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In this article we will derive some results for characterizing the almost closed sets of a
face-homogeneous random walk. We will present a conjecture on the relation
between discrete scattering of the fluid limit and the absence of nonatomic almost
closed sets. We will illustrate the conjecture with random walks with both simple
and nonsimple decomposition into almost closed sets.

1. INTRODUCTION

Let be given a discrete time, irreducible Markov chain fjtgt¼0,1,. . ., on a countable
state space S with stationary transition probabilities

pxy ¼ P{jtþ1 ¼ yjjt ¼ xj}:

For unraveling the transient behavior of this Markov chain, it seems of interest to
study the almost closed sets (i.e., subsets A , S for which lim sup fjn [ A g and
lim inf fjn [ Ag are a.s. equal and have positive probability). If this probability is
zero, the corresponding set is said to be transient.

It is known (cf. Blackwell [1]) that the state space partitions into an at most denu-
merable collection of disjoint, almost closed sets that together absorb all probability
mass in the long run. All, except at most one, are atomic; that is, they do not contain
two disjoint almost closed subsets. The nonatomic one, if present, does not contain
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any atomic subsets. The collection is essentially unique. It determines a decompo-
sition of the process itself, by identifying the “directions” into which the process dis-
appears in the long run. The Markov chain is called simple whenever the state space
consists of a single almost closed set.

Additionally, there is an one-to-one correspondence between the bounded
harmonic functions and the almost closed sets from the decomposition. This immedi-
ately shows that the process is simple and atomic whenever the chain is recurrent.

Blackwell [1] has used the almost closed set structure for determining the structure
of the invariant s-algebra. A consequence is a characterization of the Poisson boundary
of the Markov chain (cf. Kaimanovich [8]), which (essentially) is the probability space
restricted to the sub-s-algebra of invariant sets with induced measure.

Here we would like to highlight the relation between almost closed sets and
scattering properties of a certain class of Markov chains over its sets of fluid or
Euler paths. This class consists of so-called face-homogeneous random walks.
Extensions to more general walks are easily possible but involve more technical
descriptions that might have obscured the exposition.

A Markov chain jt is said to be face-homogeneous when the state space S can be
partitioned into a finite collection of disjoint subsets Li , S, i ¼ 1, . . . , k, where jt

behaves as a homogeneous random walk on each of these. More precisely, to each
L corresponds a discrete probability distribution pL such that

pxy ¼ pLy�x, any x [ Li, i ¼ 1, . . . , k:

The subsets L are called faces. Denote m(x) ¼ Efjtþ12jtjjt ¼ xg ¼
P

y( y2x)pxy

for the drift from state x. By face-homogeneity, the drift only depends on the face
L to which x belongs. Henceforth, we will mostly write mL ¼

P
y ypy

L instead.
We would like to focus on the following aspect of transient face-homogeneous

random walks. Consider the time-space scaled process j[tN]([xN])/N, as N!1,
where j0 ¼ [xN] denotes the initial position. Assume that it has a limit (in distri-
bution), u(x; t) say. This limit might be stochastic. Any realisation u(x; .) is called
a fluid path or Euler path starting at point x. Assuming S , Zp, then u(x; .) , Rp.
As a natural extension of a set C , Zp to Rp we will take, for instance, the convex
hull conv(C ) of C in Rp.

Let fCigi¼0
1 be the almost closed sets from the decomposition. Our conjecture has

the following form (modulo technical conditions).

CONJECTURE 1.1: Assume that there exist finitely many almost closed sets and no
nonatomic ones. Then to each almost closed set C corresponds precisely one path
u(0; .) such that u(0; t) , conv(C ), for t � T, for some finite time T. Moreover,

P lim
N!1

j[tN](x)

N
¼ u(0; t)

� �
¼ P lim inf

N!1
{jN(x) [ C}

� �
; (1:1)

that is, the probability of selecting a given path is given by the absorption probability of the
corresponding almost closed set. These probabilities are called the scattering probabilities.
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We will call this “discrete scattering.” In the case of an uncountably infinite
number of Euler paths starting at a given point, we have “continuous scattering.”
This occurs, for instance, in the case of the transient, face-homogeneous random
walk on Z2 discussed in Popov and Spieksma [10]. In this article, there are uncoun-
tably many Euler paths starting at the origin 0 that all cycle off to infinity. Then the set
of realizations u(0;1) forms a closed curve around 0. The usual scaling by time does
not produce any convergence results for a fixed initial point. If one identifies each
Euler path with one point on this curve, we conjecture convergence of the unscaled
process j[tN](x) to a random variable on this curve. Time scaling and identification
are equivalent in the case of denumerably many Euler paths. The intuition behind
this is the following. We expect that one can only have at most a denumerable
amount of Euler paths starting at a given point, when, in the long run, each path
belongs to one face. Both approaches map such a path to precisely one point.

The article’s aim is to bring into the limelight a connection between the invariant set
structure (i.e., the bounded harmonic functions) and Euler paths. This relation is implicit
in, for instance, the computation of the Poisson boundary by Kurkova [9] for face-
homogeneous random walks in mainly dimension 2. It is therefore not surprising that
the proof techniques used by Kurkova [9] often seem to be similar to the ones used here.

In order to present the main idea of discrete scattering, we discuss some simple
examples with both simple and nonsimple decomposition, using proof techniques that
seem to apply to more general cases. These proof techniques are based on the exist-
ence of well-behaved Lyapunov functions that can be turned into contractive ones
implying exponential convergence properties. The articles by Popov and Spieksma
[10] and Spieksma [12] discuss an example of continuous scattering. If neither
courage nor stamina fail, we will later address the more general problem, which,
we fear, is bound to be quite technical. This is mostly because the construction of
Lyapunov functions seems quite involved even in relatively simple models like face-
homogeneous random walks.

The following section provides the basic definitions and results from Blackwell
[1] and Chung [2] concerning almost closed sets. In Section 3 we will derive a number
of tools that seem basic to us for studying the almost closed set structure and Euler
limit behavior for face-homogeneous random walks in general. These use certain
techniques from Feller [4] and Lyapunov function techniques from Fayolle,
Malyshev, and Menshikov [3].

As an application, Section 4 will study face-homogeneous random walks on the
integer line. Finally, Section 5 addresses the problem of face-homogeneous random
walks on the quarter plane. Hordijk and Popov [6] derive large deviation bounds
for face-homogenous random walks on the quarter plane. As an application of this
article, the local rate function is derived in Hordijk and Popov [7] in explicit form
for the path identically 0 in exponential queuing networks corresponding to a
coupled processors system. Hidden in the analysis of these articles, but essential
for the derivation of their result, is the assertion of Conjecture 1.1, applied to the
appropriate random walk. Indeed, the local rate function for the path identically 0
is precisely the maximum of the local rates for the path identically 0, conditioned
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on the almost closed sets containing the origin of space. Section 5 aims to show val-
idity of the conjecture for two versions of the models studied in Hordijk and Popov
[7]. The first is the “coupled processors system with switched-off processors when-
ever a queue is empty.” The second is the same model with additional input whenever
a queue is empty. To be clear, for all models in Hordijk and Popov [7], the conjecture
can be shown to hold. However, the derivations are analogous to the one presented
here and we prefer to focus on the two versions mentioned.

