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SUMMARY
Maximum load carrying capacity (MLCC) of flexible robot
manipulators is computed based on closed-loop approach.
In open-loop approach, controller is not considered, so the
end effector deviation from the predefined path is significant
and the accuracy constraint restrains the maximum payload
before actuators go into saturation mode. In order to improve
the MLCC, a method based on closed-loop strategy is
presented. Since in this case the accuracy is improved the
actuators constraint is not a major concern and full power of
actuators can be used. Since controller can play an important
role in improving the maximum payload, a sliding mode
based partial feedback linearization controller is designed.
Furthermore, a fuzzy variable layer is used in sliding mode
design to boost the performance of the controller. However,
the control strategy required measurements of elastic
variables velocity that are not conveniently measurable.
So a nonlinear observer is designed to estimate these
variables. Stability analysis of the proposed controller and
state observer are performed on the basis of Lyapunov’s
direct method. In order to verify the effectiveness of the
presented method, simulation is done for a two-link flexible
manipulator. The obtained maximum payload in open-loop
and closed-loop cases is compared and the superiority of the
method is illustrated and the results are discussed.

KEYWORDS: Flexible manipulator; Sliding mode;
Observer; Feedback linearization.

1. Introduction
In traditional rigid manipulators, the dynamic load carrying
capacity (DLCC) is usually defined as the maximum
load which a manipulator can repeatedly lift and carry
on the fully extended configuration while the dynamics
of both the load and manipulator must be taken into
account.1 Another definition of maximum payload is the
maximum value of load which a robot manipulator is able
to carry on a desired trajectory which is based on the
consideration of inertia effects on this desired path.2 For
rigid manipulators, maximum load on a given trajectory is
primarily constrained by the joint actuator torque and its
velocity characteristic. However, for flexible manipulators
another constraint, maximum allowable deflection, must be
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considered. Korayem and Basu,3 presented an algorithm for
computing the DLCC of elastic manipulators by imposing the
accuracy constraint of the end effector in addition to torque
constraint of actuators.

On the other hand, the maximum load carrying capacity
(MLCC) along the given path can be determined in
both open-loop and closed-loop cases. In open-loop case,
several algorithms are proposed for finding the MLCC of
multiple cooperating robotic manipulators,4 rigid mobile
manipulators,5 flexible joint mobile manipulators,6 flexible-
link manipulators,7 cable-suspended parallel manipulators,8

and redundant manipulators.9 In the closed-loop case,
controller type and its parameters have a significant effect on
increasing the maximum payload. A closed-loop approach
has been employed to determine the DLCC of a flexible
joint manipulator by considering the feedback linearization
controller to track the predefined path.10 Another work based
on sliding mode technique has been done for flexible joint
manipulators.11

In flexible-link manipulators, complexities such as
nonminimum-phase property of the tip transfer function,
the existence of unstructured uncertainties, and system
nonlinearities makes it difficult to accurately position the
tip of the flexible manipulators and it caused designing
controllers for flexible manipulators to be a very challenging
task. One method which is excessively used in control of
nonlinear systems is feedback linearization.12 However for
flexible-link robots due to highly nonlinear coupled dynamics
and existence of passive degrees-of-freedom only partial
feedback linearization (PFL) is suitable. For flexible-link
robots, the portion of the dynamics corresponding to the
active degrees of freedom can be linearized by the nonlinear
feedback. The remaining portion of the dynamics after such
PFL is nonlinear and represents internal dynamics.13 A major
drawback in this method which can not be used solely as a
controller is lack of robustness with respect to uncertainties.

In the design of SMC, it is assumed that the control
can be switched from one structure to another infinitely
fast. However, because of the switching delay computation
and the limitation of physical actuators, which cannot
handle the switching of control signal at an infinite rate,
it is practically impossible to achieve high-speed switching
control. As a result of this imperfect control switching
between structures, the system trajectory appears to chatter
instead of sliding along the switching surface. Chatter
involves high frequency control switching and may lead to
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excitation of previously neglected high frequency system
dynamics. Smoothing techniques such as boundary layer
normalization, replacement of discontinuous control term by
a fuzzy system14,15 have been employed. The smoothing of
control discontinuity inside the boundary layer essentially
assigns a low pass filter structure to the local dynamics
of the variable s, thus eliminates chattering. Through this
approach the transient performance of the closed-loop system
is maintained, however controller can only guarantee final
tracking accuracy to within the ε-vicinity of the demand,
where ε is the radius of the boundary layer. A compromise
must therefore be sought between desired tracking accuracy
and controller bandwidth. To reach a better compromise
between small chattering and good tracking precision in the
presence of parameter uncertainties, various compensation
strategies have been proposed. For example, integral sliding
mode control, sliding mode control with time-varying
boundary layers, adaptively selecting the switching gain of
the sliding mode controller.16–18 The sliding mode control
with the variable boundary layer needs a strategy to adjust
the thickness of the boundary automatically and research
on the strategies has been conducted widely. For tuning the
boundary layer a fuzzy system is used which adopts an
algebraic distance s to the sliding surface as input and the
thickness of the boundary layer as output such that better
tracking achieved.

An accurate knowledge of the arm state variables is
required by many advanced control techniques for flexible
multilink robots. It can be conveniently achieved using a
state observer. Some works have been done using linear
observers derived for a linearized model of the arm.19

Other papers propose the use of nonlinear state observers
to obtain the values of immeasurable state variables.20,21

In flexible manipulators it is possible to measure joint
positions, velocities, and flexible modes of manipulators
using shaft encoders, tachometers, and strain gauges,
respectively. However, measuring the flexural generalized
velocities cannot be easily or accurately accomplished. Thus,
a state observer is desirable in these circumstances. In order
to decrease in computational effort a reduced order observer
for estimating only flexible variables can be very helpful.
The proposed observer requires positions and velocities of
joints as well as flexible modes, and it estimates the rates of
change of flexible modes. In order to show the effectiveness
of the proposed closed-loop algorithm the simulation is done
for both open-loop and closed-loop cases.

