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Abstract

We study two models of an age-biased graph process: the δ-version of the preferential
attachment graph model (PAM) and the uniform attachment graph model (UAM), with
m attachments for each of the incoming vertices. We show that almost surely the scaled
size of a breadth-first (descendant) tree rooted at a fixed vertex converges, for m = 1,
to a limit whose distribution is a mixture of two beta distributions and a single beta
distribution respectively, and that for m > 1 the limit is 1. We also analyze the likely
performance of two greedy (online) algorithms, for a large matching set and a large
independent set, and determine – for each model and each greedy algorithm – both a
limiting fraction of vertices involved and an almost sure convergence rate.
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1. Introduction

It is widely accepted that graphs/networks are an inherent feature of life today. The classical
models Gn,m and Gn,p of Erdős and Rényi [17] and Gilbert [22], respectively, lacked some
salient features of observed networks. In particular, they failed to have a degree distribution
that decays polynomially. Barabási and Albert [3] suggested the preferential attachment model
(PAM) as a more realistic model of a ‘real-world’ network. There was a certain lack of rigor in
[3], and later Bollobás, Riordan, Spencer, and Tusnády [11] gave a rigorous definition.

Many properties of this model have been studied. Bollobás and Riordan [9] studied the
diameter and proved that with high probability (w.h.p.) PAM with n vertices and m > 1
attachments for every incoming vertex has diameter ≈ log n/ log log n. An earlier result by
Pittel [34] implied that for m = 1 w.h.p. the diameter of PAM is of exact order log n. Bollobás
and Riordan [7, 8] studied the effect on component size of deleting random edges from PAM
and showed that it is quite robust w.h.p. The degree distribution was studied by Móri [30, 31],
Flaxman, Frieze, and Fenner [18], and Berger, Borgs, Chayes, and Saberi [4]. Peköz, Röllin,
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and Ross [32] established convergence, with rate, of the joint distribution of the degrees of
finitely many vertices. Acan and Hitczenko [1] found an alternative proof, without rate, via
a memory game. Pittel [36] used the Bollobás–Riordan pairing model to approximate, with
explicit error estimate, the degree sequence of the first nm/(m+2) vertices, m ≥ 1, and proved
that, for m > 1, PAM is connected with probability ≈ 1 − O((log n)−(m−1)/3). Random walks
on PAM have been considered in the work of Cooper and Frieze [14, 15]. In [14] there are
results on the proportion of vertices seen by a random walk on an evolving PAM and [15]
determines the asymptotic cover time of a fully evolved PAM. Frieze and Pegden [20] used
random walk in a ‘local algorithm’ to find vertex 1, improving results of Borgs et al. [12].
The mixing time of such a walk was analyzed by Mihail, Papadimitriou, and Saberi [28],
who showed rapid mixing. Interpolating between Erdős–Rényi and preferential attachment,
Pittel [35] considered the birth of a giant component in a graph process GM on a fixed vertex
set, when GM+1 is obtained by inserting a new edge between vertices i and j with probability
proportional to [ deg (i) + δ] · [ deg (j) + δ], with δ > 0 being fixed. Confirming a conjecture
of Pittel [35], Janson and Warnke [25] recently determined the asymptotic size of the giant
component in the supercritical phase in this graph model.

The paragraph above gives a small sample of results on PAM that can be related to its role
as a model of a real-world network. It is safe to say that PAM has now been accepted into the
pantheon of random graph models that can be studied from a purely combinatorial perspective.
For example, Cooper, Klasing, and Zito [16] studied the size of the smallest dominating set and
Frieze, Pérez-Giménez, Prałat, and Reiniger [21] studied the existence of perfect matchings
and Hamilton cycles.

One source of our inspiration was the work of Móri [30, 31]; see also Katona and Móri [27]
and van der Hofstad [23]. They were able to construct a family of martingales in the form of
factorial products, with arguments being the degrees of individual vertices. This allowed them
to analyze the limiting behavior of vertex degrees in a δ-version of PAM. In this paper we con-
struct a new factorial-type martingale with one argument being the total size of a ‘descendant’
subtree. This is a generalization of the martingale for δ = 0, found by Pittel [36].

2. Our results

For each of the two models, PAM and UAM, we study the descendant tree of a given vertex
v; it is a maximal subtree rooted at v and formed by increasing paths starting at v. The num-
ber of vertices in this subtree is a natural influence measure of vertex v. We also analyze the
performance of two online greedy algorithms, for finding a large matching set and for a large
independent set. Both algorithms are well known, and the classical random graphs are a gold
mine for problems on the expected efficiency of these and similar algorithms, thanks to their
homogeneity and independence. The PAM and UAM models are inherently more difficult, due
to the rather limited scope of these properties. We carry out this analysis in the context of the
PAM graph process described in [11] and its extension taken from [23, Chapter 8], and the
UAM graph process; see [2] and [21].

The PAM graph process, δ-extension. Vertex 1 has m loops, so its degree is 2m initially.
Recursively, vertex t + 1 has m edges, and it uses them one at a time either to connect to a
vertex x ∈ [t] or to loop back on itself.

To describe the transition probabilities, let dt,i−1(x) denote the degree of vertex x just before
the ith edge of vertex t + 1 arrives. Let w denote the random receiving end of the ith edge
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emanating from vertex t + 1. Conditioned on Gm,δ(t) and the previous i − 1 edges emanating
from vertex t + 1, we have

P(w = x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dt,i−1(x) + δ

(2m + δ)t + 2i − 1 + iδ/m
if x ∈ [t],

dt,i−1(t + 1) + 1 + iδ/m

(2m + δ)t + 2i − 1 + iδ/m
if x = t + 1.

(2.1)

Thus one-step transition from Gm,δ(t) to Gm,δ(t + 1) is the m-long sequence of choices made
by the m edges emanating from vertex t + 1, and given Gm,δ(t), these choices form a Markov
sequence.

For m = 1, writing dt(x) for dt,0(x), the probabilities above can be written a little more
simply in the form

P(w = x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dt(x) + δ

(2 + δ)t + (1 + δ)
if x ∈ [t],

1 + δ

(2 + δ)t + (1 + δ)
if x = t + 1.

(2.2)

Bollobás and Riordan [9] discovered the following coupling between {Gm,0(t)}t for m > 1
and {G1,0(mt)}t. Start with the {G1,0(t)} random process and let the vertices be v1, v2, . . . . To
obtain {Gm,0(t)} from {G1,0(mt)}:

(1) collapse the first m vertices v1, . . . , vm into the first vertex w1 of Gm,0(t), the next m
vertices vm+1, . . . , v2m into the second vertex w2 of Gm,0(t), and so on;

(2) keep the full record of the multiple edges and loops formed by collapsing the blocks
{v(i−1)m+1, . . . , vim} for each i.

By doing this collapsing indefinitely we get the jointly defined Bollobás–Riordan graph
processes {Gm,0(t)} and {G1,0(mt)}. The beauty of the δ-extended Bollobás–Riordan model is
that, similarly, this collapsing operation applied to the process {G1,δ/m(mt)} delivers the process
{Gm,δ(t)} [23].

(For the reader’s convenience we present the explanation in Appendix A.)

Remark 2.1. Note that the process is well-defined for δ ≥ −m, since for such δ all the proba-
bilities defined in (2.1) are non-negative and add up to 1. For m = 1 and δ = −1, it is easy to see
from (2.2) that there is no loop in the graph except the loop on the first vertex. Hence a vertex
u > 1 starts with degree 1 and then its degree does not change, since as long as dt(u) + δ = 0
the vertex cannot attract any neighbors (again from (2.2)). As a result, in this case the graph is
a star centered at vertex 1. It follows from the above coupling that Gm,−m(t) is also a star cen-
tered at vertex 1, and the key problems we want to solve have trivial solutions in this extreme
case.

The UAM graph process. Conceptually close to the preferential attachment model is the
uniform attachment model (UAM). In this model, vertex t + 1 selects uniformly at random
(repetitions allowed) m vertices from the set [t] and attaches itself to these vertices. (See [2]
for connectivity and bootstrap percolation results.) This model can be thought of the limit of
the PAM model as δ → ∞ except that loops are not allowed in this case.
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2.1. Number of descendants

Fix a positive integer r and let X(t) denote the number of descendants of r at time t. Here r
is a descendant of r, and x is a descendant of r if and only if x chooses to attach itself to at least
one descendant of r in step x. In other words, if we think of the graph as a directed graph with
edges oriented towards the smaller vertices, vertex x is a descendant of r if and only if there is
a directed decreasing path from x to r. In [36] X(t) was proposed as an influence measure of
vertex r at time t.