2. ALMOST CLOSED SETS AND INVARIANT s-ALGEBRA

We recall definitions and results from Chung’s exposition [2, §I.17]. Assume the
Markov chain jt to be aperiodic. For m0, the inital distribution of jt (i.e., m0(A) ¼
Pfj0 [ Ag), write Pm0

for the corresponding probability measure on the space space

V ¼ S1 ¼ {(x0, x1, . . . )jxn [ S, n ¼ 0, 1, 2 . . . },

endowed with the s-algebra F generated by the one-point cylinder sets

{(x0, x1, . . . , xn)� S� S� � � � }, xi [ S, i � n, n ¼ 0,1, . . . :

When m0(x) ¼ 1 for a given state x [ S, we will simply write Px and Ex for
the corresponding probability and expectation operators, respectively. Let A, F
by any sub-s-algebra of sets. A set C [ A is called atomic with respect to A if
Pm0

(C ) . 0 and C does not contain two disjoint subsets in A with positive probabi-
lity. It is called completely nonatomic if Pm0

(C ) . 0 and it does not contain any
atomic subsets (in A).

The following lemma is well known (cf. Blackwell [1] and Chung [2]).

LEMMA 2.1: The path space V can be represented by means of a denumerable collec-
tion of disjoint sets belonging to A:

V ¼
[
n¼0

Cn,

where some of the Cn might be absent. If present, then C0 is completely nonatomic
and Ci, i � 1, are atomic. This decomposition is unique modulo sets of zero
measure. Hence,

P
i Pm0

fCig ¼ 1.

We will callA trivial if V is atomic w.r.t.A (i.e., C1 ¼ V). Note that Pm0
(C) being

positive or zero does not depend on the initial measure m0, only its particular value.
Bearing in mind our interest in the long-run behavior of the Markov chain, we

will consider the sub-s-algebra of invariant sets. To this end, introduce the time
shift T on V:

T(x0, x1, . . . ) ¼ (x1, x2, . . . ):

A set C [ F is called invariant whenever T 21C ¼ C. The class of invariant sets is a
sub-s-algebra of F denoted by G.
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One can find the decomposition of V w.r.t. G through a decomposition of the
state space S into so-called almost closed sets. Let A ,S and define two corresponding
invariant sets by

L(A) ¼ lim inf
n!1

{jn [ A} ¼
[
m�0

\
t�m

{vjjt(v) ¼ vt [ A};

L(A) ¼ lim sup
n!1

{jn [ A} ¼
\
m�0

[
t�m

{vjjt(v) [ A}:

We call a set A transient if Pm0
fLðAÞg ¼ 0. The set A is called almost closed if it is

not transient and

Pm0
{L(A)} ¼ Pm0

{L(A)} (.0): (2:1)

By A denote the class of almost closed and transient sets of the state space S. Then,
for any A [ A and any initial state x, one has

Px{L(A)} ¼ Px{L(A)} ¼ lim
n!1

Px{jn [ A}, (2:2)

and so the limit probability of the chain being in set A exists.
Clearly, S itself is an almost closed set. The following properties will be used in

the sequel. The proof is elementary.

LEMMA 2.2:

(i) Suppose that C , A, for sets A, C [ A. Then A nC [ A. Moreoever,
limn!1 Pxfjn [ Ag ¼ limn!1 Pxfjn [ Cg if and only if A nC is
transient.

(ii) Suppose that A, B [ A; then A < B [ A. In particular, if A and B are both
transient, then A < B is transient.

(iii) Any subset of a transient set is transient.

The lemma implies that A is an algebra of sets and transient sets are an ideal of
this algebra. The following theorem exhibits the relation between G as a sub-s-algebra
of F and A as a s-algebra on S.

THEOREM 2.3: To each invariant set C [ G there corresponds a transient or almost
closed set A[A, unique up to transient sets, such that

C ¼ {L(A)} ¼ {L(A)},

according to whether C is a null set or not. The correspondence is an isomorphism of
algebras. In particular, one can choose the set A by setting

A ¼ {x [ SjPx{C} . a}

for 0 , a , 1 arbitrary.
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The above correspondence with invariant sets motivates calling an almost closed
set A [ A atomic if does not contain two disjoint almost closed sets and completely
nonatomic if it does not contain any atomic subset. As a consequence of Lemma 2.1
and Theorem 2.3 the state space S can be partitioned into a denumerable set of disjoint
almost closed sets

S ¼
[1
n¼0

An,

where A0 (if present) is completely nonatomic and Ai, i � 1, is atomic (if present). The
decomposition is unique modulo transient sets. Moreover, one has

1 ¼
X1
n¼0

Px{L(An)} ¼
X1
n¼0

Px{L(An)} ¼
X1
n¼0

lim
t!1

Px{jt [ An}: (2:3)

3. TOOLS

3.1. Sojourn Sets and Well-Behaved Lyapunov Functions

For characterizing almost closed sets, and consequently invariant sets, the concept
“sojourn set” (cf. Feller [4] and Chung [2]) seems the more manageable one.

The set S of states is called a sojourn set iff Pm0
fL(S )g.0. In this case, for every

a, 0 , a , 1, define the set

S(a) ¼ {x [ SjPx{L(S)} . a}:

The following theorem (cf. Chung [2, §I.17]) holds.

THEOREM 3.1: If S is a sojourn set, then for every a, 0 , a , 1, the set S > S(a) is
almost closed, S(a)2S > S(a) is transient, and

Px{L(S)} ¼ lim
t!1

Px{jt [ S > S(a)}: (3:1)

The right-hand side of Eq. (3.1), as a function of the initial state x, has the
nice property of being a bounded harmonic function. Remember that a function
f : S! R is called harmonic w.r.t. a given transition matrix P if

f (x) ¼
X

y

pxyf (y); x [ S: (3:2)

In essence, Theorem 3.1 reduced the problem of the almost closed set structure by the
easier one of determining the sojourn set structure (or the collection of bounded har-
monic functions). By means of the following lemma (cf. Fayolle et al. [3] and
Spieksma [13]), certain sets attracting probability mass can be identified as sojourn
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sets. For convenience, we will give the proof here since it does not occur in explicit
form in these references. The proof itself is a standard construction of transforming
subadditive Lyapunov functions into contractive ones, as will be repeatedly used.

LEMMA 3.2: Suppose there exist a function f : S! R, a set B , S, a step function
k: S ! Zþ and constants d, e . 0, C � 0, such that the following hold:

(i) The f-jumps are bounded by d (i.e., j f (jtþ1) 2 f (jt)j � d, a.s.).
(ii) The step function is uniformly bounded (i.e., supx k(x) , 1).

(iii) B , fxj f (x) � Cg=S.
(iv) The f-drift outside B is strictly positive, that is,

E{f (jtþk(jt) � f (jt)jjt ¼ x) � e, x [ S n B: (3:3)

Then the set fxj f (x) . C þ cg is almost closed for any c � 0.

PROOF: Denote B0 ¼ fxj f(x) � Cg; then B0 .B. Denote the entrance time of B0 by t ; that
is, t¼ t iff t¼ inffn � 0jjn21 � B0, jn [ B0g and t¼1 whenever jt � B0 for all t.

