially expanding blast shock in air,
occupying the intermediate region between TBW and GSD. Using a model fit we
describe the shock transition from the blast wave to the acoustic state. In § 4 we
describe the multi-dimensional Bryson and Gross experiment, using the experimental
design to develop a composite solution for the intermediate blast range.

In the second part of this paper, beginning in § 5, we adapt the principles of GSD to
metals that follow the Mie–Gruneisen equation of state. Finally, we describe a hybrid
shock dynamics theory that combines GSD and DSD to simulate a hybrid explosive
with embedded inert material. We test this theory with a slab explosive in § 6 and a
unit cell explosive in § 7.

2. The shock dynamics relations for blast waves and geometrical shock dynamics
2.1. The shock dynamics of high intensity blast waves

Following the original blast wave analysis by (Taylor 1950), we describe the motion
of the shock in an ideal gas as intrinsic to the shape and velocity of the shock. We
assume that there is a blast energy E, initially concentrated at a single point, that is
released into an ideal gas. The blast expands radially, and we designate the radius of
the blast shock as R(t). We also define the shock speed as dR/dt≡Dn, and the shock
acceleration as d2R/dt2

≡dDn/dt≡ Ḋn. We assume that the shock velocity is dependent
on the blast energy E and the inert gas density ρ0. Making a simple dimensional
argument, the relation between R and t takes the form

R(t)= k
(

E
ρ0

)1/5

t2/5, (2.1)

where k is a constant related to the energy in the flow. Importantly, one finds that R
is proportional to t2/5. We represent the shock curvature as κ = j/R, where j= 1 in the
case of a two-dimensional (2-D) circular blast and j= 2 in the case of a 3-D spherical
blast. With this in mind, we derive a universal relation for the shock motion as

ḊnR
D2

n

=−
3
2

or Ḋn =−

(
3
2j

)
D2

nκ. (2.2a,b)

Although this relation is specifically derived under the assumption of radial symmetry,
we note that the second form of (2.2) can be interpreted as an intrinsic motion rule
for the propagation of the shock surface. This rule holds for all ideal gases, regardless
of their physical properties, and in § 5.3 we prove that this rule also holds for metals
that follow the Mie–Gruneisen equation of state (EOS). For a shock surface that
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is not radially symmetric, the TBW relation is a partial differential equation with
a hyperbolic character, and it is amazingly independent of the properties of the
material. We note that Taylor’s analysis also developed the spatial structure of the
flow behind the blast wave, which is determined by the solutions of the self-similar
Euler equations.

2.2. Geometrical shock dynamics derived in the acoustic limit
Whitham (2011) gives a full account of the acoustic limit of a shock propagating
down a non-uniform tube with a slowly varying cross-sectional area. By deriving
and validating a characteristic rule, he derives the GSD motion rule as a relationship
between the Mach number of the shock and the area of the tube. Aslam (1996)
describes the GSD motion rule in terms of the intrinsic properties of the shock,
relating its velocity, acceleration and curvature in the form shown in (2.13). We
present a quick derivation of the GSD shock motion rule for an ideal gas.

Whitham shows that in the acoustic limit of a weak shock, a characteristic forms
behind the shock. With this in mind, the derivation proceeds as follows. First, we
consider the intrinsic properties of the fluid: the density ρ, the particle velocity u and
the pressure p. We represent the sound speed squared as c2, and for an ideal gas with
constant specific heat, c2

= γ p/ρ, where γ is the ideal gas adiabatic index. Some texts
use the variable a instead of c.

Whitham expresses the GSD motion rule in the form,

dp
dx
+ ρc

du
dx
+
ρc2u
u+ c

1
A

dA
dx
= 0, (2.3)

where A(x) is the tube’s cross-sectional area. We obtain the intrinsic form of the GSD
motion rule simply by replacing A′(x)/A(x), by the shock curvature κ . In addition, we
use the formula for the forward characteristic speed

dx
dt
= u+ c (2.4)

to substitute the total time derivative for the total x derivative along the characteristic.
With this in mind, we obtain the alternate, equivalent formula

dp
dt
+ ρc

du
dt
+ ρc2uκ = 0, (2.5)

where the total time derivative is interpreted as the time rate of change of the fluid
states evaluated along the C+ characteristics. Equation (2.5) is known as Whitham’s
characteristic rule.

The Rankine–Hugoniot conditions govern the change in fluid states across the
shock. They require that the mass flux, momentum flux and energy are continuous.
The equations are

us =Dn

(
1−

ρ0

ρs

)
, (2.6)

ps − p0 = ρ0usDn, (2.7)

e(ps, ρs)− e(p0, ρ0)=
1
2
(ps + p0)

(
1
ρ0
−

1
ρs

)
, (2.8)
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where ρs, us and ps are the density, particle velocity and pressure behind the shock,
ρ0, u0 and p0 are the density, particle velocity and pressure ahead of the shock and
Dn is the normal shock velocity. We solve these equations for ρs, us and ps in terms
of Dn. We also express the sound speed on the shock cs in terms of Dn.

Since Dn is a function of time, we compute the time derivatives of the fluid states
behind the shock as

dp
dt
=

dps

dDn
Ḋn,

du
dt
=

du
dDn

Ḋn. (2.9a,b)

Making these substitutions into (2.5) and solving for Ḋn, we derive the general form
of the Ḋn −Dn − κ relation

Ḋn =−
psc2

s us

dps

dDn
+ psas

dus

dDn

κ. (2.10)

When we specifically evaluate for an ideal gas, we obtain the intrinsic form of the
result obtained by Whitham:

Ḋn =−c2
0
M2
− 1
λ

κ, (2.11)

where M =Dn/c0 is the shock Mach number, c0 =
√
γ p0/ρ0 is the inert sound speed

and

λ=

(
1+

2
γ + 1

1−µ2

µ

)(
1+ 2µ+

1
M2

)
, µ2

=
(γ − 1)M2

+ 2
2γM2 − (γ − 1)

. (2.12a,b)

This GSD motion rule applies when M is greater than but close to 1. We note that
equations (2.2) and (2.12) are both of the form

Ḋn =−f (Dn)κ, (2.13)

and since f (Dn) is strictly positive in both the TBW and GSD equations, the dynamics
of the wave front evolution is hyperbolic in character.

2.3. Summary
In the two cases discussed, the blast wave limit and the acoustic limit, we have
suggested that the dynamics of the lead shock behind a disturbance propagates
according to a hyperbolic front evolution of the general form (2.13). While we can
derive or postulate the two limiting cases of very strong and very weak disturbances,
we ask if it is possible to find a similar evolution equation that is valid for any
intermediate Mach shock number. And since one can envision a strong disturbance
that starts out as a blast and decays to a weak wave, we also ask if the decaying
transient of a blast wave to an acoustic wave determines a universal shock evolution
equation on the shock speed.