We prove two theorems.

Theorem 2.1. Suppose that r is fixed, m = 1 and δ > −1, and set pX(t) := X(t)/t. Then almost
surely (i.e. with probability 1) lim pX(t) exists, and its distribution is the mixture of two beta
distributions, with parameters

a = 1, b = r − 1

2 + δ
and a = 1 + δ

2 + δ
, b = r,

weighted by
1 + δ

(2 + δ)r − 1
and

(2 + δ)(r − 1)

(2 + δ)r − 1

respectively. Consequently almost surely limt→∞ p(t) > 0.

Remark 2.2. The two beta distributions in the theorem result from two possible scenarios for
vertex r; if there is a loop on r we get the first beta distribution, otherwise we get the second
one.

Note.

(i) The proof is based on a new family of martingales

M�(t) := (X(t) + γ /(2 + δ))(�)

(t + β)(�)
,

where (z)(�) stands for the rising factorial. This family definitely resembles the mar-
tingales used in [30, 31] for the individual vertices’ degrees. For instance, if Dj(t)
is the degree of vertex j at time t ≥ j, then for some deterministic γk(t), Zj,k(t) :=
γk(t)(Dj(t) + δ)(k) is a martingale [23]. However, M�(t) depends on X(t), a global param-
eter of the PAM graph. Our initial proof was quite technical. We owe a debt of gratitude
to an anonymous referee who was able to condense our argument to a few lines.

(ii) With high probability G1,δ is a forest of �(log t) trees rooted at vertices with loops.
For the preferential attachment tree (no loops), Janson [24] recently proved that the
scaled sizes of the principal subtrees, those rooted at the root’s children and ordered
chronologically, converge almost surely (a.s.) to the GEM-distributed random variables.
His techniques differ significantly from ours.

For m > 1 we use Theorem 2.1 to prove a somewhat surprising result that, for fixed r, almost
surely all but a vanishingly small fraction of vertices are descendants of the vertex r (see [24]).

Theorem 2.2. Let r be fixed, m > 1 and δ > −m, and let pX(t) = X(t)/t, pY (t) = Y(t)/(2mt),
where Y(t) is the total degree of the descendants of r at time t. Then almost surely
limt→∞ pX(t) = limt→∞ pY (t) = 1.
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For the case of UAM we have the following result.

Theorem 2.3. Consider the UAM graph process Gm(t). Given a fixed r > 1, let X(t) be the
cardinality of the descendant tree rooted at vertex r, and let pX(t) := X(t)/t.

(i) For m = 1, almost surely lim pX(t) exists, and it has the beta distribution with parame-
ters 1 and r, which is the distribution of the minimum of r independent [0, 1]-uniforms.
Consequently a.s. lim inft→∞ pX(t) > 0.

(ii) For m > 1, almost surely limt→∞ pX(t) = 1.

2.2. Greedy matching algorithm

We analyze a greedy matching algorithm; a.s. it delivers a surprisingly large matching set
even for relatively small m. This algorithm generates the increasing sequence {M(t)} of partial
matchings on the sets [t], with M(1) = ∅. Suppose that X(t) is the set of unmatched vertices
in [t] at time t. If t + 1 attaches itself to a vertex u ∈ X(t), then M(t + 1) = M(t) ∪ {{u, t + 1}},
otherwise M(t + 1) = M(t). (If t + 1 chooses multiple vertices from X(t), then we pick one of
those as u arbitrarily.)

First consider the PAM graph. Let

h(z) = hm,δ(z) := 2

[
1 −

(
m + δ

2m + δ

)
z

]m

− z − 1,

and let ρ = ρm,δ be the unique solution of h(z) = 0 in the interval [0, 1]. (We have ρm,δ ∈ (0, 1)
if δ > −m.)

Theorem 2.4. Let M(t) and X(t), respectively, be the set of greedy matchings and the set of
uncovered vertices at time t, and let x(t) = X(t)/t. For any δ > −m and α < 1/3, almost surely

lim
t→∞ tα max{0, x(t) − ρm,δ} = 0.

In consequence, the greedy matching algorithm a.s. finds a sequence of nested matchings
{M(t)}, where the number of vertices in M(t) is asymptotically at least (1 − ρm,δ)t.

Remark 2.3. Observe that ρm,−m = 1, which makes it plausible that the maximum matching
size is minuscule compared to t. In fact, by Remark 2.1, Gm,−m(t) is the star centered at vertex
1 and hence the maximum matching size is 1.

Remark 2.4. Consider the case δ = 0. Let rm := 1 − ρm,0; some values of rm are

r1 = 0.5000, r2 = 0.6458, r5 = 0.8044,

r10 = 0.8863, r20 = 0.9377, r70 = 0.9803.
(2.3)

With a bit of calculus, we obtain rm = 1 − 2m−1 log 2 + O
(
m−2

)
.

Theorem 2.5. Let M(t) denote the greedy matching set after t steps of the UAM process. Let rm

denote the unique positive root of 2(1 − zm) − z = 0, i.e. rm = 1 − m−1 log 2 + O
(
m−2

)
. Then,

for any α < 1/3, almost surely

lim
t→∞ tα

∣∣∣∣2|M(t)|
t

− rm

∣∣∣∣ = 0.
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Some values of rm in this case are

r1 = 0.6667, r2 = 0.7808, r5 = 0.8891,

r10 = 0.9386, r20 = 0.9674, r35 = 0.9809.

2.3. Greedy independent set algorithm

The algorithm generates an increasing sequence of independent sets {I(t)} on vertex sets [t].
Namely, I(1) = {1}, and I(t + 1) = I(t) ∪ {t + 1} if t + 1 does not select any of the vertices in
I(t); if it does, then I(t + 1) = I(t). I(t) is also a dominating set for the PAM/UAM graph with
vertex set [t]; indeed, if a vertex τ ∈ [t] \ I(t) did not have any neighbor in I(t), then vertex
τ would have been added to I(τ − 1) at step τ . (Pittel [33] analyzed the performance of this
algorithm applied to the Erdős–Rényi random graph with a large but fixed vertex set.)

For the PAM case we prove the following.

Theorem 2.6. Let wm denote the unique root of (1 − w)m − w in (0, 1). For any

χ ∈
(

0, min

{
1

3
,

2m + 2δ

3(2m + δ)

})
,

almost surely

lim
t→∞ tχ

∣∣∣∣ |I(t)|
t

− wm

∣∣∣∣ = 0.

Remark 2.5. Thus the limiting scaled size of the greedy independent set does not depend on
δ, but the convergence rate does.

For the UAM case we prove an almost identical result.

Theorem 2.7. Let wm be the unique positive root of −w + (1 − w)m in (0, 1). Then, for any
α < 1/3, almost surely

lim
t→∞ tα

∣∣∣∣ |I(t)|
t

− wm

∣∣∣∣ = 0.

Remark 2.6. Let wm be the unique positive root of (1 − w)m − w in (0, 1). As m → ∞,

wm = log m

m
+ O

(
m−1 log log m

)
.

So, for m large and both models, a.s. for all large enough t the greedy algorithm delivers an
independent set containing a fraction ∼ log m/m of all vertices in [t]. It was proved in [21] that
for each large t with probability 1 − o(1), the fraction of vertices in the largest independent set
in the PAM graph process and in the UAM graph process is at most (4 + o(1)) log m/m and
(2 + o(1)) log m/m, respectively. Since I(t) is dominating, our results prove a.s. existence for
all large t of relatively small dominating sets, of cardinality ≤ (1 + εm)t log m/m, (εm → 0).

Remark 2.7. Let I(t) denote the cardinality of the largest independent set. We conjecture
that for each of the processes there exists a corresponding constant c(m) such that a.s.
limt→∞ t−1I(t) = c(m); of course, c(m) ≥ wm.