First, assume that k(x) ; 1 and note that expfyg,1 þ y þ 3y2/2 whenever jyj,
1. We can use a standard argument to deduce the desired result (see Fayolle et al. [3]).
Using the drift condition Eq. (3.3), we have for any sufficiently small constant h . 0
with h, hd , 1, and x � B0 that

E{exp {� h( f (jtþ1)� f (jt))}jjt ¼ x}

� E 1� h( f (jtþ1)� f (jt))þ
3h2( f (jtþ1)� f (jt))

2

2

� ����jt ¼ x

�
� 1� heþ 3(hd)2

2

� exp{�g}

for some positive constant g . 0. Hence, denoting g(x) ¼ expf2hf (x)g and iterating,
we have, for j0 ¼ x � B0,

Ex{g(jt)1{t.t�1} � g(x) exp{�gt}, t . 0:

Since ft . t21g. ft ¼ tg and g � 0, it follows that

Ex{g(jt)1{t¼t} � g(x) exp{�gt}, t . 0:

For y [ B0, we have g( y) � expf2hCg, so that

Px{t ¼ t} exp{�hC} � gðxÞ exp{�gt}, t . 0:
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Multiplying both sides by expfhCg and taking the summation over t � 1, we find
that

Px{t , 1} � exp{hC � hf (x)}
1� exp {�g}

: (3:4)

By the positive drift condition, necessarily the set fx � B0g is infinite and
supx � B0 f (x) ¼1. This implies fx [ Sj f (x) . cg=� for any constant c. Let
C0.C, such that a ¼ 1 2 expfh(C2C0)g/(12expf2gg).0. For x with f (x) . C0,
we have for A ¼ fx [ Sj f (x).Cg that

Px{L(A)} ¼ Px{ lim inf
t!1

{f (jt) . C}}

� Px{ f (jt) . C, t . 0}

¼ Px{t ¼ 1} � a: (3:5)

By irreducibility, it follows that A is a sojourn set. Next, we show almost closed-
ness. This will follow from Theorem 3.1 if we can show that A ¼ A>A(a) for some
a.0.

By conditions (i) and (iv), for any x [ A, the probability of reaching the set
fy [ Sj f ( y) � f (x) þ e/2g after the next jump is at least e/(2d 2 e). Hence, for
any x [ A,

Px{ f (jl) . C0} � e

2d � e

� �l
with l ¼ 2(C0 � C)

e

� �
þ 1:

This yields for any x [ A that

Px{L(A)} �
X

{yj f (y).C0}

Px{jl ¼ y}Py{L(A)} � e

2d � e

� �l
a (3:6)

and, consequently, the desired assertion holds for a ¼ (e/(2d2e))la. Clearly, by
condition (iii), the exception set B is contained in SnA, and so one can take any
constant C þ c, c � 0, instead of C.

Let us now assume k(.) to be a general step function. We will give the proof
again for the constant C. Consider the embedded Markov chain j̃t at successive
instants 0, k(j0), k (jk(j0)), . . . . The above derivation implies Eq. (3.5) for
the embedded chain, for the constants C þ d . supx k(x) and C0, such that
a ¼ 12expfh(C þ d . supx k(x)2C0)g/(12expf2gg).0.

Boundedness conditions (i) and (ii) imply that

Px{ inf
t.0

f (jt) . C} � Px{ inf
t.0

f (~jt) . C þ d sup
x

k(x)},
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thus implying Eq. (3.5) for the chain jt and constant C for the constants C0 and a that
have been chosen for the embedded chain j̃t. The remainder follows as earlier. B

A sufficient condition for transience of an infinite set can be derived in a similar
fashion.

LEMMA 3.3: Suppose there exist a function f : S! R, a nonempty set A , S, and
a finite step function k: S! Zþ such that the following hold:

(i) The step function is uniformly bounded (i.e., supx k(x) , 1).
(ii) For some 0 , a , 1, we have fx [ AjPx fL(A)g� ag¼�.

(iii) The f-drift outside A is strictly negative, that is,

E{f (jtþk(jt))� f (jt)jjt ¼ x} � �e, x [ S n A: (3:7)

(iv) f (x) � 0 on

(S n A) < {y [ Ajpzy . 0, for some z [ S n A}:

Then the set S n A is transient.

PROOF: Note that if the set A is finite, then Eq. (3.7) is simply a generalized version
of the Lyapunov–Foster criterion for positive recurrence of the Markov chain.
Checking that proof, it follows that the time t to hit A (from a state x � A) is
finite a.s. and has finite expectation, whether A is finite or not, provided that con-
dition (iv) holds.

The set A is almost closed by condition (ii) and Theorem 3.1. Denote Ac ¼ S n A
and let x [ Ac be given. Then taking into account the fact that t is finite with
probability 1, using iteration and the fact that P fjt [ A i.o.g is a harmonic function,
since Px fjt [ A i.o.g ¼

P
y pxy Py fjt [ A i.o.g), we find, for x [ Ac,

Pxfjt [ A i.o.g ¼
X
y[A

Pxfjt ¼ ygPyfjt [ A i.o.g � a: (3:8)

Hence, A(a) ¼ fy [ SjPy fL (A)g. ag ¼ S and A(a) > A ¼ A. By Theorem 3.1,
Ac ¼ SnA ¼ A(a)nA ¼ A(a)nA>A(a) is transient. B

In applications as face-homogeneous random walks, one often can construct
a suitable Lyapunov function on the whole state space, satisfying Eq. (3.3) outside
at most a compact set. This one can be used for piecing together both Lemmas
3.2 and Lemma 3.3.

LEMMA 3.4: Suppose there exist a function f : S! R, a finite set B, S, a step
function k: S! Zþ, and constants d, C, e . 0, such that conditions (i) and (ii) of
Lemma 3.2 are satisfied as well as condition (iv) for x [ SnB. For any constant
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C � maxx [ B f (x), let A ¼ fx [ Sj f (x) . Cg. If A=�, then it is almost closed and
SnA is transient.

PROOF: Almost closedness of the set A follows by a direct application of Lemma 3.2.
We will check the transience of SnA. Note that the conditions of the lemma are in fact

a well-known Lyapunov function criterion for transience of the Markov chain (cf. Fayolle
et al. [3]). This implies that any finite set is a transient set (as in Blackwell’s definition).

Note that condition (i) of Lemma 3.3 is satisfied. Since B , fxj f(x) � Cg ¼ SnA,
by (3.6) it follows that condition (ii) of Lemma 3.3 applies with the set A. Condition (iv)
of Lemma 3.3 holds for the function g¼2f þ C þ d. Finally, condition (iii) holds for
the function g with exception set B; in particular,

E{g(jtþk(jt))� g(jt)jjt ¼ x} � �e, x [ S n B:

Define tA ¼ 1 for j1 [ A, tA ¼ t, t � 2, iff t ¼ inffn � 2jjn-1 � A, jn [ Ag, and tA ¼

1 otherwise. Intuitively, it is clear that tA is a.s. finite for any initial state x [ S n A,
since B is a finite, transient set. Once the validity of the statement has been settled, the
further arguments proceed as in the proof of the previous lemma. We will now provide
the arguments for tA being a.s. finite.

Conditions (iii) and (iv) of Lemma 3.3 do hold for the set A < B and the function g
defined above. Analogously to tA, we define tA<B � 1 to be the first hitting time of
A<B.

Then, as in the proof of Lemma 3.3, t ¼ tA<B is a.s. finite and has finite expec-
tation for any initial state x�A<B. This extends directly to all initial states x [ B.

In turn, this implies the nondefectiveness of the embedded, finite state Markov
chain ht on the set B < a, where

P{htþ1 ¼ yjht ¼ x} ¼
Px{jt ¼ y}, x, y [ B
Px{jt [ A}, x [ B, y ¼ a

1, x, y ¼ a:

8<:
So, this Markov chain has one absorbing state, which is reached with positive prob-
ability from any other. It follows that the state a is reached with probability 1 from
any other state and in finite expected time.

