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Anthropological archaeologists are committed to
achieving scientific understandings of complex social
processes that operate on centennial or millennial
scales, notably including segments of societies that
are absent from or underreported in recorded history.
Many, including us, also believe that this research
on the past should also have the potential to inform
social action in the present for the future.

ABSTRACT

Addressing archaeology’s most compelling substantive challenges requires synthetic research that exploits the large and rapidly
expanding corpus of systematically collected archaeological data. That, in turn, requires a means of combining datasets that employ
different systematics in their recording while at the same time preserving the semantics of the data. To that end, we have developed a
general procedure that we call query-driven, on-the-fly data integration that is deployed within the Digital Archaeological Record digital
repository. The integration procedure employs ontologies that are mapped to the original datasets. Integration of the ontology-based
dataset representations is done at the time the query is executed, based on the specific content of the query. In this way, the original data
are preserved, and data are aggregated only to the extent necessary to obtain semantic comparability. Our presentation draws examples
from the largest application to date: an effort by a research community of Southwest US faunal analysts. Using 24 ontologies developed
to cover a broad range of observed faunal variables, we integrate faunal data from 33 sites across the late prehistoric northern Southwest,
including about 300,000 individually recorded faunal specimens.

Abordar los retos sustantivos más convincentes de la arqueología requiere una investigación sintética que explote el corpus grande y
rápidamente en expansión de datos arqueológicos recopilados sistemáticamente. Esto, a su vez, requiere un medio de combinar
conjuntos de datos que empleen sistemática diferente en su grabación mientras que al mismo tiempo preserva la semántica de los
datos. Para ello, hemos desarrollado un procedimiento general que denominamos integración de datos en tiempo real basada en
consultas, que se despliega dentro del repositorio digital el Digital Archaeological Record. El procedimiento de integración emplea
ontologías que se asignan a los conjuntos de datos originales. La integración de las representaciones de conjuntos de datos basados en
ontología se realiza en el momento en que se ejecuta la consulta, en función del contenido específico de la consulta. De esta manera, los
datos originales se conservan y los datos se agregan sólo en la medida necesaria para obtener comparabilidad semántica. Nuestra
presentación dibuja ejemplos de la aplicación más grande hasta la fecha: un esfuerzo de una comunidad de investigadores de analistas
faunísticos del suroeste de Estados Unidos. Utilizando 24 ontologías desarrolladas para cubrir una amplia gama de variables faunísticas
observadas, integramos datos faunísticos de 33 conjuntos de datos que investigan el suroeste septentrional prehistórico tardío,
incluyendo más de 300.000 muestras de fauna registradas individualmente.

Recent articles in the Proceedings of the National Academy of
Sciences and American Antiquity (Kintigh et al. 2014a, 2014b)
propose a set of 25 grand challenges for archaeology intended
to represent the most compelling questions facing our discipline.
The challenges include, for example, “Why and how do social
inequalities emerge, grow, persist, and diminish, and with what
consequences?” and “How do humans perceive and react to
changes in climate and the natural environment over short and
long terms?” The challenges do not focus on new discoveries,
nor are they peculiarly archaeological; rather, they address major
issues in the social sciences. Answers to these challenges will
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not and cannot emerge through intensive study of individual
cases. Instead, they require research that synthesizes data and
information—from a region, a hemisphere, or even the globe—to
achieve knowledge that includes novel understandings of funda-
mentally important social processes (Kintigh et al. 2014a:5). Other
scholars working at regional and macroregional scales have sim-
ilarly recognized the need to integrate diverse sources of data
(e.g., Arbuckle et al. 2014; McKechnie et al. 2014; Manning et al.
2016; Mills et al. 2013).

WHAT SYNTHESIS REQUIRES
Achieving the kinds of synthesis envisioned here requires the
resolution of both technical and social problems (explored ini-
tially in Kintigh 2006 and Kintigh et al. 2015 and in more detail
in Altschul et al. 2017, nd). This article focuses on one partic-
ular problem, achieving effective integration of data across
multiple datasets. By data integration, we mean the process
of transforming datasets that were recorded in different ways
into a single, unified dataset with analytically comparable obser-
vations.

