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Fill and Holst conjectured for the move-to-front rule that the probability that the
search time is greater thawill be Schur concave in the stationary distribution for
any value ofc. This paper disproves the conjecture but proves some conclusions
that would be implied by the conjecture

1. INTRODUCTION

In Filland Holst{ 2], the authors considered the move-to-front rule for self-organizing
lists. In this list, there aren objects and object numbdrhas a selection probability

pi > 0suchthal"; p, =1. Inthe discrete versigmn object is selected from the list
every unit of time in the continuous versigran object is selected from the list at
times determined by a Poisson process with parameterelther casgthe object is
selected according to its selection probability and independently of earlier selec-
tions and the selected object is moved to the top of the Tibe discrete version
gives a Markov chain on the orderings of the lishich can be viewed as the sym-
metric groupS,) while the continuous version gives a Markov process on these
orderings In either casgthe stationary distribution is given by

P, Po,
P(o (o) = o) = p,, -
(1 - po'l) (1 - po'l ot pan,l)
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whereo (o) is a random variable 0§, distributed according to this stationary dis-
tribution. (See Fill and Holsf2] or Hendrickd 3].) We define the search cost to be
the number of objects above the selected object

LetS(co0) be arandom variable representing the search cost of the move-to-front
rule where the initial distribution of the objects is determined according to the sta-
tionary distribution of the Markov chain or process in[2], the convention is that
S(e0) is O if the selected object is on top of the li€onsidering computer science
applicationsFill and Holst[2] note a connection between the evBftb) = cand a
cache fault if the size of the cacheds

E(S(o0)) is a symmetric function gp, ..., p,, and Fill and Hols{2] prove the
Schur concavity oE(S(c0)). Marshall and Olkif4] have an extensive discussion of
Schur convexity and concavitlfor our purposest will suffice to note that a sym-
metric functiong defined on the subset &" such that all coordinates are positive
and sum to 1 will be Schur convégr Schur concaveaf ¢(Xxq,s — X4, X3, ..., Xn) iS
nondecreasingor nonincreasingin x, for x; = s/2 for each fixeds, Xs,..., X,.
P(S(e0) = c) is also a symmetric function qf, ..., p, for each valuec, and in a
remark Fill and Holst[2] conjecture thaP(S(c0) = ¢) is also Schur concave

For some values df, the conjecture holddn particular we can show

THEOREM 1: P(S(c0) = ¢) is Schur concee if c € {1,2,3}.
However we will show
THEOREM 2: P(S(c0) = c) is not Schur conaze if c= 4 and n= 5.

Theorem 2 disproves the conjecture of Fill and Holste following theorem
which would be a corollary of the conjectuill holds

THEOREM 3: For any ¢ and any nthe maximum of PS(co0) = ¢) occurs when p=
I/nfori=1,...,n
2. CONJECTUREFOR ¢c=1AND ¢c= 2

In this sectionwe shall prove Theorem 1 in the case 1 andc = 2. The case =
3istedious and omitted he cases =1 andc = 2 are relatively straightforwardnd
Fill [1] believes he showed these cases in unpublished work exploring the conjecture

ProoOF oF THEOREM 1: The case = 1 is equivalent to showing th&(S(co) = 0) is
Schur convexWe assume; = p, = --- = p,. Note thatP(S(e0) = 0) = S, p?
since the probability that thi¢h object is on top in the stationary distributiongis
Suppose > j and 0< A < p;. Consider changing the probabilities of selecting
objectsi andj to p; + A andp; — A, respectivelyLeave all other selection probabil-
ities unchangedSince
(pi+28)2+(p— )2 =pZ+p+20(p —p) + 24
> pl2 + pjz’

we get the Schur convexity & (S(co) = 0).

https://doi.org/10.1017/50269964899133084 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964899133084

ON A CONJECTURE OF FILL AND HOLST 379

Showing thatP(S(e0) = 2) is Schur concave is equivalent to showing that
P(S(e0) = 1) is Schur convexAgain, we assume thah, = p, = --- = p,..
Observe that
P(S(c0) = 1) = P(S(c0) = 0) + P(S(c0) = 1)

n

=2 P +22p,—p.
i=1 i=1j#i p]

=2p +22p. —.
i=1 i=1j#i pJ

Note that the probabilityin the stationary distributiorof having the top two objects
being objectg andi (in that ordey is p;j(p;/(1 — p;)), and the expression for
P(S(o0) = 1) follows.