Now, attach a reward txy ¼ t1ft¼t,jt¼yg to the transition x! y in this finite chain,
x, y [ B. Then tA is the total reward until absorption in statea. Since t is a.s. finite with
finite expectation for each initial state x [ B, it follows that txy is a.s. finite with finite
expectation. It is now standard from finite reward chain theory that tA is a.s. finite with
finite expectation for each initial state x [ B. By a decomposition argument to set B,
this extends to all initial states x [ S n A. B

So far, we have not said anything on how to check the atomicity of the almost
closed sets from Lemma 3.2. We will turn to that problem now and derive the atomicity
of these sets for a special subclass of face-homogeneous random walks. The main idea

A. Hordijk, N. Popov, and F. Spieksma172

https://doi.org/10.1017/S0269964808000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000107


is that “far away into” an almost closed set, the transition probabilities at the boundary
of and outside the almost closed set are irrelevant for the structure of the almost closed
set itself. Hence, one might change these in such way as to determine the atomicity, or
lack of it, of the almost closed set in a simple way. As a result, the almost closed set in
the original must have the same structure as well.

To set this up, we briefly dwell on how to compute the probabilities of sojourn
sets, as has been extensively studied in Feller [4]. The proofs of the statements men-
tioned below before Remark 3.1 can be found in his work.

For quoting the necessary details, we prefer to introduce notation allowing the
analytic approach used by Feller. First, write P for the transition matrix of the
Markov chain to be considered. In what follows, it is allowed to be a substochastic
matrix. The restricted probability matrix PA to set A is defined by

PA, xy ¼
pxy, x, y [ A
0, otherwise.

�
The n-step (restricted) transition probabilities and matrix are denoted by the super-
script (n).

For any A , S, the following limits exist as vectors on S:

sA ¼ lim
t!1

P(t)
A 1fAg,

sA ¼ lim
t!1

P(t)sA:

Then, up to a constant factor, sA is the maximum bounded harmonic function on A
with respect to the restricted transition matrix PA. The probabilistic interpretation is
that sA (x) ¼ Px fjt [ A, t � 0g. As a consequence, sA (x) denotes the probability
that jt (x) [ A eventually, that is,

sA(x) ¼ Px{L(A)}

(harmonicity of sA w.r.t. PA should be used for showing this directly). Thus, A is
a sojourn set iff sA=0 and then we will refer to it as the sojourn solution correspon-
ding to A. Additionally, sA � sA is harmonic on S with respect to P. One has that
supx[S sA (x) ¼ supx[S sA(x) ¼ 1 for sojourn set A.

Note that this easily implies a sojourn set to be an infinite set. Indeed, by irredu-
cibility, limt!1 PB

(t) ¼ 0 for any finite set B. Hence, also (by finiteness) sB ¼ 0.
Consequently, sB ¼ 0 and so B cannot be a sojourn set.

The sojourn set B , S is said to be representative whenever there is 0 ,

h , 1 such that sB(x) . h for all x [ B. A representative set B is almost
closed by Theorem 3.1. Hence, it enjoys the property that the probability of
eventually ending up in B equals the limiting probability of B (cf. Eq. (2.2))
(i.e., sB(x) ¼ limt!1 Px fjt [ Bg)! This does not hold for an arbitrary

DISCRETE SCATTERING 173

https://doi.org/10.1017/S0269964808000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000107


sojourn set, since sojourn sets need not be almost closed. For any sojourn set A
and any 0 , h , 1, put

Ah ¼ A(h) > A ¼ {x [ AjsA(x) . h};

Ah ¼ {xjsA(x) . h}:

Then sA ¼ sAh ¼ sAh
, so that Ah is representative by definition. By Theorem 3.1, it is

almost closed.
Furthermore, Ah .Ah, as sA � sA and Ah ,A. As a consequence, LðAhÞ .

LðAhÞ . LðAhÞ. Given j0 ¼ x, the left and right events have the same probability
sA(x). Thus, Px{L(Ah)} ¼ Px{L(Ah)} ¼ sA(x), by which Ah is almost closed.

Similarly, for any set B, A .B .Ah, we have sB ¼ sA! We give an example of
representative sets with a nice structure.

EXAMPLE 3.1: The conditions of Lemma 3.2 or those of Lemma 3.4 imply that the set
A¼f f (x) . C þ cg is representative; that is, A ¼ Ah for some 0 , h , 1. This
follows from the proof of Lemma 3.2, Eq. (3.6).

The next statement is evident, but it has not been explicitly proved in Chung [2],
Blackwell [1], or Feller [4]. We will need it in the sequel.

LEMMA 3.5: Let two almost closed sets A, B , S be given. Then the symmetric differ-
ence of A and B is a transient set if and only if sA ¼ sB.

PROOF: Suppose that A and B differ by at most a transient set. By virtue of Lemma
2.2(ii), A < B is almost closed. Note that A > B ¼ A < Bnf(AnB) < (BnA)g. The
union of two transient sets is transient by Lemma 2.2(ii), and so by Lemma 2.2(i),
we have that A > B is almost closed and sA<B (x)¼sA>B (x). By monononicity,

sA>B(x) � sA(x), sB(x) � sA<B(x),

and so it follows that sA(x) ¼ sB(x).
We will no longer explicitly refer to Lemma 2.2.
Next, suppose that sA ¼ sB. Then A(h) ¼ B(h). By Theorem 3.1 with S ¼ A

and S ¼ B, the sets A(h) n Ah and A(h) n Bh¼B(h) n Bh are transient. Since AhnBh ,
A(h) n Bh, this implies that Ah n Bh is transient.

Now, note that Ah and Bh are both almost closed. Ah > Bh is either transient
or almost closed. If it is transient, then Ah must be transient as the union of two tran-
sient sets Ah n Bh and Ah > Bh. This contradicts the fact that Ah is almost closed.
Hence, Ah > Bh is almost closed. Additionally, since both Ah n Bh and AnAh are tran-
sient, their union An(Ah > Bh) is transient. Similarly, we find that Bn(Ah > Bh)
is transient. Consequently, the union A < Bn(Ah > Bh) is transient as well.
The symmetric difference of A and B is contained in this set and is therefore
transient. B

Our method for checking atomicity relies on the following lemma.
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LEMMA 3.6: Let A , S. Let fj̃tgt�0 be an irreducible and aperiodic Markov chain on
a denumerable space S̃ . S, such that

Pxy ¼ ~pxy, x [ A, y [ S,

where p̃xy ¼ P fj̃tþ1 ¼ yjj̃t ¼ xg, x, y [ S̃, denote the transition probabilities of j̃t.
Then, for any B , A, we have that B is a sojourn set for jt if and only if it is a sojourn
set for j̃t. In particular, B being a sojourn set for one chain implies that Bh is almost
closed for both chains, 0 , h , 1.

PROOF: Denote all quantifiers for the chain j̃t by e� . For B , A, denote B̃h ¼ fx [
Bjs̃B(x) . hg and, similarly, B̃h ¼ fxjs̃B(x).hg, for 0 , h , 1.

Suppose that B , S is sojourn for jt. By assumption, sB ¼ s̃B. Since s̃B �
s̃B=0, B is sojourn for the chain j̃t. The analogous argument applies when assuming
that B is sojourn for j̃t. This proves the first statement. The second statement follows
from the above, that Bh is almost closed if B is sojourn. B

For proving atomicity by means of the previous lemma, we will restrict ourselves
to the class of so-called face-homogeneous random walks. Let S ¼

Q
i¼1
p Si, with

Si [ fZ, Zþg. Define the following vector: l ¼ fl1 , . . . , lpg with values li [
f0, þg when Si ¼ Zþ and li [ f0, þ ,2g, whenever Si ¼ Z. Associated with l
is the set L (l) , S given by

L(l) ¼ {x [ Sjsgn(xi) ¼ li, i ¼ 1, . . . , p}:

We call L (l) a face of the space. Here, we consider only faces L for which there
exists a defining vector l. Thus, there is a one-to-one correspondence between
faces and defining vectors l. Denote l (L) by the vector defining the face L.