In this paper, the general dynamic equations of flexible-
link manipulator are derived. Then, by using PFL, a
controller is designed for partially linearized model of
flexible manipulator based on fuzzy variable boundary layer
sliding mode approach. An algorithm is proposed to compute
maximum allowable load by considering the limiting factors.
Finally, simulation study is conducted for two-link flexible
planar manipulator.

2. Dynamics of Flexible-Link Manipulator
An n-link flexible manipulator moving in a vertical plane,
with rotary joints subject to only bending deformation in the
plane of motion is shown in Fig. 1. In order to derive a finite-

Fig. 1. Flexible manipulator (Li is length of the ith link, ρi is mass
per length of the ith link, EiIi is flexural rigidity of the ith link, ωi

is deformation of the ith link, and θi is joint angular position of the
ith link).

dimensional ordinary differential equation an approximation
approach using assumed mode methods is taken into account.

The dynamics of any multilink flexible-link robot can be
represented by:

M(q)q̈ + N(q, q̇) = τ, (1)

where q(t) = [qT
r , qT

f ]T , in which qr is the vector of
generalized joint coordinates and qf is the vector of flexible
modes. M(q) represents the inertia matrix, N(q, q̇) is a
n × 1 vector of centripetal and Coriolis velocity terms and
τ denotes the vector of generalized control forces (torque)
applied at each joint.

The flexible manipulator dynamics are partitioned into
rigid and flexible degrees-of-freedom as

{
Mrrq̈r + Mrf q̈f + Nr = u I
Mfrq̈r + Mff q̈f + Nf = 0 II , (2)

where Mrr, Mrf , Mfr, and Mff are the blocks of inertia matrix,
M , Nr , and Nf are the blocks of Coriolis and centrifugal
matrix N and u includes the control torques applied to each
joint.

The following properties are known to be verified, by the
Lagrangian structure definite matrices.

3. Controller Design of Flexible-Link Manipulator
The controller design of flexible-link manipulator is divided
into two steps. First by applying PFL, the dynamic of flexible
link is divided into two parts: partially linearized model and
internal model. Second, the state trajectory of a system to
the origin in the error phase hyperplane by using the sliding
mode approach force during two distinct phases: reaching
phase and sliding phase.

3.1. Partial feedback linearization
Using Eq. (2-II), q̈f can be expressed as below

q̈f = −M−1
ff [Mfrq̈r + Nf ]. (3)
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Substituting for q̈f from Eq. (3) in Eq. (2-I) gives[
Mrr − Mrf M

−1
ff Mfr

]
q̈r + Nr − Mrf M

−1
ff Nf = u. (4)

Equation (4) is similar in form to rigid manipulator modeling
with the equivalent symmetric and positive definite mass
matrix Mrr − Mrf M

−1
ff Mfr based on property II.22 The zero

dynamic is defined for Eq. (2) by putting qr and its derivatives
equal to zero.

Mff q̈f + Nf = 0, (5)

where Nf simplified to Kqf , and K is the stiffness matrix
and can be written as

K = diag
{
ω2

11, ω
2
12, . . . , ω

2
ij, . . . , ω

2
nm

}
, (6)

where ωij is the j th natural frequency of the ith link. Equation
(5) can be written as

Mff q̈f + Kqf = 0. (7)

Since Mff and K are the positive definite symmetric matrices,
the equilibrium point [qf , q̇f ] of Eq. (7) is stable in the sense
of Lyapunov but not asymptotically stable.

3.2. Sliding mode design
The Lyapunov sliding condition forces system states to reach
a hyperplane and keeps them sliding on this hyperplane.
Essentially, a SMC design is composed of two phases:
hyperplane design and controller design. There are various
methods for designing hyperplane, however a method
proposed by Slotine is used.23 In this method the sliding
surface is defined as

s = ( ˙̃qr + λ′ ˙̃qf ) + λ(q̃r + λ′q̃f ), (8)

where q̃r = qr − q
ref
r and q̃f = qf − q

ref
f . q

ref
r is the desired

trajectory of joints and q
ref
r = 0, because the desired value for

flexible variables is zero. Also λ and λ′ are positive constants.
To determine the control law, the derivative of the sliding

surface must be determined as follow.

ṡ = ( ¨̃qr + λ′ ¨̃qf ) + λ( ˙̃qr + λ′ ˙̃qf ). (9)

Treating the term λ′ ¨̃qf as disturbance, Eq. (9) is rearranged
as below

ṡ = q̈r − q̈ref
r + λ( ˙̃qr + λ′ ˙̃qf ). (10)

Since sliding condition is defined by

ṡ ≤ −� sign(s), (11)

where � is positive definite matrix. Equation (10) in order to
satisfy the sliding condition must be written as

q̈r − q̈ref
r + λ( ˙̃qr + λ′ ˙̃qf ) = −� sign(s). (12)

By substituting q̈r from Eq. (4), Eq. (12) becomes

[
Mrr − Mrf M

−1
ff Mfr

]−1[
u − Nr + Mrf M

−1
ff Nf

]

−q̈ref
r + λ( ˙̃qr + λ′ ˙̃qf ) = −� sign(s). (13)

By extracting u from Eq. (13), control law is defined as

u = M
[
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf ) − � sign(s)
] + N, (14)

where M = [Mrr −Mrf M
−1
ff Mfr] and N =Nr − Mrf M

−1
ff Nf .

By defining the M̂ and N̂ which are the nominal value of
M and N respectively, the control law can be rewritten as
follow

u = M̂
[
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf ) − � sign(s)
] + N̂ . (15)

3.3. Stability analysis of SMC
A simple stability analysis based on Lyapunov direct method
is carried out. Define the Lyapunov function candidate

V = 1

2
s2. (16)

Differentiating Eq. (16) and using Eqs. (4), (11), and (15),
one can write

V̇ = sṡ

= s
{
M−1

[
M̂

[
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf ) − � sign(s)
]

(17)

+ N̂ − N
] − q̈ref

r + λ( ˙̃qr + λ′ ˙̃qf )
}
.

