
TLP 11 (4–5): 731–747, 2011. C© Cambridge University Press 2011

doi:10.1017/S1471068411000275

731

Optimal placement of valves in a water
distribution network with CLP(FD)

MASSIMILIANO CATTAFI, MARCO GAVANELLI,

MADDALENA NONATO, STEFANO ALVISI and MARCO FRANCHINI

Department of Engineering, University of Ferrara, Via Saragat, 1

44122 Ferrara, Italy

Abstract

This paper presents a new application of logic programming to a real-life problem in hydraulic

engineering. The work is developed as a collaboration of computer scientists and hydraulic

engineers, and applies Constraint Logic Programming to solve a hard combinatorial problem.

This application deals with one aspect of the design of a water distribution network, i.e., the

valve isolation system design. We take the formulation of the problem by Giustolisi and Savić

(2008 Optimal design of isolation valve system for water distribution networks. In Proceedings

of the 10th Annual Water Distribution Systems Analysis Conference WDSA2008, J. Van Zyl,

A. Ilemobade, and H. Jacobs, Eds.) and show how, thanks to constraint propagation, we can

get better solutions than the best solution known in the literature for the Apulian distribution

network. We believe that the area of the so-called hydroinformatics can benefit from the

techniques developed in Constraint Logic Programming and possibly from other areas of

logic programming, such as Answer Set Programming.

KEYWORDS: constraint logic programming, hydraulic engineering, valve placement, graph

partitioning

1 Introduction

An aqueduct is a complex system that includes a main component to transport

water and a water distribution component that brings the water to the users. The

water distribution network can be thought of as a labelled graph, in which pipes

are represented as undirected edges. In the network, there is at least one special

node that is the source of the water (node 0 in Fig. 1); users are then connected to

the edges of the water distribution network. Each user has a demand (in litres per

seconds) that is quantified by the hydraulic engineer through the available data. In

particular, such a demand is frequently expressed as a daily average value. Each edge

of the graph is labelled with the total demand of the users linked to it. For example,

in Figure 1, the edge connecting nodes 2 and 5 (let us name it e2,5) has a demand

of 15 L/s (that may be due to, e.g., five clients each requesting 3 L/s on average).
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Fig. 1. A schematic water distribution system with valves.

When designing a water distribution network, one of the steps is designing the

isolation system: in case a pipe has to be repaired (e.g., due to a break), a part of

the network has to be disconnected from the rest of the network, in order to allow

workers to fix the broken pipe. The isolation system consists of a set of isolation

valves that are placed in the pipes of the network. Once closed, the isolation valve

blocks the flow of water through the valve itself. In common practice, a valve is

usually placed in a pipe near one of the two endpoints; this means that in each pipe

at most, two valves can be placed. If in some pipe there are two valves, this means

that this single pipe can be isolated by closing both the valves. In the example of

Figure 1, the edge e2,3 connecting nodes 2 and 3 has two valves, so in case this pipe

is damaged, valves v2,3 and v3,2 will be closed, isolating only e2,3.

However, placing two valves in each pipe is often not a viable option because each

valve has a cost; the cost is not only due to the manufacturing and physical placing

of the valve, but also to the fact that the pipe is more fragile and deteriorates more

quickly near valves. In case there are not two valves in each pipe (as it is usually

the case in real distribution networks), the isolation of a pipe implies the closure

of more than two valves and thus the isolation of more than one pipe. In this

case, more users other than those connected to the broken pipe will remain without

service during pipe substitution. Suppose that the pipe e3,4 connecting nodes 3

and 4 is damaged. In order to dewater it, workers have to close valves v3,2 and v5,4;

as a result, edge e5,4 will be dewatered as well, and the clients that take water from

it will have no service as well. Valves partition the network in the so-called sectors

that are, intuitively, those parts of the distribution network enclosed by some set

of valves: edges e3,4 and e4,5 are in the same sector, so they cannot be dewatered

independently one from the other.