Define the projection operator projL: S! L by

(projL(x))i ¼
xi, l(L)i = 0
0, l(L)i ¼ 0:

�
For any face L, we define the induced chain jt

L on the state space SL as follows. If
l (L)i ¼ 0, then Si

L :¼ Si. If l (L)i = 0, then Si
L :¼ f0g. Fix x0 [ L and define

SL ¼ x0 þ
Q

i Si
L. This space is orthogonal to x0. States from this space are

denoted by superscript L; for instance, xL is a state of SL.
The transition probabilities are now obtained from the transition probabilities of

jt by orthogonal projection onto SL: For x0 þ xL [ SL,

P{jLtþ1 ¼ x0 þ yLjjLt ¼ x0 þ xL} ¼
X
y[S:

y�(x0þyL)[L

px0þxL, y:

It is also convenient to use an ordering of faces: L0XL, if l (L0)i ¼ l (L)i whenever
l (L)i=0.
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At this point, the evolution of jt
L2x0 can depend on the choice of basis point x0 [ L.

However, we will restrict our analysis to random walks that are face-homogeneous w.r.t
the above-defined faces; that is, for each face L, there exists a probability distribution
pL on Zp such that pxxþy¼ py

L for all x [ L and y [ Zp, for which x þ y [ S. As a
consequence, the behavior of the process jt

L 2 x0 no longer depends on the choice of x0.
Given a face-homogeneous random walk, we will construct a transformed Markov

chain on an extended state space for which the state space consists of one almost
closed class and such that Lemma 3.6 can be applied. This transformation will leave
the jump behavior on a predetermined face intact.

Let faceL be given. We can assume that l (L)i = 0 for i¼ 1, . . . , s and l (L)i¼ 0
for i ¼ s þ 1, . . . , p (the case s¼ p is allowed). TheL-transformation j̃t of jt is a Markov
chain on the state space S̃¼ Zs�

Q
i¼sþ1
p Si. All quantifiers of this transformed Markov

chain will denoted bye� .
Now, for any x̃ [ S̃, there exists a unique face L0 , S with L0 XL such that

sgn (x̃i)¼ sgn (l (L0)i) for i . s. Set

~p~x,~xþy ¼ pL0

y for all y:

By construction, the transition probabilities of jt and j̃t coincide on the subset
S

L0XLL0.
Moreover, the jump probabilities from any two points x̃ and ỹ with sgn (x̃i)¼ sgn (ỹi) for
i . s are equal. Hence, the homogeneity faces L̃ are characterized by ( p2s)-dimensional
vectors l̃, with l̃i [ f0, þg or f0, þ, 2g depending on whether Ssþi¼ Zþ or Z; that is,
given l̃, the associated homogeneity face is defined by

~L(~l) ¼ {~x [ eSjsgn(~xsþi) ¼ ~li, i ¼ 1 , . . . , p� s):

One can view the constructed chain as a maximally homogeneous extension of the
Markov chain jt restricted to L.

LEMMA 3.7: Suppose that the induced chain jt
L is recurrent. Assume that the

L-transformation j̃t is an irreducible and aperiodic Markov chain on S̃. Then, up
to transient sets, the state space S̃ forms a single almost closed class for j̃t, which
is therefore atomic.

PROOF: Since sojourn solutions are bounded harmonic functions, for our purpose it is
sufficient to show the existence of only one bounded harmonic function (up to a
multiplicative factor). This follows from Lemma 3.5.

We wish to reduce the proof to the similar statement on homogeneous random
walks on Zs. To this end, define the embedded Markov chain on S̃e ¼

Zs�f0g�. . .�f0g:

~p�e
xy ¼ P{~jt ¼ yj~j0 ¼ x}, x, y [ eSe,
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with t ¼ inf ft � 1jj̃n � S̃e, 1 � n , t, j̃t [ S̃eg the first entrance time of S̃e.
Recurrence of the induced chain jt

L implies that t , 1 with probability 1; that
is, the embedded chain is a nondefective Markov chain. The embedded chain is a
homogeneous random walk on S̃e. Since j̃t is aperiodic and irreducible, the
embedded chain must be aperiodic and irreducible as well. Hence, the conditions
of Theorem 24.1 of Spitzer’s work [14] are satisfied. It follows that there is only
one bounded harmonic function, f e say, for the embedded chain, and it is constant,
say f e ; 1.

Going back to the chain j̃t and using that t is finite with probability 1, we get by
iteration that any bounded harmonic function, f say, for j̃t satisfies

f (x) ¼
X

y

~p(t)
xy f (y), (3:9)

and so f is harmonic for the embedded chain. A more formal argument leading to the
above statement is by noting that f ( j̃t) is a uniformly bounded martingale. Equation
(3.9) follows as a result of the martingale optional stopping theorem.

The function f being harmonic for the embedded chain implies that it must be
equal to 1 on S̃e (up to a factor). Equation (3.9) implies that f ; 1 on S̃. As a conse-
quence, the chain j̃t has a simple and atomic state space. B

Clearly, sojourn sets need not be equal to homogeneity faces. Thus, we need
some condition to make the above derivation work for a more general sojourn set.

LEMMA 3.8: Suppose that jt is a face-homogeneous random walk on S ¼
Q

i¼1
p Si,

with the above specified state space and homogeneity faces. Suppose that j tL
is recurrent for some face L. Assume the existence of a sojourn set A , S, with
projL (A) ,L. Assume that the L-transformation j̃t of jt is an aperiodic and irredu-
cible Markov chain. Then, up to transient sets, the representative set Ah , A is the
unique almost closed set contained in A, and so it is atomic.

PROOF: By Theorem 3.1, Ah ¼ fx [ AjsA(x) . hg is almost closed for 0 , h , 1.
We have to show that, up to transient sets, A does not contain any other almost
closed set. However, this follows immediately by taking the L-transformation of jt

and by applying Lemmas 3.5–3.7. B

So far, we have considered the problem of suitable methods for determining the
almost closed set structure. Now, we would like to turn to the problem of determining
Euler limit paths and convergence to these of the time-scaled process.

3.2. Martingales

The other main tool to be used is a.s. convergence to zero of a time-scaled sequence of
random vectors, the components of which form a martingale sequence. This will be
applied as follows. Let j0 ¼ x be given; then
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U(x; t) ¼ xþ
Xt

n¼1

Ex{jn � jn�1jjn�1}, t ¼ 0, 1, . . . ,

which is a random discrete time path in Rp when jt is a vector of dimension p.
The sequence jt(x)–U(x; t) is a sequence with martingale components. Almost
sure convergence of the time-scaled process to zero, together with a.s. conver-
gence of U(x; [tN])/N, N!1, implies that j[tN](x)/N a.s. converges to the
same limit, where argument x denotes the initial position. Scaling by time is
not always the right scaling, so we quote Theorem 2.18 from Hall and Heyde
[5] in general form.

THEOREM 3.9: Let (V0, F 0, P 0) be a probability space and let fFn
0gn¼1, . . . be an

increasing sequence of sub-s-fields of F 0. Let fMn, Fn
0, n � 1g be a martingale

and fTngn¼1, . . . a nondecreasing sequence of positive random variables such that
Tn is Fn-1

0 -measurable for each n. Then Mn/Tn! 0, n!1, a.s. on the set where
flimn!1 Tn¼1,

P
n¼1
1 Ef(Mn2Mn21)2jFn21

0 g/T 2
n ,1g.