By using simplification Eq. (17) becomes

V̇ = s
{
M−1M̂

[
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf ) − � sign(s)
]

+ M−1	N − q̈ref
r + λ( ˙̃qr + λ′ ˙̃qf )

}
. (18)

For stability, V̇ must be negative. Since V̇ = sṡ another
condition which assures the stability of system can
be defined as sṡ ≤ −η |s| or ṡ ≤ −η sign(s) which is
called sliding condition. By applying sliding condition we
have

(M−1M̂ − I)
(
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf )
) − M−1M̂.�.sign(s)

+ M−1	N ≤ −η. sign(s). (19)

By multiplication of both sides of Eq. (19) by M̂−1M, one
gets

(I − M̂−1M)
(
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf )
) − �. sign(s)

+ M̂−1	N ≤ −M̂−1M.η. sign(s). (20)

So the condition which guarantees the stability can be
expressed as follow

� >
∣∣(I − M̂−1M)

(
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf )
)

+ M̂−1	N
∣∣ + M̂−1Mη. (21)
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Fig. 2. Variable boundary layer (�(t) is boundary layer width, s is
sliding surface and e is error).

Since M is unknown one can define the following known
bounds

Mmin ≤ M ≤ Mmax. (22)

Since M acts multiplicatively in the dynamic of manipulator,
it is reasonable to choose the estimate M̂ of M as the
geometric mean of the above bounds,23

M̂ = (MminMmax)1/2 . (23)

Therefore bounds for M̂−1M can be defined as follow

�−1 ≤ M̂−1M ≤ �, (24)

where

� =
(

Mmax

Mmin

)1/2

. (25)

Equation (21) can be rewritten in terms of �

� >
∣∣(I − �)

(
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf )
) + M̂−1	N

∣∣ + �η.

(26)

3.4. Variable boundary layer
By introducing a Boundary Layer (�) from both sides of the
sliding surface s = 0, as shown in Fig. 2., Eq. (15) is written
as below

u = M̂
[
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf ) − � sat
( s

�

)]
+ N̂, (27)

where “sat” is saturation function.
If we rewrite ṡ based on “sat” function, we have

ṡ = (M−1M̂ − I)
(
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf )
)

− M−1M̂.�.sat
( s

�

)
+ M−1	N. (28)

By considering the system trajectories inside the boundary
layer

ṡ = (M−1M̂ − I)
(
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf )
)

− M−1M̂.�.
( s

�

)
+ M−1	N, (29)

and Eq. (29) can be rewritten as

ṡ + M−1M̂.�

�
s = (M−1M̂ − I)

(
q̈ref

r − λ( ˙̃qr + λ′ ˙̃qf )
)

+ M−1	N. (30)

In fact Eq. (30) shows that the smoothing of control
discontinuity inside boundary layer essentially assigns a low
pass filter structure to the local dynamics of the variable s,
thus eliminate chattering. Furthermore the sliding condition
is redefined as below

ṡ ≤ (�̇ − �) sign(s), (31)

because in the presence of boundary layer we need to
guarantee that the distance to the boundary layer always
decreases.

System robustness is a function of the boundary layer, in
other words thinner boundary layer gives more robust control,
but larger chattering. Therefore, there is a trade off between
the chattering and the robustness of the system for the width
of the boundary layer. In order to improve the robustness of
the system while at the same time reducing the chattering,
� can be tuned according to tracking errors through the
fuzzy logic systems. The fuzzy system adopts the distance
of trajectories to the sliding surface (|s|) as input and the
thickness of the boundary layer as output. The membership
used in fuzzy systems is shown in Fig. 3.

Fuzzy system is constructed based on “singleton”
fuzzifier, “Mamdani” fuzzy inference system, “centroid”
defuzzification and the rule-base including 4 IF-THEN rules
as below

R(1): IF |s| is “Z” THEN � is “Z”
R(2): IF |s| is “S” THEN � is “S”

R(3): IF |s| is “M” THEN � is “M”
R(4): IF |s| is “B” THEN � is “B”

By applying the fuzzy variable boundary layer, the control
law can be expressed as

u = M̂

[
q̈ref

r −λ( ˙̃qr + λ′ ˙̃qf ) − (�−�̇(t)) sat

(
s

�(t)

)]
+ N̂ .

(32)

4. State Observer Design
By extracting q̈r from Eq. (2-I), and substituting in Eq. (2-II),
we have

MfrM
−1
rr [u − Mrf q̈f − Nr ] + Mff q̈f + Nf = 0, (33)

and it can be rearranged to

[
Mff − Mfr M−1

rr Mrf
]
q̈f + Nf − Mfr M−1

rr Nr

+ MfrM
−1
rr u = 0. (34)
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Fig. 3. The membership function for |s| and � (Z is Zero, S is small, M is medium, B is big).

Equation (34) can be expressed in state space form⎧⎪⎪⎨
⎪⎪⎩

ẋf1 = xf2

ẋf2 = [
Mff − MfrM

−1
rr Mrf

]−1[ − Nf

+ MfrM
−1
rr Nr − MfrM

−1
rr u

] , (35)

where xf1 = qf and xf2 = q̇f . Using sliding mode observer
technique, the dynamic of observer is written as{

˙̂xf1 = x̂f2 + k11x̃f1 + k12sign(x̃f1 )
˙̂xf2 = f̂ (xr, xf1, x̂f2 ) + k21x̃f1 + k22sign(x̃f1 )

, (36)

where f̂ (xr, xf1, x̂f2 ) = [Mff − MfrM
−1
rr Mrf ]−1[−Nf + Mfr

M−1
rr Nr − MfrM

−1
rr u] and kij are positive gains. x̃f1 is the

estimation error and equal to xf1 − x̂f1 . The dynamic of error
is achieved by subtracting Eq. (35) by Eq. (36){

˙̃xf1 = x̃f2 − k11x̃f1 − k12sign(x̃f1 )