Notice that, for the UAM process, the existence of a deterministic function c(m,t), bounded
away from 0 and 1 as t → ∞, such that the distribution of I(t) is sharply concentrated around
tc(m,t), is not difficult to prove. Indeed, I(t) is determined by t − 1 independent selections of
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m neighbors among the older vertices made by vertices 2, . . . , t. Obviously, I(t) meets the
following two conditions: (1) changing the outcome of any such selection can affect I(t) by at
most 1; (2) if I(t) ≥ s, then there are s vertices that form an independent set, which depends
entirely on selections made by these vertices. Using Talagrand’s general inequality [37] (see
also [29]), we have, for z ≤E[I(t)],

P
(|I(t) −E[I(t)]| > z + 3

√
E[I(t)]

) ≤ 2 exp

(
− z2

16E[I(t)]

)
.

That does it, since by Theorem 2.7 E[I(t)] ≥E[I(t)] ≥ 0.9wmt when t is large enough and, with
exponentially high probability, we have I(t) ≤ (σ + o(1))t, where σ = σ (m) ∈ (0, 1) is the root
of σ log σ + (1 − σ ) log (1 − σ ) + σ 2m/2; see Lemma 9 of [21].

3. Descendant trees

Instead of referring the reader back to Section 2, we start this, and other proof sections, by
formulating each claim in full.

3.1. Proof of Theorem 2.1

In this subsection we prove Theorem 2.1 restated below.

Theorem 2.1. Suppose that m = 1 and δ > −1, and set pX(t) := X(t)/t. Then almost surely (i.e.
with probability 1) lim pX(t) exists, and its distribution is the mixture of two beta distributions,
with parameters

a = 1, b = r − 1

2 + δ
and a = 1 + δ

2 + δ
, b = r,

weighted by
1 + δ

(2 + δ)r − 1
and

(2 + δ)(r − 1)

(2 + δ)r − 1
respectively. Consequently a.s. limt→∞ pX(t) > 0.

Proof. For t ≥ r > 1, let X(t) = Xm,δ(t) = Xm,δ(t, r) and Y(t) = Ym,δ(t) = Ym,δ(t, r) denote the
size and total degree of the vertices in the descendant set rooted at r; so X(r) = 1 and Y(r) ∈
[m, 2m], where m (resp. 2m) is attained when vertex r forms no loops (resp. forms m loops) at
itself. Introduce pY (t) = Y(t)/(2mt). This notation will be used in the proof of Theorem 2.2 as
well, but of course m = 1 in Theorem 2.1.

Here

Y(t) =
{

2X(t) if r looped on itself,

2X(t) − 1 if r selected a vertex in [r − 1].(
In particular, pY (t) = pX(t) + O

(
t−1

)
.
)

So, by (2.2),

P(X(t + 1) = X(t) + 1 | ◦)

= Y(t) + δX(t)

(2 + δ)t + (1 + δ)

=

⎧⎪⎪⎨
⎪⎪⎩

(2 + δ)X(t)

(2 + δ)t + (1 + δ)
if r looped on itself,

(2 + δ)X(t) − 1

(2 + δ)t + (1 + δ)
if r selected a vertex in [r − 1],
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where ‘◦’ indicates conditioning on prehistory (particularly X(t) and Y(t)). Thus we are led to
consider the process X(t) such that

P(X(t + 1) = X(t) + 1 | ◦) = (2 + δ)X(t) + γ

(2 + δ)t + (1 + δ)
,

P(X(t + 1) = X(t) | ◦) = 1 − P(X(t + 1) = X(t) + 1 | ◦),

γ = 0 if r looped on itself, γ = −1 if r selected a vertex in [r − 1]. So γ is determined by
G1,δ(t). Letting β = (1 + δ)/(2 + δ), the above equation can be written as

P(X(t + 1) = X(t) + 1 | ◦) = X(t) + γ /(2 + δ)

t + β
,

P(X(t + 1) = X(t) | ◦) = 1 − X(t) + γ /(2 + δ)

t + β
.

(3.1)

For δ = 0 the following claim was proved in [36]. We let z(�) denote the rising factorial∏�−1
j=0 (z + j).

Lemma 3.1. Let β = (1 + δ)/(2 + δ) and Z(t) = X(t) + γ /(2 + δ). Then, conditioned on the
attachment record during the time interval

[
r, t

]
, i.e. starting with the attachment decision by

vertex r, we have

E[Z(t + 1)(�) | ◦] =
(

t + β + �

t + β

)
Z(t)(�).

Consequently

M�(t) := Z(t)(�)

(t + β)(�)

is a martingale.

We thank an anonymous referee for the following proof, which is much shorter than our
original proof.

Proof. We have

E[(Z(t + 1)(�) | ◦] = (Z(t) + 1)(�) Z(t)

t + β
+ Z(t)(�)

(
1 − Z(t)

t + β

)

= (Z(t) + �) Z(t)(�) 1

t + β
+ Z(t)(�) − Z(t)(�) Z(t)

t + β

= Z(t)(�)
(

� + t + β

t + β

)
.

The second part follows from this immediately. �

To identify the limt→∞ p(t), recall that the classical beta probability distribution has density

f (x;a, b) = (a + b)

(a)(b)
xa−1(1 − x)b−1, x ∈ (0, 1),

parametrized by two parameters a > 0, b > 0, and moments

∫ 1

0
x�f (x;a, b) dx =

�−1∏
j=0

a + j

a + b + j
.
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We can now complete the proof of Theorem 2.1. By Lemma 3.1, we have, for all t ≥ r,
E[M�(t) | γ ] = M�(r), or explicitly

E

[
(X(t) + γ /(2 + δ))(�)

(t + β)(�)

∣∣∣ γ

]
= (1 + γ /(2 + δ))(�)

(r + β)(�)
.

Since |γ /(2 + δ)| ≤ 1 and X(t) ≤ t, we obtain

|M�(t)| ≤
[

max

(
t + 1

t + β
,

t + �

t + β + � − 1

)]�

=⇒ sup
t≥0

|M�(t)| ≤ max (1, β−�).

Therefore, for every � ≥ 1, by the martingale convergence theorem, conditioned on γ , a.s. there
exists

lim
t→∞

(X(t) + γ /(2 + δ))(�)

(t + β)(�)
=: Mγ,� ≤ max (1, β−�), E[Mγ,�] = (1 + γ /(2 + δ))(�)

(r + β)(�)
.

(3.2)

Since X(t) ≤ t, it follows from (3.2) that a.s. there exists limt→∞ X(t)/t = limt→∞ pX(t), and

lim
t→∞ E[pX(t)�] =E[Mγ,�] = (1 + γ /(2 + δ))(�)

(r + β)(�)
=

�−1∏
j=0

1 + γ /(2 + δ) + j

r + β + j
.

The sequence of the right-hand side products is the sequence of moments of a unique distribu-
tion, which is the beta distribution with parameters 1 + γ /(2 + δ) and r + β − 1 − γ /(2 + δ).
By the definition of γ and (2.2), we have

P(γ = 0) = 1 + δ

(2 + δ)(r − 1) + (1 + δ)
= 1 + δ

2r − 1 + δr
.

We conclude that limt→∞ pX(t) has the distribution which is the mixture of the two beta
distributions, with parameters

a = 1, b = r − 1

2 + δ
and a = 1 + δ

2 + δ
, b = r,

weighted by
1 + δ

(2 + δ)r − 1
and

(2 + δ)(r − 1)

(2 + δ)r − 1

respectively. This completes the proof of Theorem 2.1. �

3.2. Proof of Theorem 2.2

In this subsection we prove Theorem 2.2 restated below.

Theorem 2.2. Let m > 1 and δ > −m, and let pX(t) = X(t)/t, pY (t) = Y(t)/(2mt), where Y(t)
is the total degree of the descendants of r at time t. Then almost surely limt→∞ pX(t) =
limt→∞ pY (t) = 1.

For the proof of this theorem, we need tractable formulas/bounds for the conditional distri-
bution of Y(t + 1) − Y(t). The existence of loops in a preferential attachment graph is a minor
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nuisance for stating exact conditional probabilities. Hence we will start with the scenario that
we do not get a loop on vertex t + 1, in which case we can write the exact equations easily and
we will then argue that the effect of loops is negligible. Let Em(t) be the event that vertex t + 1
has no loop. Conditioned on Gm,δ(t) and Em(t), by the transition probabilities given in (2.1),
vertex t + 1 chooses a vertex x ∈ [t] with probability

dt,i−1(x) + δ

(2m + δ)t + i − 1
.

