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The dynamics of a cantilever plate clamped at its trailing edge and placed at a moderate
angle (α ≤ 30◦) to a uniform flow are investigated experimentally and numerically, and a
large experimental data set is provided. The dynamics are shown to differ significantly
from the zero-angle-of-attack case, commonly called the inverted-flag configuration.
Four distinct dynamical regimes arise at non-zero angles: a small oscillation around
a small-deflection equilibrium (deformed regime), a small-amplitude flapping motion,
a large-amplitude flapping motion and a small oscillation around a large-deflection
equilibrium (deflected regime). The small- and large-amplitude flapping motions are
shown to be produced by different physical mechanisms. The small-amplitude flapping
motion appears gradually as the flow speed is increased and is consistent with a limit-cycle
oscillation caused by the quasi-steady fluid forcing. The large-amplitude flapping motion
is observed to appear at a constant critical flow speed that is independent of angle of
attack. Its characteristics match those of the large-amplitude vortex-induced vibration
present at zero angle of attack. The flow speed at which the plate enters the deflected
regime decreases linearly as the angle of attack is increased, causing the flapping motion
to disappear for angles of attack greater than α ≈ 28◦. Finally, the effect of aspect ratio on
the plate dynamics is considered, with a plate of reduced aspect ratio being shown to lack
a sharp distinction between flapping regimes for α > 8◦.

Key words: flow–structure interactions, vortex shedding, nonlinear instability

1. Introduction

Elastic plates are in contact with flows in many natural settings and engineering
designs. The interaction between the plate and the impinging flow often results in coupled
fluid–structure physics and complex behaviours, with the resulting phenomena being
dependent on the boundary conditions of the plate. Of particular interest is the behaviour
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of elastic plates that are clamped on one edge and free to move on the remaining edges.
This configuration is ubiquitous in nature; examples are sessile systems such as leaves
(Vogel 1989) and elements of animal locomotion such as fish fins (Sfakiotakis, Lane &
Davies 1999). It is also present in many man-made systems, such as flags clamped to their
pole (Shelley & Zhang 2011) and the leaflets of artificial heart valves (Driessen et al.
2007). As is apparent from these examples, the direction at which the flow impinges on
the plate plays a crucial role in the behaviour of the system.

Numerous studies have examined the behaviour of elastic cantilever plates subjected to a
uniform flow directed either perpendicular or parallel to the plate (Vogel 1994; Paidoussis
1998; Zhang et al. 2000; Eloy et al. 2008; Luhar & Nepf 2011; Shelley & Zhang 2011;
Kim et al. 2013). In the case of flow perpendicular to the plate, the plate behaves as a
bluff body and the main force acting on it is drag, together with any unsteady forces
that may arise. These forces can produce large bending deformations that often result
in a more streamlined shape, reducing in turn the drag force that the flow exerts on the
plate (Vogel 1994). This phenomenon, named reconfiguration, has been widely studied
and is commonly seen in vegetation (De Langre 2008). Conversely, when the plate is
at small angles of attack to the flow, the flow remains attached and the force that acts
perpendicularly to the plate – which is responsible for its bending – is due to lift. The
resulting deflection of the plate can generate flow detachment and unsteady forces.

In the case of flow parallel to the cantilever plate, the flow can impinge either at the
clamped or free end of the plate. The former case is the most frequently studied, and
is referred to as the conventional flag configuration because of its similarity to a flag
flapping in the wind. For this flag system, the flag’s mass and flexibility act as bifurcation
parameters; for certain ranges of these parameters, the flag can exhibit flapping about
its undeflected equilibrium through a flutter instability mechanism (Shelley & Zhang
2011). Both limit-cycle and chaotic flapping modes have been observed (Alben & Shelley
2008). Conventional flags have been proposed as a means to harvest energy from the wind
through the use of piezoelectric materials, which convert the strain energy induced by
the flapping motion into electric energy (Allen & Smits 2001; Taylor et al. 2001; Lee
et al. 2015). Recent studies, however, have focused increasingly on the former case –
the inverted flag – where the flow is parallel to the undeflected plate and impinges on
its free edge. The larger strains exhibited by the inverted flag make this configuration
particularly useful for energy harvesting (Kim et al. 2013; Orrego et al. 2017). Additionally,
the vortex shedding produced by the large amplitudes of motion can be exploited in
applications that involve mixing and heat transfer enhancement (Park et al. 2016). Kim
et al. (2013) showed that the inverted flag presents three main regimes of motion depending
on the magnitude of the dimensionless flow speed κ = ρU2L3/D, where ρ is the fluid
density, U is the free-stream flow speed, L the length of the flag and D the flexural rigidity
of the flag. At low flow speeds, the flag remains in the straight regime, characterized by
its zero deflection equilibrium. The flow remains attached in this regime (Gurugubelli
& Jaiman 2015; Goza, Colonius & Sader 2018). As wind speed is increased, the system
becomes unstable and enters the large-amplitude flapping regime. The shedding frequency
of vortex structures in this regime is correlated to this flapping motion, with a variety
of vortex patterns occurring for different flow speeds (Kim et al. 2013; Gurugubelli &
Jaiman 2015; Ryu et al. 2015; Shoele & Mittal 2016; Goza et al. 2018). If the wind
speed is further increased, the flag enters the deflected regime, where it oscillates with
small amplitude around a deflected equilibrium. Bi-stable regions are present both in
the transition from straight to flapping and from flapping to deflected regimes (Kim
et al. 2013), with a small region of chaotic flapping present between the flapping and
deflected regimes (Sader et al. 2016a). Computational studies have reported the existence

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.922


Dynamics of inverted cantilevers at moderate angle of attack 909 A20-3

of additional regimes. Ryu et al. (2015) and Gurugubelli & Jaiman (2015) observed both
a small-deflection steady state and a small-deflection small-amplitude flapping regime
at flow speeds between those corresponding to the straight and large-amplitude flapping
regimes. Goza et al. (2018) demonstrated the small-deflection small-amplitude flapping to
be a supercritical Hopf bifurcation of the small-deflection equilibrium state. Gurugubelli
& Jaiman (2015), Tang, Liu & Lu (2015) and Shoele & Mittal (2016) additionally observed
a flipped flapping regime at wind speeds higher than those of the deflected regime. In this
mode, the flag bends 180◦ such that the leading edge is parallel to the flow, recovering
a motion similar to that of the conventional flag. Overall, the regimes of motion that
have been reported for the inverted flag are, ordered from lowest to highest corresponding
flow speed: straight, small-deflection steady, small-deflection small-amplitude flapping,
large-amplitude flapping, chaotic, deflected and flipped flapping.

In an attempt to understand the onset of the large-amplitude flapping motion of
the inverted flag, several studies have investigated the loss of stability of the straight
regime. While the existence of a divergence instability was hinted by Kim et al. (2013),
Gurugubelli & Jaiman (2015) was the first to numerically demonstrate its presence. Sader
et al. (2016a) theoretically corroborated the loss of stability of the straight regime through
divergence, and provided a simplified analytic formula that reasonably predicts the onset
of flapping for inverted flags of aspect ratios higher than 1. An equivalent formula, valid for
varying flag morphologies, was further developed by Fan et al. (2019). The inverted flag’s
flapping motion was shown by Sader et al. (2016a) to constitute a vortex-induced vibration
(VIV). Goza et al. (2018) associated this classic vortex-induced vibration with the 2P
vortex shedding mode, and linked the appearance of additional shedding modes at higher
flow speeds with the breakdown of the VIV and appearance of chaos. The cessation of
flapping has received comparably little attention, and is not yet fully understood. Sader
et al. (2016a) suggested the mechanism behind this transition to be a disruption of lock-on
caused by the increased disparity between natural and shedding frequencies of the flag.