The usual measure of the disruption in the service is the undelivered demand

(UD), i.e., the demand (in litres per second) that is not fulfilled during the repair

operations; in the case there is need to de-water edge e3,4, the disruption is the

demand of the edges e3,4 and e4,5, i.e., 7 + 6 = 13 L/s. However, notice that the

UD does not always coincide with the sector the damaged pipe belongs to. For

example, pipe e2,5 belongs to the sector consisting of the edges e1,2 and e2,5 that is

surrounded by valves v1,2, v2,3, v5,4 and v5,6; however, by closing these four valves, we

will de-water a larger part of the network: edges e2,3, e3,4 and e4,5 will be de-watered

even though they are not in the same sector of the broken pipe. This effect is called

unintended isolation (Jun and Loganathan 2007).
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The design of the isolation system consists of placing in the distribution network

a given number of valves such that, in case of damage, the disruption is ‘minimal’.

Of course, the level of disruption depends on which pipe has to be fixed. In Figure 1,

we have four sectors: if e2,3 is damaged, the UD during repair is 3L/s, if one of

{e3,4, e4,5} is broken, the UD is 13 L/s, if the broken pipe is e1,6 or e5,6, the UD is

3 + 8 = 11 L/s, while for sector {e1,2, e2,5}, the UD is 36 L/s, corresponding to the

demand of {e1,2, e2,5, e2,3, e3,4, e4,5}. A usual measure (Giustolisi and Savić 2010) is to

take the worst case, and assign to the placement shown in Figure 1 (characterised

by six valves), the effect of the maximal possible disruption: 36 L/s.

Giustolisi and Savić (2010) address the design of an isolation valve system as a

two-objective problem: one objective is the minimization of the number of valves in

the isolation system, and the other is the minimization of the (maximum) UD. They

adopt a genetic algorithm that is able to provide near-Pareto-optimal solutions, and

apply it to the Apulian distribution network. The genetic algorithm provides good

solutions in a very short time, but it is incomplete, so it does not provide, in general,

Pareto-optimal solutions, but only solutions that are hopefully near to the Pareto

front. The real optimal Pareto front remains unknown.

We believe that a complete search algorithm could provide better solutions, al-

though at the cost of a higher computation time. Since the problem should be solved

during the design of the valve system, there is no need to have a solution in real time,

and an algorithm providing a provably Pareto-optimal solution may be preferable

with respect to incomplete algorithms, even with higher computation times.

In this paper, we address the same two-objective problem studied by Giustolisi and

Savić (2010) as a sequence of single-objective ones; this is always possible when one

of the objectives is integer (Van Wassenhove and Gelders 1980; Gervet et al. 1999;

Gavanelli 2002). Given the number of valves, we model the design of the isolation

valve system as a two-player game, and solve it with a minimax approach (Russell

and Norvig 2003). As the game has an exponential number of moves, we reduce the

search space by pruning redundant branches of the search tree, implementing the

minimax algorithm in Constraint Logic Programming (Jaffar and Maher 1994) on

Finite Domains (CLP(FD)) (Marriot and Stuckey 1998; Dechter 2003; Frühwirth

and Abdennadher 2003), in particular, we used ECLiPSe (Apt and Wallace 2006).

Our algorithm is complete, so it is able to find the optimal solutions and prove

optimality; we show improvements on the best solutions known in the literature, up

to 10% of the objective function value.

The rest of the paper is organized as follows. In Section 2, we give a formal

description of the problem, then we propose the minimax interpretation in Section 3.

We give a CLP(FD) model in Section 4, then we detail some implementation issues

in Section 5. Section 6 is devoted to experimental results. We discuss related work

in Section 7, and then we conclude in Section 8.

2 Problem description

A water distribution network is modelled as a weighted undirected graph G ≡ (N,E),

where N = {1, . . . , n} is a set of nodes and E = {eij} is a set of edges. Each edge eij
has an associated weight w(eij) called demand.
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In the network, there are some nodes identified by the set Σ that are called sources.

Valves can be positioned near one of the ends of a pipe; we will refer to valve

on edge eij near to node i as vij , while vji is a valve on the same edge, but close to

node j.

Given a number Nv of valves to be positioned in the network, the objective is to

position the valves in the network such that:

(1) It is possible to isolate any pipe in the network. Formally, given an edge eij , it

is possible to identify a set of valves C to be closed such that there is no path

from any source node s ∈ Σ to the edge eij that does not contain a valve v ∈ C .

Since the set C of valves to be closed depends on the damaged pipe eij , we will

also write C(eij). Note that there is only one reasonable set C(eij) of valves to

be closed given a broken edge eij: intuitively, only the valves directly reachable

from eij will be closed. For example, in Figure 1, if the broken edge is e3,4, then

C(e3,4) = {v3,2, v5,4} and it does not make sense to close farther valves, such as

v2,3, because in order to reach v2,3 from e3,4, we have to overpass other valves

(v3,2).