The Need to Integrate Primary Data
Synthetic research on the scale that grand challenges require
entails deriving and comparing data-driven interpretations
of primary data recovered by other archaeological projects.
Today, syntheses are too often based on the data summaries
and conclusions drawn by the original researchers. While this
mode of synthesis is efficient and has undeniably been impor-
tant, it also has liabilities. Conclusions that are erroneous or
based on inconsistent premises become entrenched in the lit-
erature as “facts” that persist as faulty premises in subsequent
scientific arguments. For example, for several decades archae-
ologists cited DiPeso’s (1974) dating of the cultural chronology
for Casas Grandes—a major center of the late prehistoric Amer-
ican Southwest/northwest Mexico region. The errors in dating
were not corrected until Dean and Ravesloot (1993) reinter-
preted the primary data—the tree ring dates from Paquimé (see
also Whalen and Minnis 2001). Equally important, the poten-
tial to explore multiple, large sets of primary data provides
the opportunity to discover important cross-dataset pat-
terns that could never be seen when comparing higher-level
interpretations.

The Need for Discovery and Access to Data
The explosion in the quantity and complexity of archaeologi-
cal data has led to large databases, obtained at great expense,
with immense potential to contribute to science. Nonetheless,
datasets that could be extremely useful for synthesis are often
unknown or not readily accessible to scientists. Fortunately, the
needed technical infrastructure is now available through digital
repositories that provide effective discovery, access, and long-
term preservation of datasets, notably the Archaeology Data
Service (Richards 2017) in the United Kingdom and the Digital
Archaeological Record (tDAR; McManamon et al. 2017) in the
United States. While that preservation and access infrastructure is
now well established, only a tiny fraction of the potentially useful
datasets developed in recent decades have been deposited in
these repositories or are otherwise accessible.

The Need to Integrate Data across Projects
and Areas
Comprehensive, regional-scale data are never collected by
a single research team; data must be compiled from many
projects. Integrating data across projects is essential to
archaeologists’ efforts to recognize phenomena operating on
large spatiotemporal scales and to conduct crucial comparative
studies.

The Need for Comparable Observations
Although large-scale and synthetic research demands the inte-
gration of data across projects, recorded observations from dif-
ferent projects are often not directly comparable. This issue may
be due to the variables chosen, inconsistent measurement tech-
niques, evolving or conflicting taxonomies, or differing collection
intensities. In the absence of tools to resolve these discrepan-
cies systematically, researchers rely on text descriptions or verbal
communication with the original investigators; or (too often) they
proceed with analyses unaware of the implicit difficulties, thereby
inviting spurious results.

The Need for Adequate Metadata
Adequate metadata for each variable in a dataset are essential
to assess the comparability of observations in different datasets
and to the task of aligning those observations to make them
comparable (Kansa and Kansa 2013; Kansa et al. 2014). Metadata
include technical information, such as file formats and character
sets used. They also include semantic documentation of individ-
ual tables, columns, and nominal values in a relational database
or spreadsheet. Is a variable a count, a measurement, or a nom-
inal value? If it is a measurement, what are the units, and how
were they measured? If it is a code, what does each different
value of the code represent, and how were the values distin-
guished?

Kintigh (2013) has elsewhere argued that to be considered ade-
quate, metadata for databases must include sufficient informa-
tion for an archaeologist not familiar with the project to make
meaningful scientific use of the data. While meeting this standard
demands considerable effort, it is necessary for datasets to be
used in data integration. In addition to documenting the vari-
ables represented in the dataset, it is also important to provide
key contextual metadata that typically do not appear anywhere
in the dataset itself, such as dates, location, sampling intensity, or
recovery technique.

The Need for General-Purpose Data
Integration Tools
For decades, archaeologists, including us, have integrated mul-
tiple datasets. This process typically involved examining the
representation of each variable under consideration in every one
of the subject datasets and recoding all of these variables to
an ad hoc standard in all of the datasets. Most who have done
this would agree that it is an often frustrating and nearly always
time-consuming endeavor. Furthermore, these efforts are typ-
ically tailored to the specific datasets involved and not readily
generalized or extended.
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FIGURE 1. Butchering ontology.

QUERY-DRIVEN, ON-THE-FLY DATA
INTEGRATION
Starting almost 20 years ago, archaeologists at Arizona State
University were frustrated in their efforts to move beyond their
individual areas of study to examine regional patterns. We envi-
sioned a cyberinfrastructure tool that would facilitate the broad
integration of data across our separate regional cases. Beginning
in 1999, we sought National Science Foundation (NSF) funding to
this end and in 2004 received our first award, whose goal was to
assess disciplinary needs for cyberinfrastructure (reported on in
Kintigh 2006).