An immediate consequence for face-homogeneous random walks is summarized
below.

COROLLARY 3.10: Let jt be a face-homogeneous random walk with bounded
jumps; that is, there is a constant d such that kjtþ12jtk � d, a.s. Then limN!1

(j[tN] (x)2U(x; [tN]))/N¼0, a.s.
Here, k.k is the ‘2-norm. Note that the corollary is a statement on vector pro-

cesses, whereas Theorem 3.9 is a statement on one-dimensional processes. Since
the space where the vector processes live has finite dimension, generalizing
Theorem 3.9 is a straightforward business.

The final step is now to study the limits (provided they exist) of the random vari-
ables U(x; [tN])/N along paths of the process jt(x). We again will restrict to face-
homogeneous random walks as described earlier.

We assume that the induced chain jt
L is ergodic. Say it has the stationary measure

pL. Let x0 [ L. Write mL ¼
P

y ypy
L for the expected jumps (drift) from points in L

and

vL ¼
X
L0XL

X
x0þyL[L0

pL(x0 þ yL)mL0 :

This is called the second vector field on L in Fayolle et al. [3]. By plugging in the
definition of the drifts mL0, it follows that vi

L ¼ 0 when li ¼ 0. For convenience,
denote Vx ¼ fv [ V j v0 ¼ xg.

LEMMA 3.11: Assume the conditions of Lemma 3.8; that is, suppose that jt is a
face-homogeneous random walk on S¼

Q
i¼1
p Si, with the state space and hom-

ogeneity faces specified in the previous paragraph. Suppose that jt
L is ergodic
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for some face L. Assume the existence of a sojourn set A , S, with projL (A) ,
L. Then

lim
N!1

U(x; [tN])(v)
N

¼ vLt, for Px-almost all v [ L(B) > Vx,

for t [ Rþ, x [ S,
(3:10)

with B , A almost closed.

PROOF: We will use the L-transformation j̃t of jt defined in the above. Let reward
r(x̃) ¼ Efj̃n2j̃n21jjn21 ¼ x̃g be paid whenever the process is in state x̃[S̃. Then
the random vectors denoting the accumulated reward earned between the nth and
(nþ1)st visits to S̃e, n¼0, . . . , are i.i.d. vectors. Similarly, the random variables
denoting the time elapsed between the nth and (nþ1)st visit to S̃e, n ¼ 0, . . . , are
i.i.d. random variables.

Also, to x [ L0 we assign a reward r(x) ¼ mL0 for all faces L0 of S̃. Now the
L-transformation has been defined in such a way that the total accumulated reward
between two successive visits to S̃e equals the total accumulated reward in the
induced Markov chain jt

L between two successive visits to the fixed reference
point x0 [ L, orthogonally to which the induced chain lives. The expectation of
the latter, and hence of the former, equals vL/pL(x0). Similarly, the expected
return time to x0 equals 1/pL(x0), which is equal to the expected time elapsed
between two successive visits of S̃e.

By a delayed version of the so-called renewal reward theorem (cf. Ross [11]), one
has for the chain j̃t that

~U(x; [tN])
N

¼ xþ
P[tN]

n¼1 Ex{~jn � ~jn�1j~jn�1}
N

! vLt, N ! 1, ~Px-a.s.

Note that the renewal reward theorem has been formulated in Ross [11] for one-
dimensional processes. Extension to finite-dimensional processes is straightforward.
For any subset Ṽ0x of the path space Ṽx of the transformed chain, it follows that the
symmetric difference of the sets

~v j lim
N!1

~U(x; [tN])(~v)
N

¼ vLt

� �
> eV0x and eV0x

is a P̃x-null set for the chain j̃t. Let x [ A and put Ṽ0x ¼ A1 > Vx. The paths of jt

and j̃t restricted to Ṽ0x have equal probabilities. Hence, the symmetric difference of
the sets

Vx(A) ¼ v j lim
N!1

U(x; [tN])(v)
N

¼ vLt

�
g> A1> Vx and A1> Vx
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is a Px-null set for the chain jt. Therefore,

Px{(A1 > Vx) nVx(A)} ¼ 0: (3:11)

Let x [ S be arbitrary and let B , A be almost closed. By Lemma 3.8, the sets B
and Ah differ by a transient set, and so by Lemma 3.5, we have sB ¼ sAh. Hence,
sB ¼ sAh ¼ sA. As a consequence, the symmetric difference of sets L(A) > Vx and
L (B) > Vx is a Px-null set, since their probabilities are equal and the second set
is contained in the first. So, it suffices to prove the assertion of the lemma for the
set L(A) > Vx. For v [ L(A), there exists a finite time nv such that vn [ A, for
n � nv and either vnv

21 � A or nv¼1. Write vA ¼ (vnv
, vnv

þ1, . . .g. We will
show that the set

VA,x ¼ v [ L(A) > Vx j
U(vnv ; [tN])(vA)

N
! vLt, N ! 1

� �

is a Px-null set. Indeed,

Px{VA,x}

�
X1
n¼1

X
y[A

Px

�
v [ Vx : nv ¼ n,vn ¼ y,

U(y; [tN])(vk,vkþ1, . . . )
N

! vLt, N ! 1

�

�
X1
n¼1

X
y[A

Px{jn ¼ y}Py{(A1> Vy) nVy(A)):

The last probability equals zero by Eq. (3.11), and so VA,x is a Px-null set. For almost
all v [ L (A) > Vx and N large enough so that [tN] . nv,

U(x; [tN])(v)
N

¼ xþ
Pnv�1

n¼0 E{jnþ1 � jnjjn ¼ vn}
N

� vnv

N

þ U(vnv ; [tN]� nv)(vA)� U(vnv ; [tN])(vA)
N

þ U(vnv ; [tN])(vA)
N

:

Now, letting N tend to infinity, for Px-almost all v [ L(A) > Vx, the first three terms
converge to zero and the latter converges to vLt. B

We finally piece together the results.
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COROLLARY 3.12: Under the conditions of Lemma 3.8, we have for any initial state x
that

lim
N!1

j[tN](v)

N
¼ vLt for Px-almost allv [ L(B) > Vx,

for B , A almost closed. In other words,

Px lim
N!1

j[tN]

N
¼ vLtjL(A) > Vx

� �
¼ 1:

4. RANDOM WALK ON THE INTEGERS

Consider an irreducible, face-homogeneous random walk jt on the integers Z with
three homogeneity faces:

Lþ ¼ {1, 2, . . . }, L0 ¼ {0}, L� ¼ {� 1,� 2, . . . }:

This means that the transition probabilities take three different forms:

pxy ¼
pþy�x, x . 0

p0
y , x ¼ 0

p�y�x, x < 0:

8><>:
The corresponding means jumps will be denoted by mþ, m0, and m2, respec-
tively. We assume that none equals zero. We also assume that the jumps are
bounded.

The induced chain on the face Lþ has a one-point state space and, conse-
quently, is always ergodic. An immediate consequence is that vL

þ
¼ mþ. On the

other hand, for x . 0 sufficiently large and t comparatively small, the random
walk inside Lþ behaves like a homogeneous one. Corollary 3.12 can be used to
show for the space-time scaled process that j[tN]([xN])/N! x þ tmþ, N!1,
almost surely.

The same observations apply to the face L2. Therefore, we associate with it the
following dynamical system on R. Let u : R n f0g � R! R be a continuous
mapping with

d

dt
u(x; t) ¼ mþ, u(x; t) . 0

m�, u(x; t) , 0,

�
t = 0,
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for initial condition u(x; 0) ¼ x. For u(x; t) ¼ 0, it is defined by continuity, and so the
mean drift at point 0 does not play a role.