In the following lemma we use ‘| ◦)’ to denote conditioning on Gm,δ(t) and Em(t).

Lemma 3.2. For a ∈ [m],

P(Y(t + 1) = Y(t) + m + a | ◦) =
(

m

a

)
(Y(t) + δX(t))(a) · (2mt − Y(t) + δ(t − X(t))(m−a)

((2m + δ)t)(m)

and

P(Y(t + 1) = Y(t) | ◦) = (2mt − Y(t) + δ(t − X(t))(m)

((2m + δ)t)(m)
.

Proof. Let V(t) denote the descendants of r at time t. Vertex t + 1 selects, in m steps, a
sequence {v1, . . . , vm} of m vertices from [t], with t choices for every selection. Introduce
I = (I1, . . . , Im), where Ii is the indicator of the event {vi ∈ V(t)}. The total vertex degree
of [t] (resp. V(t)) right before step i is 2mt + i − 1 (resp. Y(t) + μi, μi := |{j < i : Ij = 1}|).
Conditioned on Gm,δ(t), Em(t), and the outcomes of the previous i − 1 steps, we have

P(Ii = 1) = Y(t) + δX(t) + μi

2mt + δt + i − 1
,

P(Ii = 0) = 2mt − Y(t) + δ(t − X(t)) + i − 1 − μi

2mt + δt + i − 1
.

Therefore a sequence (j1, . . . , jm) will be the outcome of the loopless m-step selection with
probability

P(I = (j1, . . . , jm))

=
∏

i∈[m]

((2m + δ)t + i − 1)−1

×
∏

i : ji=1

(Y(t) + δX(t) + μi) ×
∏

i : ji=0

(2mt − Y(t) + δ(t − X(t)) + i − 1 − μi).

For j1 + · · · + jm = a ∈ [m], the second product above equals (Y(t) + δX(t))(a) and the third
product equals (2mt − Y(t) + δ(t − X(t))(m−a) so that

P(I = (j1, . . . , jm)) = (Y(t) + δX(t))(a)(2mt − Y(t) + δ(t − X(t))(m−a)

((2m + δ)t)(m)
.

Since the total number of admissible sequences (j1, . . . , jm) with j1 + · · · + jm = a is(m
a

)
, we obtain the first formula in Lemma 3.2. The second formula is the case of

P(I = (0, . . . , 0)). �

Proof of Theorem 2.2. Lemma 3.2 gives the conditional probabilities for Y(t + 1) − Y(t) in
the event that there is no loop on vertex t + 1. Now let us evaluate the probability that there is
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no loop on vertex t + 1. For 0 ≤ i ≤ m, let Ei(t) denote the event that no loop has been formed on
vertex t + 1 in the first i steps when vertex t + 1 is choosing its neighbors. On the event Ei−1(t),
as the ith edge incident to t + 1 is about to attach its second end to a vertex in [t] ∪ {t + 1}, the
total degree of vertices in [t] is 2mt + i − 1 (1 ≤ i ≤ m). So, by the transition probabilities given
in (2.1),

P(Ei(t) | Ei−1(t)) = 2mt + i − 1 + tδ

2mt + 2(i − 1) + tδ + 1 + iδ/m
.

Hence

P(Em(t)) =
m∏

i=1

2mt + i − 1 + tδ

2mt + 2(i − 1) + tδ + 1 + iδ/m
=

m∏
i=1

(1 − O(1/t)) = 1 − O
(
t−1). (3.3)

It is clear from the proof of Lemma 3.2 that, given X(t) and Y(t),

Pm(a) :=
(

m

a

)
(Y(t) + δX(t))(a)(2mt − Y(t) + δ(t − X(t))(m−a)

((2m + δ)t)(m)

is a probability distribution of a random variable D, a ‘rising-factorial’ counterpart of the
binomial distribution D = Bin(m, p = Y(t)/2mt). (We have not seen this distribution in the
literature.) Define the falling factorial (x)� = x(x − 1) · · · (x − � + 1). It is well known that
E[(D)μ] = (m)μpμ, (μ ≤ m). For D we have

E[(D)μ] =
∑

a

(a)μPm(a)

= (m)μ (Y(t) + δX(t))(μ)

((2m + δ)t)(μ)
·
∑
a≥μ

(
m − μ

a − μ

)

× (Y(t) + δX(t) + μ)(a−μ)((2m + δ)t + μ − (Y(t) + δX(t) + μ))((m−μ)−(a−μ))

(2mt + μ)(m−μ)

= (m)μ (Y(t) + δX(t))(μ)

((2m + δ)t)(μ)
, (3.4)

since the sum over a ≥ μ is
∑

ν≥0 Pm−μ(ν) = 1.
By Lemma 3.2, (3.3), and (3.4),

E[Y(t + 1) − Y(t) | ◦] =
m∑

a=1

(a + m)Pm(a) + O
(
t−1)

=
( m∑

a=1

aPm(a) +
m∑

a=1

mPm(a)

)
+ O

(
t−1)

= m(Y(t) + δX(t))

(2m + δ)t
+ m

(
1 − ((2m + δ)t − Y(t) − δX(t))(m)

((2m + δ)t)(m)

)
+ O

(
t−1)
(3.5)
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and

E[X(t + 1) − X(t) | ◦] = 1 − ((2m + δ)t − Y(t) − δX(t))(m)

((2m + δ)t)(m)
+ O

(
t−1),

where ‘◦’ indicates conditioning on Gm,δ(t). (Note that X(t + 1) = X(t) if and only if Y(t + 1) =
Y(t).)

To continue the proof of Theorem 2.2, we note first that mX(t) ≤ Y(t) ≤ 2mX(t). These
inequalities follow from the fact that every time a vertex joins the descendant set, the total
degree of the descendant set increases by an amount m + a for some a ∈ [m]. Let

p(t) := 2m

2m + δ
pY (t) + δ

2m + δ
pX(t),

where pY (t) = Y(t)/(2mt) and pX(t) = X(t)/t as defined before. By the definition of p(t) and the
above inequalities, we have

pX(t)

2
≤ pY (t) ≤ pX(t) =⇒ m + δ

2m + δ
pX(t) ≤ p(t) ≤ pX(t);

in particular, p(t) ∈ [0, 1] since δ ≥ −m. We will also need

((2m + δ)t − Y(t) − δX(t))(m)

((2m + δ)t)(m)
= (1 − p(t))m + O

(
t−1).

So, using (3.5), we compute

E[pY (t + 1) | ◦] =E

[
Y(t + 1)

2mt
· t

t + 1

∣∣∣ ◦
]

= t

t + 1

(
pY (t) + 1

2t

[
1 + p(t) − (1 − p(t))m] + O

(
t−2))

= pY (t) + qY (t),

qY (t) := 1

2(t + 1)

[
1 + p(t) − 2pY (t) − (1 − p(t))m] + O

(
t−2).

(3.6)

Likewise
E[pX(t + 1) | ◦] = pX(t) + qX(t),

qX(t) = 1

t + 1

[
1 − pX(t) − (1 − p(t))m] + O

(
t−2).

(3.7)

Multiplying (3.6) by 2m/(2m + δ) and (3.7) by δ/(2m + δ), and adding them, we obtain

E[p(t + 1) | ◦] = p(t) + q(t),

q(t) := m + δ

(2m + δ)(t + 1)

[
1 − p(t) − (1 − p(t))m] + O

(
t−2).

(3.8)
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From the first line in (3.8) it follows that

τ∑
t=1

E[p(t + 1)] =
τ∑

t=1

E[p(t)] +
τ∑

t=1

E[q(t)],

implying that
lim sup
τ→∞

∑
t≤τ

E[q(t)] ≤ lim sup
τ→∞

E[p(τ + 1)] ≤ 1.

Since 1 − z − (1 − z)m ≥ 0 on [0, 1], the second line in (3.8) implies that |q(t)| ≤ q(t) + O
(
t−2

)
.