Subsequent awards from the NSF and the Andrew W. Mellon
Foundation funded the development of tDAR. It was, in fact, the
research need for data integration and the associated demands
for discovery and access that drove tDAR’s initial development.
The preservation component that is now integral to tDAR was
soon added as a natural and important complement.

The ontology-based approach to data integration described here
was developed over the last 15 years as a product of close col-
laboration among archaeologists, computer and information sci-
entists, and software engineers.1 In most cases, the refinements
that we have implemented were direct responses to researcher
requests. Thus far, the most intensive use has been by the com-
munity of archaeological faunal analyses, and our examples are
drawn from that experience (Spielmann and Kintigh 2011).

As noted above, the standard approach to the integration of
extant data sources is to do an ex post facto normalization of the
subject datasets to a project-specific standard. In this approach,
datasets that do not meet minimal data standards are rejected.
When the best datasets have a precision that exceeds the set
standard, that resolution is effectively discarded.

We chose instead to reconcile data source observations with the
data requirements of the query under consideration rather than
attempt global reconciliation of data sources. Because nomi-
nal variables (e.g., ceramic type, floral or faunal taxon, lithic tool
type) are central to most archaeological analyses, reconciling
nominal variables recorded using different classification systems
is a central challenge for data integration. In this framework of
query-driven data integration, each classification system used
in the original recording of a nominal variable (e.g., butcher-
ing or faunal taxon) is represented by a set of values, each of
which is explicitly linked to a node in a concept hierarchy, that
is, an ontology (see below). In responding to a query, datasets
using different coding systems can be used together as long
as each separate classification system is linked to a shared
ontology.

The source datasets (e.g., in Microsoft Excel or Access) are always
maintained in tDAR in their original form (as well as in open-
standard preservation formats). This policy is important because
we do not want to lose the ability to see the data as they were
originally recorded.

Ontologies
The integration software depends on agreed-upon ontologies for
the database variables (columns) that are to be integrated. For
our purposes, an ontology is a treelike hierarchy of concepts of
increasing specificity. Figure 1 shows an ontology for the faunal
variable butchering.

Ideally, ontologies are designed by a user community (in this
case, archaeological faunal analysts) to capture the diversity
of concepts used within the specialist community. Ontologies
arrange concepts hierarchically, enabling more and less specific
assignments (and the human lumpers and splitters) to peacefully
coexist.
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FIGURE 2. Faunal taxon variable in two datasets mapped to the taxon ontology (partial).

Coding Sheets
In many cases, the original datasets employ arbitrary numeric or
textual codes to represent the individual values for a column. To
document the meaning of these codes, tDAR allows the contribu-
tor of a dataset to enter a “coding sheet” that provides a transla-
tion of the codes to meaningful values (along with optional docu-
mentation of each value). Thus, the coding sheet might associate
the code “100” in the taxon column of a particular database with
the meaningful value “unidentified lagomorph.” These coding
sheets can be unique to a specific dataset or shared across multi-
ple datasets.

Mapping Coding Sheet Values to Ontologies
The analyst contributing the database and coding sheet then
maps the individual coding sheet or database values to specific
nodes in the ontology associated with that variable, as illustrated
in Figure 2. In this way, any number of datasets recorded in dif-
ferent ways can be represented within the unified framework
provided by the ontology.

The tDAR ontologies accommodate synonyms that can assist in
the mapping process. For example, coding sheets that employ
common names for taxa can be easily mapped to the taxon
ontology because common names are maintained as synonyms
to the names in the Linnaean taxonomy.

Data Integration
Using datasets whose columns for the relevant variables have
been mapped to the relevant ontologies, the stage is set for data
integration. Assume that we want to compare artiodactyl indices
(an indicator of reliance on large game) across sites in Southwest
US datasets. The artiodactyl index is defined as the number of
identifiable specimens (NISP) of artiodactyls (e.g., deer and ante-
lope) divided by the total NISP of artiodactyls plus lagomorphs
(rabbits and hares).

In that case, the integration process selects the subset of cases
(rows) from all observations in all of the source (mapped) datasets

in which the taxon variable is recorded as artiodactyl, or lago-
morph, or any subcategory of either of those higher-level val-
ues. It returns a single dataset with the source dataset taxon
values from all source datasets transformed into “Artiodactyla” or
“Lagomorpha” as appropriate. The individual posing the original
query can read the unified output database in Excel and use a
pivot table or count occurrences of each value by site to easily
calculate the artiodactyl index.