˙̃xf2 = f̃ − k21x̃f1 − k22sign(x̃f1 )
, (37)

where can be written in a simple form of

ė = f̃ ∗ − Kee − Kssign(e), (38)

where f̃ ∗ = [
x̃f2

f̃
] and e = [

x̃f1

x̃f2

]. Using Taylor expansion

around e = 0, Eq. (38) can be given as

ė = Ae + O(e2) − Kssign(e), (39)

where

A =
(

∂f̃ ∗

∂e
− Ke

)
e=0

=

⎡
⎢⎢⎣

0 1

∂f̃

∂x̃f1

∣∣∣∣
x̃f1 =0

∂f̃

∂x̃f2

∣∣∣∣
x̃f2 =0

⎤
⎥⎥⎦

+
[−k11 0

−k21 0

]
. (40)

The eigenvalues of A can be specifically placed by properly
choosing of Ke. If matrix A has negative eigenvalues then the
error will converge to zero. From matrix algebra we know
that a square matrix is negative definite if determinants of all
principal minors have the following pattern:

|D1| < 0, |D2| > 0, |D3| < 0, . . . , (41)

where Di is the ith principle minor. So, by applying the above
conditions we have

−k11
∂f̃

∂x̃f2

∣∣∣∣
x̃f2 =0

+ k21 − ∂f̃

∂x̃f1

∣∣∣∣
x̃f1 =0

> 0. (42)

If k21 is chosen big enough, the above condition is satisfied.
Now for stability analysis of the proposed state observer the
following Lyapunov candidate is considered

V (e) = eT P e, (43)

where P is a positive definite matrix. The time derivative of
this Lyapunov function can be expressed as

V̇ (e) = eT (AT P + PA)e + 2eT P (O(e2) − Kssign(e)).

(44)

By replacement, AT P + PA by a positive definite matrix Q

such that

AT P + PA = −Q. (45)

Equation (44) can be simplified to be

V̇ (e) = −eT Qe + 2eT P (O(e2) − Ks sign(e)). (46)

To get a more simplified form, sign(e) is replaced by e
|e| ,

moreover it’s assumed that O(e2) is a Lypschitz function
with a constant γ , so we have

V̇ (e) = −eT Qe + 2γ eT P e − 2PKs |e| . (47)
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From Eq. (47), we can have the following inequality

V̇ (e) ≤−λmin(Q) ‖e‖2+ 2γ λmax(P ) ‖e‖2 −2λmin (PKs) |e| ,
(48)

where λmin(Q) and λmax(P ) are the minimum and maximum
eigenvalues of Q and P respectively. By proper choice of Ke

and Ks the negativeness of V̇ (e) can be guaranteed.

5. Maximum Load Carrying Capacity
MLCC can be obtained in either open-loop or closed-loop
case. In open loop, the controller is not considered and only
dynamic equation is used. In closed-loop case, MLCC is
obtained while both dynamic equation and controller are
considered. The actuator torque constraint is formulated
on the basis of typical torque–speed characteristics of DC
motors. {

τU = K1 − K2q̇r

τL = −K1 − K2q̇r

, (49)

where τU and τL are the upper bound and the lower bound
of actuator constraint, respectively. The coefficients Ki are
defined as ⎧⎨

⎩
K1 = Ts

K2 = Ts

ωnl

, (50)

where Ts is the stall torque and ωnl is the maximum no-load
speed of the motor.

5.1. Determining the MLCC in open-loop case
For computing the MLCC in open-loop condition, the
following steps must be done:

1. Determining the actuator path in which the arms are in
fully extended configurations.

2. Finding qr, q̇r , q̈r by solving inverse dynamic for the
same rigid manipulator.

3. Determining qf , q̇f , q̈f from Eq. (2-II).
4. Computing of the actuators torque (τnl) and end effector

path for no load manipulator.
5. Choosing an initial value for mmax.
6. Putting mp = mmax and computing the actuators torque

(τl) and end effector path.
7. Computing the actuators bounds based on Eq. (49) and

Eq. (50).
8. Determining the load coefficient Ca based on actuator

constraints:10

Ca= min
(

min
(
Cfirst joint

a (1 : n)
)
, min

(
Csecond joint

a (1 : n)
))

.

(51)
9. Determining the load coefficient Cp based on accuracy

constraints:

CP (k) = RP − 	e(k)

max(	e(k)) − max(	n(k))
, (52)

where 	e(k) is the error of end effector in the present
of load and 	n(k) is the error of end effector without
load (Fig. 3).

Fig. 4. Boundary of end effector deflection.

10. Determining the load coefficient C

C = min(CP , Ca). (53)

11. If |Ci+1 − Ci | ≤ error then mmax = C × mp, otherwise
mp = C × mp and go to 6.

5.2. Determining the MLCC in closed-loop case
Since in closed-loop case the system input is computed by
controller, so for applying the actuator constraints instead
of defining the load coefficient we put a constraint on the
controller output such that: if controller output does not
violate the actuator constraint the system input is equal
to controller output otherwise it is equal to the bounds of
actuator constraints. The accuracy constraint is checked by
the distance between desired trajectory and actual trajectory
which must not violate the accuracy constraint (Rp). The
algorithm used for finding MLCC in closed-loop case is
shown in Fig. 4.

6. Simulation Studies
By applying the proposed algorithm for closed-loop plant
the maximum allowable load computed as mload = 4.51kg,
meanwhile the maximum allowable loop for open loop in
three iteration find as mload = 3.63kg. The simulation results
are shown in Figs. 5–10. The parameters used in simulation
are given in Tables I and II.

Table I. Parameters of manipulator.

Parameter Value Unit

Length of Links L1 = L2 = 1 m
Mass per length ρ1 = ρ2 = 4.68 kg/m
Flexural rigidity E1I1 = E2I2 = 1025 N m2

Actuator stall torque Ts1 = 81, Ts2 = 29 N m
Actuator no-load speed ωn1 = ωn2 = 3.5 Rad/s

Table II. Parameters of controller.