Since
∑

t t−2 < ∞, we see that
∑

t E[|q(t)|] < ∞.
So a.s. there exists Q := limτ→∞

∑
1≤t≤τ q(t), with E[|Q|] ≤ ∑

t E[|q(t)|] < ∞, that is, a.s.
|Q| < ∞. Introducing Q(t + 1) = ∑

τ≤t q(τ ), we see from (3.8) that {p(t + 1) − Q(t + 1)}t≥1
is a martingale with supt |p(t + 1) − Q(t + 1)| ≤ 1 + ∑

τ≥1 |q(τ )|. By the martingale conver-
gence theorem we obtain that there exists an integrable limt→∞ (p(t) − Q(t)), implying that
a.s. there exists a random p(∞) = limt→∞ p(t). Equation (3.8) also implies that

1 ≥E[p(∞)] = m + δ

2m + δ

∑
t≥1

1

t + 1
E

[
1 − p(t) − (1 − p(t))m] + O(1).

Since m + δ > 0 and

lim
t→∞ E

[
1 − p(t) − (1 − p(t))m] =E

[
1 − p(∞) − (1 − p(∞))m]

,

and the series
∑

t≥1 t−1 diverges, we obtain that P(p(∞) ∈ {0, 1}) = 1.
Recall that

p(t) ≥ m + δ

2m + δ
pX(t).

If we show that a.s. lim inft→∞ pX(t) > 0, it will follow that a.s. p(∞) > 0, whence a.s.
p(∞) = 1, implying (by p(t) ≤ pX(t)) that a.s. pX(∞) exists, and is 1, and consequently (by
the formula for p(t)) a.s. pY (∞) exists, and is 1.

So let us prove that a.s. lim inft→∞ pX(t) > 0. Recall that we did prove the latter for m = 1.
To transfer this earlier result to m > 1 we need to establish some kind of monotonicity with
respect to m. The coupling described in Section 2 comes to the rescue!

Lemma 3.3. For the coupled processes {Gm,δ(t)} and {G1,δ/m(mt)}, we have Xm,δ(t, r) ≥
m−1X1,δ/m(mt, mr).

Proof. Let us simply write G1 and Gm for the two graphs G1,δ/m(mt) and Gm,δ(t), respec-
tively. Similarly, write T1 and Tm, respectively, for the descendant tree in G1,δ/m(mt) rooted at
mr and the descendant tree in Gm,δ(t) rooted at r. If va ∈ T1, i.e. va is a descendant of mr, then
for b = �a/m� we have wb = {vm(b−1)+i}i∈[m] � va, implying that wb is a descendant of r in Gm,
i.e. wb ∈ Tm. (The converse is generally false: if wb is a descendant of r, it does not mean that
every vm(b−1)+i, (i ∈ [m]), is a descendant of mr.) Therefore

Xm,δ(t, r) = |V(Tm)| ≥ m−1|V(T1)| = m−1X1,δ/m(mt, mr). �

Thus, to complete the proof of the theorem, i.e. for δ > −m, we (a) use Theorem 2.1, to
assert that for the process {G1,δ/m(t)}, a.s. limt→∞ pX(t) > 0, (b) use Lemma 3.3, to assert that
a.s. lim inft→∞ pX(t) > 0 for {Gm,δ(t)} as well. The proof of Theorem 2.2 is complete. �
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3.3. Proof of Theorem 2.3

Theorem 2.3. Consider the UAM graph process Gm(t). Given r > 1, let X(t) be the cardinality
of the descendant tree rooted at vertex r, and let pX(t) := X(t)/t.

(i) For m = 1, almost surely lim pX(t) exists and it has the same distribution as the minimum
of (r − 1) independent [0, 1]-uniforms. Consequently a.s. lim inft→∞ pX(t) > 0.

(ii) For m > 1, almost surely limt→∞ pX(t) = 1.

Proof. By the definition of the UAM process, we have

P(X(t + 1) = X(t) + 1 | ◦) = 1 − (1 − pX(t))m. (3.9)

Case (i). Consider m = 1. For r = 1, we have p(t) ≡ 1. Consider r ≥ 2. Equation (3.9) is the
case δ = −1, γ = 0 of (3.1). By Lemma 3.1, we claim that

M(t) := (X(t))(�)

t(�)

is a martingale. So arguing as in the proof of Theorem 2.1, we obtain that almost surely (a.s.)
lim pX(t) = pX(∞) exists, and the limiting distribution of pX(∞) is a beta distribution with
parameters a = 1 and b = r. That is, the limiting density is r(1 − x)r−1, x ∈ [0, 1]. Therefore
a.s. lim pX(t) > 0.

Case (ii). Consider m > 1. Clearly G1(t) ⊂ Gm(t). Therefore a.s. lim inf pX(t) > 0 as well.
Furthermore, it follows from (3.9) that

E[pX(t + 1) | ◦] = pX(t) + 1

t + 1

[
1 − pX(t) − (1 − pX(t))m]

(as before, ‘| ◦)’ means conditioning on Gm(t)), which is a special case of (3.8), with O
(
t−2

)
dropped. So we obtain that P(p(∞) ∈ {0, 1}) = 1, which in combination with P(pX(∞) > 0) =
1 implies that P(pX(∞) = 1) = 1. �

4. A technical lemma

In this section we will prove Lemma 4.1. We need the following Chernoff bound for its
proof (see e.g. [26, Theorem 2.8]).

Theorem 4.1. If X1, . . . , Xn are independent Bernoulli random variables, X = ∑n
i=1 Xi, and

λ =E[X], then

P(|X − λ| > ελ) < 2 exp
(
−ε2λ/3

)
for all ε ∈ (0, 3/2).

Lemma 4.1. Let {X(t)}t≥0 be a sequence of random variables such that X(0) = 0 and X(t +
1) − X(t) ∈ {0, 1}. Let x(t) = X(t)/t and, using ‘| ◦)’ to denote conditioning on {x(s) : s ≤ t}, let
us assume

E[x(t + 1) − x(t) | ◦] ≤ h(x(t))

t
+ O

(
t−2), (4.1)

where h is a continuous, strictly decreasing function with h(0) > 0 and h(1) < 0, so that h(x)
has a unique root ρ ∈ (0, 1). Assume also that h′(x) < −1 in (0, 1). Then, for any γ < 1/3,
almost surely

lim
t→∞ tγ max{0, x(t) − ρ} = 0.
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Lemma 4.2. (Extensions of Lemma 4.1.) Lemma 4.1 can be extended in a couple of ways as
follows.

(a) If the hypothesis X(t + 1) − X(t) ∈ {0, 1} in Lemma 4.1 is replaced with X(t + 1) −
X(t) ∈ {−1, 1}, then the conclusion of Lemma 4.1 still holds. This follows from minor
modifications in the proof of Lemma 4.1.

(b) If the inequality sign in (4.1) is replaced with an equality sign, i.e. under the condition

E[x(t + 1) − x(t) | ◦] = h(x(t))

t
+ O

(
t−2),

we have the following conclusion: for any γ < 1/3, almost surely

lim
t→∞ tγ (x(t) − ρ) = 0.

Proof of Lemma 4.2(b). First of all, by Lemma 4.1, we have limt→∞ tγ max{0, x(t) − ρ} = 0
almost surely. Second, let g(z) = −h(1 − z), so that g(0) > 0 and g(1) < 0, and in (0, 1), we have
g′(z) = h′(1 − z) < −1. Letting y(t) = 1 − x(t),

E[y(t + 1) − y(t) | ◦] =E[(1 − x(t + 1)) − (1 − x(t)) | ◦]

= −h(x(t))

t
+ O

(
t−2)

= g(y(t))

t
+ O

(
t−2).

Applying Lemma 4.1 with X1(t) = t − X(t), and then switching back to X(t), we see that
limt→∞ tγ max{0, ρ − x(t)} = 0 almost surely, as well. �

Proof of Lemma 4.1. Let ε = εt := t−1/3 log t. We will show

P(x(t) > ρ + ε) ≤ exp
(
−�

(
log3 t

))
. (4.2)

Once we show (4.2), the Borel–Cantelli lemma gives

P(x(t) − ρ > t−1/3 log t infinitely often) = 0,

which proves what we want. Let us prove (4.2).
For T ∈ [0, t), let ET be the event that {x(t) > ρ + ε and T is the last time such that X(τ ) ≤

(ρ + ε/2)τ}, that is,

X(T) ≤ (ρ + ε/2)T, x(τ ) > ρ + ε/2τ for all τ ∈ (T, t), x(t) > ρ + ε.