(2) The objective is to minimise the maximum UD. Formally, let D(C) be the

set of edges that do not receive water when the valves in C are closed, i.e.,

those edges for which there is no path from any source node to the edge:

D(C) = {eij ∈ E|∀s ∈ Σ, � ∃Path(s, eij)}. The objective function to be minimised is

UD = maxeij∈E
∑

ekl∈D(C(eij ))

w(ekl).

3 Game model

The problem can be considered as a two-player game, consisting of the following

three moves:

• the first player decides a placement of Nv valves in the network;

• the second player selects one pipe to be damaged;

• the first player closes a set of valves that de-waters the damaged pipe.

The cost for the first player (and reward for the second) is the UD: the total demand

(in litres per seconds) of all users that remain without service when the broken pipe

is de-watered.

Given this formalisation, the well-known minimax algorithm is applicable (Russell

and Norvig 2003).

As we said in Section 2, choosing the last move is very easy, as there is only

one reasonable solution: close all valves that are reachable from the broken pipe,

without overpassing other valves. An implementation of this algorithm is given by

Jun and Loganathan (2007).

Clearly, the first step of the first player is the most sensitive because it can

generate a wide number of alternatives. In a network with Ne edges and with Nv

valves, the search space is ( 2Ne

Nv
) since each edge can host up to two valves. However,

some of the moves are not very interesting, for three main reasons, which will be
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explained in detail in the next section. First, some solutions are clearly non-optimal.

Secondly, some are symmetric, and provide valve placements that, although different,

represent equivalent solutions. Thirdly, after some solution is known, there is no

point in looking for worse solutions: as soon as the current search branch cannot

lead to solutions better than the incumbent, we can stop the search, backtrack and

continue from a more promising branch.

Each of these three cases provides a possible pruning of the search space that can

exponentially speedup the computation with respect to a naive approach. The first

two cases can be thought of as constraints, while the third can be though of as a

bound: all of them can be simply cast in CLP(FD).

4 Constraint logic programming model

We can now show how to model in CLP(FD) the valve placement problem. We first

provide a simple minimax algorithm, then improve it with the three types of pruning

hinted at earlier.

4.1 A minimax implementation in CLP(FD)

We associate a Boolean variable to each possible position of a valve (so we have

two Boolean variables for each edge in the graph); if the variable takes value 1,

then the given end of the edge hosts a valve, otherwise, if the variable takes value

0, there is no valve in such location. In the following, the list of these variables is

called Valves.

The two-player game can be implemented as follows:

solve(Valves ,NV):-

impose_constraints(Valves ,NV),

min im i z e (

( assign_valves(Valves),

maximize(

( break_pipe(Broken),

close_valves(Valves ,Broken ,ClosedValves),

undelivered_demand(Valves ,ClosedValves ,UD)

), UD , MaxUD)

),MaxUD ,MinMaxUD ).

The minimize/3 and maximize/3 meta-predicates are predefined in most CLP(FD)

languages; declaratively, minimize(G,F,V) provides, amongst the solutions of goal

G (bindings to the variables in G that make true the goal G), the solution that

provides the minimum value for variable F (Marriott and Stuckey 1994; Fages

1996); such minimal value is bound to variable V . It is equivalent to the ASP syntax

�min(F : G) = V (Faber et al. 2008). In other words, the result of minimize(G, F, V )

is equivalent to the Prolog goal

findall(F,G, List), minlist(List, V )

where minlist finds the minimum value V in the List.

https://doi.org/10.1017/S1471068411000275 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000275


736 M. Cattafi et al.

Operationally, it has a better performance since it does not need to find all the

solutions of G, collect them in a List, and find the minimum, but it implements a form

of branch-and-bound. Operationally, minimize calls goal G, and if it succeeds in

providing some binding F/F∗, it imposes a new unbacktrackable constraint F < F∗;

then it continues the search. The unbacktrackable constraint is considered in the

constraint store of all the nodes of the search tree, and prunes every node that

cannot possibly provide a lower value than F∗. When the goal G fails, the optimal

value is the last value obtained as F∗ (Prestwich 1996), if it exists. maximize is

treated symmetrically.