It should be noted that the above described behaviour is valid for inverted flags of
large aspect ratio only. As aspect ratio is decreased the nonlinear fluid loading induced
by the edge vortices significantly modifies the flag’s dynamics. The increased lift force
results in a decrease of the flow speed at which divergence occurs. At small aspect
ratios, Sader, Huertas-Cerdeira & Gharib (2016b) showed that inverted flags undergo a
saddle-node bifurcation, which occurs at flow speeds lower than those predicted for a
divergence instability. Notably, for aspect ratios AR < 0.2, as defined in equation (2.1c),
the large-amplitude flapping motion disappears (Sader et al. 2016a). The conclusions
about large-amplitude flapping in large-aspect-ratio flags have, additionally, been drawn
in the case of heavy fluid loading (μ � O(1)), in which the ratio of flag to flow inertia
is small. Through numerical simulations at mass ratios μ = 5 and μ = 50, as defined in
equation (2.1d), Goza et al. (2018) demonstrated that large-amplitude flapping persists in
the presence of light fluid loading, but is distinct from classical VIV. Large-amplitude
flapping occurs for very heavy flags at the low Reynolds number of 20 – well below the
critical Reynolds number of ≈47 for which bluff-body vortex shedding initiates in the case
of a circular cylinder. Interestingly, Gurugubelli & Jaiman (2019) showed that the inverted
flag still presents a flapping motion, albeit with modified dynamics, when a splitter plate is
placed to inhibit the formation of a trailing edge vortex. In this configuration, the restoring
force is produced by the plate’s elastic recoil exclusively.

Laboratory and numerical studies have highlighted the energy harvesting potential of
the inverted flag (Kim et al. 2013; Ryu et al. 2015; Shoele & Mittal 2016; Silva-Leon et al.
2019). Field realizations of the energy harvester have shown, however, that the frequent
changes in flow direction characteristic of atmospheric winds result in reduced harvesting
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FIGURE 1. (a) Schematic of the experimental set-up, with notation for plate dimensions. Top
view of a deflected inverted cantilever plate with definition of (b) angle of attack, α, (c) deflection
angle, Φ, and amplitude, A.

performance (Orrego et al. 2017). Changes in flow direction correspond to variations in
the angle of attack of the undeflected flag, which modify its flapping dynamics. This
undeflected angle of attack is equal to the angle between the clamping direction of the
trailing edge and the direction of the impinging flow (figure 1b). It will be referred to
as angle of attack, α, throughout this text and is independent of the flag’s motion. It
should be noted that the instantaneous angle of attack of the flag, that is time and position
dependent as the flag deflects, is not used in this text. The dynamics of the inverted flag
are very susceptible to changes in the angle of attack, α, as can be deduced from the
very different behaviours in the α = 90◦ (reconfiguration) and α = 180◦ (regular flag)
limits described above. Although these two limiting cases have been studied thoroughly,
very little information is known about the behaviour of cantilevered plates at intermediate
angles of attack.

Preliminary wind tunnel tests have been performed by Cossé et al. (2014) on an inverted
flag of aspect ratio AR = 2 at angles of attack of α = 0◦, 10◦ and 20◦. At finite α, the plate
exhibits a gradual increase in its amplitude of motion as the flow speed (κ) is increased.
This behaviour is distinct from the zero-angle-of-attack case, α = 0◦, where the plate
presents an abrupt increase in amplitude at a distinct value of κ . The critical κ at which
the plate transitions from the flapping to the deflected regime was found to be different for
the three angles. Additionally, the plate at an angle of α = 20◦ showed smaller maximum
flapping amplitudes than those at smaller angles. This has been corroborated by the brief
computational studies of Shoele & Mittal (2016) and Tang et al. (2015), who observed
that the maximum flapping amplitude decreases abruptly for angles of attack larger than
α = 15◦. Recently, Tavallaeinejad, Legrand & Païdoussis (2020a) and Tavallaeinejad et al.
(2020b) developed a nonlinear analytical model of small-aspect-ratio and two-dimensional
inverted flags, respectively, and investigated the sensitivity of the model to angle of attack.
In the two-dimensional model, the flag presents a gradual increase in amplitude as flow
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speed is increased, in agreement with the result obtained by Cossé et al. (2014), with the
critical flow speed decreasing as angle of attack is increased. The flag then transitions to a
large-amplitude flapping motion through two saddle-node bifurcations, marked by a jump
in the frequency of motion. In the low-aspect-ratio model, the pitchfork bifurcation present
at zero angle of attack is replaced by a saddle-node bifurcation at non-zero angles. At large
angles, this saddle-node bifurcation produces an increased region of bi-stability.

While these results highlight fundamental changes in the inverted flag’s dynamics with
angle of attack, the literature lacks a comprehensive characterization of the behaviour of
inverted cantilever plates at varying angles. The term ‘inverted cantilever’ will be used
throughout this text as a more generalized denomination for inverted flags. It refers to
a cantilevered elastic plate that is clamped at an angle to the impinging flow such that
its leading edge corresponds to the free edge of the plate. The purpose of this study is to
fully characterize the dynamics of inverted cantilevers for angles of attack between α = 0◦

and α = 30◦, and in so doing, to generate a more comprehensive experimental data set of
the system. Results are primarily drawn from a collection of systematically performed
experiments at high Reynolds numbers (Re ≈ 104, see § 1 for definitions). In addition,
targeted two-dimensional, low Reynolds number (Re = 200) simulations are employed
to demonstrate the robustness of the behaviour across Reynolds number and to clarify
physical mechanisms driving certain observed behaviours. Angles of attack α ≤ 30◦ are
considered because, as will be shown, the large-amplitude flapping motion disappears
beyond that value for plates of moderately large aspect ratios.

The experimental set-up employed for this study, as well as the non-dimensional
parameters relevant to the characterization of the plate’s dynamics, are introduced in
§ 2. The numerical method used to obtain computational results is presented in § 3.
The primary results of the article are provided in §§ 4–7. First, we review and extend
conclusions about an inverted flag at α = 0◦ that form the foundation of the current work
(§ 4). Next, the system dynamics at non-zero angle of attack (i.e. α > 0◦) are divided into
four different regimes, and the physical mechanisms behind each regime are clarified (§ 5).
The evolution of these regimes as the angle of attack is increased is then synthesized in
§ 6. Finally, in § 7 the effect of aspect ratio is investigated by comparing the results from
§§ 4–6 to those for a plate of lower aspect ratio (AR = 2). The findings of this article are
summarized in § 8.