Since X(t + 1) − X(t) ∈ {0, 1}, we have

X(T) + t − T ≥ X(t) > t(ρ + ε).

Using X(t) = tx(t) above, we get

T(ρ + ε/2) + t − T > t(ρ + ε),

implying

t − T >
tε

2(1 − ρ)
. (4.3)

https://doi.org/10.1017/jpr.2021.59 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.59


314 H. ACAN ET AL.

We conclude that

{x(t) > ρ + ε} ⊆
s⋃

T=1

ET , s = s(t) := t −
⌈

tε

2(1 − ρ)

⌉
.

Now let us fix a T ∈ [0, s] and bound P(ET ). The main idea of the proof is that, as long as
x(τ ) > ρ, by (4.1), the process {x(τ )} has a negative drift.

Let ξτ denote the indicator of the event {x(τ − 1) > ρ + ε/2 and X(τ ) = X(τ − 1) + 1} and
let ZT := ξT+2 + · · · + ξt. On the event ET , the sum ZT counts the total number of upward
unit jumps (X(τ ) − X(τ − 1) = 1, τ ∈ [T + 2, t]) and therefore

X(T + 1) +ZT = X(t) ≥ t(ρ + ε).

Since X(T + 1) ≤ X(T) + 1 ≤ T(ρ + ε/2) + 1, we must have

ZT > (ρ + ε)(t − T), ZT := 1 +ZT .

Writing p(x(τ )) := P(X(τ + 1) = X(τ ) + 1 | ◦),

E[x(τ + 1) | ◦] = p(x(τ ))
X(τ ) + 1

τ + 1
+ (1 − p(x(τ )))

X(τ )

τ + 1

= p(x(τ ))

τ + 1
+ τx(τ )

τ + 1

= x(τ ) + p(x(τ )) − x(τ )

τ + 1
,

so that p(x(τ )) = h(x(τ )) + x(τ ) + O
(
τ−1

)
.

Recall that for τ ≥ T + 1 we have x(τ ) > ρ + ε/2. Since h′(x) < −1 in (0, 1), the sum h(x) +
x is decreasing in (0, 1). Hence, conditioning on the full record (up to and including time τ ),

P(ξτ+1 = 1 | ◦) = P(X(τ + 1) = X(τ ) + 1 | ◦)

= h(x(τ )) + x(τ ) + O
(
τ−1

)
< h(ρ + ε/2) + ρ + ε/2 + O

(
τ−1

)
= h(ρ) + (ε/2) · h′(y) + ρ + ε/2 + O

(
τ−1

)
for some y ∈ (ρ, ρ + ε/2)

< ρ + O
(
τ−1

)
.

Hence the sequence {ξτ } is stochastically dominated by the sequence of independent Bernoulli
random variables Bτ with parameters min

(
ρ + O

(
τ−1

)
, 1

)
. Consequently ZT is stochastically

dominated by 1 + ∑t
j=T+2 Bj, and

λ :=
t∑

j=T+2

E[Bj] = ρ(t − T) + O(log t).

For the choice of ε we have, (4.3) gives

(ρ + ε)(t − T) ≥ (1 + ε/2)λ.
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Thus, by the Chernoff bound in Theorem 4.1 and using (4.3),

P(ET ) ≤ P(ZT > (t − T)(ρ + ε))

≤ P(1 + BT+2 + · · · + Bt > (t − T)(ρ + ε))

≤ P(1 + BT+2 + · · · + Bt > (1 + ε/2)λ)

≤ exp (−�(ε2(t − T))) ≤ e−�
(
log3 t

)
.

Using the union bound on T , we complete the proof of (4.2) and of the lemma. �

Note. In the next sections we turn to the two greedy algorithms for the PAM and UAM Markov
graph processes. We will continue using the symbol ‘| ◦)’ to denote conditioning on a current
graph G(t).

5. Greedy matching algorithm

Recall that the greedy matching algorithm (for either of two graph models) generates
the increasing sequence {M(t)} of partial matchings on the sets [t], with M(1) = ∅. Given
M(t), let

X(t) := number of unmatched vertices at time t,

Y(t) := total degree of unmatched vertices at time t,

U(t) := number of unmatched vertices selected by t + 1 from [t] \ M(t),

x(t) := X(t)/t,

y(t) := Y(t)/(2mt).

5.1. The PAM case

Theorem 2.4. Let X(t) be the number of unmatched vertices at time t in the greedy matching
algorithm. For δ > −m, let ρm,δ be the unique root in (0, 1) of

h(z) = hm,δ(z) := 2

[
1 −

(
m + δ

2m + δ

)
z

]m

− z − 1. (5.1)

Then, for any α < 1/3, almost surely

lim
t→∞ tα max{0, x(t) − ρm,δ} = 0.

In consequence, the greedy matching algorithm a.s. finds a sequence of nested matchings
{M(t)}, where the number of vertices in M(t) is asymptotically at least (1 − ρm,δ)t.

Proof. Notice first that for δ > −m the function h(z) is decreasing on (0, 1) and h(z) = 0 does
have a unique solution in the same interval.

We will prove our claim first for a slightly different model that does not allow any loops
other than at the first vertex. In this model, vertex 1 has m loops, and the ith edge of vertex
t + 1 attaches to u ∈ [t] with probability

dt,i−1(u) + δ

2mt + 2(i − 1) + tδ
.
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Loops not allowed except at vertex 1. In this case, since each degree is at least m, we have
Y(t) ≥ mX(t) and hence y(t) ≥ x(t)/2. Also, since

X(t + 1) =
{

X(t) + 1 if U(t) = 0,

X(t) − 1 if U(t) > 0,

we have
E[X(t + 1) | ◦] = X(t) + P(U(t) = 0 | ◦) − P(U(t) > 0 | ◦). (5.2)

Since P(vertex t + 1 has some loop) = O
(
t−1

)
, using Y(t) ≥ mX(t) in the last step below, by

Lemma 3.2 we get

P(U(t) = 0 | ◦) = P(U(t) = 0 and vertex t + 1 has no loop | ◦) + O
(
t−1)

= (1 − O
(
t−1))

(2mt − Y(t) + δt − δX(t))(m)

(2mt + δt)(m)
+ O

(
t−1)

= (2mt + δt − Y(t) − δX(t))m

(2mt + δt)m
+ O

(
t−1)

=
(

1 − 2m

2m + δ
y(t) − δ

2m + δ
x(t)

)m

+ O
(
t−1)

≤
(

1 − m + δ

2m + δ
x(t)

)m

+ O
(
t−1). (5.3)

Using (5.2) and (5.3) gives

E[x(t + 1) | ◦] ≤ x(t) + 1

t

[
2

(
1 − m + δ

2m + δ
x(t)

)m

− x(t) − 1

]
+ O

(
t−2)

= x(t) + 1

t
h(x(t)) + O

(
t−2), (5.4)

where h(z) is as defined in (5.1). Note that X(0) = 0 and h(z) satisfies the conditions given in
Lemmas 4.1 and 4.2, namely h(0) > 0, h(1) < 0, and h′(z) < −1 for z ∈ (0, 1). The conclusion
of the theorem follows from the first part of Lemma 4.2 in this case.

Loops allowed everywhere. The above analysis is carried over to this more complicated case
via an argument similar to that for the descendant trees in Section 2.1. Here is a proof sketch.
First, the counterpart of (5.3) is

P({U(t) = 0} ∩ {no loops at t + 1} | ◦)

= �m(t)
m−1∏
j=0

(
2mt − Y(t) + δt − δX(t) + j

2mt + 2j + 1 + δt + (j + 1) δ/m

)

≤ �m(t)

[(
1 − m + δ

2m + δ
x(t)

)m

+ O
(
t−1)]

= (
1 − O

(
t−1))[(

1 − m + δ

2m + δ
x(t)

)m

+ O
(
t−1)]

=
(

1 − m + δ

2m + δ
x(t)

)m

+ O
(
t−1);

see (3.3) for �m(t). Therefore we again obtain (5.4). The rest of the proof remains the same. �
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Remark 5.1. Let r = rm,δ := 1 − ρm,δ , where ρm,δ is the unique root in (0, 1) of

h(z) = hm,δ(z) := 2

[
1 −

(
m + δ

2m + δ

)
z

]m

− z − 1.