We test this conjecture directly via simulation of the Euler equations and by
comparing the numerically generated transients with the TBW and GSD theoretical
solutions. This test is a simulation of a blast singularity in ambient air that expands
outwards according to the Euler equations. We track the lead shock motion R(t), then
we compute the dimensionless ratio Ḋn/D2

nκ .
In the blast wave limit, according to equation (2.2), we expect this value for a

spherical wave to be equal to −3/4. If we simulate the flow until the shock becomes
extremely weak, this ratio transitions to 0. In the next section we examine how such
simulations of the relaxation from a blast wave to an acoustic disturbance compare
with the two limits, for the well-studied case of an ideal gas.
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FIGURE 1. (a) A radially expanding blast wave front of radius R propagating at velocity
Dn. The variables ρ, u and p represent the density, material velocity and pressure inside
the blast, and they are radially symmetric around the centre. The material outside of the
blast is in its cold, inert state and it has the constant properties ρ0, u0 and p0. (b) The
radius of the blast shock R(t) versus time. The TBW, GSD and intermediate regions are
shown, although the boundaries between them are not explicitly defined.

3. Comparisons of simulations with blast wave and geometric shock dynamics
radial transients for an ideal gas

3.1. Ideal gas test
We conduct this test using the NEWCODE software, our in-house code that
numerically solves Euler equation problems. We thoroughly discuss NEWCODE and
its numerical method in the appendix A. We first test the accuracy of NEWCODE
by performing a simulation of a radially expanding blast wave in an ideal gas,
specifically atmospheric air. Figure 1 shows a portrayal of the simulation domain, but
the simulation is processed in one dimension with the assumption of three-dimensional
axisymmetry. The physical properties of air are

ρ0 = 0.0013 g cm−3, p0 = 1.02× 10−4 Mbar, γ = 1.4, c0 = 0.331 cm µs−1.

(3.1a−d)

The initial size and velocity of the hotspot is R = 0.1 cm and Dn = 1000c0 =

331 cm µs−1. The simulation runs up to t = 100 µs, which is enough time for the
hotspot to decay into an acoustic steady state.

We track the shock location as R(t) over the course of the simulation, and from
these data we derive κ , Dn and Ḋn. In figure 2(a) we plot Ḋn/κ in terms of Dn, up
to Dn = 1.5 cm µs−1. We also plot the TBW and GSD predictions of Ḋn/κ , which
according to equations (2.2) and (2.11), are determined uniquely by the value of Dn.
Note that in theory, the data presented in figure 2(a) are independent of the initial
values of R and Dn.

The blast shock initially has a high velocity, high curvature and extremely negative
acceleration, as shown in the lower right corner of this figure. Note that the simulation
data at this point closely match the TBW prediction. The shock front expands rapidly
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FIGURE 2. (a) A simulation of a spherical blast wave expansion in atmospheric air. The
TBW limit, GSD limit and simulation data are shown. (b) A dimensionless graph that
shows the transition from the TBW state to the GSD state for a blast wave expansion in
aluminium. The shape of the curve was found by fitting the simulation data to a model.

and loses velocity, and the shock transitions to the data shown in the upper left corner
of this figure. When the shock velocity becomes very small, less than 0.5 cm µs−1,
the GSD model becomes a better prediction. It is important to be clear that in terms of
time, the shock lies in the TBW state very briefly. It takes only approximately 0.13 µs
for the shock velocity to decay from 331 to 10 cm µs−1, then another 7.0 µs for the
velocity to decay to 1 cm µs−1. At this point the shock will gradually approach but
never completely reach its ambient state of Dn = c0.

3.2. Intermediate shock transient in dimensionless variables
Our goal is to quantitatively describe the transition from the strong shock limit to
the weak shock limit by portraying the data in such a way that the TBW and GSD
predictions appear as single points, with the transient appearing as a curve between
them. Define the dimensionless variables

X = tκDn, Y =
Ḋn

κD2
n

. (3.2a,b)

In the TBW limit, the radius of the blast wave follows the equation R(t)= (C1t)2/5,
where C1 is a constant, according to equation (2.1). Therefore, we compute X= 2j/5
and Y =−3/(2j), where j= 1 for the 2-D model and 2 for the 3-D model. Far into
the acoustic limit, when the shock velocity has decayed all the way down to the bulk
sound speed c0, we can model the radius of the blast wave by R(t)∼C2+ c0t, where
C2 is another constant. Given enough time that constant becomes negligible, and the
radius of the shock is just R(t) ∼ c0t. Therefore, as t→∞ we compute X = j and
Y = 0.

As the shock transitions from the TBW state to the GSD state, we expect X to
transition from 2j/5 to j, and Y to transition from −3/(2j) to 0. Since both the strong
shock limit and the weak shock limit have functions for the shock radius in the form
of R(t)=Ctk, in the intermediate transient phase we assume that R(t)∼C(t)tk(t), where
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C(t) and k(t) are functions slowly varying in time. The value of C(t) is initially
dependent on the total energy of the blast wave, and over time it decreases to c0. The
value of k(t) begins at 2/5 in the TBW limit and increases to 1 in the GSD limit.

Figure 2(b) shows the simulation data from figure 2(a) in terms of X and Y . The
TBW and GSD limits are depicted as individual points whereas the curve between
them is the intermediate transient. The simulation begins in the lower left corner
and decays to the upper right corner, but note that the two marked points are
asymptotic limits – the simulation can never completely reach either one. Also, the
two asymptotic limits are independent of the properties of the gas, but the transition
curve is unique to atmospheric air.

The NEWCODE simulation results show that we can fit the relationship between Y
and X to a function of the form

Y = a− be−cX, (3.3)

where a, b, c are positive constants that we find through a nonlinear model fit
algorithm. This particular model form was found empirically, as it well describes
the convergent nature of this system. For atmospheric air, the best model fit is
a= 0.00643, b= 18.2, c= 3.97. This curve is shown superimposed on the simulation
data in figure 2(b).

In summary, using NEWCODE we simulated an air blast shock that originated
as a small, high energy hotspot, which rapidly expanded and decelerated, eventually
decaying to a large but weak air disturbance. We plotted the radius of this shock over
time, and we demonstrated that the relationship between the curvature, shock velocity
and shock acceleration initially follows TBW theory, then transitions to GSD theory.
In order to describe this transition quantitatively, we described the same data using
dimensionless variables, then fit the simulation data to an exponential function. This
model fit function provides a description of the blast shock evolution that encompasses
both the strong and weak shock limits.

4. Example 1: simulation of two-dimensional shock diffraction in air

Our next goal is to determine a Ḋn–Dn–κ relation that we can apply to shock
surfaces of any shape and with intermediate shock strength. First, we replicate the
Bryson and Gross experiment in NEWCODE over a range of Mach numbers. We
measure the shock–shock diffraction velocity in each of these simulations, then we
use these data to fit a composite model that bridges the TBW and GSD limits. We
use this composite model to simulate the Bryson and Gross experiment again using
a level set shock code, then we compare our two simulation methods.