Predicate impose constraints posts all the constraints of the model to the

constraint solver. It contains the constraint stating that there are Nv valves in the

distribution network; other constraints will be described in Section 4.2.

assign valves starts the search on the Valves variables.

After finding a possible positioning of the valves that satisfies all constraints, a

maximisation phase tries the moves of the opponent player: it searches (predicate

break pipe) the pipe that, if damaged, can be fixed only giving a maximum

disruption of the service. When the opponent has chosen a pipe to break, we can

compute the valves that should be closed to allow for substitution of the Broken

pipe; finally, we compute the UD.

Thus, the internal maximize finds, amongst the moves of the opponent player

(break pipe), the move that gives the maximum UD; such value is bound to

variable MaxUD. The first player, instead, chooses the placement of the valves

(assign valves) with the aim of minimising the value MaxUD.

4.2 Reducing the number of moves

The number of moves of the first player is huge even for small networks and number

of valves. However, as hinted at earlier, some configurations can be avoided, as shown

in the next paragraphs.

4.2.1 Redundant valves and symmetries

Consider the network in Figure 2. Even without knowing the demand on the various

pipes, we can tell that some of the valves are redundant, just by looking at the

topology of the network.

Valve v1,2 cannot be used to identify a sector: the pipe immediately on the left of

the valve belongs to the same sector as the pipe immediately on the right. In fact,

there is a closed path going from one side of the valve to opposite side: starting

from node 1, we can go to node 3, then 4, then 2 and we reach the opposite side of

the same valve without having met any other valve. The same holds for valve v3,5:

there exists the path (3, 4, 6, 5) that connects one end of the valve to the other end.

In general, we can say that in any closed path of the network, there cannot be

exactly one valve. No valves means that the whole path will be contained in a sector,

which is sensible. Two valves or more can mean that the path is divided into two
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Fig. 2. A network with redundant valves.

or more sectors. So, for each closed path, one could impose a constraint saying that

the number of valves in such path cannot be equal to 1.

Indeed, the number of paths is exponential in the size of the network; however,

we can choose to impose such constraint only for a limited number of closed paths.

We decided to impose one such constraint for each (boundary of a) face that is a

concept of planar graphs. When drawing the graph on a plane, each of the regions

surrounded by edges of the graph is called a face. The number of faces of a planar

graph is always polynomial, as proven by Euler.

Notice that, when a node is connected to exactly two edges, we have a symmetry.

For example, consider node 8 in Figure 2: in one assignment, we could have a valve

v8,2, while another assignment could be identical, but with a valve in v8,7. These two

solutions are symmetric because the fact that node 8 is in the same sector as edge

e2,8 or as e7,8 is irrelevant since nodes do not have a contribution to the objective

function. So, we can impose the symmetry breaking constraint v8,7 = 0. This simple

observation can provide a notable speedup in the search because real networks often

have this situation.

4.2.2 Bounding

Consider a node in the search tree that selects the move for the first player (predicate

assign valves/1): in a generic node, some of the vij variables will be assigned

value 1 (meaning that some valves have already been placed), some variables will

have value 0 (meaning that in such position there is no valve) and some will still be

unassigned.

Consider the example in Figure 3: circles represent positions in which there is no

valve, while strokes are variables still unassigned. Even though we do not have a

complete placement, we can already say that there is a sector containing at least

edges e7,8 and e6,7. The opponent player will have the option of damaging, e.g.

pipe e7,8, causing an UD that is no less than w(e7,8) + w(e6,7). So, if the cost of

such sector is worse than the current best solution found by the first player (i.e.

w(e7,8) + w(e6,7) > UDbest), there is no point in continuing the search on the current

branch. Note that this bound considers only the cost of the sector, without including

unintended isolation.

https://doi.org/10.1017/S1471068411000275 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000275


738 M. Cattafi et al.

1 2

3 4

5 6

v4,2

v6,4

v6,5 v6,7 7

8
v8,2

v4,6v3,5

Fig. 3. A partial assignment: circles mean absence of valve, strokes are variables not

assigned yet.

We can also perform a reasoning similar to reduced costs pruning (Focacci et al.