Parameter Value

Controller constants λ = diag (10, 10) � = diag (25, 25)
Observer constants k11 = 100, k12 = 1e5 k21 = 100, k22 = 1e5
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Fig. 5. Flowchart of computing DLCC. End effector path, (open-loop case).
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Fig. 6. Flexible variables in open-loop case (δij is the j th flexible variable of the ith link and δ′
ij is the rate of change of that flexible variable).

Figure 6 shows the elastic variables in open-loop case
which can be seen that these variables do not converge to
zero. Figure 7 shows that in closed-loop case the capacity of
actuators is better used respect to open-loop case. Figure 9
shows that the good performance of state observer in
estimating of elastic variable velocities. Moreover it shows
the convergence of flexible-link vibrations. Figure 10 is
the elastic variables used in dynamic of system but it is

neglected in controller and observer design to show the
robustness of controller respect to unstructured uncertain-
ties.

7. Conclusion
In this paper, a new formulation is developed to determine the
maximum load for flexible-link manipulator in the presence

Fig. 7. Control input in two cases, open loop (solid thin line) and closed loop (dashed thick line).
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Fig. 8. Angular position in two cases (without load and full load), the reference signal is shown in solid thin line and the actual trajectories
are shown in dashed thick line, (closed-loop case).

of controller. The controller is designed based on sliding
mode method and for alleviation of chattering phenomena a
fuzzy variable boundary layer is used. However in control
law, the velocity of elastic variables is used which cannot be

measured easily. So a nonlinear state observer is designed
based on sliding mode approach to estimate these variables.
The controllers and the observer have been designed in this
study based on a simplified version of the model of the

Fig. 9. Deflection of two links in two cases without load (solid thin line) and full load (dashed thick line), (closed-loop case).
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Fig. 10. End effector path in two cases (without load and full load), (closed-loop case).

arm, which only the first elastic mode of the link is taken
into account while for the model the second mode shape
is also considered to investigate the effects of unstructured
uncertainties on the overall performance of the closed-loop
system. By applying the proposed algorithm for closed-
loop case the maximum allowable load computed as mload =
4.51 kg, meanwhile the maximum allowable loop for open
loop found as mload = 3.63 kg.
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Appendix: Equation of motion for a two-link planar
flexible manipulator
The equation of motion for two-link flexible manipulator can
be written as

M(q)q̈ + N(q, q̇) = τ, (A 1)

where

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

thet1

thet2

q11

q12

q21

q22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A 2)

τ =

⎡
⎢⎢⎢⎣

u1

u2

0

0

⎤
⎥⎥⎥⎦ , (A 3)

where theti is angular position of the ith link and qij is the
jth flexible variable of the ith link. N(q, q̇) can be expressed
by

N(q, q̇) = C(q, q̇) + Kq, (A 4)

The elements of M(q), C(q, q̇) and Kare given as below

M(1, 1) = 4.1000 + q11∧2 + q12∧2 + (1. + (.92447∗q11

−.92529∗q12)∧2)∗(5.4800 + Mtip) + Mtip∗(1.

+ (.92447∗q11 − .92529∗q12)∗(.92447∗q21

− .92529∗q22)∗cos(−thet1 + thet2) − (.92447∗

× q21 − .92529∗q22 − .92447∗q11 + .92529∗

× q12)∗sin(−thet1 + thet2)) − 1.6939∗

× sin(−thet1 + thet2)∗q21 − .93883∗

× sin(−thet1 + thet2)∗q22 + 1.5660∗

× cos(−thet1 + thet2)∗q11∗q21 − .86769∗

× cos(−thet1 + thet2)∗q12∗q22–1.5672∗

× cos(−thet1 + thet2)∗q12∗q21 + .86800∗

× cos(−thet1 + thet2)∗q11∗q22 + 2.1633∗

× sin(−thet1 + thet2)∗q11–2.1652∗

× sin(−thet1 + thet2)∗q12;

M(1, 2) = Mtip∗(1. + (.92447∗q11−.92529∗q12)∗(.92447∗

× q21 − .92529∗q22)∗cos(−thet1 + thet2)

− (.92447∗q21 − .92529∗q22 − .92447∗q11

+ .92529∗q12)∗sin(−thet1 + thet2))−1.6939∗

× sin(−thet1 + thet2)∗q21 − .93883∗

× sin(−thet1 + thet2)∗q22 + 1.5660∗

× cos(−thet1 + thet2)∗q11∗q21 − .86769∗

× cos(−thet1 + thet2)∗q12∗q22 + 4.1000

− 1.5672∗cos(−thet1 + thet2)∗q12∗q21

+ .86800∗cos(−thet1 + thet2)∗q11∗q22

+ 2.1633∗sin(−thet1 + thet2)∗q11–2.1652∗

× sin(−thet1 + thet2)∗q12 + Mtip + Mtip∗

×(.92447∗q21−.92529∗q22)∧2+q21∧2+q22∧2;

M(1, 3) = 6.2967 + .92447∗Mtip + 2.1633∗cos(−thet1

+ thet2) − 1.5660∗sin(−thet1 + thet2)∗q21

− .86801∗sin(−thet1 + thet2)∗q22 + Mtip∗

× (.92447∗cos(−thet1 + thet2) − 1.∗(.85465∗

× q21 − .85540∗q22)∗sin(−thet1 + thet2));

M(1, 4) = −4.8748 − .92529∗Mtip − 2.1652∗cos(−thet1

+ thet2) + 1.5672∗sin(−thet1 + thet2)∗q21

+ .86839∗sin(−thet1 + thet2)∗q22 + Mtip∗

× (−.92529∗cos(−thet1 + thet2)−1.∗(−.85540∗

× q21 + .85616∗q22)∗sin(−thet1 + thet2));