The Bryson and Gross experiment, first conducted in the early 1960s, is one of the
first experiments to validate GSD theory. The experiment consists of a solid object,
either a cylinder, sphere or cone, placed in ambient air (Bryson & Gross 1961). A
piston loaded shock wave, with an initial Mach number of 2.85, passes over the
solid object, and the resulting shocks are observed using a schlieren light screen. The
interaction of the shock front and the solid object causes a Mach shock diffraction that
expands outwards. The discontinuity between the diffracted and undisturbed regions
of the shock is called the shock–shock, and GSD theory provides a prediction for the
diffraction rate of the shock–shock. Bryson and Gross measured the location of the
shock–shock in their experiments and showed that they matched the GSD predictions
within experimental error. Subsequent simulation research has verified these results
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and discussed a further analysis of the shock wave (Drikakis et al. 1997; Ofengeim
& Drikakis 1997).

We start by simulating the Bryson and Gross experiment in NEWCODE. The
simulation domain is two-dimensional, with a solid cylinder of radius 1 cm embedded
in the centre. A high pressure region of air creates a blast that propagates upwards
at constant speed D0 = M0c0, where M0 is the Mach number and c0 is the sound
speed of air. When the shock approaches the cylinder, it becomes orthogonal to the
cylindrical boundary. As shown in figure 4(a), this orthogonal boundary condition
causes the Mach shock to start travelling around the cylinder at a faster velocity than
the incident shock, which remains flat with velocity D0. The intersection of the Mach
shock and the incident shock, indicated by a dotted line, is the shock–shock. The
shock–shock travels outwards at speed vss, which experiments show is approximately
constant.

Suppose we can model the shock propagation with an equation of the form Ḋn =

−f (Dn)κ . Then according to (A 17) in the appendix A, the shock–shock should diffract
at a rate approximately equal to vss=

√
f (D0). Both the TBW and GSD theories have

shock propagation laws of this form, where f (Dn) comes from (2.2) for TBW theory
and equation (2.11) for GSD theory. We refer to the TBW and GSD forms of f (Dn)

as fTBW(Dn) and fGSD(Dn) respectively.
Using an asymptotic bridging method, we seek a composite Ḋn–Dn–κ relation that

is accurate in the intermediate shock region of the form

Ḋn =−fcomp(Dn)κ, fcomp(Dn)= a Erf(x− c0)fTBW(Dn)+ b Erfc(x− c0)fGSD(Dn),

(4.1a,b)

where Erf is the error function, Erfc is the complimentary error function and a and b
are model fit constants. By measuring vss in NEWCODE and fitting it to the equation√

fcomp(D0) or
√

fcomp(M0c0), we can plot a relation between M0 and vss and find a
model fit for the values of a and b.

Figure 3 shows a photograph of the original Bryson and Gross experiment, along
with a schlieren diagram of the equivalent NEWCODE simulation, with M0 = 2.85
(Hernández, Lieberthal, & Stewart 2017). NEWCODE successfully tracks the location
of the Mach shock, incident shock, and shock–shock, closely agreeing with the
experimental data.

We run the NEWCODE simulation at a variety of Mach numbers, ranging from 1
to 3 in increments of 0.25, and from 3 to 10 in increments of 1. In each simulation
we measured the value of vss from the time of arrival field. Figure 4(b) shows
the NEWCODE simulation values of M0 and vss, along with the GSD and TBW
predictions of vss. As we expect, the simulation results for vss lie between the GSD
and the TBW predictions. GSD theory is a better predictor for low Mach numbers,
but as the Mach number increases, the TBW prediction becomes more accurate.
We fit these data to (4.1) and find the model fit values a = 0.7174, b = 3.561. The
composite solution is also shown in figure 4(b). Note that the Mach number needs
to be as high as 30 until the NEWCODE solution agrees with the TBW prediction,
however few Bryson and Gross experiments have been conducted at that velocity.

4.1. GSD/TBW composite simulation
We now use the composite model to simulate the Bryson and Gross experiment
by substituting (4.1) into equation (A 14). The simulation code, written in C++,
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(a) (b)

T.P. 1
M.S. 1

C.D. 1 V.

R.S.

I.S.

FIGURE 3. Schlieren diagram of shock diffraction over a cylinder: (a) the experimental
density photograph from Bryson & Gross (1961), and (b) the equivalent NEWCODE
simulation.

solves (4.1) using a method of lines approach, and the software is similar to what
we used in Lieberthal, Bdzil & Stewart (2014) at comparable resolutions. While the
shock is either below or above the cylinder, the simulation computes the shock using
a Cartesian arrangement of nodes. While the shock is attached to the cylinder, the
simulation uses a polar arrangement of nodes centred on the cylinder. This allows
the software to process the orthogonal boundary condition without any dependence
on the simulation resolution.

Figure 5 shows the results of the Bryson and Gross simulation, with initial Mach
numbers of 2.85 and 10. The two top figures show the results of the GSD/TBW
composite simulation, and the two bottom figures show the equivalent simulations
computed in NEWCODE. The M0 = 2.85 simulation is printed in time increments of
1t= 0.2 µs and the M0= 10 simulation is printed in time increments of 1t= 0.05 µs.
Comparing the time of arrival profile for both simulations results in precision
within 3 % relative error, which serves as a validation of the GSD/TBW composite
model. The shock–shock diffraction rate in each composite model simulation is
0.707 cm µs−1 and 2.577 cm µs−1, respectively. In comparison, the respective
NEWCODE diffraction rates are 0.719 cm µs−1 and 2.431 cm µs−1.

The two simulations disagree slightly in the region close to the surface of the
sphere. This discrepancy is due to NEWCODE’s use of a Cartesian coordinate
frame. NEWCODE simulates the reflective boundary condition fairly well, but it
is impossible to perfectly compute a radial shock front in rectangular coordinates.
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Mach
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FIGURE 4. (a) A representation of the Bryson and Gross simulation, with the Mach shock,
the incident shock and the shock–shock pictured. (b) The relation between the Mach
number M0 and the shock–shock diffraction rate vss, as measured in NEWCODE. The
GSD and TBW predictions for vss are also shown, along with the composite solution.

This error, while slight, builds up over time to result in approximately a 10 % relative
difference between the two simulation codes along the particle boundary. Running
the NEWCODE simulation at higher resolutions alleviates this problem somewhat, at
the cost of computational efficiency.

5. GSD composite models for the Mie–Gruneisen equations of state
5.1. Mie–Gruneisen equation of state

In this section, we apply the principles of GSD theory to non-ideal materials,
specifically metals that follow the Mie–Gruneisen (MG) EOS. The MG EOS is
traditionally written in the form

Γ (p, v)= v
(

dp
de

)
v

, (5.1)

where Γ is the Gruneisen parameter, p is the pressure, e is the internal energy per
unit mass and v is the specific volume. We assume that Γ is dependent only on v,
and we rewrite the equation in terms of the density ρ, to find the equation

Γ (ρ)= Γ0

(
ρ0

ρ

)q

, (5.2)

where Γ0 is the Gruneisen constant. We further assume that q = 1, which is a
reasonable assumption for most metals (Miller & Puckett 1996; Mitchell 1981).