1999; Focacci et al. 2002). Suppose that w(e7,8)+w(e6,7) < UDbest, but adding w(e2,8)

is enough to overpass the current best UDbest (i.e. w(e2,8)+w(e7,8)+w(e6,7) > UDbest):

this means that we cannot afford to include edge e2,8 in the same sector, and the

only possibility to get a solution better than UDbest is to separate the two sectors,

placing a valve in v8,2. Thus, we can impose v8,2 = 1.

5 Implementation details

5.1 Incremental bound computation

The bound described in Section 4.2.2 is very powerful, and reduces significantly

the number of explored nodes. However, it can be rather expensive in terms of

computing time, if implemented naively. In fact, it implies computing the cost of

the sector one edge belongs to, which means identifying the sector, possibly visiting

a significant part of the graph. So, computing it again and again during search can

make it very time consuming.

Instead of restarting from scratch the identification of the sectors and computing

their cost at each node of the search tree, we compute them incrementally.

We associate to each node i of the graph a variable Si that represents the sector

the node belongs to, and the lower bound LBi on the cost of the sector Si.

A constraint is associated with each edge of the graph ei,j , and relates the two

variables vi,j and vj,i with the two sectors Si and Sj , and with their lower bounds LBi

and LBj:

lower bound(vij , vji, Si, Sj , LBi, LBj). (1)

Declaratively, constraint (1) states that given the value of variables vi,j and vj,i,

the UD cannot be lower than (the maximum of) the two bounds LBi and LBj .

Operationally, the constraint (1) is awakened when one of the variables vi,j or vj,i
becomes ground.

Initially, no valve is placed, and each node is (tentatively) a sector by itself with

associated lower bound zero (since no demand is associated to nodes).
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Fig. 4. Example of propagation of the lower bound when joining sectors.

If variable vi,j takes value 0, this means that there will be no valve in such position,

so the sector Si will have to include edge ei,j , and we increment the value of the

lower bound LBi by w(ei,j) (see Fig. 4).

If both variables vi,j and vj,i have value 0, this means that the two sectors

Si and Sj should be joined: we unify the corresponding variables Si = Sj , and

increment the value of the lower bounds: we compute the cost of the joined sector

as LBi + LBj + w(ei,j).

Moreover, as explained in Section 4.2.2, if vi,j = 0 and vj,i is not ground yet, but

LBi + LBj + w(ei,j) is greater than the current best solution, then joining the two

sectors would give a solution worse than the current best, so we can impose a valve

near node j, i.e. vj,i = 1.

5.2 Dealing with unintended isolation

As mentioned in Section 4.2.2, the bound computed by constraint (1) does not

take into account unintended isolation. However, when evaluating the total damage

associated to the breaking of a certain pipe (which results in the isolation of a certain

sector), it is necessary to consider this aspect also. Predicate undelivered demand/3

finds the correspondent actual value of the objective function used in maximize/3.

Its algorithm is based on the following principle. Isolating a sector is equivalent

to removing, from the graph describing the network, the part of the graph, which

belongs to the said sector. It is then subsequently possible to determine the connected

components of the obtained subgraph [computational complexity is linear in the size

of the subgraph (Hopcroft and Tarjan 1973)]. The graph algorithms library (?) of

ECLiPSe Prolog provides efficient implementations of predicates for such operations

on graphs.

Selecting the connected component, which includes the source node, and summing

up the demands on the pipes contained in it give the deliverable demand. The total

undeliverable demand can thus be obtained by subtracting the deliverable demand

from the total network demand.

6 Experimental results

We compare our results with those reported by Giustolisi and Savić (2008), and we

apply our CLP(FD) algorithm on the Apulian water distribution network reported

in that paper. Both the software and the instance are available at the web page
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Fig. 5. Comparison between the approximate Pareto front computed by Giustolisi–Savić

and the optimal Pareto front obtained in CLP(FD).

(Cattafi and Gavanelli 2011). The network has 23 nodes and 33 edges. Giustolisi

and Savić (2008) adopt a multiobjective genetic algorithm that minimizes both the

number of valves and the UD. The aim is to find the so-called Pareto frontier

(Gavanelli 2002); in this problem, a solution belongs to the frontier if there is no

way to reduce the UD without increasing the number of valves (and vice versa,

it is impossible to reduce the number of valves without increasing the UD). The

genetic algorithm, however, is not able to prove that a solution is indeed Pareto

optimal, and provides an approximation of the Pareto frontier, i.e. a set of points

that are hopefully near to the real Pareto frontier. Moreover, Giustolisi and Savić

(2008) use a simplifying assumption: ‘in order to reduce greatly the search space of

the optimizer, the constraint of a maximum of one valve for each pipe was tested’. In

the paper, they report the best found solutions obtained with a number of valves

ranging from 5 to 13.