M(1, 5) = 1.6939∗cos(−thet1 + thet2) + 1.5660∗

× sin(−thet1 + thet2)∗q11–1.5672∗sin(−thet1

+ thet2)∗q12 + Mtip∗(.92447∗cos(−thet1

+ thet2) + (.85465∗q11 − .85540∗q12)∗

× sin(−thet1 + thet2)) + 1.2305 + .92447∗Mtip;

M(1, 6) = .93881∗cos(−thet1 + thet2) + .86801∗sin(−thet1

+ thet2)∗q11 − .86839∗sin(−thet1 + thet2)∗q12

+ Mtip∗(−.92529∗cos(−thet1 + thet2)

+ (−.85540∗q11 + .85616∗q12)∗sin(−thet1

+ thet2)) + .19581 − .92529∗Mtip;

M(2, 1) = Mtip∗(1. + (.92447∗q11−.92529∗q12)∗(.92447∗

× q21 − .92529∗q22)∗cos(−thet1 + thet2) − 1.∗

× (.92447∗q21 − .92529∗q22 − .92447∗q11

+ .92529∗q12)∗sin(−thet1 + thet2)) − 1.6939∗

× sin(−thet1 + thet2)∗q21−.93883∗sin(−thet1

+ thet2)∗q22 + 1.5660∗cos(−thet1 + thet2)∗
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× q11∗q21 − .86769∗cos(−thet1 + thet2)∗q12∗

× q22 + 2.3400–1.5672∗cos(−thet1 + thet2)∗

× q12∗q21 + .86800∗cos(−thet1 + thet2)∗q11∗

× q22 + 2.1633∗sin(−thet1 + thet2)∗q11

− 2.1652∗sin(−thet1 + thet2)∗q12;

M(2, 2) = 1.7600 + Mtip + Mtip∗(.92447∗q21 − .92529∗

× q22)∧2 + q21∧2 + q22∧2;

M(2, 3) =2.1633∗cos(−thet1 + thet2) − 1.5660∗sin(−thet1

+ thet2)∗q21 − .86801∗sin(−thet1 + thet2)∗q22

+ Mtip∗(.92447∗cos(−thet1 + thet2) − 1.∗

×(.85465∗q21−.85540∗q22)∗sin(−thet1 + thet2));

M(2, 4) = −2.1652∗cos(−thet1 + thet2) + 1.5672∗

× sin(−thet1 + thet2)∗q21 + .86839∗sin(−thet1

+ thet2)∗q22 + Mtip∗(−.92529∗cos(−thet1

+ thet2) − 1.∗(−.85540∗q21 + .85616∗q22)∗

× sin(−thet1 + thet2));

M(2, 5) = 1.2305 + .92447∗Mtip;

M(2, 6) = .19581 − .92529∗Mtip;

M(3, 1) = 6.2967 + .92447∗Mtip;

M(3, 2) =2.1633∗cos(−thet1 + thet2) − 1.5660∗sin(−thet1

+ thet2)∗q21 − .86801∗sin(−thet1 + thet2)∗q22

+ Mtip∗(.92447∗cos(−thet1 + thet2) − 1.∗

×(.85465∗q21−.85540∗q22)∗sin(−thet1 + thet2));

M(3, 3) = 5.6835 + .85465∗Mtip;

M(3, 4) = −4.6876 − .85540∗Mtip;

M(3, 5) = 1.5660∗cos(−thet1 + thet2) + .85465∗

× cos(−thet1 + thet2)∗Mtip;

M(3, 6) = .86801∗cos(−thet1 + thet2) − .85540∗

× cos(−thet1 + thet2)∗Mtip;

M(4, 1) = −4.8748 − .92529∗Mtip;

M(4, 2) = −2.1652∗cos(−thet1 + thet2) + 1.5672∗

× sin(−thet1 + thet2)∗q21 + .86839∗sin(−thet1

+ thet2)∗q22 + Mtip∗(−.92529∗cos(−thet1

+ thet2) − 1.∗(−.85540∗q21 + .85616∗q22)∗

× sin(−thet1 + thet2));

M(4, 3) = −4.6876 − .85540∗Mtip;

M(4, 4) = 5.6917 + .85616∗Mtip;

M(4, 5) = −1.5672∗cos(−1.∗thet1 + thet2) − .85540∗

× cos(−1.∗thet1 + thet2)∗Mtip;

M(4, 6) = −.86839∗cos(−thet1 + thet2) + .85616∗

× cos(−thet1 + thet2)∗Mtip;

M(5, 1) = 1.6939∗cos(−thet1 + thet2) + 1.5660∗

× sin(−thet1 + thet2)∗q11–1.5672∗sin(−thet1

+ thet2)∗q12 + Mtip∗(.92447∗cos(−thet1

+ thet2) + (.85465∗q11 − .85540∗q12)∗

× sin(−thet1 + thet2));

M(5, 2) = 1.2305 + .92447∗Mtip;

M(5, 3) = 1.5660∗cos(−thet1 + thet2) + .85465∗

× cos(−thet1 + thet2)∗Mtip;

M(5, 4) = −1.5672∗cos(−thet1 + thet2) − .85540∗

× cos(−thet1 + thet2)∗Mtip;

M(5, 5) = 1. + .85465∗Mtip;

M(5, 6) = −.85540∗Mtip;

M(6, 1) = .93881∗cos(−thet1 + thet2) + .86801∗sin(−thet1

+ thet2)∗q11 − .86839∗sin(−thet1 + thet2)∗q12

+ Mtip∗(−.92529∗cos(−thet1 + thet2)

+ (−.85540∗q11 + .85616∗q12)∗sin(−thet1

+ thet2));
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M(6, 2) = .19581 − .92529∗Mtip;

M(6, 3) = .86801∗cos(−thet1 + thet2) − .85540∗

× cos(−thet1 + thet2)∗Mtip;

M(6, 4) = −.86839∗cos(−thet1 + thet2) + .85616∗

× cos(−thet1 + thet2)∗Mtip;

M(6, 5) = −.85540∗Mtip;

M(6, 6) = 1. + .85616∗Mtip;