Now, let us say that same analyst wants to calculate the lago-
morph indices for the same sites. The lagomorph index (indicat-
ing aspects of the local environment) is the ratio of the Sylvilagus
(rabbit) NISP to the sum of the Sylvilagus and Lepus (hare or
jackrabbit) NISPs. In this integration, we select from all the rows
in all the datasets only the rows that are mapped to the genus
(Sylvilagus or Lepus) level or below and produce a combined
dataset as described above.

In this lagomorph index–directed integration, datasets that only
classify bones by taxonomic order (Lagomorpha, Artiodactlya,
Rodentia, etc.) would be ignored altogether because the infor-
mation they contain does not address this integration query.
However, those datasets would be used in calculations for the
artiodactyl index integration query discussed above because they
encode all the taxonomic specificity that is needed. The lago-
morph index integration will also ignore (fail to select) any rows
in the source datasets mapped directly to the Lagomorpha node
(corresponding to an original dataset value of “unidentified lago-
morph”) because these rows do not inform this particular query,
which requires distinguishing the genus.

By retaining all the specificity contained in the original datasets
and performing the integration on the fly at query time, we are
able to take advantage of those datasets using less specific clas-
sifications where they are relevant to the specific query while
retaining the ability to use the finely classified data to satisfy
those queries that demand such refinement.

A convenient data management and data exploration by-product
of this integration process is that in a single operation it per-
mits the specification of complex selections and hierarchical
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TABLE 1. Artiodactyl Index Computation for Cíbola-Area Projects.

Artiodactyl
Project Artiodactyla Lagomorpha Index Project Reference

Cibola Archaeological Research Project 3,008 7,823 0.28 Watson, LeBlanc, and Redman 1980
El Morro Valley Prehistory Project 84 94 0.47 Schachner 2012
Heshotauthla Archaeological Research Project 46 880 0.05 Kintigh, Glowacki, and Huntley 2004
Ojo Bonito Archaeological Project 87 3,367 0.03 Kintigh, Howell, and Duff 1996
Rudd Creek Archaeology Project 137 255 0.35 Clark et al. 2006
Upper Little Colorado Prehistory Project 4,864 14,303 0.25 Duff 2002
Total 8,226 26,722 0.24

data aggregation across a great number of databases. Thus, if
one wished to find all the macaws identified in these datasets,
it would not be necessary to understand the coding and search
20 different datasets; one would simply look in an integrated
dataset at the taxon column for the genus Ara.

Example: Artiodactyl Index
We illustrate key features of the data integration process with
a simple example from the Cíbola (Zuni) area of the northern
Southwest United States and then present a substantive result
based on our ongoing research. Following the artiodactyl index
discussion above, an integration of six faunal databases from
Pueblo III and Pueblo IV sites (roughly AD 1200–1350) yielded a
table with 31,700 rows representing 34,948 bones (in some cases
a single row represented more than one bone with all the same
characteristics). Table 1 summarizes these data by project area.
The table shows considerable variation in the artiodactyl index,
which we might expect to relate to the project’s proximity to
relevant habitats and perhaps to the kinds of sites investigated.

Table 1 shows an extremely high value (nearly as many artio-
dactyls as lagomorphs) for the El Morro Valley Prehistory Project,
which primarily investigated a local post-Chacoan center close
to the Zuni Mountains (a productive habitat for deer). The Ojo
Bonito Archaeological Project, which primarily investigated
another post-Chacoan center relatively distant from any moun-
tains, had a very low proportion of artiodactyls (only 3% of the
combined assemblage). The Cibola Archaeological Research
Project and the Rudd Creek Archaeology Project, both close
to major mountains, show moderate values, with artiodactyls
representing about a third of both classes combined. However,
a similar value is seen for the Upper Little Colorado Prehistory
Project, which is somewhat farther from deer habitats. Seem-
ingly anomalous is the Heshotauthla Archaeological Research
Project, with a very low index value (0.05) despite being not much
farther from the Zuni Mountains than the Cibola Archaeological
Research Project and El Morro Valley Prehistory Project sites.