We computed the true Pareto-optimal frontier by varying the number of valves

from 5 to 13 valves, and computing for each value the best placement. The

comparison of the near-Pareto-optimal frontier and the true-Pareto-optimal frontier

obtained with our CLP(FD) program is shown in Figure 5. It is worth noting

that Giustolisi and Savić (2008) do not provide a solution with six valves, possibly

because their algorithm was not able to find a solution with UD lower than that

obtained with five valves. We proved, instead, that such a solution exists and adding

a valve reduces the damage. Excluding this case, when the number of valves is low

(up to eight valves) their algorithm found the real optimum, probably due to the fact

that the search space is still not very wide, so the genetic algorithm is able to explore

a wider percentage of the search space. When the number of valves increases, their

algorithm gets farther from the real optimum, with a gap of about 10% with 10

and 13 valves. Note also that we were able to find a solution with 12 valves that

gives the same UD that Giustolisi and Savić (2008) compute with 13 valves: in this

sense, we were able to save 1 valve (out of 13), maintaining the same cost for UD.

The computation time is reported in Figures 6 (linear scale) and 7 (log scale).

All experiments were done on a computer featuring an Intel Core 2 Duo T7250 2
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Fig. 6. Computation time of the algorithms including different optimisations.

GHz processor with 4 GB of RAM (note, however, that the current implementation

does not use parallelism, and uses only one core). We show the performance of

the basic algorithm and of the improved versions that include the reduction of

redundant valves (Section 4.2.1) and the bound (Section 4.2.2) varying the number

of valves. The graphs also show the performance of another implementation of

branch-and-bound available in ECLiPSe, called min max. From the graph in linear

scale (Fig. 6), we can see that each of the improvements has a significant impact in

terms of reduction of the computation time. When the number of valves is low, the

elimination of redundant valves (i.e. imposing that in a face there cannot be exactly

one valve, Section 4.2.1) has a very strong effect, while the bound has almost no

effect. On the other hand, when the number of valves increases, the bound seems

to have a higher impact. Combining the two, we get a further improvement, with a

reduction of the computation time of more than two orders of magnitude.

Figure 7 shows that the computing time grows less than exponentially with respect

to the number of valves. This can be explained by the fact that the search space

does not grow exponentially, but it varies as the binomial coefficient.

ECLiPSe has two implementations of the branch-and-bound predicate for minimi-

sation (Prestwich 1996). One, called min max, restarts the search after a new solution

is found; this means that the first part of the search tree is explored every time

a new solution is found; on the other hand, restarting the search allows ECLiPSe

to add the unbacktrackable constraint from the root node of the search tree, and

propagate effectively on all the nodes of the tree. The second, called minimize,

avoids the restarts and continues the search, taking the risk that the newly added

unbacktrackable constraint will not be able to propagate immediately, but only after

some changes to the domains of the cost variable has happened. In our application,

we found that min max was about one order of magnitude slower than minimize,

as shown in Figures 6 and 7.

Indeed, the computation time is much higher than that reported by Giustolisi and

Savić (2008): they computed the whole (near) Pareto frontier in just 10 minutes, on

an older computer. However, our algorithm is able to find the true optimum and
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Fig. 7. Computation time of the algorithms including different optimisations, log scale.

U
nd

el
iv

er
ed

 d
em

an
d 

(L
/s

)

Fig. 8. Anytime behaviour of the CLP(FD) algorithm: solution quality with respect to the

computation time. Number of valves Nv = 13.

prove its optimality, which is well known to be often more difficult than finding the

optimum itself, so in a fair comparison, the time required for proving optimality

should not be taken into account. In Figure 8, we show the anytime behaviour of

our algorithm, i.e., we plot the solution quality with respect to the computing time

in a typical instance. Indeed, our algorithm takes about 50 minutes to compute just

one point of the Pareto frontier. However, looking closer at the graph one notices

that our algorithm gets to a reasonable quality in a few seconds, it takes 27 minutes

to get to the same quality obtained by the genetic algorithm, then it is able to

improve on it and takes 37 minutes (total) to find the real optimal solution.