2. Experimental set-up

The experiments were conducted in an open-loop wind tunnel with a test section of
cross-section 1.2 m × 1.2 m. A schematic of the set-up is presented in figure 1(a). The
flow is generated by an array of 10 × 10 small fans and subsequently passes through a 4 cm
thick honeycomb, formed by 6 mm hexagonal cells. The wind tunnel can produce uniform
flow speeds between 2.2 and 8.5 m s−1, with a maximum turbulence intensity of 9.8 % for
the range of wind speeds considered in this study. The plates are made of polycarbonate
(Young’s modulus E = 2.41 GPa, Poisson ratio νP = 0.38, density ρs = 1200 kg m−3).
The main analysis was performed on a plate of aspect ratio 5, as defined in (2.1a–d),
which has a length of L = 82 mm, height of H = 410 mm and thickness of h = 0.254 mm
(figure 1a). A plate of aspect ratio 2 and dimensions L = 160, H = 320 and h = 0.508 mm
was subsequently investigated to account for the variability of the results with aspect ratio.
The plates are clamped vertically at their trailing edge by means of two aluminium bars,
which are placed vertically at the centre of the test section and at a distance of 1.25 m
from the fan wall. The bars have rectangular cross-section of width 6 mm × 12 mm and
height equal to that of the test section (1.2 m). They are mounted on an adjustable hinge
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that allows a predetermined and fixed rotation along the vertical axis, corresponding to
different values of the angle of attack of the undeflected plate α (figure 1b). The value of
the rotation is set through a dial that displays 2◦ increments.

The deformation of the plate is primarily two-dimensional in the horizontal plane, with
no twisting due to gravity being observed. Its motion is recorded with a high speed camera
(Imperx IPX-VGA210-L) located above the test section. Two recordings of each motion
were obtained, one 600 frames long at 20 f.p.s., used for frequency content analysis, and
one 200 frames long at 100 f.p.s., used for the remaining data. The coordinates of the top
edge of the plate were extracted for each frame through an edge recognition algorithm
implemented in Matlab.

In addition to the angle of attack, α, there are four non-dimensional parameters
that define the dynamics of an inverted cantilevered plate: Reynolds number, Re,
non-dimensional speed, κ , aspect ratio, AR, and mass ratio, μ. They are defined as follows

Re = UL
ν
, κ = ρf U2L3

D
, AR = H

L
, μ = ρsh

ρf L
(2.1a–d)

with U the free-stream flow speed, ν the kinematic viscosity of the fluid, ρs the density
of the plate, ρf the density of the fluid and D = Eh3/(12(1 − ν2

P)) the flexural rigidity of
the plate. Due to the constant dimensions, the mass ratio of each plate remained constant
throughout the experiments, with a value of μ = 3.0 for the plate of AR = 5 and μ = 3.1
for the plate of AR = 2. The flow speed was varied to obtain data for different values of κ ,
yielding a Reynolds number that varies in the range Re = 1.4–4.4 × 104.

The resulting motion of the plate is characterized throughout this text using four main
parameters: the deflection angle, Φ, the non-dimensional amplitude, Ã, provided for
comparison with previous studies, the non-dimensional frequency, f̃ , and the Strouhal
number, St. The deflection angle, Φ, is represented in figure 1(c) and corresponds to
the angle between the free-stream direction and the line joining the leading and trailing
edges of the plate. The sign of this angle is determined by the side to which the plate
deflects, with the positive direction being upwards in this figure. Variables derived
from this parameter, such as the angular amplitude ΔΦ = Φmax −Φmin and the mean
deflection angle, Φ̄, will be employed occasionally. The non-dimensional amplitude,
non-dimensional frequency and Strouhal number are defined as

Ã = A
L
, f̃ = fL

U
, St = fA′

U
, (2.2a–c)

where A is the signed amplitude of motion as defined in figure 1(c), with its sign being
positive in the upwards direction, and the cross-section A′ is calculated as the maximum
between Amax − Amin and |Amax |. By definition, the frequency used to calculate the Strouhal
number is the frequency of vortex shedding. In this study, the frequency of oscillation of
the plate, f , has been used instead. Therefore, the values represented only correspond to
the Strouhal number where these two frequencies coincide. Elsewhere, they correspond to
a reduced frequency of motion. Section 5.3 will show that the frequency of motion and the
frequency of vortex shedding are equal in the flapping regime, where the Strouhal number
will be employed in the analysis.

A remark should be made on the effect of a turbulence intensity (�9.8 %) that is
higher than that of most traditional wind tunnels. Turbulence intensity has been shown
to affect the Strouhal frequency and drag coefficient of rectangular bodies (Knisely 1990)
and is likely to affect the Strouhal number of the inverted cantilever, as well as the flow
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attachment and detachment processes in this configuration. Additionally, a high turbulence
intensity will result in larger perturbations to the plate, which may have a destabilizing
effect. Although it is outside the scope of this manuscript, a more exhaustive study is
needed to fully characterize the effect of turbulence intensity on the plate’s dynamics.

3. Numerical method

In order to clarify some of the underlying physics behind the experimentally observed
plate behaviour, two-dimensional numerical simulations are performed for an inverted
cantilevered plate at an angle of attack of α = 10◦.

The nonlinear simulations are performed using the immersed-boundary algorithm of
Goza & Colonius (2017) for Re = 200 and μ = 0.5. The method treats the fluid equations
using a discrete streamfunction formulation (Colonius & Taira 2008) and the plate
(modelled as a geometrically nonlinear Euler–Bernoulli beam) with a corotational finite
element formulation (Criesfield 1991). The method is strongly coupled; i.e. the nonlinear
coupling between the structure and the fluid is enforced at each time instance, resulting in a
stable algorithm in the presence of large displacements and rotations. This fluid–structure
coupling is enforced by the stresses on the immersed surface, and immersed-boundary
methods are well known to produce spurious computations of these stresses. These
unphysical stress computations were remedied by Goza et al. (2016), and the techniques
described therein are incorporated into the fluid–structure interaction (FSI) algorithm of
Goza & Colonius (2017) to ensure appropriate treatment of the fluid–structure coupling.
The FSI solver has previously been validated on several flapping plate problems for plates
in both the conventional configuration (pinned or clamped at the leading edge) and the
inverted configuration (clamped at the trailing edge) in Goza & Colonius (2017).

The flow equations are treated using a multidomain approach: the finest grid surrounds
the body and grids of increasing coarseness are used at progressively larger distances
(Colonius & Taira 2008). All spatial dimensions are scaled by the cantilever length,
L, whereas time is non-dimensionalized using L/U. The Cartesian x-axis is in the
flow direction and the y-axis points vertically upwards; the z-axis is not required
in these two-dimensional (2-D) simulations. In all computations below, the domain
size of the finest sub-domain is [−0.2, 1.8] × [−1.1, 1.1] and the total domain size is
[−15.04, 16.64] × [−17.44, 17.44]. The grid spacing on the finest domain is Δx = Δy =
0.01 and the grid spacing along the flag is Δs = 0.02. The time step is Δt = 0.001,
which gives a maximum Courant–Friedrichs–Levy number of ≈ 0.15. These simulation
parameters are identical to what was used in Goza et al. (2018), and appendix A of
that reference demonstrates the suitability of these parameters for the Reynolds number
considered in the numerical portion of the present study.

4. Dynamics at zero angle of attack

The experimental results obtained for the zero-angle-of attack case are consistent with
the existing literature. Figure 2(a) shows the maximum, minimum and average deflection
angle,Φ, for a plate of AR = 5 as a function of κ1/2, which is proportional to the impinging
flow speed (see (2.1a–d)). The main dynamical regimes (Kim et al. 2013) are clearly
visible. At low flow speeds (κ1/2 ≤ 1.72), the plate is in the straight regime, defined
by a small-amplitude oscillation around the zero-deflection equilibrium. It should be
noted that, due to an inevitable small non-zero initial curvature of the plate, the plate
deflects slightly to one side in the current experiments, with the oscillations occurring
around this small-deflection equilibrium. Previous studies (Gurugubelli & Jaiman 2015;
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FIGURE 2. Behaviour of an inverted cantilever plate at zero angle of attack, obtained
experimentally. Maximum (◦, blue), minimum (◦, red) and mean (•) deflection angles, Φ, for
a plate of (a) AR = 5 and μ = 3.03, (c) AR = 2 and μ = 3.11 and (d) AR = 2 and μ = 2.62.
(b) Frequency of motion of the plate of AR = 5 and μ = 3.03. Experimentally measured
divergence flow speed (—) and theoretical prediction of divergence flow speed, using Sader
et al. (2016b) (–).