APPLICATION

Datasets
Spielmann led a large, NSF-supported collaborative synthetic
effort through which 13 faunal analysts and other archaeolo-

gists contributed 42 datasets for faunal assemblages from 59
sites in the northern Southwest United States. Combined, these
datasets contain more than 364,000 individually identified faunal
specimens. The analysis presented here includes 297,839 spec-
imens from 33 of these sites dating to the Pueblo III or Pueblo
IV period (ca. AD 1150–1500). Datasets varied considerably
with respect to which variables they recorded, though a core
set was consistently recorded. All but seven of the 42 datasets
(https://core.tdar.org/collection/16056) are now freely available
in tDAR for anyone to use; the remainder are temporarily embar-
goed.

Ontologies
Faunal analysts mapped the dataset columns to a set of 24
ontologies (Table 2) for faunal variables developed by a series
of working groups. (In most cases, this mapping was done by
the original analysts.) With the exception of the taxon ontol-
ogy, these are general-purpose ontologies devised to cover
most nominal faunal variables recorded for prehistoric con-
texts in the United States and the United Kingdom. We used the
Integrated Taxonomic Information System as a standard for the
faunal taxa, including only taxa appearing in archaeological con-
texts in the US Southwest and adding indeterminate categories
that were not encompassed by the taxonomic hierarchy (e.g.,
“large mammal”). All these ontologies are freely available for
anyone to use in tDAR (https://core.tdar.org/collection/15376).

A broad-based working group of faunal analysts devised the
initial drafts of the faunal ontologies. Ontologies were compara-
tively easy to develop for faunal variables that have well-defined
categories and are generally recorded in similar ways (e.g., taxon,
element, dorsal/ventral, and side). Other variables exhibit con-
siderable diversity in how they are recorded (e.g., butchering,
condition, completeness, and gnawing), but it was nonetheless
possible to achieve agreements on ontologies.

The draft ontologies have been refined through interactions
with working groups focused on the northern Southwest United
States, on the United Kingdom, and on the Archaic period in
the eastern United States. As analysts mapped their datasets to
the draft ontologies and were unable to fit their categories, the
draft ontologies were refined to the point that a large fraction
of the analysts with whom we have interacted believe that their
recordings can be reasonably represented within the system. This
agreement was possible, in part, because analysts did not have
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TABLE 2. Shared Faunal Variable Ontologies.

# Variable Ontology

1 Age
2 Anterior-Posterior
3 Burning Extent
4 Burning Intensity
5 Butchering
6 Completeness
7 Condition
8 Confidence of Identification
9 Digestion
10 Dorsal/Ventral
11 Element
12 Erosion/Preservation
13 Fusion
14 Gnawing
15 Measurements
16 Origin of Fragmentation
17 Pathology
18 Proximal/Distal (long bones)
19 Recovery
20 Sex
21 Side
22 Taxon (by region)
23 Weathering
24 Worked Bone

to abandon their own coding schemes to use the ontologies.
Mapping coded values to ontologies enables effective standard-
ization without forcing analysts to accept them at the level of
their individual analyses.

While working groups of users developed and uploaded the fau-
nal ontologies used here, any data contributor can upload, use,
and share an ontology. However, the more that an ontology rep-
resents shared agreement within a user community, the more it is
possible to share and synthesize data across datasets recorded
using different systematics.

If a research community shares a general approach to record-
ing a variable, it may well be possible to reach a consensus on
an ontology, using the hierarchical nature of the ontologies to
accommodate disputes and differences among analysts. For
example, there may be widespread agreement on the upper
levels of a ceramic typology but variation in how “lumpers” and
“splitters” deal with the finer points. In other cases, a community
may be split with different factions recording certain variables
in fundamentally incompatible ways, as is the case with some
approaches to lithic typology. Even in these cases, there is value
in employing ontologies to integrate data on the contested vari-
ables within each subgroup and sharing ontologies across the
community on variables on which agreement is possible (e.g.,
lithic material).

FIGURE 3. Scatterplot of site elevation (averaged over an
18-km buffer) vs. artiodactyl index. Regression R2 = 0.15;
p = 0.02.

Hypothesis
One substantive goal for this collaboration was to examine the
hypothesis: human population persistence and concentration
on the landscape result in large-mammal resource depression.
As a part of this investigation, we needed to explore an alterna-
tive: Are environmental differences a significant factor in resource
abundance (i.e., regardless of human demography, do more
mesic environments favor larger game and drier environments,
smaller game)? In the US Southwest, higher elevations tend to be
more mesic, and elevation is a reasonable proxy for habitat pro-
ductivity (e.g., Schollmeyer and Driver 2013). In this region, the
large mammals used for food are overwhelmingly artiodactyls,
with lagomorphs being the other major faunal food resource.
Therefore, large-mammal resource depression is indicated by a
decrease in the artiodactyl index.