With this in mind, we define the temperature corrected version of the MG EOS as

p(e, v)= Γ (ρ)ρe+ f (ρ)= Γ0ρ0e+ f (ρ). (5.3)
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FIGURE 5. Shock data for the Bryson and Gross experiment with initial Mach numbers
of 2.85 and 10, conducted with the composite model and with NEWCODE. Shock–shocks
are indicated by dotted lines.

The function f (ρ) is defined conditionally depending on whether the density is greater
than or less than the inert density (Arienti, Morano & Shepherd 2004).

f (ρ)=


ρ0c2

0χ

(1− sχ)2

[
1−

Γ0

2
χ

]
if ρ > ρ0

c2
0(ρ − ρ0) if ρ < ρ0,

(5.4)

where χ = 1− (ρ0/ρ), c0 is the ambient bulk speed of sound and s is the Rankine–
Hugoniot slope coefficient.

The constant s is defined as the slope of a Up − Us curve, found through piston
driven shock experiments. Noting that the piston velocity Up and the shock velocity
Us are analogous to the particle velocity u and the shock velocity Dn in this paper,
this particular form of the MG EOS is defined on the assumption that u and Dn are
linearly related:

Dn = c0 + su. (5.5)

For our problem of interest, we normally only expect ρ to be greater than ρ0. We
can also write the MG equation in the form

e(p, v)=
1

Γ0ρ0
(p− f (ρ)). (5.6)
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The upper limit of ρ for which this EOS holds is ρmax= sρ0/(s− 1), and f (ρ) is not
defined above this limit.

We define the sound speed as

c2
=

p+ ∂e/∂v
ρ2∂e/∂p

=
p− ρ2∂e/∂ρ
ρ2∂e/∂p

. (5.7)

For this particular EOS, the sound speed simplifies to

c2
=

p+ ρ2 1
Γ0ρ0

f ′(ρ)

ρ2
1

Γ0ρ0

= Γ0ρ0
p
ρ2
+ f ′(ρ). (5.8)

We also compute

f ′(ρ)=


c2

0ρ
2
0 [(Γ0 + s)(ρ − ρ0)+ ρ]

[s(ρ0 − ρ)+ ρ]3
if ρ > ρ0

c2
0 if ρ < ρ0.

(5.9)

5.2. Rankine–Hugoniot relations
Define ρs, us, ps as the density, particle velocity and pressure on the surface of the
blast wave shock front. Then the Rankine–Hugoniot laws govern the jump conditions
across the wave front, ensuring that the mass flux, momentum flux and energy are
continuous along the shock:

us =Dn

(
1−

ρ0

ρs

)
, (5.10)

ps − p0 = ρ0usDn, (5.11)

e(ps, ρs)− e(p0, ρ0)=
1
2
(ps + p0)

(
1
ρ0
−

1
ρs

)
. (5.12)

In general we specify that u0 = 0, and in the case of an MG metal we assume that
p0 = 0.

By combining the Rankine–Hugoniot equations and the e(p, ρ) function for the MG
EOS, we can solve for ρs, us, ps in terms of Dn. The solution is

ρs(Dn)=
Dnsρ0

c0 +Dn(s− 1)
, us(Dn)=

Dn − c0

s
, ps(Dn)=

Dn(Dn − c0)ρ0

s
(5.13a−c)

and the equation for the energy per unit mass is

es = e(ps, ρs)=
(Dn − c0)

2

2s2
. (5.14)

Note that the equation for us(Dn) is consistent with the linear shock Hugoniot equation
(5.5). Also note that ρs approaches ρ0 and us, ps and es approach 0 as Dn→ c0, as we
would expect for a nearly inert material. We also substitute these solutions into our
equation for the sound speed to find

c2
s =
[c0 +Dn(s− 1)]2[D2

n(Γ0 + 2s)−Dnsc0 − Γ0c2
0]

Dnc0s3
. (5.15)
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5.3. Taylor blast wave limit
It has been established that the non-corrected version of the MG EOS (with f (ρ)= 0)
is self-similar, but the corrected version is not (Holm & Logan 1983). However, in
the asymptotic limit of high Dn, we may take our solutions to the Rankine–Hugoniot
relations and approximate to the highest order of Dn:

ρs(Dn)→
sρ0

s− 1
, us(Dn)→

Dn

s
, ps(Dn)→

D2
nρ0

s
. (5.16a−c)

We also find the asymptotic limit of the energy:

es(Dn)→
D2

n

2s2
. (5.17)

With this in mind, the following equation holds in the high velocity limit:

es ∼
ps

2(s− 1)ρs
. (5.18)

Note that this is the same equation as the ideal EOS with 2(s − 1) = γ − 1. In
other words, under a high velocity blast wave, a Mie–Gruneisen metal behaves like
an ideal gas. The traditional TBW theory applies, and the radius of the blast wave
front is given by the equation R(t)= (Ct)2/5. Therefore, the Ḋn −Dn − κ relation is

Ḋn =−

(
3
2j

)
D2

nκ. (5.19)

For this equation to be reasonably precise, we require the Mach number, M=Dn/c0
to be at least approximately 20. In a heterogeneous explosive, the Chapman–Jouguet
velocity which drives the experiment is of the order of magnitude of 1 cm µs−1, so
the Mach number rarely exceeds 2 or 3. Therefore, the TBW limit is not generally
relevant in modelling hybrid explosives.

5.4. Geometrical shock dynamics limit
In § 2.2 we derived the general form for the GSD shock propagation law:

Ḋn =−
ρsc2

s us

dps

dDn
+ ρscs

dus

dDn

κ. (5.20)

Equation (5.20) is valid for any equation of state in the acoustic limit, and this result
agrees with the equation found in Saenz, Taylor & Stewart (2012) for an inert material.
We substitute our Rankine–Hugoniot solutions for the MG EOS to find

Ḋn =−
Dnc2

s (Dn − c0)s
2D2

n(s− 1)+Dncss+Dnc0(3− s)− c2
0
κ, (5.21)

c2
s =
[c0 +Dn(s− 1)]2[D2

n(Γ0 + 2s)−Dnsc0 − Γ0c2
0]

Dnc0s3
. (5.22)

We now proceed to test our TBW and GSD theories with a simulated blast in
aluminium, analogous to the ideal air simulations we presented in § 3.1.
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FIGURE 6. (a) A simulation of a spherical blast wave expansion in aluminium. The TBW
limit, GSD limit and simulation data are shown. (b) A dimensionless graph that shows the
transition from the TBW state to the GSD state for a blast wave expansion in aluminium.
The shape of the curve was found by fitting the simulation data to a model.