Ryu et al. 2015; Yu, Liu & Chen 2017; Goza et al. 2018; Tavallaeinejad et al. 2020b)
have reported the presence of a biased flapping regime, where the plate flaps with small
amplitude around a small-deflection equilibrium, as the flow speed is increased from the
straight regime. Due to the inherent experimental errors, it is not possible to make a
distinction between straight and biased flapping regimes in the current results, but the
possibility of their separate existence should be emphasized. As wind speed is further
increased (1.72 < κ1/2 ≤ 3.18), the flag enters the large-amplitude flapping regime and
performs a symmetric flapping motion of amplitude comparable to the flag length. For the
highest values of the wind speed (κ1/2 > 3.18), the plate enters the deflected regime and
flexes to one side, oscillating with relatively small amplitude around the deflected position.

As discussed above, the transition from straight to flapping regimes has been
demonstrated numerically (Gurugubelli & Jaiman 2015) and theoretically (Sader et al.
2016a) to be caused by a divergence instability of the zero deflection equilibrium.
Figure 2(b) constitutes the experimental verification of the existence of this divergence,
which is absent in the existing literature. The figure displays the frequency of motion as
a function of non-dimensional flow speed. The small amplitude oscillations of the plate
in the straight regime are caused by small flow perturbations, and their frequency is equal
to the plate–fluid system’s natural frequency. In the presence of a divergence instability,
the effective stiffness of the plate should asymptote to zero, with the system’s natural
frequency thus following the same trend. The trend can be clearly observed in figure 2(b).
The value of the oscillation frequency at κ1/2 = 1.72 is equal to f̃ = 0.1 Hz, indicating the
proximity of a divergence point. This experimental value of the divergence flow speed has
been marked with a solid line in figures 2(a) and 2(b). The theoretical value obtained using
(2.15) in Sader et al. (2016b), κ1/2 = 1.58, is in reasonable agreement and is represented
for reference with a dashed line. While the low frequency measured for κ1/2 = 1.72 makes
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the identification of an approximate divergence flow speed trivial in this data set, future
studies may benefit from a more robust method that is capable of identifying this speed
even when experimental imperfections or a reduced number of data points result in a less
pronounced frequency decrease. In those cases, the method described in Paidoussis (2016)
and Tavallaeinejad (2020) can be used.

As opposed to the results presented in previous experimental studies for zero angle
of attack (Kim et al. 2013; Cossé et al. 2014; Huertas-Cerdeira, Fan & Gharib 2018),
the amplitude of motion in figure 2(a) does not increase abruptly after the divergence
instability. In order to demonstrate that this discrepancy in post-critical behaviour is
not a result of variations in either aspect ratio or mass ratio with respect to previous
studies, the maximum, minimum and average deflection angles for plates of μ = 3.11
and μ = 2.62 and AR = 2 are presented in figures 2(c) and 2(d), respectively. The
experimental divergence flow speed, κ1/2 = 1.80, and theoretical divergence flow speed
obtained from (2.15) of Sader et al. (2016b), κ1/2 = 1.81, of these plates are almost
identical. Figure 2(c) exhibits a discontinuous jump in amplitude of motion after the
divergence, while figure 2(d) shows a gradual increase. Because both plates correspond
to the same aspect ratio, the differing behaviours cannot be caused by aspect-ratio
effects. Additionally, the mass ratio of all three plates is very similar, with the plate of
AR = 5 (figure 2(a), μ = 3.03) possessing a mass ratio that is closer to that of the plate
presenting an abrupt transition (figure 2(c), μ = 3.11) than to that of the plate presenting a
smooth transition (figure 2(d), μ = 2.62). The discrepancy in post-bifurcation behaviour
is, therefore, most likely due to small experimental differences, such as variations in the
initial angle of attack and curvature of the plate.

It is interesting to note that the maximum amplitude of motion of the plate of AR = 5
increases visibly as it approaches the divergence point from the lower flow speeds (between
the dashed and solid lines in figure 2a). This growth corresponds to an increase in the
deflection of the plate when it is subject to perturbations. As the divergence flow speed is
approached, the effective stiffness of the plate decreases and any perturbation will generate
larger-amplitude deviations. These appear as broadband noise in the time history of the
deflection angle Φ and are superimposed over a smaller-amplitude periodic motion.

5. Dynamics at non-zero angle of attack

5.1. Regimes
The behaviour of an inverted cantilever plate that is clamped at a non-zero angle of attack
to the flow differs significantly from that of a plate placed at zero angle of attack, with
new dynamical regimes emerging at non-zero angles of attack. To introduce these new
dynamical regimes, we first present results for an angle α = 10◦ as an illustrative example.

Experimental measurements. The four main dynamical regimes present at non-zero
angle of attack are depicted in figure 3(a), which shows superimposed snapshots of
the motion of a plate of AR = 5 at α = 10◦. Movies of the plate’s motion for the four
regimes can be viewed in the supplementary material available at https://doi.org/10.1017/
jfm.2020.922. Figure 3(b) shows the maximum, minimum and average deflection angle,
Φ, measured experimentally for the same plate as a function of non-dimensional flow
speed, κ1/2. The dynamical regimes present in the plate’s motion are demarcated in
both figures. The deformed regime occurs at low flow speeds. In it the plate oscillates
with small amplitude around a small-deflection position. As wind speed is increased,
these oscillations grow into a flapping motion. This flapping motion is divided into two
branches, the small-amplitude flapping regime and the large-amplitude flapping regime,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.922
https://doi.org/10.1017/jfm.2020.922
https://doi.org/10.1017/jfm.2020.922


909 A20-10 C. Huertas-Cerdeira and others

Deflected

Deflected

NumericalExperimental

Deformed

Deformed

Small-amplitude 
flapping

Small-
amplitude 
flapping

Large-amplitude 
flapping

Large-
amplitude 
flapping

(e)(d )

(b)

(a)

(c)

0.5
0

0.1
f̃

0.2

0.3

0

0.2

0.4

0.6

1.0 1.5 2.0 2.5 3.0
κ1/2

3.5 0.5 1.0 1.5 2.0 2.5 3.0
κ1/2

3.5

0.5
–150

–100

–50

Φ
 (d

eg
.)

f̃

Φ
 (d

eg
.)