Then r is the unique root in (0, 1) of

f (z) = fm,δ(z) := 2 − z − 2

(
m

2m + δ
+ m + δ

2m + δ
z

)m

.

Thus, by Theorem 2.4, we have
lim inf (1 − x(t)) ≥ r

almost surely, where 1 − x(t) is the fraction of the vertices in M(t). See (2.3) for various r
values when δ = 0.

Remark 5.2. When δ → ∞, the function fm,δ(z) as defined above converges to 2 − z − 2zm in
(0, 1). So it is plausible that for the case of uniform attachment model, the number of vertices
in M(t) is asymptotically rt, where r is the unique root of 2 − z − 2zm. This is in fact the case,
as shown in the next theorem.

5.2. The UAM case

Theorem 2.5. Let M(t) denote the greedy matching set after t steps of the UAM process. Let rm

denote the unique positive root of 2(1 − zm) − z = 0, i.e. rm = 1 − m−1 log 2 + O
(
m−2

)
. Then,

for any α < 1/3, almost surely

lim
t→∞ tα

∣∣∣∣2|M(t)|
t

− rm

∣∣∣∣ = 0.

Proof. Let X(t) = t − 2|M(t)| as before. In particular, we have X(0) = 0 and X(1) = 1. At
each step t ≥ 2 we check the edges incident to vertex t. If some of the edges end at vertices
that do not belong to M(t), then we choose the largest (youngest) of those vertices, say w,
and set M(t) := M(t − 1) ∪ {(t, w)} and X(t) = X(t − 1) − 1. Otherwise M(t) = M(t − 1) and
X(t) = X(t − 1) + 1. Let x(t) = X(t)/t be the fraction of unmatched vertices after step t. Then
X(t) is a Markov chain with

P(X(t + 1) − X(t) = 1 | X(t)) = (1 − x(t))m,

since for X(t + 1) − X(t) = 1 to happen, each of the m choices made by vertex t + 1 must lie
outside of M(t), the probability of each such choice is 1 − x(t), and the choices are independent
of each other. With the remaining probability vertex t + 1 chooses at least one of m vertices
from X(t), in which case X(t) decreases by 1. Consequently

E[X(t + 1) | ◦] = X(t) + (1 − x(t))m − (
1 − (1 − x(t))m) = X(t) + 2(1 − x(t))m − 1.

Dividing both sides by t + 1, we obtain

E[x(t + 1) | ◦] = x(t) + h(x(t))

t + 1
− O

(
1/t2

)
,

where h(z) = 2(1 − z)m − z − 1. The function h meets the conditions of the second part of
Lemma 4.2. Hence limt→∞ tγ |x(t) − ρm| = 0 a.s. On the other hand, if ρm is the unique root of
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h in (0, 1), then rm := 1 − ρm is the unique root of 2(1 − zm) − z in (0, 1). Since x(t) − ρm =
(1 − 2|M(t)|/t) − (1 − ρm) = ρm − 2|M(t)|/t, we also have a.s.

lim
t→∞ tγ

∣∣2|M(t)|/t − rm
∣∣ = 0.

This completes the proof. �

6. Analysis of greedy independent set algorithm

The algorithm, for both the PAM and UAM cases, generates the increasing sequence of
independent sets {I(t)} on the sets [t], with I(1) := {1}. If vertex t + 1 does not select a single
vertex from t, we set I(t + 1) = I(t) ∪ {t + 1}; otherwise I(t + 1) := I(t). Given I(t), let

X(t) := number of vertices ≤ t outside of the current independent set I(t),

Y(t) := total degree of these outsiders,

Z(t) := number of insiders selected by outsiders by time t,

U(t) := number of insiders selected by vertex t + 1,

x(t) := X(t)

t
, y(t) := Y(t)

2mt
, z(t) = Z(t)

mt
, i(t) = |I(t)|

t
.

Since each insider selects only among outsiders, the total degree of insiders is m|I(t)| + Z(t)
and

Y(t) = 2mt − m|I(t)| − Z(t) =⇒ y(t) = 1 − (i(t) + z(t))/2.

6.1. The PAM case

Theorem 2.6. Let wm denote the unique root of −w + (1 − w)m in (0, 1). For any

χ ∈
(

0, min

{
1

3
,

2m + 2δ

3(2m + δ)

})
,

almost surely

lim
t→∞ tχ

∣∣∣∣ |I(t)|
t

− wm

∣∣∣∣ = 0.

Proof. By the definition of the algorithm, we have

|I(t + 1)| =
{

|I(t)| + 1 with probability P(U(t) = 0 | ◦),

|I(t)| with probability P(U(t) > 0 | ◦).

Now U(t) = 0 means that vertex t + 1 selects all m vertices from the outsiders set, so that

P(U(t) = 0 | ◦) = (Y(t) + δX(t))(m)

((2m + δ)t)(m)
+ O

(
t−1)

=
(

2my(t) + δx(t)

2m + δ

)m

+ O
(
t−1)

=
(

1 − m + δ

2m + δ
i(t) − m

2m + δ
z(t)

)m

+ O
(
t−1).
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The leading term in the first equality is the exact (conditional) probability of {U(t) = 0} when
no loops at vertices other than the first vertex are allowed, and the extra O

(
t−1

)
is for our more

general case when the loops are admissible. So, using i(t) = |I(t)|/t, we have

E[i(t + 1) | ◦] = i(t) + 1

t + 1

[
−i(t) +

(
1 − m + δ

2m + δ
i(t) − m

2m + δ
z(t)

)m]
+ O

(
t−2). (6.1)

Now Z(t + 1) = Z(t) + U(t), so that

E[Z(t + 1) | ◦] = Z(t) +E[U(t) | ◦]

= Z(t) + m
I(t)(m + δ) + Z(t)

(2m + δ)t
+ O

(
t−1),

and using z(t) = Z(t)/mt, we have

E[z(t + 1) | ◦] = z(t) + 1

t + 1

[
−z(t) +

(
i(t)

m + δ

2m + δ
+ z(t)

m

2m + δ

)]
+ O

(
t−2). (6.2)

Introduce

w(t) = i(t)
m + δ

2m + δ
+ z(t)

m

2m + δ
.

Multiplying (6.1) and (6.2) by (m + δ)/(2m + δ) and m/(2m + δ) and adding the products, we
obtain

E[w(t + 1) | ◦] = w(t) + f (w(t))

t + 1
+ O

(
t−2),

f (w) := m + δ

2m + δ

[−w + (1 − w)m]
.

(6.3)

The function f is qualitatively similar to the function h in the proof of Theorem 2.4. Indeed,
f (w) is strictly decreasing, with f (0) = 1 and f (1) = −1. Therefore f (w) has a unique root wm ∈
(0, 1); it is not difficult to see that

wm = log m

m
[1 + O(log log m/ log m)], m → ∞.

Let us prove that for any

α < c(m, δ) := min

{
1,

2m + 2δ

2m + δ

}
( ⊆ (0, 1])

and A ≥ A(α) we have
E

[
(w(t) − wm)2] ≤ At−α, (6.4)

First

|i(t + 1) − i(t)| =
∣∣∣∣ |I(t + 1)|

t + 1
− |I(t)|

t

∣∣∣∣
≤ 1

t + 1
(|I(t + 1)| − |I(t)|) + |I(t + 1)|

t + 1

≤ 2

t + 1
, (6.5)
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and similarly

|z(t + 1) − z(t)| ≤ 2

t + 1
.

Therefore |w(t + 1) − w(t)| ≤ 2/(t + 1), and consequently

(w(t + 1) − wm)2 ≤ (w(t) − wm)2 + 4

t2
+ 2(w(t) − wm)(w(t + 1) − w(t)).

So, conditioning on prehistory, we have

E
[
(w(t + 1) − wm)2 | ◦] ≤ (w(t) − wm)2 + 2(w(t) − wm)E[w(t + 1) − w(t) | ◦] + O

(
t−2)

= (w(t) − wm)2 + 2(w(t) − wm)

t + 1
f (w(t)) + O

(
t−2).

By (6.3),

f ′(w) ≤ − m + δ

2m + δ
.