Giustolisi and Savić (2008) also show the graph of the (near) Pareto-optimal

frontier with a higher number of valves, but they do not report the solutions, so

we cannot make a comparison. We tested our algorithm with the same number of

valves (up to 24); we could not prove optimality, but we were able to find reasonable

solutions within a few minutes.
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7 Related work

In the literature of hydraulic engineering, two main problems related to the isolation

valves in a pipe network have been faced, i.e. (a) the identification of the segments

and undesired disconnections that occur after a set of isolation valves has been

closed and (b) the (near) optimal location of the set of isolation valves.

As far as the first topic concerns, in the literature, there are a number of

studies regarding segment identification and the undesired disconnections that occur

following the closure of a set of isolation valves. In particular, the methods proposed

by Jun and Loganathan (2007) and Kao and Li (2007) are based on a dual

representation of the network, with segments treated as nodes and valves as links.

The methods proposed by Creaco et al. (2010) and Giustolisi and Savić (2010) use

topological incidence matrices to identify the segments.

As far as the second topic concerns, recently, Giustolisi and Savić (2010) have

presented a method for the near-optimal placement of isolation valves based on a

multiobjective genetic algorithm. Given that the placement of isolation valves is the

result of a compromise between the need to reduce the costs tied to purchasing and

installing the valves and the simultaneous need to assure high system reliability in

the event of routine or non-routine maintenance, Giustolisi and Savić (2010) use

the number of valves to be installed—as a surrogate for cost—and the maximum

demand shortfall (the demand shortfall represents the unsupplied water demand

after isolating a segment) in the different (disconnected) segments of the network

as the objective functions to be minimised. Creaco et al. (2010) instead propose a

different couple of objective functions that is total cost of the set of valves, the cost

of each valve being calculated as a function of the pipe diameter and the weighted

average unsupplied demand associated with the segments. Also in Creaco et al.

(2010), the optimisation is solved through a multiobjective genetic algorithm. All of

these works use incomplete algorithms that cannot ensure that the found solution is

the real optimum; to the best of our knowledge, this work presents the first complete

algorithm to address the valve placement problem.

The valve placement problem has some similarities with the graph partitioning

problem, in which the goal is to partition a graph into (almost) equal-size parts

by removing the minimal number of edges or (in the weighted edges case), such

that the total weight of the edges, which connect different parts is minimized. In

general, graph partitioning is NP-hard (Garey and Johnson 1990). Most works in

the literature deal with heuristics or approximation algorithms.

One of the first works in the area is by Kernigan and Lin (1970) that propose a

greedy algorithm, which outputs a graph bisection. Starting from an initial solution

(which can be suggested by some criterion or also be found randomly), each step

of the algorithm evaluates the improvement in the objective function that would be

obtained moving a vertex from one partition to the other and takes the best choice.

Iteration goes on until convergence to a local optimum is reached. The bisection can

be applied recursively to partition further. Fiduccia and Mattheyses (1982) improve

the algorithm so that the asymptotic behaviour of the algorithm is linear rather

than quadratic.
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A different approach is based on the spectral analysis of the graph. A graph

can be represented by its incidence matrix: a square matrix N × N (if N is the

number of vertices), whose (i, j) element is 1 if there is an edge from vertex i to

vertex j and 0 otherwise. Its representation as a Laplacian matrix is obtained as

the (matricial) difference between the diagonal matrix, which has in position (i, i)

the degree of the node i and the incidence matrix. The set of the eigenvalues of the

Laplacian is the graph spectrum [Chung (1994) gives an extended tractation of

the subject]. Since it was shown (Fiedler 1973) that the second smallest eigenvalue

of the Laplacian associated to a graph contains information about its connec-

tivity, various partitioning heuristics were proposed relying on the eigenvectors

(Hendrickson and Leland 1995a; Spielman and Teng 1996). In comparison with

other heuristics, spectral methods provide good-quality partitions at an increased

computational cost (necessary to compute the matrix eigenvalues).