50

100

150

0

–150

–100

–50

50

100

150

0

1.0 1.5 2.0 2.5 3.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5

FIGURE 3. Behaviour of an inverted cantilever plate at finite angle of attack (α = 10◦). (a)
Superimposed snapshots of the plate throughout its motion, depicting the four dynamical
regimes. (b,c) Maximum (◦, blue), minimum (◦, red) and mean (•) deflection angles, Φ, as a
function of non-dimensional flow speed, κ . (d,e) Non-dimensional frequency of motion, f̃ , as
a function of non-dimensional flow speed, κ . The results were obtained experimentally for a
plate of AR = 5, μ = 3.0 and Re ∼ O(4) (a,b,d) and numerically for a two-dimensional inverted
cantilever at μ = 0.5,Re = 200. (c,e). The nomenclature employed for the different dynamical
regimes is specified in (a,b).

which will be shown in the following sections to constitute distinct dynamics. Finally, as
wind speed is further increased the plate enters the deflected regime, where it oscillates
with small amplitude around a large-deflection position. The dominant non-dimensional
frequency of oscillation of the plate, f̃ , is presented as a function of κ1/2 in figure 3(d). It
corresponds to the frequency at which the power spectrum of the flag’s deflection presents
its maximum peak. The spectrum is calculated using the fast Fourier transform of the
deflection angle time series, Φ(t). As a reference, the spectra for the α = 10◦ case are
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plotted in figure 4. Experimental frequency data throughout this text are presented only for
flow speeds at which the spectrum presents a clear peak. In some cases, two distinct peaks
are present; the peak of largest amplitude is taken as the dominant frequency. Because their
amplitudes are similar, small changes result in the switching of the dominant peak, which
is reflected as a jump in the presented frequency. An example of such a jump is the data
point for κ1/2 = 1.03 in figure 3(d). A distinction should be made between these jumps in
frequency and those present at the changes of dynamical regime, which correspond to a
shift in the location of a single peak in the spectra.

Simulations. The maximum, minimum and average deflection angles obtained
numerically, as described in § 3, for Re = 200 and α = 10◦, are displayed as a function
of κ1/2 in figure 3(c). Despite the proximity of the simulations to a bifurcation
in Re, the numerical results exhibit qualitative agreement with the experiments and
show the presence of the same four dynamical regimes. The flow speed at which
the small-amplitude flapping emerges is in reasonable agreement (κ1/2 = 1.17 for
experiments, κ1/2 = 1.25 for numerical simulations). However, the flow speed at which
the large-amplitude flapping starts differs significantly (κ1/2 = 2.00 for experiments,
κ1/2 = 1.65 for numerical simulations) and the flow speed at which the large-amplitude
flapping ceases sees moderate differences (κ1/2 = 2.76 for experiments, κ1/2 = 2.6 for
numerical simulations). These differences are to be expected because the large-amplitude
flapping motion is strongly dependent on the vortex shedding processes (Sader et al.
2016a), which vary with the Reynolds number. The frequencies of motion, f̃ , obtained
numerically for the flag at α = 10◦ are presented in figure 3(e). The trend and values
within the flapping motion are in agreement between experimental and numerical results
(notice the difference in scale), and the jumps in frequency at the start and end of the
flapping regime are present in both cases, despite significant variations in the values at
deformed and deflected regimes.

Overall, the results obtained numerically and experimentally present appreciable
differences but display the same general dynamical features. This is in agreement with
results reported for an inverted cantilever plate at α = 0◦, which show the characteristic
qualitative features of the plate’s dynamics and vortex wake to be fairly insensitive to
Reynolds number for Re > 100, while differences do occur in certain details as a function
of Re (Tang et al. 2015; Shoele & Mittal 2016). In this study, the majority of the results will
be extracted from the experimental data, and the numerical results will be employed to gain
a more detailed understanding of (i) the plate behaviour in the flapping regime, and (ii)
the difference in flow structures between the small- and large-amplitude flapping regimes.
Despite the non-negligible differences, the conclusions extracted from the numerical data
in this text refer to the common general physics and are expected to hold for the large Re
case.

The dynamics of the AR = 5 plate – measured experimentally – and that of the
analogous 2-D plate – used in the numerical results – will be analysed at moderate
angles of attack in the following sections. The case of α = 10◦ will first be used as an
example, because it embodies the general characteristics present for all angles of attack.
The evolution of the plate’s behaviour as the angle of attack is increased will then be
studied experimentally. The corresponding subsections will draw heavily from figures 5–8,
which were obtained experimentally for AR = 5 and angles of attack between 0◦ and 28◦.
Figure 5 displays the maximum, minimum and average deflection angles as a function of
non-dimensional flow speed. Each panel corresponds to a different angle of attack, in 2◦

increments. The value of these angles is specified in the top left corner of each panel.
The dashed vertical lines mark the critical flow speeds at which the plate transitions
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between regimes. These flow speeds have been obtained following the method described
in § 6. Figure 6 follows a similar organization and shows the values of the amplitude A′,
which, as specified in § 2, is obtained as the maximum between Amax − Amin and |Amax |.
Figure 7 shows, in a similar manner, the non-dimensional dominant frequency of the
plate’s motion, while figure 8 shows the Strouhal number St = fA′/U. As described above,
the frequencies in these last two cases are obtained as the largest peak in the spectra of the
flag’s motion.

5.2. Deformed regime
At small values of κ1/2, inverted cantilever plates placed at zero angle of attack, α = 0◦,
exhibit a straight regime, characterized by small oscillations around the zero-deflection
equilibrium. As is expected, inverted cantilever plates clamped at non-zero angles of attack
do not exhibit this behaviour. Instead, they undergo a small-amplitude oscillation around a
small-deformation deflected equilibrium (figure 3b), with the deflection of this equilibrium
increasing as κ1/2 is increased. The oscillations are periodic (i.e. the spectrum of the
motion presents a clear peak) in most cases, with the exception of the lowest flow speeds.
The aperiodic cases can be identified as those whose frequency has not been represented in
figure 7. This regime will be referred to as deformed in this text, to make a distinction with
the larger-deformation deflected regime that arises at flow speeds above the lock-off of the
flapping motion. Inverted cantilever plates clamped at α = 0◦ transition from straight to
deformed modes at a finite flow speed, while plates at a non-zero angles of attack are
inherently in the deformed regime even at the smallest flow speeds.

The plate dynamics in the deformed regime are similar for all angles of attack, i.e.
small oscillations around the deflected position (figure 5). The flow behaviour, however,
exhibits significant changes as the angle of attack and flow speed are increased. For small
angles of attack (α � 10◦) and low flow speeds, the deflection of the plate is small, and
the flow remains attached. As flow speed is increased, the deflection increases accordingly
and eventually reaches a critical value at which the flow separates. This transition towards
separation and the subsequent initiation of vortex shedding marks the transition from the
deformed regime to the small-amplitude flapping regime for plates at the low angles of
attack (α � 10◦), as will be shown in § 6. At high angles of attack (α � 12◦), on the other
hand, the flow is separated for all flow speeds within the range considered in this study.

To further demonstrate how flow separation demarcates the transition from deformed to
small-amplitude regimes at small angles of attack, snapshots obtained from the numerical
simulations at α = 10◦ and κ1/2 = 1.15 (in the deformed regime) and κ1/2 = 1.25 (in the
small-amplitude regime) are shown in figures 9(a) and 9(b), respectively. The figures
illustrate a full flapping cycle, with the first snapshot showing a flag position close to
its positive peak and the remaining snapshots spaced roughly a quarter-period apart.
For κ1/2 = 1.15, long vortical structures extend into the wake, but no vortex shedding is
evident. On the other hand, for κ1/2 = 1.25 a 2S vortex shedding mode is clearly visible,
despite the deflection of the plate being only slightly larger than for the κ1/2 = 1.15 case.
Notice by comparison with figure 3(e) that this qualitative change in flow dynamics is
commensurate with a jump in frequency of the flag’s deflection dynamics. This jump
in frequency is a result of the modification of aerodynamic forces when flow separation
occurs. Thus, we utilize sharp jumps in frequency at low angles of attack, α, and low flow
speeds, κ1/2, to indicate the transition from an attached to a detached flow.