C(1) = 1.6939∗thetdot1∧2∗cos(−thet1 + thet2)∗q21

+ .93858∗thetdot1∧2∗cos(−thet1 + thet2)∗q22

+ 7.9995∗thetdot1∗q11∗qdot11–2.1633∗thetdot1∧2∗

× cos(−thet1 + thet2)∗q11 − .93822∗cos(−thet1

+ thet2)∗thetdot2∧2∗q22–4.3303∗thetdot1∗

× sin(−thet1 + thet2)∗qdot12–8.0066∗thetdot1∗

× q12∗qdot11–8.0066∗thetdot1∗q11∗qdot12

+ 8.0136∗thetdot1∗q12∗qdot12 + 2.1633∗thetdot2∧2∗

× cos(−thet1 + thet2)∗q11 + 2.1652∗thetdot1∧2∗

× cos(−thet1 + thet2)∗q12 + 4.3265∗thetdot1∗

× sin(−thet1 + thet2)∗qdot11 + (1.4791∗q21

− 1.4805∗q22)∗(.92447∗q21 − .92529∗q22)∗

× thetdot2–1.6939∗cos(−thet1 + thet2)∗thetdot2∧2∗

× q21–1.8768∗sin(−thet1 + thet2)∗thetdot2∗qdot22

− 2.1652∗thetdot2∧2∗cos(−thet1 + thet2)∗q12

− 3.3879∗sin(−thet1 + thet2)∗thetdot2∗qdot21

+ 1.7348∗thetdot1∗cos(−thet1 + thet2)∗qdot11∗q22

+ .86787∗sin(−thet1 + thet2)∗thetdot1∧2∗q11∗q22

+ 3.1319∗thetdot1∗cos(−thet1 + thet2)∗qdot11∗q21

− 1.7361∗thetdot1∗cos(−thet1 + thet2)∗qdot12∗q22

− 1.5672∗sin(−thet1 + thet2)∗thetdot1∧2∗q12∗q21

− .86808∗sin(−thet1 + thet2)∗thetdot1∧2∗q12∗q22

+ 1.5660∗sin(−thet1 + thet2)∗thetdot1∧2∗q11∗q21

− 3.1347∗thetdot1∗cos(−thet1 + thet2)∗qdot12∗q21

− 1.5660∗thetdot2∧2∗sin(−thet1 + thet2)∗q11∗q21

+ .86800∗thetdot2∧2∗sin(−thet1 + thet2)∗q12∗q22

+ 1.7350∗thetdot2∗cos(−thet1 + thet2)∗q11∗qdot22

− 3.1347∗thetdot2∗cos(−thet1 + thet2)∗q12∗qdot21

+ 3.1319∗thetdot2∗cos(−thet1 + thet2)∗q11∗qdot21

− 1.7360∗thetdot2∗cos(−thet1 + thet2)∗q12∗qdot22

− .86794∗thetdot2∧2∗sin(−thet1 + thet2)∗q11∗q22

+ 1.5672∗thetdot2∧2∗sin(−thet1 + thet2)∗q12∗q21

+ 2.3400∗sin(−thet1 + thet2)∗thetdot1∧2 + Mtip∗

× ((1.8489∗q21–1.8506∗q22)∗(.92447∗q21

− .92529∗q22)∗thetdot2 + (thetdot1 + 1.8489∗

× qdot11–1.8506∗qdot12 + (.92447∗q11 − .92529∗

× q12)∗(.92447∗q21 − .92529∗q22)∗thetdot1)∗

× thetdot1∗sin(−thet1 + thet2) + ((.92447∗q21

− .92529∗q22)∗thetdot1–1.∗(.92447∗q11 − .92529∗

× q12)∗thetdot1 + (1.8489∗q11–1.8506∗q12)∗

× (.92447∗q21 − .92529∗q22))∗thetdot1∗

× cos(−1.∗thet1 + thet2)) + (2.∗q11∗qdot11

+ 2.∗q12∗qdot12)∗thetdot1 + Mtip∗((1.8489∗q11

− 1.8506∗q12)∗(.92447∗qdot11 − .92529∗qdot12)∗

× thetdot1–1.∗(thetdot2 + 1.8489∗qdot21–1.8506∗

× qdot22 + (.92447∗q11 − .92529∗q12)∗(.92447∗

× q21 − .92529∗q22)∗thetdot2)∗thetdot2∗

× sin(−1.∗thet1 + thet2) − 1.∗((.92447∗q21

− .92529∗q22)∗thetdot2–1.∗(.92447∗q11 − .92529∗

× q12)∗thetdot2 − (1.8489∗q11–1.8506∗q12)∗

× (.92447∗qdot21 − .92529∗qdot22))∗thetdot2∗

× cos(−1.∗thet1 + thet2)) − 2.3400∗thetdot2∧2∗

× sin(−thet1 + thet2) + (2.∗q21∗qdot21 + 2.∗q22∗

× qdot22)∗thetdot2 + (1.4791∗q11–1.4805∗q12)∗

× (.92447∗qdot11 − .92529∗qdot12)∗thetdot1;

C(2) = Mtip∗((1.8489∗q21 − 1.8506∗q22)∗(.92447∗q21

− .92529∗q22)∗thetdot2 + (thetdot1 + 1.8489∗

× qdot11−1.8506∗qdot12+(.92447∗q11−.92529∗

× q12)∗(.92447∗q21 − .92529∗q22)∗thetdot1)∗

× thetdot1∗sin(−1.∗thet1 + thet2) + ((.92447∗q21

− .92529∗q22)∗thetdot1 − (.92447∗q11 − .92529∗

× q12)∗thetdot1 + (1.8489∗q11–1.8506∗q12)∗

× (.92447∗q21 − .92529∗q22))∗thetdot1∗cos(−thet1

+ thet2)) − 3.1347∗thetdot1∗cos(−thet1 + thet2)∗

× qdot12∗q21 + 1.7348∗thetdot1∗cos(−1.∗thet1

+ thet2)∗qdot11∗q22 − .86808∗sin(−thet1 + thet2)∗

× thetdot1∧2∗q12∗q22+3.1319∗thetdot1∗cos(−thet1
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+ thet2)∗qdot11∗q21–1.7361∗thetdot1∗cos(−thet1