Suppose (i, <i, = nand we change the probabilities of selecting objects
andi, to p;, + A andp;, — A, respectivelywhere 0< A < p;, while leaving other
selection probabilities unchanged

The case wherpé {iy,i,} andi € {i,,i,} in the expression foP(S(c0) = 1) is
handled as in the case whare= 1. In particular

= (pi +pf —.
1-p Pa ™ P 1-p

Next let us consider the case wheéw@ {i4,i»} andj € {i,,i,} in the expression
for P(S(c0) = 1). Observe that

P pi1+A p_A
b 1—pi1—A 1-p,+A

((p, + A2+ (py,

1 1
:p 1+ _
( 1-p,— 1 p,2+A>
Note that

d 1 1

— +

dA 1_pi1_A 1_p|2+A

1 1

T (1-p,—8)7 (A-p,+a)7?
=0
if 0 = A <p,,andp;, = p,,. Thus forA € [0, p,,), the expression

1 1
+
1_pi1_A l_p|2+A

https://doi.org/10.1017/50269964899133084 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964899133084

380 M. Hildebrand

is minimized atA = 0. Thus

i +A iz_A i i
p? P, T = p? P P .
l-p,—A 1-p,+A 1-p, 1-p,

If i,j & {i1,i2}, thenp?(p;/(1 — p;)) is unchanged by the change of selection
probabilities for objects, andis,.

Now suppose, j € {i,i»}. Here we shall consider terms coming from the ex-
pression foP(S(c0) = 0) as well as the expression fB(S(c0) =1). Letm=1—p; —

p;,. Observe
Pi, — A pi, + A
L A2 1+ ——— )+ (p,— A 1+ ———
(pi, )< 1_pi2+A> (pi, )< 1_pi1_A>
= (p, +4)2 +(p,— A2 ———
(pi, )1_pi2+A (pi, )1—pil—A
p, +A pi,— A
=——(p. +A) + ——— (p, —
pi1+m+A(p'l A) Ioi2+m_A(|0.2 A)
— (1 M Np,+a)+ (1 T\ —a)
- P, +m+A P p,+m—A P
|+A i_A
:pi+A+pi—A—m< Py b P )
' 2 p,+tm+A  p,+m-A

Now observe that
d pi, + X pi, — X
— +
dx\ p,+m+x p,+m—x

d( m m )
=—(1-—+1-—
dx pi, + M+ Xx pi, + m—Xx

_ m m
S (p,tm+x?2 (p,+m=—x)2

=0

if p, = p, and 0= x < p,,. Asm= 0, we may conclude

( pi, + A Pi, — A >
P, tP,—m +
' 2 p,+tm+A p,+m—A
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is nondecreasing in for A € [0, p;,). Thus

pi,— A
L A2+ (p, A
(pi, +4)% + (pi, +4) (1_pQ+A>

p. + A
_ A)2 AV —r
+(p,— A%+ (p,— ) (1—pu_A>

=p? + Pa 42+ Py
p2 plll b, p2 p.21 b

Putting all the terms together gives us the fact B&(c0) = 1) is Schur convex
[ ]

3. COUNTEREXAMPLE TO THE CONJECTURE

In this sectionwe will disprove the conjecture of Fill and Holg2], hence show
Theorem 2Letf(a,b,c,d,e) = P(S(cc) = 4)if n=5,p;=a,p,=b,ps=c¢,ps=d,
andps = e. Note thaf if there are 5 objectshen S(e0) is at most 4 Thus here
P(S(c0) = 4) = P(S(c0) = 4).

Note f(0.36,0.34,0.20,0.07,0.03) = (0.35,0.35,0.20,0.07,0.03) if the con-
jecture of Fill and Holsf2] holds In Figure 1 Maple output shows this is not true
Via repeated procedure calthe procedure five) goes through all 5! possible or-
derings and finds the probability that the ordering occurs in the stationary distribu-
tion multiplied by the probability that the last object in the ordering is pickethe
procedure ong), the objects have probabiliti€ésom top to bottomb, ¢, d, e, anda.
The Maple output also givesi?/dx?) f(0.35+ x, 0.35— x, 0.20,0.07,0.03) atx=0.
The fact that this second derivative is positive at this paambined with the fact
that the first derivative is 0 at this poittty symmetry, gives a local minimum at=
0 and not the local maximum required for Schur concavity

Figure 2 gives a plot of (0.49 + x,0.49 — x,0.01,0.005,0.005). Note that
x = 0 gives a local minimum here as well

4. PROOF OF WHERE P(S(«) = ¢) IS MAXIMIZED

In this sectionpwe prove Theorem.3Vithout loss of generalityve may suppose&
{0,1,...,n}. Recall that the convention is th&fco) is 0 if the top object is chosen
Thus S(co) = ¢ precisely when an object not in the topbjects is picked

Suppose each of theobjects is equally likely to be picke@hen the probability
that the object is not in the tapobjects is(n — ¢)/n and

n—c n—=c¢c
n -

P(S(c0) = ¢) = 2 =

Now, suppose the probability of picking each of thebjects ig,, ps, ..., p, (in
ordep withp; =p, = --- =p,>0andX_, p = 1. Let g be the probability in the
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> ONE:=proc(a,b,c,d,e) axb*xcxd*e/((1-b)*(1-b-c)*(1-b-c-d)) end;

ONE := proc(a, b, c, d, e)
axbkckd*e/((1 - b)*(1 - b - c)*¥(1 - b -c¢c - d))
end

> TW0:=proc(a,b,c,d,e) ONE(a,b,c,d,e)+0NE(a,b,c,e,d) end;
TWO :=
proc(a, b, ¢, d, e) ONE(a, b, ¢, d, e) + ONE(a, b, c, e, d) end
> THREE:=proc(a,b,c,d,e) TWO(a,b,c,d,e)+TW0(a,b,d,c,e)+TW0(a,b,e,c,d) end;