Using this criterion, the flow speed, κ1/2, at which the flow separates for plates at small
angles of attack can be identified in the experimental results in figure 7 for α = 2◦–10◦.
The maximum deflection angles of the plate at the flow speeds for which this jump occurs
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FIGURE 9. Snapshots from the 2-D numerical simulations for a plate at (a) κ1/2 = 1.15 and
(b) κ1/2 = 1.25. Snapshot (i) corresponds to the plate being near its positive peak, and the
remaining snapshots are spaced at approximately a quarter-period apart. Contours are of vorticity
and are plotted in 34 levels between −5 and 5 (these quantities are normalized using the
free-stream speed U and plate length L).

in the experimental data are Φsep = 8.8◦, 9.8◦, 13.0◦, 12.4◦ and 15.1◦ at the angles of
attack α = 2◦, 4◦, 6◦, 8◦ and 10◦, respectively. These deflection angles, Φsep, are within
the range expected for separation to occur. Variations in their value between the different
angles of attack are a result of the varying plate geometry and flow speed at separation.
By contrast, for the plates at larger angles of attack (α � 12◦), the flow is separated for
all wind speeds within the studied range. Thus, even the deformed regime is marked by
flow separation and vortex shedding processes. Consistent with this, there is no longer a
jump in frequency in transitioning from the deformed to small-amplitude flapping regimes
(figure 7).

Finally, we note that the divergence instability that marks the onset of flapping for
zero angle of attack, α = 0◦ is no longer observed at non-zero angle of attack. As can
be observed in figure 7, the plate frequency does not approach f = 0. Instead, as κ is
increased the amplitude of the plate oscillations begins to grow, and a flapping motion
develops.

5.3. Flapping regimes
The flapping motion of the inverted cantilever plate at non-zero angle of attack is divided
into two distinct regimes: the small-amplitude flapping regime and the large-amplitude
flapping regime. The differences between these two regimes are easily recognizable in
figure 3. In the experimental results (figure 3b), as example, the small-amplitude flapping
regime is present between κ

1/2
lower = 1.17 < κ1/2 < 2 and the large-amplitude flapping

regime lies between 2 < κ1/2 < κ1/2
upper = 2.69, where κlower and κupper are used to denote

the critical κ for the initiation and cessation of flapping, respectively. The two regimes
are separated by an abrupt change in amplitude and Strouhal number at all angles
of attack, as well as a jump in frequency for angles of attack α < 16◦. Additionally,
snapshots of the plate’s motion in these flapping regimes, obtained through numerical
simulations, are presented together with the corresponding vorticity contours in figure 10.
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FIGURE 10. Snapshots from the 2-D numerical simulations for a plate at α = 10◦ and (a)
κ1/2 = 1.5 and (b) κ1/2 = 1.7. Snapshot (i) corresponds to the plate being near its positive peak,
and the remaining snapshots are spaced at approximately a quarter-period apart. Contours are of
vorticity and are plotted in 34 levels between −5 and 5 (these quantities are normalized using
the free-stream speed U and plate length L).

These snapshots illustrate a full flapping cycle, with the first snapshot showing a
flag position close to its positive peak and the remaining snapshots spaced roughly
a quarter-period apart. They are obtained after allowing sufficient time for the flag
to reach periodic flapping motion. Figure 10(a) corresponds to a flow speed in the
small-amplitude flapping regime just before the transition to the large-amplitude flapping
regime (κ1/2 = 1.5), while figure 10(b) corresponds to a flow speed just after the transition
to large-amplitude flapping (κ1/2 = 1.7). From these snapshots it is evident that, in
addition to the amplitude, frequency and Strouhal number, the flow behaviour also changes
significantly between the small- and large-amplitude flapping regimes.

The large-amplitude flapping regime displays the same dynamical characteristics as the
large-amplitude flapping motion present at zero angle of attack, which has been thoroughly
described in the inverted-flag literature. Through a detailed analysis of several factors –
including the existence of vortex shedding and synchronization with the plate’s motion,
the value of the Strouhal number, the role of the unsteady fluid forces, and the effect of the
Reynolds number, the fluid loading and the damping – Sader et al. (2016a) established this
flapping motion to be a vortex-induced vibration (VIV). Some of the traits indicative of a
VIV can be observed in the data presented here. The numerical simulations of figure 10(b)
show the presence of vortex shedding that is synchronized with the motion of the flag.
The large-amplitude flapping regime is associated with a 2P vortex shedding mode, as is
evident in these simulations, in a similar manner to the large amplitude flapping mode of
the zero-angle-of-attack case (Yu et al. 2017; Goza et al. 2018). The peak Strouhal number
occurs at κ1/2 = 2 in the experimental results, and is in the range St = 0.18–0.19 for angles
α � 15◦, decreasing rapidly for larger angles of attack (figure 8). These Strouhal numbers
are characteristic of lock-on in VIVs, marking the synchronization of vortex shedding with
the resonant frequency of the plate. The frequency of motion of the plate decreases as flow
speed is increased (figure 7), as is characteristic of vortex-induced vibrations in heavy fluid
loading (μ � O(1)). The Strouhal number decreases commensurately as a consequence
of the constant amplitude A′ (figure 6) derived from the problem’s geometry (increased
deflections only result in the plate bending backwards beyond Φ = 90◦). The minimum
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Strouhal numbers within the large-amplitude flapping regime are reached at lock-off and
have a value of St ≈ 0.08 for the smallest angles of attack (α � 4◦) and St ≈ 0.11 for the
remaining angles.

The small-amplitude flapping regime, on the other hand, presents different
characteristics. The vortex dynamics is visible in the numerical simulations of figure 10(a).
A single vortex pair is shed as the flag moves from the positive to the negative deflection
peak. No vortex structures form, however, on the second half of the cycle, despite the
absolute value of the minimum deflection being large (Φ = −21◦). While some vorticity is
generated at the leading edge during this lower motion, no coherent vortex core is formed.
The overall shedding pattern therefore corresponds to a 2S mode. This mode can also be
observed at the lowest flow speed of the small-amplitude flapping regime, κ1/2 = 1.25 in
figure 9(b), and can, therefore, be expected to be present throughout the entirety of the
regime.

The small- and large-amplitude flapping motions of the inverted cantilever plate show
striking similarities to the initial and lower branches present in the vortex-induced
vibrations of a circular cylinder (Sarpkaya 2004; Williamson & Govardhan 2004).
However, the St within the small-amplitude flapping regime, determined experimentally
using the frequency of motion, varies between St = 0.02 and St = 0.13 while the St
of a rigid flat plate at an angle of attack, calculated using the shedding frequency, is
approximately St ≈ 0.15 (Knisely 1990). This significantly lower value of the frequency
of motion compared to the vortex shedding frequency is not indicative of a classic
vortex-induced vibration (Sarpkaya 2004; Williamson & Govardhan 2004). Although
a more comprehensive analysis is required to fully discard a VIV as origin of the
small-amplitude flapping motion – the difference in geometry between rigid and deformed
plate may be behind this disparity in relative frequency values – the discrepancies point
towards an origin of the small-amplitude flapping motion different from a VIV. The spectra
of the plate’s motion for flow speeds leading to the appearance of the small-amplitude
flapping mode, visible in figure 4 for the experimental results at α = 10◦, show a single
peak increasing in amplitude as the critical flow speed κlower is approached, and not
two coalescing peaks. Therefore, the presence of a coupled-mode instability, such as
coupled-mode flutter, is unlikely. The presence of a non-zero frequency at the emergence
of small-amplitude flapping (figure 7) also eliminates the possibility of a Paidoussis-type
flutter mechanism (Paidoussis 2014), observed by Tavallaeinejad et al. (2020b) in a
linear stability analysis of the inverted cantilever at zero angle of attack. The most
probable mechanism is that the plate’s motion is dominated by the quasi-steady fluid
mechanics, with the plate undergoing a limit-cycle oscillation similar to stall flutter. This
hypothesis is supported by the observation, shown in § 6 (figure 12), that at small angles
of attack small-amplitude flapping is only initiated once flow separation occurs. Further
investigations, however, are necessary to unequivocally characterize the nature of this
instability. It should be noted that plates at higher angles of attack (α > 16◦) exhibit
a discontinuity in flapping amplitude and oscillation frequency at a constant value of
κ1/2 ≈ 1.5, which may be indicative of a transition to a different driving mechanism within
the small-amplitude flapping regime.