5.5. Aluminium test
Since we have validated NEWCODE’s simulation method in § 3.1, we proceed to
run the same test with aluminium. The Mie–Gruneisen parameters for aluminium
(Steinberg 1996) are

ρ0 = 2.785 g cm−3, c0 = 0.5328 cm µs−1, s= 1.338, Γ0 = 2.00. (5.23a−d)

We set up the model identically to the ideal gas test but with an initial shock velocity
of only Dn = 10c0 = 5.328 cm µs−1. The initial blast radius is still 0.1 cm. As in
the ideal gas test, the blast wave state lasts for an extremely short period of time.
After about 0.32 µs, the shock front has slowed down to 20 % of its original velocity.
Around this time the wave starts to gradually decay to its acoustic limit. It takes
approximately 4.02 µs until the blast wave velocity is within 10 % of c0. As t→∞,
the system will continue to approach but never quite reach its acoustic limit.

A plot of Ḋn/κ versus Dn of the simulation data, the GSD prediction, and the
TBW prediction up to Dn = 2 cm µs−1 are given in figure 6(a), which is analogous
to figure 2(a). In the low velocity limit, Dn < 1 cm µs−1, the GSD prediction almost
perfectly describes the wave decay behaviour. At higher velocities, the simulation
graph begins to run parallel to the TBW prediction, but the TBW prediction does not
serve as a good approximation unless the velocity is much higher. Since the typical
Chapman–Jouguet velocity DCJ of a high explosive is usually less than 1 cm µs−1,
the GSD relation alone is an adequate estimation for most heterogeneous explosives
and there is no practical need to find a composite solution.

The transition from the TBW state to the GSD state can be modelled using the
same dimensionless variables as in the ideal gas test, and equation (3.3) still holds.
For aluminium, the best model fit is a= 0.0166, b= 9.86, c= 3.19.

Since we have derived a GSD shock motion law for metals and shown that the
law agrees with the results of an Euler equation simulation, we now seek to simulate
heterogeneous materials consisting of high explosive fluids and inert metals.
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FIGURE 7. A two-dimensional infinite slab. The HE is modelled using detonation shock
dynamics and the metal is modelled using geometrical shock dynamics.

6. Example 2: simulation of an infinite two-dimensional slab with a DSD/GSD
hybrid model
In this section, we seek to combine the GSD shock motion law for metals with

the DSD shock motion law for high explosives (HE) in order to simulate the shock
propagation through a hybrid explosive/inert material. In Lieberthal et al. (2014)
we used DSD to simulate a detonation shock propagating around a solid spherical
particle embedded in an HE. Our goal is to use GSD to expand upon this simulation,
incorporating the shock propagation through the particle itself.

To briefly summarize DSD, we typically model high explosives with a shock motion
rule that directly relates the shock normal velocity and the curvature. The simplest
such law is the linear Dn − κ equation,

Dn =DCJ(1− ακ), (6.1)

where DCJ is the Chapman–Jouguet velocity of the HE and α is a curvature correction
constant related to the reaction zone length (Bdzil, Lieberthal & Stewart 2010).
Substituting into (A 14), this DSD law is a parabolic partial differential equation
for g that is first order in time and second order in space. Since this law is only
dependent on Dn and not Ḋn, unlike the GSD laws discussed in the previous section,
the DSD law is self-sustaining. The high energy of the detonation shock causes the
unreacted fluid to transition into a product phase, releasing more energy into the
shock. Any shock front that is left undisturbed will eventually revert back into a flat
wave with zero curvature and constant speed DCJ .

For the simplest example of an HE/inert hybrid, we consider the two-dimensional
infinite slab shown in figure 7. The material in the bottom and left halves of the
domain (z< 0 or x< 0) is an HE fluid, and the material in the upper right quadrant
(z> 0 and x> 0) is a metal. Initially, before t= 0, the shock front is flat, propagating
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through the HE at a constant speed. At time t= 0, the domain splits into HE on the
left and metal on the right.

We model the incident shock propagation in metal using the GSD law in equation
(5.21), as for most explosive fluids, we do not expect DCJ to be high enough for
the TBW limit to apply. Then similarly to § 4, when the shock front is only slightly
perturbed, we expect to see a travelling wave with a characteristic velocity equal to√

fGSD(D0).

6.1. Shock polar analysis
The values of the confinement angles ωc and ωi depend on the material properties
of the HE and the metal and the speed of the shock front, and we find these
values through shock polar analysis. Figure 8 shows a shock propagating through an
HE/metal interface. The point where the shock and interface meet travels vertically
at speed D0, and the shock normal velocities in the HE and the metal are equal to
D0 sin(ωc) and D0 sin(ωi) respectively.

The shock causes the interface behind it to deflect on the inert side. Using the
Rankine–Hugoniot relations, we can find values for the pressure behind the shock and
the deflection of the interface θ , independently on the HE and the inert sides. Define
p1 and ρ1 as the pressure and density behind the shock on the HE side and p2 and
ρ2 as the pressure and density behind the shock on the inert side.

If the HE is modelled using a Jones–Wilkins–Lee EOS, described in § 6.2, then p1
and ρ1 must be determined by solving the Rankine–Hugoniot relations numerically for
different values of ωc. The pressure on the inert side is given by

p2 =
D0 sin(ωi)(D0 sin(ωi)− c0)ρ0

s
, (6.2)

and the density is given by

ρ2 =
D0 sin(ωi)sρ0

c0 +D0 sin(ωi)(s− 1)
. (6.3)

The deflection of the interface can be computed from either the HE or the inert
side:

θ = ωc − tan−1

[
ρ0,HE

ρ1
tan(ωc)

]
or

= π−ωi + tan−1

[
ρ0,inert

ρ2
tan(ωi)

]
. (6.4)

By setting p1 = p2 and balancing the two equations for θ , we can create a shock
polar parametric plot and find values for ωc and ωi simultaneously. A more thorough
mathematical explanation can be found in Brown & Ravichandran (2013).

6.2. Slab simulation
For our simulation we use PBXN-9 as the high explosive and aluminium as the metal.
We describe the detonation of PBXN-9 with an ignition and growth model. The energy
equation is the Jones–Wilkins–Lee (JWL) EOS:

e=
1
ωρ

[
p− A

(
1−

ω

R1

ρ

ρ0

)
exp

(
−R1

ρ0

ρ

)
− B

(
1−

ω

R2

ρ

ρ0

)
exp

(
−R2

ρ0

ρ

)]
, (6.5)
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HE Metal

Shock
Interface

FIGURE 8. A representation of a shock passing through an HE/inert interface. We can
determine the values of ωc and ωi by balancing the shock pressure and the deflection
angle.

where A, B, R1, R2 and ω are physical constants. The reactant and product PBXN-9
each have a different set of constants. The reaction rate law is

dλ
dt
=

dλignition

dt
+

dλgrowth

dt
+

dλcompletion

dt
,

dλignition

dt
=

I(1− λ)b
(
ρ

ρ0
− 1− a

)x

if 0< λ< Figmax

0 otherwise,

dλgrowth

dt
=

{
G1(1− λ)cλdpy if 0< λ< FG1max

0 otherwise,

dλcompletion

dt
=

{
G2(1− λ)eλgp if FG2min < λ< 1
0 otherwise,



(6.6)

where λ is the fraction reacted and I,G1,G2, Figmax, FG1max, FG2min, a, b, c, d, e, g, x, y
and z are physical constants (Tarver & Urtiew 2010).