Various kinds of heuristics can be used in multilevel schemes, which reduce the

size of the graph by collapsing vertices and edges, partition the smaller graph and

then uncoarsen it to construct a partition for the original graph. Hendrickson and

Leland (1995b) employ spectral methods to partition the smaller graph, and use a

variant of the Kernighan–Lin algorithm to periodically refine the partitions. Karypis

and Kumar (1998) adopt a coarsening heuristic for which the size of the partition

of the coarse graph is within a small factor of the size of the final partition.

The special case of planar graphs (i.e. graphs, which can be drawn without

intersecting edges) is of particular interest for our application since it is often the

case for water supply networks. Finding the optimal solution is NP-hard also for

the planar case; however, the planar separator theorem (Lipton and Tarjan 1979)

states that a bisection, in which the biggest set contains at most two thirds of the

vertices and whose separator contains O(
√
n) vertices can be found in linear time.

Other related problems are the multicut problems (Pichler et al. 2010), in which

the aim is to find the minimal set of edges (or nodes) such that given pairs of nodes

are no longer connected. In our case, instead, the aim is to disconnect a possibly

small part of the network while keeping connected all the rest.

The algorithms for graph partitioning or solving multicut problems are clearly

not directly applicable to the valve placement problem, also because of the issue of

unintended isolation mentioned in Section 1. However, it would be interesting to

hybridise our algorithm with some of the techniques available for such problems;

we plan to study the feasibility of such approaches in future work.

8 Conclusions and future work

We presented a new application, taken from the hydraulic domain, for logic

programming. We proposed an algorithm based on CLP(FD), and found solutions

better than the best solutions known in the literature. The computation time can be

high when the number of valves is high, but in many cases it is still acceptable since

it is applied during the design of a water distribution network.

The model can be improved in various directions. Taking cue from the findings of

Creaco et al. (2010), the variable ‘weighted average demand shortfall’, based on the
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likelihood (or, more in general, on the probability relative to a prefixed time interval)

of failures occurring within the segments as a result of mechanical factors could

be used. In fact, it has been observed that this variable is superior to the variable

‘maximum demand shortfall’. Weighted average demand shortfall takes into account

the entire network and not only the largest segment in terms of demand shortfall;

moreover, it guarantees that unique solutions will be found for a pre-established

number or cost of the valves in the network.

The current implementation runs on an open source Prolog, but very fast

commercial ones, such as SICStus or B-Prolog (Zhou 2011), may provide a strong

speedup; in the future, we plan to port the implementation on other Prolog systems.

In fact, there exist a library for graph algorithms also in SICStus, while in B-

Prolog, the table mode (Warren 1992; Zhou et al. 2008) lets one easily implement

efficient graph predicates. Unluckily, the syntax of ECLiPSe and SICStus/B-Prolog

is different, although similar, for example, although both ECLiPSe (Schimpf 2002)

and B-Prolog (Zhou 2011) support logical loops, they adopt a different syntax.

From the computational viewpoint, other techniques could be adopted in order

to reduce the computation time. For example, we could apply restarts (Gomes et al.

1997), or try better heuristics to select the next variable to be assigned; from general

ones, like, for example, dom/wdeg (Boussemart et al. 2004), to specific ones.

When the number of valves is very high, we could directly apply incomplete

methods that try to get quickly good solutions sacrificing the proof of optimality.

One very promising approach would be to use Large Neighbourhood Search that

has been implemented in Prolog in previous works (Dal Palù et al. 2010),

A very interesting line of research would be to develop an Answer Set Program-

ming (ASP) model. ASP is often faster than CLP(FD) when the domains of the

variables do not contain many values (Dovier et al. 2005; Mancini et al. 2008); we

plan to develop an ASP application in the near future.
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Frühwirth, T. and Abdennadher, S. 2003. Essentials of Constraint Programming. Springer.

Garey, M. R. and Johnson, D. S. 1990. Computers and Intractability; A Guide to the Theory

of NP-Completeness. W. H. Freeman, New York.

Gavanelli, M. 2002. An algorithm for multi-criteria optimization in CSPs. In Proc. of 15th

European Conference on Artificial Intelligence (ECAI ’02), F. van Harmelen, Ed. IOS Press,

Lyon, France, 136–140.

Gervet, C., Caseau, Y. and Montaut, D. 1999. On refining ill-defined constraint problems:

A case study in iterative prototyping. In Proc. of Practical Application of Constraint

Technologies and Logic Programming (PACLP ’99) The Practical Application Company

Ltd., London, 255–275.
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