5.4. Deflected regime
In the large-amplitude flapping regime, the frequency of motion of the inverted cantilever
plate decreases as flow speed is increased (figure 7). When the value of the plate’s resonant
frequency becomes sufficiently different to that of the vortex shedding frequency, the
plate’s motion ceases to lock-on and the large-amplitude flapping motion disappears,
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α (deg.) κ1/2

0 2.99–3.07
2 2.91–2.94
4 2.86–2.87

TABLE 1. Range of non-dimensional flow speeds for which the chaotic regime occurs.

giving rise to the deflected regime. Between the flapping and deflected regimes, a bi-stable
region, where either regime can exist, is experimentally observed. In this region, two
different behaviours can occur. In the first case, the plate switches what appears to be
randomly from one state to the other, resulting in the chaotic regime that has been reported
for inverted flags at zero angle of attack (Sader et al. 2016a; Goza et al. 2018). The
chaotic regime occurs for a narrow band of flow speeds, provided in table 1, at small
angles of attack (α � 4◦). In the second case, the plate is either continuously flapping
or continuously deflected depending on its initial condition. Bi-stability was observed for
angles of attack up to α < 8◦. Interestingly, the spectrum of the plate’s motion (figure 4)
transitions from presenting a single dominant peak in the deformed and flapping regimes
to presenting two clear peaks in the deflected regime. The frequency of the second peak,
however, is too small to correspond to the vortex shedding frequency. It may correspond
to either sub-harmonics of unsteady fluid forces or a resonant frequency of the plate.

The critical flow speed, κupper, at which the plate enters the deflected regime decreases
with angle of attack (figure 5). Cossé (2014) observed that, independently of angle of
attack, the inverted cantilever shows a similar deflected shape at the emergence of the
deflected regime. This is corroborated in the present experimental measurements. The
average deflection angle, Φ̄ at the smallest flow speed where the plate first enters the
deflected regime is virtually constant, with an average of Φ̄ = 46.7◦ and a standard
deviation of only ±1.2◦. A similar value of Φ̄ = 48.23◦ ± 3.42◦ is observed for the plate
of AR = 2 that will be discussed in § 7. The value of this angle for the numerical results
obtained for α = 10◦ is, on the other hand Φ̄ = 61◦, with the difference in angle with
respect to the experimental results being most likely caused by the differences in Re and
μ.

6. Evolution with angle of attack

The four main dynamical regimes present at moderate angles of attack (deformed,
small-amplitude flapping, large-amplitude flapping and deflected) have been analysed
in detail in the previous sections. The general evolution of the plate’s dynamics with
increasing angle of attack is visible in figures 5–8. The evolution of the critical transition
speeds between the different regimes is analysed in detail in this section.

The absence of a divergence instability for α > 0◦ and the gradual increase of the plate’s
oscillation amplitude as flow speed is increased pose a challenge in defining a critical
transition speed, κlower, from deformed to small-amplitude flapping regimes. The method
proposed by Cossé et al. (2014) specifies κlower as the speed at which the plate reaches
an amplitude of motion that is a chosen fraction of the maximum flapping amplitude.
The selection of this fraction, however, is arbitrary, and its variation results in significant
changes in the value of the critical speed. An alternate approach, based on the spectra of
the plate’s deflection angle, is proposed here. The difference between flapping motions and
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FIGURE 11. Sum of squares error for a bi-Gaussian fit to the power spectra of the plate’s
motion (◦) measured experimentally for an angle of α = 10◦ and threshold defining the flapping
regime (–).

motions with no resonance is distinguishable by eye in figure 4. In the flapping motions,
the spectra show a single crisp peak that corresponds to the resonant frequency, while
in the motions with no resonance the spectrum appears noisy due to the presence of
multiple frequencies, even if a peak is present. The flapping regime is therefore defined
as the range of flow speeds at which these spectra present a single crisp peak. In order
to mathematically define this region, a bi-Gaussian function is fit to each fast Fourier
Transform (FFT), normalized such that its maximum value is equal to one, and the sum of
squares error (SSE) is calculated as

SSE =
n∑
1

( yi − ψ( fi))
2, (6.1)

where n is the number of frequency points in the FFT, yi is the value of the FFT at the
frequency fi and ψ( fi) is the value of the fit at fi. The SSE provides a measure of the
dispersion of the data points around the fit. The values of the SSE for α = 10◦ are plotted
in figure 11(a). The SSE displays a low-value plateau at the flow speeds at which flapping
occurs, with its value increasing in the deformed and deflected regimes. Consequently, the
flapping regime is chosen to be the range of κ at which the SSE is within this low-value
plateau

SSE
(

FFT
max(FFT)

)
< 1.7. (6.2)

Although different angles of attack presented different defining thresholds, the value
of 1.7 was chosen as a reasonable representative value for all angles. This threshold
is considered less arbitrary than the maximum-amplitude fraction employed by Cossé
et al. (2014) because it is chosen to separate the more clearly defined plateau.
Alternative approaches to identifying this flapping region are certainly possible, and a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.922


Dynamics of inverted cantilevers at moderate angle of attack 909 A20-23

0.5
0

5

10

15

20

25

30

26.8

1.0 1.5 2.0 2.5

κ1/2
3.0 3.5

Deflected

Small - 
amplitude
flapping

Large-
amplitude
flapping

D
ef

or
m

ed

α
 (d

eg
.)

FIGURE 12. Critical non-dimensional flow speeds measured experimentally as a function of
angle of attack. Flow speed for flow separation, κsep (∇, green), start of small-amplitude flapping
regime (as defined by (6.2)), κlower (�, brown), end of resonance (as defined by the same
equation), κupper (�, red), start of deflected regime, κdef (	) and start of large-amplitude flapping
regime (◦, blue).

more rigorous approach may be developed as our knowledge of the underlying physics
expands. Even so, the principal conclusions presented in this section are expected to hold.
The FFTs corresponding to the flapping regime, as defined by (6.2), are identified with a
bold frame in figure 4, for α = 10◦. The corresponding critical flow speeds for the onset
and end of the flapping regime are marked with vertical dashed lines in figure 3(b). While
the transition from deformed to flapping regimes is smooth, the transition from flapping to
deflected regimes is well defined and corresponds to an abrupt decrease in the amplitude of
motion. The limits defined by (6.2) capture this transition and the overall flapping region
well.

The critical flow speeds at which transitions between regimes occur are represented
in figure 12 for different angles of attack. The brown triangles are κlower, which is the
transition from deformed to small-amplitude flapping regimes as defined by (6.2). The red
squares are κupper, the flow speed at which resonance ends, again using (6.2). The green
triangles represent κsep, the flow speed at which the flow separates, which corresponds to a
jump in frequency in figure 7 for angles α � 10◦. The blue circles delineate the transition
from small- to large-amplitude flapping, determined by a jump in amplitude and frequency
in figures 5–8. The black rhombuses correspond to the flow speed at which large-amplitude
flapping gives way to the deflected regime, κdef , marked by a sharp decrease in amplitude
in figure 5.