From these equations or from experiment, we can compute the DSD constants for
PBXN-9 as DCJ = 0.8559 cm µs−1 and α = 0.07948 cm (Hull 1997). PBXN-9 also
has a sonic angle of ωs = 0.887 (Holman 2010). For aluminium, we use the MG
EOS and the GSD law described in § 5.5. Through shock polar analysis, we find the
confinement angles at speed DCJ to be

ωc = 1.373, ωi = 1.768. (6.7a,b)
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1–1–2–3 0 2 3
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3

x

z

PBXN-9 Aluminium

FIGURE 9. Simulation results of a shock passing through a PBXN-9/aluminium interface.
The dotted lines represent the characteristics in the HE and the metal.

Figure 9 shows our simulation results up to t = 3.5 µs, in increments of 0.1 µs.
The shock front on the boundary converges almost immediately to a speed of
0.84 cm µs−1, or approximately 98 % of DCJ . The angle boundary conditions on
the interface create a disturbance that propagates laterally through both mediums.
The characteristic velocity of this propagation is 0.43 cm µs−1 in the HE and
0.47 cm µs−1 in the metal. Equation (A 17) predicted the characteristic velocity in
the metal to be 0.47 cm µs−1, so this validates our prediction that the shock front
perturbation can be modelled with the wave equation.

The shock front in the HE is self-similar. The shape of the front is a parabola that
stretches to the left at the characteristic speed. The shock front in the metal, on the
other hand, transitions from a concave to a convex shape, then becomes flat, except in
the region immediately adjacent to the boundary where the angle condition holds. A
comparison of the shock time of arrival with the equivalent ALE3D simulation gives
very similar results, with an average relative error of approximately 2 %.

7. Example 3: high explosive unit cell array embedded with inert spherical
particles

We can use the same principles to consider a series of unit cells of PBXN-9, each
embedded with an aluminium sphere (Lieberthal et al. 2014). The simulation domain
is now axisymmetric instead of two-dimensional, so the level set equations change
slightly. We define z as the height of the shock front within the unit cell and r as
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the distance from the centre, so that the level set function and (A 14) described in the
appendix A are now:

ψ(r, z, t)= z− g(r, t)= 0, (7.1)

κ =∇ ·

(
∇ψ

|∇ψ |

)
=−

grr

(1+ g2
r )

3/2
−

gr

r
√

1+ g2
r

, (7.2)

Dn =−
ψt

|∇ψ |
=

gt

(1+ g2
r )

1/2
, (7.3)

Ḋn =
dDn

dt
=

gtt

(1+ g2
r )

1/2
−

grgtgrt

(1+ g2
r )

3/2
. (7.4)

Our model consists of a series of cylindrical unit cells with a diameter and height
of 1 cm. An inert spherical particle is embedded in the axial centre of each unit
cell. Because this model is axisymmetric, we may consider it as a two-dimensional
simulation, and the shock front as a space curve embedded in two dimensions.

As in the two-dimensional slab problem, the shock propagation in the HE is
governed by a linear Dn − κ law:

Dn =DCJ(1− ακ) (7.5)

and in the metal sphere is governed by the GSD law:

Ḋn =−fGSD(Dn)κ. (7.6)

Since shock polar analysis tends to assume a flat interface, we explore two schools
of thought when dealing with the curved boundary interface. The first method assumes
that once the shock front reaches its sonic state, we can treat the sphere boundary as
if it is locally flat in the region of the point of attachment. This method is shown in
figure 10 and is modelled as follows.

A flat detonation wave in an HE medium will normally travel upwards at constant
speed DCJ . The interaction between the detonation wave and an HE/inert interface is
governed by the angle between the shock front and the particle surface ω, as shown in
figure 10. The standard DSD angle boundaries are such that when ω<ωs, we assume
a continuous outflow condition in which the wave effectively behaves as though the
particle is not present. When ω approaches the sonic attachment angle ωs, ω is fixed
to the value of the confinement angle ωc. In the case of a weak confinement (plastic)
material, we set ωc=ωs, so the attachment angle is constrained to the value of ωs. In
the case of a strong confinement (metal) material, we have a value of ωc that is greater
than ωs, so the angle will experience a sharp increase at the point of attachment (Bdzil
et al. 2010).

The shock front in the inert material has a similar outflow interface condition while
the wave in the HE is in its detached state, as shown in figure 10. When the wave
becomes attached, that is, when ω approaches ωs, we confine the boundary angle on
the inert side to be ωi. The value of ωi depends on the shock propagation velocity
tangent to the surface of the sphere, but this value does not tend to vary much. This
angle condition gets relaxed slightly when the shock front reaches the top half of the
particle to prevent the shock front from becoming completely vertical.

However, when we compare this simulation to a traditional direct numerical
simulation (DNS) method, as described in § 7.1, we find that the attachment angles
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Inert sphere

GSD front

DSD front

FIGURE 10. At time t1, the interface angle ω is less than the sonic angle, so no boundary
condition is enforced on the interface. When ω approaches the sonic angle ωs at time
t2, we enforce a confinement condition that sets the external angle to ωc and the internal
angle to ωi. The shock front propagates up through both media, as shown at time t3, until
it reaches the top of the particle. The wave attaches with itself at time t4 and becomes
detached from the sphere. It then travels upwards into the next unit cell.

are not constant. For our second method, we ran the DNS model first using the
ALE3D code and manually compute the attachment angles on the HE and metal sides.
We found that the values of ωc and ωi can be modelled as piecewise linear functions
of φ, the angle on the sphere of the point of attachment. For the PBXN-9/aluminium
model, these functions are shown in figure 11. There is not currently a theory that can
predict these functions, but by artificially enforcing these conditions in the DSD/GSD
hybrid model, we can find a much better match with the DNS model.

Regardless of the method we use, the wave travels around the sphere, experiencing
a net decrease in velocity, until it reaches the top of the sphere and reattaches to itself.
The wave then travels upwards until it approaches the next unit cell and interacts
with another particle. Further explanation of this simulation model can be found in
Lieberthal et al. (2014).

7.1. Simulation test
To form a basis of comparison, we first ran the unit cell simulation with ALE3D using
a DNS method. we use the reactive flow model described in equations (6.5) and (6.6)
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0

FIGURE 11. The measured attachment angles on the HE (ωc) and aluminium side (ωi) as
a function of φ for the unit cell simulation performed in ALE3D.

to model the PBXN-9, and the Mie–Gruneisen model for aluminium. The simulation
was performed in a two-dimensional domain under the assumption of axisymmetry.
The shock front results of this simulation are shown in figure 12(c).

At each time step, we manually computed the angle between the shock front and
the sphere boundary, on both the interior and exterior of the sphere. We plotted these
data in terms of φ, the angle on the sphere at which the shock is attached. Note that
φ = −π/2, 0, π/2 represent the south pole, equator and north pole of the sphere,
respectively. These data were modelled to a series of piecewise linear functions, as
shown in figure 11. The exterior attachment angle is originally at 0, meaning the shock
is parallel to the sphere boundary. The angle becomes obtuse at exactly φ = 0, then
climbs up to an attachment angle of π, meaning the shock is again parallel but in
the opposite direction. The interior attachment angle begins at π, becomes acute at
φ = 0.53 then drops to 0 at the top of the sphere. The angles nearly but not quite
complement each other, that is ωc+ωi is close to but not exactly π at all times. The
subtle differences between the two angles are what result in the shock propagation
patterns.