Results
An initial view of the data (Figure 3) indicates a fairly strong posi-
tive relationship between elevation and project area, suggesting
that differences in the artiodactyl index may be due more to ele-
vation than to human predation. This finding, of course, is not
unexpected, as higher elevations are favored habitats for deer.
However, further investigation revealed a bimodal distribution
of elevation of the sites and projects investigated, as shown in
Figure 4.

If we plot only those project areas located above 1,900 m eleva-
tion (Figure 5), it is clear that there is no relationship (R2 < 0.01)
between elevation and artiodactyl index at these higher-elevation
sites. Rejecting the idea that the artiodactyl index is simply a
function of elevation for the higher-elevation sites, we are able to
proceed with further analysis of the original hypothesis with the
higher-elevation projects. The key point here is that by looking at
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FIGURE 4. Histogram of site elevation (averaged over an
18-km buffer) showing bimodal elevation distribution.

only one or a few cases, we would never have been able to see
this patterning.

Employing integrated data from these 34 sites, we are currently
exploring taphonomic processes and other confounding fac-
tors. A full treatment of this synthetic research is in preparation
and will appear separately. The data underlying Figures 3–5 are
embargoed until that study appears but will be available in tDAR
(at https://core.tdar.org/dataset/438729).

THE DATA INTEGRATION PROCESS
IN tDAR

Dataset Ingest and Metadata Documentation
Data integration necessarily includes a number of steps. First, of
course, the datasets to be integrated must be documented with
appropriate column metadata, with coding sheets for nominal
variables mapped to shared ontologies. tDAR provides software
that interactively guides the user through each of these steps.

Thoroughly documenting a large dataset is a substantial under-
taking. This process can be expected to go smoothly if the
dataset is “clean” and was developed using good practices
(e.g., Archaeology Data Service and Digital Antiquity 2013:73–84).
It is further simplified to the extent that the same coding sheets
(each of which is a separate tDAR resource) are used by multiple
datasets because a coding sheet needs to be mapped to the
corresponding ontology only once. tDAR also allows one docu-
mented dataset to serve as a template for others, so an analyst
using a consistent coding scheme will find that while uploading
and documenting the first dataset will take considerable time,
uploads of subsequent datasets will go very quickly.

However, tDAR’s data ingest and metadata documentation pro-
cess can also reveal problems in the dataset design (e.g., having

the interpretation of one column depend upon the value of a
different column) or errors in coding that can be time-consuming
to correct. For example, a dataset may contain numeric values
that do not appear in the coding sheet for a particular variable. In
that case, the analyst needs to determine whether this situation
represents an omission in the coding sheet (in which case the
coding sheet needs to be corrected) or whether the value was
miscoded. If the value is miscoded, the analyst would attempt to
ascertain whether this mistake was an error in transcription from
a paper form (in which case the digital dataset can be corrected
and reuploaded) or whether the value was initially coded incor-
rectly (in which case the value would be converted to the code
for a missing value when it is impractical to reanalyze the specific
specimen, as is usually the case).

Data Integration
Data integration proceeds by first selecting the datasets to
be integrated. The user then chooses the variables to be inte-
grated by selecting from a list of ontologies represented in the
selected datasets (the process can only integrate variables that
are mapped to shared ontologies). The user can then select one
or more “display variables” for each dataset. These variables,
for example, site identifier, provenience identifier, time period,
or project name, are included in the output dataset but are not
otherwise processed. The user also has the option of identifying
a “count” variable (indicating that this row of the database rep-
resents that number of identical observations with respect to the
variables recorded) used to statistically weight a case.

Finally, the user has the opportunity to control how the inte-
gration operates for each integration variable. For each vari-
able in turn, the software displays all ontology values with check
marks indicating which values are present in which datasets. The
user then selects the ontology nodes to be output (Figure 6).
Whenever a node is selected, tDAR automatically aggregates

FIGURE 5. Scatterplot of average site/project elevation vs.
artiodactyl index for sites above 1,900 m. Regression R2 <

0.01; p = 0.72.
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FIGURE 6. Screenshot of the Digital Archaeological Record data integration window (partial).
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into the selected node all cases with unselected values that are
hierarchically below it.