+ thet2)∗qdot12∗q22 + .86787∗sin(−thet1 + thet2)∗

× thetdot1∧2∗q11∗q22–4.3303∗thetdot1∗sin(−thet1

+ thet2)∗qdot12 + 4.3265∗thetdot1∗sin(−thet1

+ thet2)∗qdot11–2.1633∗thetdot1∧2∗cos(−thet1

+ thet2)∗q11 + 1.6939∗thetdot1∧2∗cos(−thet1

+ thet2)∗q21 + 2.1652∗thetdot1∧2∗cos(−thet1

+ thet2)∗q12 + .93858∗thetdot1∧2∗cos(−thet1

+ thet2)∗q22–1.5672∗sin(−thet1 + thet2)∗

× thetdot1∧2∗q12∗q21 + 1.5660∗sin(−thet1

+ thet2)∗thetdot1∧2∗q11∗q21 + (1.4791∗q21

− 1.4805∗q22)∗(.92447∗q21−.92529∗q22)∗thetdot2

+ (2.∗q21∗qdot21 + 2.∗q22∗qdot22)∗thetdot2

+ 2.3400∗sin(−thet1 + thet2)∗thetdot1∧2;

C(3) = .80000∗thetdot1∧2∗(−.85465∗q11 + .85540∗q12)

+ Mtip∗(thetdot1∧2∗(−.85465∗q11 + .85540∗q12)

− sin(−1.∗thet1 + thet2)∗thetdot2∗(.92447∗thetdot2

+ 1.7093∗qdot21–1.7108∗qdot22) − cos(−1.∗thet1

+ thet2)∗thetdot2∧2∗(.85465∗q21 − .85540∗q22))

−thetdot1∧2∗q11–3.9998∗thet1∧2∗q11 + 4.0033∗

× thet1∧2∗q12–1.5660∗cos(−thet1 + thet2)∗

× thetdot2∧2∗q21–1.7348∗sin(−thet1 + thet2)∗

× thetdot2∗qdot22–3.1319∗sin(−thet1 + thet2)∗

× thetdot2∗qdot21 − .86793∗cos(−thet1 + thet2)∗

× thetdot2∧2∗q22–2.1633∗thetdot2∧2∗sin(−thet1

+ thet2);

C(4) = 4.0033∗thet1∧2∗q11 − 4.0068∗thet1∧2∗q12

+ 1.5672∗cos(−thet1 + thet2)∗thetdot2∧2∗q21

+ 1.7360∗sin(−thet1 + thet2)∗thetdot2∗qdot22

+ 3.1344∗sin(−thet1 + thet2)∗thetdot2∗qdot21

+ .86800∗cos(−thet1 + thet2)∗thetdot2∧2∗q22

− thetdot1∧2∗q12 + .80000∗thetdot1∧2∗(.85540∗

× q11 − .85616∗q12) + 2.1652∗thetdot2∧2∗

× sin(−thet1 + thet2) + Mtip∗(thetdot1∧2∗(.85540∗

× q11 − .85616∗q12) − 1.∗sin(−thet1 + thet2)∗

× thetdot2∗(−.92529∗thetdot2–1.7108∗qdot21

+ 1.7123∗qdot22) − 1.∗cos(−thet1 + thet2)∗

× thetdot2∧2∗(−.85540∗q21 + .85616∗q22));

C(5) = −1.∗Mtip∗(thetdot2∧2∗(.85465∗q21 − .85540∗q22)

− 1.∗thetdot1∗sin(−thet1 + thet2)∗(.92447∗thetdot1

+ 1.7093∗qdot11–1.7108∗qdot12) + thetdot1∧2∗

× cos(−thet1 + thet2)∗(.85465∗q11 − .85540∗q12))

− 3.1347∗thetdot1∗sin(−thet1 + thet2)∗qdot12

+ 3.1319∗thetdot1∗sin(−thet1 + thet2)∗qdot11

− 1.5660∗thetdot1∧2∗cos(−thet1 + thet2)∗q11

+ 1.5672∗thetdot1∧2∗cos(−thet1 + thet2)∗q12

− 1.∗thetdot2∧2∗q21 + 1.6939∗sin(−thet1

+ thet2)∗thetdot1∧2;

C(6) = −Mtip∗(thetdot2∧2∗(−.85540∗q21 + .85616∗q22)

− 1.∗thetdot1∗sin(−thet1 + thet2)∗(−.92529∗

× thetdot1–1.7108∗qdot11 + 1.7123∗qdot12)

+ thetdot1∧2∗cos(−thet1 + thet2)∗(−.85540∗q11

+ .85616∗q12)) − 1.7357∗thetdot1∗sin(−thet1

+ thet2)∗qdot12 + 1.7347∗thetdot1∗sin(−thet1

+ thet2)∗qdot11 − .86792∗thetdot1∧2∗cos(−thet1

+ thet2)∗q11 + .86794∗thetdot1∧2∗cos(−thet1

+ thet2)∗q12–1.∗thetdot2∧2∗q22 + .93858∗

× sin(−thet1 + thet2)∗thetdot1∧2;

K = [zeros(2)zeros(2, 4); zeros(4, 2)K1];

where the elements of K1 are given as below

K1(1,1) = 2707.6;

K1(1,2) = 0.;

K1(1,3) = 0.;

K1(1,4) = 0.;
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K1(2,1) = 0.;

K1(2,2) = .10634e6;

K1(2,3) = 0.;

K1(2,4) = 0.;

K1(3,1) = 0.;

K1(3,2) = 0.;

K1(3,3) = 2707.6;

K1(3,4) = 0.;

K1(4,1) = 0.;

K1(4,2) = 0.;

K1(4,3) = 0.;

K1(4,4) = .10634e6;
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