For the DSD/GSD hybrid model, we used the same physical parameters as in the
two-dimensional slab simulation in § 6.2. We ran the simulation using the two angle
boundary methods discussed in § 7, first using the traditional sonic state confinement
condition and then by artificially matching the boundary angles produced by the
ALE3D simulation.

Figure 12 shows a comparison of our simulations, with the wave front displayed
in increments of 0.1 µs. It is clear by inspection that the second angle boundary
method produces a much closer match to the ALE3D simulation. However, all three
models capture the transition from a convex to concave wave front shape. What is
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FIGURE 12. A comparison of a unit cell simulation performed with (a) the DSD/GSD
hybrid model using the sonic state confinement conditions, (b) the DSD/GSD hybrid
model with artificially enforced confinement angles and (c) the reactive flow model in
ALE3D. Each wave represents a time difference of 0.1 µs.
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FIGURE 13. Contour plots of the relative error in time of arrival between the ALE3D
unit cell simulation and the DSD/GSD hybrid simulation using (a) shock polar boundary
angles and (b) artificially enforced boundary angles.

most significant is the difference in computation time. Since the DSD/GSD model
only needs to compute the propagation of the shock front, a 1-D curve, the simulation
only takes approximately five minutes to compute. Since ALE3D solves the Euler
conservation equations at every node at each time step, the simulation requires
several hours of computational time. Therefore, the DSD/GSD model presents a
massive increase in computational efficiency.

Figure 13 shows the relative error in time of arrival between the DSD/GSD hybrid
simulation and the ALE3D simulation, using both angle boundary methods. With both
methods, the largest error occurs inside the particle when the shock front becomes
concave. The simulation using shock polar analysis has a maximum relative error of
25 % and an average error of 6.8 %. The method using artificially enforced boundary
angles has a maximum relative error of 8.6 % and an average error of 1.9 %. As we
would expect, the second method produces much more accurate data.
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FIGURE 14. The pressure profile of an aluminium sphere under shock loading, averaged
over 100 unit cells.

Finally, we run the simulation over 100 unit cells and capture the shock pressure
at each time step using the method with artificially enforced boundary angles. We
average these data over each unit cell to create a representative pressure profile, as
shown in figure 14. The shock pressure is always higher in the particle than in the
HE, as expected. The pressure in the HE is nearly constant, with a slight increase in
pressure when the wave front is travelling around the particle. The particle undergoes
the strongest shock loading in the bottom of the sphere, near the centre. By the time
the detonation shock front reaches the top of the sphere, the pressure of the shock
front has decayed by half.

8. Conclusion
In this paper we demonstrate the following. First, we show the trajectory of the

transition of an expanding shock in atmospheric air from a blast wave state to an
acoustic state. For our first case study, we use these data to simulate shock diffraction
around a sphere at a wide range of Mach numbers, providing an extension to the
classical Bryson and Gross theory.

Next, we derive and validate a theory that governs the propagation of shock
fronts in inert materials that follow the Mie–Gruneisen equation of state, which
includes most metals and plastics. The principles in this paper could be applied to
any inert material that follows other equations of state, although more complicated
materials might require a numerical solution. We present a guide to simulating hybrid
explosives that consist of HE fluids and inert materials, although we restrict ourselves
to relatively simple models. Our second and third case studies involve, respectively,
a two-dimensional slab interface between an HE and a metal and an array of metal
particles embedded in HE unit cells.
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When making use of this theory, one must take care to estimate the range of shock
velocities used in their simulation model. For most hybrid DSD/GSD models, the GSD
theory alone is sufficient, but if one expects to see extremely high shock velocities
in the simulation, it is necessary to develop a composite model that includes the
GSD and TBW asymptotic limits. This must be done numerically for each individual
material.

The method described in this paper to produce the most accurate unit cell simulation
requires that one runs the same simulation using a DNS method first. This may seem
to negate the point of using the hybrid method in the first place, however, one can
run the DNS method over a single unit cell, record the boundary angles over time
and then use those angles to run the hybrid method over hundreds of unit cells. Still,
there is a great need for a theory of shock polar analysis that can accurately describe
curved boundary interfaces.

The principles in this paper could inform the design of a more complicated
simulation software that uses a nodal level set model to simulate mixed material
explosives with arbitrary geometries, using the methods discussed in Aslam (1996)
and Hernández, Bdzil & Stewart (2013). This would require a separate level set
propagation algorithm for the HE and the inert, but it would give considerable insight
into studying the propagation of detonation shocks in hybrid explosives.

Acknowledgements
We would like to thank Dr J. Saenz, Dr S. Yoo, our coworkers, and the University

of Illinois in Urbana-Champaign. This research was funded by Eglin Air Force
Base (FA8651-10-1-0004; Advanced Modeling and Simulation Technologies for
Micro-Munitions) and the Air Force Office of Scientific Research (FA9550-06-1-0044;
Analysis of Multi-Scale Phenomena and Transients in Explosive and Complex
Energetic Systems, FA9550-12-1-0422; Computational and Analytical Modeling of
Advanced Energetic Materials).

Appendix A
A.1. NEWCODE hydrodynamic solver

The NEWCODE is our in-house hydrodynamic software that solves the three-
dimensional reactive, compressible Euler equations on a uniform structured grid (Xu,
Aslam & Stewart 1997; Hernández & Stewart 2013). The code is fully parallel and
is based on a domain-decomposition model which uses the message-passing interface
paradigm. The underlining numerical solver uses the method-of-lines to reduce the
Euler equations to a system of ordinary differential equations, allowing us to solve
the temporal and spatial problem independently. We use a higher-order weighted
essential non-oscillatory (WENO) interpolation with fifth-order convergence and a
positive preserving scheme to solve the spatial problem, and we solve the temporal
problem via a third-order total variation diminishing (TVD) Runge–Kutta scheme. We
use level sets to represent internal boundaries embedded in the flow fluid. We then
apply reflective boundary conditions, with ghost nodes sorted by their connectivity to
other internal boundary nodes, allowing the enforcement of the boundary conditions
via a local and explicit approach. For a multi-component EOS mixture we assume
that all components are uniformly well mixed, sharing one common pressure and
temperature. We also assume mechanical equilibrium, that all components have the
same particle velocity. Given a chemical reaction with N components and under
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the above assumptions we define the total mixture internal energy and saturation
condition (mixture volume) as,

e=
N∑

i=1

λiei(p, v), (A 1)

v =

N∑
i=1

λivi(p, T). (A 2)

The solution of the above nonlinear equations involves an equilibration algorithm
to solve for the mixture pressure and temperature. As part of the nonlinear solution
process we define the following equation which we obtain by setting (A 1)–(A 2) equal
to zero:

F1 = e−
N∑

i=1

λiei(p, v)= 0,

F2 = v −

N∑
i=1

λivi(p, T)= 0.