DATA REUSE, DATA INTEGRATION,
AND ANALYTICAL COMPARABILITY
If, as a discipline, we are to accomplish syntheses that advance
our scholarly and public objectives, we need to become more
serious about sharing data in ways that promote data reuse
(Kansa and Kansa 2013).

Data Reuse
The reuse of datasets depends on a number of factors:

� Relevance. The relevance of the dataset to the research ques-
tions, geographically, temporally, in terms of material and
sample size, and on other substantive grounds.

� Discoverability. The ability of a potential user to discover the
existence of a dataset and evaluate its relevance.

� Accessibility.Once a dataset is discovered, the ability to
acquire a copy of it or to otherwise analyze it and the related
costs.

� Adequacy of Metadata. Datasets can be rendered useless by
inadequate metadata—the information that documents the
content of the dataset, at the level of the dataset as a whole,
the individual tables, the columns, and the nominal values that
appear. For example, if the dataset uses arbitrary codes to rep-
resent nominal values, such as species or ceramic type, and the
coding key is not documented in the dataset or its metadata,
there is no meaningful access to the data.

� Availability of Contextual Information. The availability of key
contextual information is important for establishing the ana-
lytical comparability of datasets and their constituent obser-
vations. This information includes spatial location, temporal
assignment, depositional context, sampling intensity, and
recovery technique. Too often, this contextual information is
not a part of stand-alone analytical datasets.

� Ease of Use. Datasets may be difficult to use because they
are stored in obsolete or obscure formats or because they
are structured in a way that makes them difficult to employ
in quantitative analyses without extensive data cleaning and
reorganization. In contrast, datasets that are encoded in widely
used formats and that employ or are linked to standards or
other shared vocabularies or ontologies are more easily and
effectively reused.

Data Integration and Data Reuse
Use of the data integration tools described here greatly facilitates
data reuse. And because each data integration is responsive to
the specific demands of the query, the datasets are exploited
to their maximum potential. While there is a substantial one-
time investment in developing the ontologies and mapping
datasets to them, the payoffs can be enormous. Consider the
examples presented above. If one simply had a copy of each
original dataset in whatever form it was last used along with a pdf
of the coding key, the example analyses described above that
we completed in minutes would have taken literally months of
effort. At any time, new or revised queries can quickly and easily

be run on all the datasets mapped to the same ontologies. As
new datasets are added to tDAR and mapped to the ontologies,
the data integration queries can be saved and easily rerun to
incorporate the new data. In this way, research communities can,
over time, build ever more powerful integrated datasets.

User communities can range tremendously in scale. For exam-
ple, faunal analysis lends itself to broad generalization because
it deals mostly with biological characteristics, some of which
(notably taxon and element) have established standards.

At the other end of the scale, Kintigh has worked with a num-
ber of students and close colleagues on several survey and
excavation projects in the Cíbola area. At any particular time,
the research teams shared a single coding sheet for recording
ceramic type and form. However, over time, the forms evolved as
they investigated new areas and refined some of their observa-
tions. To combine the results of the ceramic recordings for these
projects, the easiest—and best—solution was to upload them
separately to tDAR with their original coding sheets. In this way,
tDAR preserves and maintains the data as originally recorded. It
was then easy to develop type and form ontologies that captured
the variation in the coding across the projects. Having mapped
the project-specific coding sheets to the ontologies, the data
integration tool made it easy to obtain a unified dataset with any
desired aggregation of categories. In this case, the integration
involved six projects and 11 datasets (survey and excavation were
sometimes in different datasets), with about 240,000 individually
recorded potsherds. This integrated database not only is eas-
ier for Kintigh (2016) and his immediate colleagues to use but is
freely available for reuse.

Establishing Analytical Comparability
If the datasets have strong column- and value-level metadata
and the mappings of dataset values to ontologies are reason-
ably consistent, data integration is highly effective at the variable
level. However, data comparability also depends on contextual
(including time, space, depositional context, sampling intensity)
and taphonomic characteristics of the datasets as a whole—
information that is often not directly documented in the datasets.
For example, if an excavation project screened all deposits and
a testing project recovered large numbers of artifacts from back-
hoe trenches without screening, then quantitative comparability
is lost. More subtly, datasets may differ in their mix of contexts—
one might have excavated largely room contexts, and another,
mostly midden contexts. In this case, one would need to deter-
mine whether observed differences between the datasets are
due to the different kinds of contexts investigated or to actual
differences in the sites themselves.