Clearly, this defines u(x; t) uniquely whenever mþ and m2 are both positive
or both negative. Suppose that mþ, m2 . 0. Then, similar to the derivation in
Popov and Spieksma [10], one can prove by virtue of a generalized Kolmogorov
inequality or Azuma Hoeffding inequality (see Williams [15]) the convergence in
probability to

u(x; t) ¼ lim
N!1

j[tN]([xN])

N

¼
xþ tmþ, x � 0

xþ tm�, x , 0, t � t0 ¼ jx=m�j
xþ t0m� þ (t � t0)mþ, x , 0, t . t0,

8><>:
which we will call the Euler limit. As has been pointed out in the above, by means of
Corollary 3.12, almost sure convergence in the first and second cases seems
immediate. Showing almost sure convergence in the third one seems to require
some extra work.

THEOREM 4.1: Assume that mþ, m2 . 0. Then the set Lþ is almost closed and the
set L2 is transient. Conjecture 1.1 holds and the process is simple and atomic.

PROOF: We wish to apply Lemmas 3.4 and 3.8 as well as Corollary 3.12. The proof is
then reduced to constructing a suitable Lyapunov function and sojourn sets. Let
f ( y) ¼ t when u(0; t) ¼ y, where t can also be negative. More explicitly, f ( y) ¼ y/
mþ for y . 0 and f ( y) ¼ y/m2 for y � 0.

Let B ¼ f0g, C ¼ 0, and k ; 1. Then the set A from Lemma 3.4 is precisely Lþ.
The conditions of this lemma hold if Eq. (3.3) holds for some e . 0.

For x . 0, we have

E{ f (jtþ1)� f (jt) j jt ¼ x} ¼ 1
mþ

E{jtþ1 � jtjjt ¼ x} ¼ mþ

mþ
¼ 1:

For x , 0, this expectation equals 1 as well. We can take e ¼ 1, and so the conditions
of Lemma 3.4 hold. Application of this lemma yields almost closedness of Lþ and
transience of L2 < f0g, hence of L2.

By Example 3.1, A ¼ Lþ is representative. Furthermore, projL
þ
(A) , Lþ.

Ergodicity of the induced chain is trivial. Hence, the conditions of Lemma 3.8
hold for set A ¼ Lþ and face Lþ. As a consequence, Lþ is atomic. This implies
that the process is simple and atomic, and so sLþ ; 1. Moreover, by virtue of
Corollary 3.12, for any initial state x,
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Px lim
N!1

j[tN]

N
! vL

þ
t ¼ u(0; t) jL(Lþ) > Vx

� �
¼ 1:

This implies that

Px lim
N!1

j[tN]

N
¼ u(0; t)

� �
¼ Px lim

N!1

j[tN]

N
¼ u(0; t) jL(Lþ) > Vx

� �
Px{L(Lþ) > Vx}

þ Px lim
N!1

j[tN]

N
¼ u(0; t)jVx n L(Lþ)

� �
Px{Vx n L(Lþ)}

¼ Px{L(Lþ) > Vx}

¼ sLþ (x) ¼ 1,

since VxnL (Lþ) is a null set. B

The more interesting case is when m2 , 0 , mþ. Then we have the simpler form

u(x; t) ¼ lim
N!1

j[tN]({xN}

N
¼ xþ tmþ, x . 0

xþ tm�, x , 0,

�
almost surely.

Two Euler paths start at point 0, one to each direction. This suggests the occurrence of
two atomic almost closed sets: Lþ and L2. This is indeed the case.

THEOREM 4.2: Assume that m2, 0 , mþ. The almost closed set decomposition is given
by Z ¼ Lþ < L2, with Lþ and L2 both atomic. Moreover, Conjecture 1.1 holds.

PROOF: Almost closedness of Lþ and L2 follows in the same way as almost closed-
ness of Lþ in the proof of the previous lemma by application of Lemma 3.2. Use
Example 3.1 in order to apply Lemma 3.8 to show that these are the only (modulo
transient sets) almost closed sets, as well as atomicity, in the same manner as the
proof of the previous theorem. Again, note that the induced chains for Lþ and L2

are trivially ergodic.
In this case, u(0; t) has two realizations: vL

þ
t and vL

2

t. Since Corollary 3.12
applies, Eq. (1.1) follows as in the proof of the previous theorem by a conditioning
argument. For completeness, we give it here for the path u(0; t)¼vL

þ
t:
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Px lim
N!1

j[tN]

N
¼ vL

þ
t

� �
¼ Px lim

N!1

j[tN]

N
¼ vL

þ
t jL(Lþ) > Vx

� �
Px{L(Lþ) > Vx}

þ Px lim
N!1

j[tN]

N
¼ vL

þ
t jL(L�) > Vx

� �
Px{L(L�) > Vx}

þ Px lim
N!1

j[tN]

N
¼ vL

þ
t jVx n (L(Lþ) < L(L�))

� �
� Px{Vx n L(Lþ) < L(L�)}

¼ Px{L(Lþ) > Vx} ¼ sLþ (x)

¼ Px{L(Lþ)},

since PxflimN!1j[tN]/N ¼ vL
þ

t j L(L2) > Vxg ¼ 0 and PxfVx nL(Lþ)<
L(L2)g ¼ 0. This completes the proof of Conjecture 1.1.

5. COUPLED PROCESSORS SYSTEM: A RANDOM WALK ON THE
QUARTER PLANE

We will illustrate the validity of Conjecture 1.1 for two special face-homogeneous
random walks on the quarter plane. A characterization of the almost closed set struc-
ture for face-homogeneous random walks on Zþ

2 can be found in Kurkova [9].
As in the previous section, the first version has only one atomic closed class and

the second has two.

5.1. Coupled Processors System with Switched-off Processors
Whenever a Queue Is Empty

Consider a system of two processors indexed by 1 and 2. Let l1 . 0 and l2 . 0
denote their input rates, respectively. Whenever both queues are nonempty, processor
i works at speed mi, i ¼ 1, 2. The moment queue 1 empties, processor 2 is switched
off, and vice versa. We consider the time-discretized version obtained by uniformiza-
tion, so that we can assume

l1 þ l2 þ m1 þ m2 � 1:

This model is a face-homogeneous random walk on Zþ
2 with four homogeneity faces:

L0 ¼ {0}, L3 ¼ {x [ Z2 j x1, x2 . 0},
L1 ¼ {x [ Z2 j x1 . 0, x2 ¼ 0}, L2 ¼ {x [ Z2 j x1 ¼ 0, x2 . 0}:
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The jump probabilities from points in Ll, l ¼ 0,1,2, are given by

pLl
x ¼

l1, x1 ¼ 1, x2 ¼ 0

l2, x1 ¼ 0, x2 ¼ 1

1� l1 � l2, x1 ¼ x2 ¼ 0:

8<:
On face L3, they are given by

pL3
x ¼

l1, x1 ¼ 1, x2 ¼ 0
l2, x1 ¼ 0, x2 ¼ 1
m1, x1 ¼ �1, x2 ¼ 0
m2, x1 ¼ 0, x2 ¼ �1
1� l1 � l2 � m1 � m2, x1 ¼ x2 ¼ 0:

8>>>><>>>>:
In the two-dimensional model, the drift vector mL has two components: m1

L and m2
L.