 (A 3)

As part of the solution process we also need to invert vi(p, T) which is unknown.
Given a fixed pressure and temperature, we can solve vi(p, T) using the EOS thermal
and/or mechanical form.

fi = θ(vi)= 0. (A 4)

We use a globally convergent Newton–Raphson method to equilibrate the pressure
and temperature, and for the vi(p, T) inversion, we use a hybrid Newton–Bisection
solver.

A.2. NEWCODE numerical methods
To numerically solve the reactive Euler equations, we discretize the computational
domain into a structured finite difference grid in which dx = dy = dz. Node points
are labelled in the computational grid by i, j, k indices, which represent x, y and z
coordinates along the physical domain. We use the method-of-lines approach to reduce
the Euler equations to a system of ordinary differential equations, allowing us to solve
the temporal and spatial problem independently, according to chapter 9.2 of LeVeque
(2007). The Euler equations can then be rewritten as

du
dt
= L(u), (A 5)

where L(u) is the spatial operator on u and is given as

L(u) = Si,j,k −

[
1
dx
(f̂i+1/2,j,k − f̂i−1/2,j,k)+

1
dy
(ĝi,j+1/2,k − ĝi,j−1/2,k)

+
1
dz
(ĥi,j,k+1/2 − ĥi,j,k−1/2)

]
, (A 6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.497


Geometrical shock dynamics applied to condensed phase materials 131

where S is the source term, f̂ , ĝ and ĥ are the interface fluxes in the x, y and z
coordinate directions respectively. Fluxes are ‘split’ into right running and left running
waves by the following Lax–Friedrich flux splitting scheme:

f±(u)= 1
2( f (u)± αu), (A 7)

where α is the dissipation coefficient defined as α = max( f ′(u)). We use the local
Lax–Friedrich formulation for the dissipation coefficient, which in the context of the
Euler equations is defined as:

α =max(|uj| + c, |uj+1| + c), (A 8)

where c is the sound speed. We use higher-order WENO interpolation of Jiang &
Shu (1995) and the positive preserving scheme of Hu, Adams & Shu (2013) to
approximate the interface fluxes. For our numerical simulations we use a third-order
WENO scheme with fifth-order convergence. Generally, higher-order schemes like
WENO are not guaranteed positive preserving which could lead to non-physical
values for density and pressure. In these cases we use the positive preserving method
presented in Hu et al. (2013). This scheme uses a flux limiter to detect critical
numerical fluxes that may lead to negative values for density and pressure. It then
limits these fluxes by combining the higher-order WENO flux with a first-order
positive preserving Lax–Friedrich flux formulation.

Numerical integration of the system of ordinary differential equations (ODEs) is
performed using a TVD third-order Runge–Kutta solver,

u1
= un
+1tL(un),

u2
=

3
4 un
+

1
4 u1
+

1
41tL(u1),

un+1
=

1
3 un
+

2
3 u2
+

2
31tL(u2).

 (A 9)

A.3. Intrinsic descriptions of shock dynamics
Description of shock dynamics requires a discussion of surface propagation and its
intrinsic description in surface coordinates. One can find extended discussion of
intrinsic shock attached coordinates in both detonation (Yao & Stewart 1996) and
flame theory (Matalon, Cui & Bechtold 2003).

We can represent the shock front in general terms by a level set function
ψ(x, y, z, t)= 0. Figure 15 shows a sketch of a shock propagating into an unshocked
region. We choose the normal vector to the shock surface to point towards the
direction of propagation into unshocked material. The shock normal and the total
shock curvature at that point on the surface is given by

n̂=
∇ψ

|∇ψ |
and κ ≡∇ · n̂=∇ ·

(
∇ψ

|∇ψ |

)
. (A 10a,b)

The normal shock velocity and normal shock acceleration are given by

Dn =−
ψt

|∇ψ |
and Ḋn =

∂Dn

∂t
+Dnn · ∇Dn. (A 11a,b)

We define the time of arrival field as T(x, y, z), the time the shock first intersects
the point (x, y, z) in space. If we assume the TOA field is uniquely defined, then we
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Unshocked region

Shocked region

R

FIGURE 15. A 3-D shock surface. The outward shock normal points towards the
unshocked region of the material. The shock location corresponds to the level set equation
ψ(x, y, z, t) = 0. The shock curvature is equal to 1/R and the shock normal velocity is
equal to dn/dt.

can define the shock location by the surface function ψ(x, y, z, t)= T(x, y, z)− t. For
any specified time t0, such that t0 = T(x, y, z), the level set function ψ(x, y, z, t0)= 0
corresponds to the shock surface at that time. From this it follows that

Dn =
1
|∇T|

and Ḋn =

(
∂

∂t
+Dnn · ∇

)
Dn. (A 12a,b)

For a two-dimensional shock, it is useful to express the shock surface in terms of
a preferred direction such as

ψ(x, y, t)= y− g(x, t)= 0, (A 13)

where g(x, t) represents the y coordinate of the shock front for a given x and t.
We can use (A 13) to express κ , Dn and Ḋn in terms of g(x, t) (Lieberthal et al.

2014). Note that the notation gx represents the partial derivative ∂g/∂x, etc. It follows
that

κ =−
gxx

(1+ g2
x)

3/2
, Dn =

gt

(1+ g2
x)

1/2
, and Ḋn =

gtt

(1+ g2
x)

1/2
−

gxgtgxt

(1+ g2
x)

3/2
.

(A 14a−c)

In this paper we discuss three basic forms of the intrinsic surface propagation law.
In the case of inert shock dynamics, both the blast wave and acoustic limit surface
propagation laws have the form

Ḋn =−f (Dn)κ. (A 15)
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We can illustrate the equation type by a local frozen coefficient analysis, where we
assume that locally the shock is travelling at speed D0 in the y-direction. Then we
write

g(x, t)=D0t+ εg1(x, t), (A 16)

where ε is asymptotically small. Substitution of equation (A 16) into (A 14) then into
equation (A 15) leads to a local evolution equation for the shock displacement g1:

∂2g1

∂t2
− f (D0)

∂2g1

∂x2
= 0, (A 17)

which is a second-order linear wave equation with the wave speed for lateral
disturbances

√
f (D0).

Detonation shock dynamics, which we use for high explosive fluids, involves shock
motion rules that we can use with the PB algorithm. The most common is the Dn–κ
relation that is written as κ = F(Dn), with the property that when the shock is flat,
or κ = 0, Dn = DCJ for that explosive. Again, if we assume locally the shock is
travelling at speed D0 in the y-direction, then using (A 14) and (A 16) we obtain the
local evolution equation

∂g1

∂t
=−F′(D0)

∂2g1

∂x2
, (A 18)

which is a parabolic evolution equation, provided that F′(D0) > 0, which is a
requirement for stable propagation.
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