Datasets, or contexts within them, may also differ in terms of
the taphonomic processes that shaped the formation of the col-
lections. Because of taphonomic differences, even consistently
recorded datasets representing similar mixes of depositional
contexts may not be comparable with respect to some kinds of
questions. While these comparability problems can never be
ignored, being able to integrate datasets in the way that we
have proposed enormously facilitates their resolution. For our
analysis of the collections from 33 Southwestern sites described
above, we developed an analytical protocol that uses variables
recorded in most or all datasets to evaluate statistically the
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taphonomic comparability of the datasets for different purposes
(Clark 2014).

What too often limits the assessment of analytical comparabil-
ity in practice is that datasets—especially those derived from
specialist analyses—often do not contain contextual data about
the proveniences investigated, because the analysts did not
have this information in the first place or it was never later inte-
grated with the specialist data. The absence of contextual data
makes the datasets less useful than they otherwise would be. Of
course, this issue is not a technical limitation of the databases or
of tDAR’s data integration tool. It indicates a serious deficiency
in the workflows that produce, analyze, and archive digital data
(McManamon et al. 2017).

Costs and Responsibilities
Making datasets suitable for reuse entails planning, effort, and
some direct costs. The direct cost of depositing a dataset in
tDAR is low ($10 or less for a 10-MB database). The larger cost
is in the effort devoted to properly preparing and document-
ing a dataset in a way that it can responsibly be used by others.
Making datasets accessible and suitable for reuse is an ethical
responsibility according to the “Society for American Archaeol-
ogy Principles of Archaeological Ethics” (Society for American
Archaeology 1996; discussed in Kintigh 2006). Similar ethical
responsibilities are laid out by the Chartered Institute for Archae-
ologists, the Register of Professional Archaeologists, and the
European Association of Archaeologists. In many cases, there is
also a legal obligation to make publicly funded data accessible
(Cultural Heritage Partners 2012).

Depositing a dataset in tDAR immediately provides for easy dis-
covery, both through tDAR’s Web interface and through Google
and other search engines. While tDAR users need to register (at
no cost), all use of data in tDAR, including downloads of datasets,
is free. Although tDAR does not force every depositor to provide
ideal metadata with a dataset, its interactive interface prompts
the depositor to provide thorough metadata at the dataset, col-
umn, and value levels. Not only are those metadata available to
any subsequent user; they are directly exploited by the data inte-
gration tools. Mapping data values to shared ontologies so they
can be used in data integration constitutes another level of meta-
data. That is, each mapping constitutes an assertion that a given
value of this particular variable is reasonably equivalent to the
value in this node of the shared ontology. We are not aware of
any other repository that provides such comprehensive tools to
gather critical dataset metadata or the ease of use and analytical
power of tDAR’s data integration software.

CONCLUSIONS
To answer many of the most pressing questions of concern to
archaeologists, to scientists more generally, to policy mak-
ers, and to the broader publics to which we are responsible,
archaeology needs to conduct synthetic research. That synthetic
research requires that we integrate primary data from multiple
projects that do not typically collect data in completely con-
sistent ways. As a result, we must have means of integrating
observations across datasets in ways that maintain their seman-
tic integrity. However data integration is accomplished, it places

heavy demands on the metadata that document not only the
tables, columns, and values but also collection procedures
and other information often not contained in the datasets
themselves.

As data integration has traditionally been done, it is a highly
time-consuming and often frustrating endeavor. The efforts are
typically one-off and are not readily built upon. Through this arti-
cle we have sought to draw attention to data integration as an
important component of our disciplinary analytical processes.
We have also sought to highlight what we believe are unique
tools in tDAR that make it possible, with reasonable, incremental
efforts, to integrate very large numbers of datasets in ways that
are directly expandable. tDAR’s query-directed, on-the-fly data
integration tools not only enable the kinds of synthetic research
that we need; they facilitate many other kinds of analysis, and
they greatly foster data reuse.
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NOTE
1. The Open Context data publishing platform similarly recognizes the need

to integrate databases across projects and has used archaeological fauna
as a major focus of application (Arbuckle et al. 2014; Kansa 2015),
employing a “linked open data” approach to data integration.
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