The same applies to the field vL for an ergodic induced chain jt
L. So far, we have not

made any assumptions on the parameters. Let us assume first that li , mi, i ¼ 1, 2.
Then the induced chains jt

L1 and jt
L2 are easily checked to be ergodic. They have a

one-dimensional state space. For instance, for L1, one can take (1, 0) þ (0, Zþ)
and so we can identify it with Zþ. It has jump probabilities

P{jL1
tþ1 ¼ j j jL1

t ¼ i} ¼
l2, j ¼ iþ 1

m21{i.0} j ¼ i� 1

1� l2 � m21{i.0}, j ¼ i,

8><>:
and so ergodicity follows, since l2 , m2. Moreover, pL1 (0) ¼ 12l2/m2. Hence,

vL1 ¼ 1� l2

m2

	 

mL1 þ l2

m2
mL3

¼ 1� l2

m2

	 

l1

l2

	 

þ l2

m2

l1 � m1

l2 � m2

	 


¼ 1
m2

l1m2 � m1l2

0

	 

:

Similarly jt
L2 is an ergodic induced chain with

vL2 ¼ 1
m1

0
l2m1 � m2l1

	 

¼ m2

m1

0
�vL1

1

	 

:

Suppose that v1
L1 . 0; in other words, l1/m1 . l2/m2. Then v2

L2 , 0. Clearly, jL3

is ergodic since it is a chain living on a one-point set. Hence, vL3 ¼ mL3.

DISCRETE SCATTERING 185

https://doi.org/10.1017/S0269964808000107 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000107


The assertion in Corollary 3.12 suggests defining a continuous dynamical system
u(x; .) on R2 satisfying

dþ

dt
u(x; t) ¼ vLl , u(x; t) [ Ll, l = 0, (5:1)

for initial condition u(x; 0) ¼ x, where dþ/dt denotes the right derivative. It is
uniquely defined under the above conditions. Define A1 ¼ fx [ Zþ

2 jx2 , (m2/
m1)x1g. Note that it contains L1!

THEOREM 5.1: Assume li , mi, i ¼ 1, 2, and l1m2 . l2m1. Then the set A1 is almost
closed and atomic, and Z2

þ n A1 is transient. The process is simple and atomic.
Conjecture 1.1 holds.

PROOF: Almost closedness of A1 and transience of Zþ
2 nA1 will follow from Lemma

3.4 by checking the conditions of this lemma.
Let B ¼ f0g, C ¼ 0, k ; 1, and f (x) ¼ m2x12m1x2. Then S1 ¼ fx [ Zþ

2 j f (x) .

C .. We only need to check that Eq. (3.3) holds for all x = 0 and some e . 0. For
any x = 0,

E{f (jtþ1) � f (jt) j jt ¼ x} ¼ l1m2 � l2m1 . 0,

so that Eq. (3.3) holds for x = 0 and e ¼ l1m2–l2m1.
Next, by Example 3.1, A1 is representative. Also, projL1(A1) ¼ L1. The con-

ditions of Lemma 3.8 are satisfied for set A ¼ A1 and face L1. It follows that A1 is
atomic, and so the process is simple and atomic.

The validity of Conjecture 1.1 finally follows from Corollary 3.12 by a similar
decomposition as in the proof of Theorem 4.1. B

5.2. Coupled Processors System with Switched-off Processors
Whenever a Queue is Empty, and with Additional Input

The previous model has a nice “simple” structure. In a system with arrival control, it
seems not unnatural to allow more customers or jobs to enter a queue whenever it is
empty. Indeed, this might reduce idle server time. Upon allowing this, “nonsimple”
structures might appear.

Keeping the rates for two nonempty queues equal to the previous model, we
allow arrival rates li

l, i ¼ 1, 2, on faces Ll, l ¼ 0, 1, 2. In this case, the jump probabil-
ities from points in Ll, l ¼ 0, 1, 2, are given by

pLl
x ¼

ll
1, x1 ¼ 1, x2 ¼ 0

ll
2, x1 ¼ 0, x2 ¼ 1

1� ll
1 � ll

2, x1 ¼ x2 ¼ 0:

8>><>>:
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Again, assuming li , mi, the induced chains jt
Lt, l ¼ 1, 2, are ergodic. Identifying

their state space with Zþ, the induced chain jt
L1 has jump probabilities

P{jL1
tþ1 ¼ j j jL1

t ¼ i}

¼
l1

21{i¼0} þ l21{i.0}, j ¼ iþ 1

m21{i.0}, j ¼ i� 1

1� l1
21{i¼0} þ l21{i.0} � m21{i.0}, j ¼ i:

8><>:
Now, we have pL1(0) ¼ (m22l2)/(m22l2þl1

2). This yields

vL1 ¼ m2 � l2

m2 � l2 þ l1
2

mL1 þ l1
2

m2 � l2 þ l1
2

mL3

¼ m2 � l2

m2 � l2 þ l1
2

l1
1

l1
2

 !
þ l1

2

m2 � l2 þ l1
2

l1 � m1

l2 � m2

	 


¼ 1

m2 � l2 þ l1
2

l1
1ðm2 � l2Þ � l1

2ðm1 � l1Þ
0

 !
:

For L2 we get similarly,

vL2 ¼ 1

m1 � l1 þ l2
1

0
�l2

1(m2 � l2)þ l2
2(m1 � l1)

	 

:

In order for both v1
L1 and v2

L2 to be positive, it is sufficient to require

l2
1

l2
2

<
m1 � l1

m2 � l2
<

l1
1

l1
2

: (5:2)

Using Eq. (5.1), we can define a continuous dynamical system u(x; t) for initial
condition u(x; 0)¼ x. However, it is not uniquely defined at the moment u(x; t) ¼
(0, 0) for some t � 0. We have two possible realizations, both occurring with positive
probability. Choose a1 and a2 satisfying

l2
1

l2
2

< a2 <
m1 � l1

m2 � l2
<

1
a1
<

l1
1

l1
2

:

Let A1 ¼ fx [ Zþ
2 j a1 x1 . x2g and A2 ¼ fx [ Zþ

2 j x1 , a2x2g. Then A1 > A2 = �.

THEOREM 5.2: Assume li , mi, i ¼ 1, 2, and (5.2). Then each set Ai is atomic and
almost closed. The state space has the almost closed set decomposition Zþ

2 ¼ A1 <
A2. Conjecture 1.1 holds.
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PROOF: The first statement on almost closedness of S1 and S2 follows from a by now
straightforward application of Lemma 3.2 with the functions f1(x) ¼ a1x12x2 and
f2(x) ¼ 2x1 þ a2x2, respectively, step function k ; 1, and constant C ¼ 0.

Atomicity follows from Example 3.1 by applying Lemma 3.8 for sets A1 and A2

and faces L1 and L2, respectively. Note again that projLi(Si) ¼ Li.
Since A1 < A2 ¼ Zþ

2 , they are the unique almost closed sets, modulo transient
ones. This proves that the almost closed set decomposition consists of two atomic sets.

The final proof of Eq. (1.1) is again by a conditioning argument along the same
lines as in the proof of Theorem 4.2. B

6. CONCLUSION

This article has shown Conjecture 1.1 for interesting face-homogeneous random
walks on Z and Zþ

2 . In particular, we have provided tools for characterizing the
almost closed set structure and fluid limits in the case of an almost closed set
decomposition of the state space into atomic sets. The construction of suitable
Lyapunov functions is the yet untackled Achilles’ heel of completing the characteriz-
ation of such face-homogeneous random walks. Partial results exist, using in fact the
continuous dynamical systems defined by the second vector field for subchains (cf.,
for instance, the basic reference Fayolle et al. [3]).
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