THREE := proc(a, b, c, d, e)
TWo(a, b, ¢, d, e) + TWO(a, b, d, c, e) + TWO(a, b, e, c, d)
end

> FOUR:=proc(a,b,c,d,e) THREE(a,b,c,d,e)+THREE(a,c,b,d,e)+THREE(a,d,b,c,e)+THREE
(a,e,b,c,d) end;

FOUR := proc(a, b, ¢, d, e)
THREE(a, b, ¢, d, e) + THREE(a, ¢, b, d, e)
+ THREE(a, d, b, c, e) + THREE(a, e, b, c, d)
end

> FIVE:=proc(a,b,c,d,e) FOUR(a,b,c,d,e)+FOUR(b,a,c,d,e)+FO0UR(c,a,b,d,e)+FOUR(d,a
,b,c,e)+F0UR(e,a,b,c,d) end;

FIVE := proc(a, b, c, d, e)
FOUR(a, b, ¢, d, e) + FOUR(b, a, c, d, e)
+ FOUR(c, a, b, d, e) + FOUR(d, a, b, c, e)
+ FOUR(e, a, b, c, d)

end

> FIVE(36/100,34/100,3/100,7/100,20/100);
3008927578600830808589
51526379555297719504000
> FIVE(35/100,35/100,3/100,7/100,20/100) ;
6272105125255319
107407726684830000
> FIVE(36/100,34/100,3/100,7/100,20/100)~-FIVE(35/100,35/100,3/100,7/100,20/100) ;
116700282401099092247
201725775970735571858160000
> subs(x=0,diff (FIVE(35/100+x,35/100-x,3/100,7/100,20/100) ,x$2));
988330881842447384940533

84932999840843355246600555

Ficure 1. Maple output giving the counterexample
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Ficure 2. Maple plot of five(0.49 + x, 0.49 — x,0.01,0.005 0.005).

stationary distribution that objecis not in the togr objects Note thate may depend
on all of py, p, ..., pn as well as the choice af

PROPOSITION 4:

n
>e=n-c
i=1
Proor: This follows since the expected number of objects not in thecism — c.

[ ]
LEMMA 5: If py=p,=--- =p,, theng=e=--- =e,.

Proor: Suppose we performiid. trials with possible outcomes 1.,n such that
outcomek has probabilityp,. Suppose < j; hencep;, = p;. Use these trials to
determine the orderings of two lists as follav&ippose the lists are initially iden-
tical and suppose the initial distribution of a list is according to the stationary dis-
tribution of the move-to-front ruleThen for each trial use the outcome to reorder
both lists as follows

Inlist 1, if the outcome of the trial ik, then objeckis selected and moved to the
front.
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In list 2, if the outcome of the trial ik with k & {i, ]}, then objeck is selected
If the outcome ig, then object is selectedIf the outcome ig, then objecy is
selected with probabilitp, /p; and object is selected otherwis&he selected object
is moved to the top
Note that if objectj is among the tog objects in list 1then either objecitis
among the tog objects on list 2 or objegthas not yet been selected in listSince
both lists move according to the move-to-front rudéer m steps we get thatl —
g) = (1— &) + P(S(j,m)) whereS(j,m) is the event that objegthas not been
selected in list 1 in the firs steps Since limy,_,.. P(S(j,m)) = 0, we gete, = g.
]

Lemma 5 holds for many reordering algorithymose such algorithm is the move-
ahead-one rulevhere the selected object is moved ahead one in theeksept the
object stays put if it is already on tap

To prove Theorem 3lefine random variabldsandJ such thaP(l =i) = p, and
P(J=i)=1/nfori=1...,n. Sincep, is nonincreasing is stochastically smaller
thanJ. Thus

P(S() =¢)= > pi&
i=1

whereE[g ] = E[e;] by Lemma 5 and the stochastic orderifipus the theorem is
proved

5. QUESTIONS FOR FURTHER STUDY

It seems reasonable to believe that the conjecture of Fill and F&lstill also fail
for larger values ot beyond those considered hgbeit a formal proof is not yet
known

A question worth exploring is the extent to which Schur concavity and Schur
convexity fails Figure 2 illustrates this failurdout the local maxima in the figure
were only a few percent larger than the local minima-at0. In particular consider
f(p1)/f(P2), wheref (p) is P(S(co) = ¢) with probabilities determined by. What is
the maximum off (p,)/f (p,) over all p; andp, such that any nonnegative Schur
concave functiorg hasg(p1) = g(p,)? Is there a bound on this maximum which
works uniformly for allc? If sq what is the bound? If notloes each value afhave
bound on this maximum?
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Another question worth exploring is to see whether there are real-life examples
where this lack of Schur concavity has a practical impact in slowing down a cache
unexpectedly
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