Therefore, with

c(m, δ) = 2m + 2δ

2m + δ
,

the last inequality gives

E
[
(w(t + 1) − wm)2 | ◦] ≤

(
1 − c(m, δ)

t + 1

)
(w(t) − wm)2 + O

(
t−2),

leading to a recursive inequality

E
[
(w(t + 1) − wm)2] ≤

(
1 − c(m, δ)

t + 1

)
E

[
(w(t) − wm)2] + O

(
t−2). (6.6)

The bound (6.4) follows from (6.6) by a straightforward induction on t. Next we use (6.4) to
prove that, for A1 large enough,

E
[
(i(t + 1) − wm)2 | ◦] ≤ A1t−α . (6.7)

Using (6.5), we have

(i(t + 1) − wm)2 ≤ (i(t) − wm)2 + 4

t2
+ 2(i(t) − wm)(i(t + 1) − i(t)).

Consequently

E
[
(i(t + 1) − wm)2 | ◦] ≤ (i(t) − wm)2 + 2(i(t) − wm)E[i(t + 1) − i(t) | ◦] + O

(
t−2)

= (i(t) − wm)2 + 2(i(t) − wm)

t + 1
[ − i(t) + (1 − w(t))m] + O

(
t−2).

Taking expectations of both sides, and using Cauchy’s inequality and (6.4), we obtain

E
[
(i(t + 1) − wm)2] ≤

(
1 − 2

t + 1

)
E

[
(i(t) − wm)2]

+ 2

t + 1
E

1/2[(i(t) − wm)2]
E

1/2[(wm − (1 − w(t))m)2] + O
(
t−2)

≤
(

1 − 2

t + 1

)
E

[
(i(t) − wm)2] + 2mA1/2

t1+α/2
E

1/2[(i(t) − wm)2] + O
(
t−2),
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since wm = (1 − wm)m, and

|(1 − w(t))m − (1 − wm)m| ≤ m|w(t) − wm|.
So it suffices to show the existence of A1 such that(

1 − 2

t + 1

)
A1t−α + 2mA1/2A1/2

1 t−α/2

t1+α/2
+ O

(
t−2) ≤ A1(t + 1)−α

holds for t > t0, where t0 depends only on A and α. For large t, the above inequality becomes

2mA1/2A1/2
1 + O(t−1−α) ≤ A1[(2 − α) + O

(
t−1)] + O(t−1+α),

and

A1 > A

(
2m

2 − α

)2

does the job. So (6.7) is proved. Therefore, by Markov’s inequality,

P(|i(t) − wm| ≥ t−χ ) ≤ At−α+2χ → 0, χ ∈ (0, α/2). (6.8)

This inequality already means that i(t) → wm in probability. Let us show the considerably
stronger statement that i(t) → wm with probability 1, at least as fast as t−χ , for any given
χ < 1/3. Pick β > 1 and introduce a sequence {tν}, tν = �νβ�. By (6.8), we have

∑
ν≥1

P(|i(tν) − wm| ≥ t−χ
ν ) ≤

∑
ν≥1

A1t−α+2χ
ν = O

( ∑
ν≥1

ν−β(α−2χ )
)

< ∞,

provided that β > (α − 2χ )−1, which we assume from now. For such choice of β, by the Borel–
Cantelli lemma with probability 1 for all but finitely many ν, we have |i(tν) − ρ| ≤ t−χ

ν . Let
t ∈ [tν, tν+1]. By (6.5), we have

|i(t) − i(tν))| = O

(
tν+1 − tν

tν

)

uniformly for all ν. So if |i(tν) − ρ| ≤ t−χ
ν , then (using tν = �

(
νβ

)
) we have, for t ∈ [tν, tν+1],

|i(t) − wm| ≤ t−χ
ν + O

(
tν+1 − tν

tν

)

= O
(
ν−βχ + ν−1

)
= O

(
ν− min (βχ,1)

)
= O

(
t− min (χ,β−1)

)
.

Since |i(tν) − wm| ≤ t−χ
ν holds almost surely (a.s.) for all but finitely many ν, we see then that

a.s. so does the bound |i(t) − wm| = O(t− min (χ,β−1)) for all but finitely many t. Now, by taking
β sufficiently close to (α − 2χ )−1 from above, we can make min (χ, β−1) arbitrarily close to
min (χ, α − 2χ ) from below. It remains to notice that min (χ, α − 2χ ) attains its maximum
α/3 at χ = α/3. The proof of Theorem 2.6 is complete. �
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6.2. The UAM case

Theorem 2.7. Let wm be the unique root of −w + (1 − w)m in (0, 1). Then, for any α < 1/3,
almost surely

lim
t→∞ tα

∣∣∣∣ |I(t)|
t

− wm

∣∣∣∣ = 0.

The following remark is already stated as Remark 2.3.

Remark 6.1. Thus, the convergence rate aside, almost surely the greedy independent algorithm
delivers a sequence of independent sets of asymptotically the same size as for the PAM case.

Proof. Let i(t) = |I(t)|/t. From the definition of the UAM process and the greedy indepen-
dent set algorithm, we obtain

|I(t + 1)| =
{

|I(t)| + 1 with conditional probability (1 − i(t))m,

|I(t)| with conditional probability 1 − (1 − i(t))m.

Therefore

E[|I(t + 1)| | ◦] = |I(t)| + (1 − i(t))m,

or equivalently

E[i(t + 1) | ◦] = i(t) + 1

t + 1
[ − i(t) + (1 − i(t))m].

The function −x + (1 − x)m differs by a constant positive factor from the function f in (6.3).
The function f meets the conditions of Lemma 4.1, and rm is a unique root of f . Therefore, for
any α < 1/3, a.s. limt→∞ tα|i(t) − rm| = 0. �

Appendix A. Coupling {Gm,0(t)}t and {G1,0(mt)}t

In order to show that the coupling described in Section 2 really works, we can compute the
probability that the ith edge of vertex wt+1 connects to vertex wx in the coupling and compare
it with the probability in (2.1). Let {G′

m,δ(t)} denote the process obtained by collapsing the
vertices of {G1,δ/m(mt)}. Note that the (mt + i)th edge of the {G1,δ/m(mt)} process becomes
the ith edge of wt+1 after collapsing. Hence the ith edge of vertex wt+1 connects to wx (x ≤ t)
if and only if the (mt + i)th edge of the {G1,δ/m(mt)} process connects vmt+i with one of the
vertices vm(x−1)+1, . . . , vmx. Let dmt+i−1(vy) denote the degree of vy (y ≤ mt + i) just before
the (mt + i)th edge of the {G1,δ/m} process is drawn. Also, let Dt,i−1(wx) denote the degree of
wx at the exact same time. Hence, by definition,

Dt,i−1(wx) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mx∑
y=mx−m+1

dmt+i−1(vy) x ≤ t,

mt+i∑
y=mt+1

dmt+i−1(vy) x = t + 1.
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By (2.2), for x ≤ t, the probability that vmt+i connects to one of the vertices vm(x−1)+1, . . . , vmx

(equivalently, the probability that the ith edge of wt+1 connects to wx) is∑mx
y=mx−m+1 (dmt+i−1(vy) + δ/m)

(2 + δ/m)(mt + i − 1) + 1 + δ/m
= δ + ∑mx

y=mx−m+1 dmt+i−1(vy)

δ(t + i/m) + 2mt + 2i − 1

= δ + Dt,i−1(wx)

δ(t + i/m) + 2mt + 2i − 1
.

Similarly, the probability that vmt+i selects one of vmt+1, . . . , vmt+i (equivalently, the proba-
bility that the ith edge of wt+1 is a loop) is

1 + iδ/m + ∑i−1
j=1 dmt+i−1(vmt+j)

δ(t + i/m) + 2mt + 2i − 1
= 1 + iδ/m + Dt,i−1(wt+1)

δ(t + i/m) + 2mt + 2i − 1
.

Note that the two probabilities above are the same as those in (2.1) if we replace Dt,i−1(wx) with
dt,i−1(x). Moreover, the two processes, {G′

m,δ(t)} and {Gm,δ(t)} as defined by (2.1), both start
with m loops on the first vertex, which implies d1,0( · ) = D1,0( · ). This gives us that {Gm,δ(t)}
and {G′

m,δ(t)} are equivalent processes, that is, at every stage they produce the same random
graph.
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