The critical flow speed for transition from deformed to small-amplitude flapping
regimes, κlower, shows different behaviour for small (α � 10◦) and large (α � 10◦) angles
of attack. At small angles, it follows the trend of the flow speed required for the flow
to separate, κsep, decreasing as angle of attack is increased (figure 12). Following the
discussion in § 5.3, it is reasonable to assume a separated flow is required for the
small-amplitude flapping regime to develop. This plot corroborates that at the emergence
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of small-amplitude flapping the flow over the plate is always separated. Thus, vortex
shedding occurs and the quasi-steady forcing is nonlinear. For larger angles of attack
(α � 10◦), on the other hand, the flow is always separated within the range of κ studied. At
low κ the plate remains in the deflected regime despite the flow being separated. Therefore,
there must be other requirements in addition to flow separation for the small-amplitude
flapping regime to develop, which may be related to the stability of the deformed position.
The critical flow speed at these larger angles decreases significantly slower as the angle
of attack is increased. At the highest angles of attack (α � 24◦), the transition flow speed
increases abruptly and rapidly, leading to disappearance of the small-amplitude flapping
regime.

The critical flow speed at which the plate enters the deflected regime, κdef , and the
critical flow speed at which the resonance ceases, κupper, are plotted together in figure 12.
Both speeds have been extracted from the same data set, eliminating any differences
caused by the bi-stable nature of the plate in this region. As expected, these two speeds
overlap, with small disparities being likely caused by experimental error and the limited
precision of the identifying method (6.2). The critical flow speed at which the flag
transitions to the deflected regime, κdef , decreases as the angle of attack is increased due
to the increased fluid damping. This decrease in κdef is linear with angle of attack.

Moreover, the critical flow speed at which the plate enters the large-amplitude flapping
regime, represented by blue circles in figure 12, is strikingly constant for all α, at a value
of κ1/2 = 2. Linear fits to both critical flow speeds have been included in figure 12.
Due to these trends, the range of flow speeds at which the large-amplitude flapping
motion occurs decreases with increasing angle of attack. The large-amplitude flapping
regime ceases to exist at an angle of α = 26.8◦, calculated using the linear fits. The
small-amplitude flapping motion is present at angles beyond this α = 26.8◦ value, but not
significantly higher. It ceases to exist for α ≈ 28◦. At larger angles (α � 28◦) the deformed
and deflected regimes merge into a single common regime, where the plate flexes with
continuously increasing deflection angle and oscillates with small amplitude around this
position.

The angular amplitude of motion in the large-amplitude flapping regime is
approximately independent of angle of attack for α � 14◦. It decreases rapidly for angles
greater than that value (figure 5). This result is in agreement with the threshold obtained
by Shoele & Mittal (2016), who observed the amplitude to notably decline for angles
beyond α = 15◦. The Strouhal number follows a similar trend, diminishing rapidly for
angles greater than α = 14◦ (figure 8). The energy harvesting performance of the inverted
flag is therefore severely limited beyond α = 14◦, both due to the decrease in the flapping
amplitude and the decrease in range of speeds at which flapping occurs.

7. Effect of aspect ratio

The experimental measurements reported in § 5 for an inverted cantilever plate of aspect
ratio AR = 5 are repeated here for a plate of AR = 2, with the objective of highlighting
the most prominent differences. The obtained data are presented in a similar manner: the
maximum, minimum and mean deflection angles,Φ, are shown in figure 13, the amplitude,
A′, in figure 14, the frequency, f̃ , in figure 15 and the Strouhal number, St, in figure 16. The
corresponding values for the AR = 5 plate are included for comparison in these figures.
The data points corresponding to the chaotic region have been highlighted in black in
figure 13. As is evident from these figures, the behaviour of the plate of AR = 2 presents
notable differences with respect to the plate of AR = 5.
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Ã
′

Ã
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At low flow speeds, the plate of AR = 2 is in the deformed regime and oscillates
with small amplitude around a small-deflection equilibrium. In this regime, the power
spectra of the AR = 2 plate, depicted in figure 17(a), present two peaks, which may be
indicative of the effect of the second length scale (height, H) that introduces a second
characteristic frequency. The transition to the small-amplitude flapping regime occurs in a
similar manner to the higher-aspect-ratio case, with the lower of the two frequency peaks
growing in amplitude and without a coalescence of peaks being observed (figure 17a). The
jump in frequency indicative of flow detachment at small angles of attack is, nonetheless,
no longer visible.

For AR = 2, distinct small- and large-amplitude flapping regimes can only be
recognized at small angles of attack (α � 8◦). At these small angles, an abrupt increase in
amplitude and Strouhal number signals the transition between the two regimes. Unlike in
the AR = 5 case, this transition does not coincide with the flow speed where the St reaches
its maximum value (figure 16). The flow speed where the St peak occurs is, however,
strikingly equal for both aspect ratios (κ1/2 ≈ 2). At large angles of attack (α > 8◦), on
the other hand, the AR = 2 plate does not present evident small- and a large-amplitude
flapping regimes. For these large angles, the variables that define the motion of the plate
vary smoothly as flow speed is increased (figures 13–16). This smooth variation may be
caused by the existence of tip vortices and three-dimensionality in the vortex shedding, that
result in the presence of a range of frequency values instead of a single defined frequency.
Remarkably, the plate of AR = 5 presented a discontinuity in the amplitude of motion at a
flow speed of κ1/2 ≈ 1.5 for angles α > 16◦ that is also present at the same threshold and
flow speed for AR = 2.

The absence of a pronounced large-amplitude flapping regime for AR = 2 and angles of
attack α > 8◦ is marked by lower flapping amplitudes and Strouhal numbers with respect
to the AR = 5 plate, with the difference in minimum deflection angle being particularly
significant (figure 13). This discrepancy initially occurs only at the lower flow speeds of
the large-amplitude flapping regime, but extends to the full range of speeds for α > 14◦.
Due to the reduced amplitude and Strouhal numbers and the differences in behaviour with
respect to the AR = 5 plate, the nature of the flapping motion of the AR = 2 plate at α > 8◦

remains unclear. As the flow speed is further increased, this flapping motion gives way to
the chaotic regime. This regime is more pronounced for the AR = 2 plate than for the
AR = 5 case, occurring at a larger range of flow speeds and angles of attack (α � 16◦). If
the flow speed is further increased, the plate finally enters the deflected regime, where it
oscillates around a large-deflection position in a similar manner to the AR = 5 plate.

The critical non-dimensional flow speeds, κ , at which the AR = 2 plate transitions
between regimes are shown in figure 18. The flow speed for initiation of flapping, κlower,
has been obtained following (6.2). The remaining velocities have been determined by
the observation of abrupt changes in the flag’s behaviour. The flow speed at which the
large-amplitude flapping regime ends for AR = 2 follows a linear trend with angle of
attack, but has a more pronounced slope than the AR = 5 case. Similarly to the plate
of AR = 5, this results in the flapping motion of the AR = 2 plate being practically
non-existent for an angles of attack beyond α = 28◦.

In addition to the above analysed data, an angle of attack of α = 30◦ was investigated,
the data from which are presented in figures 13–16. Interestingly, a new resonant motion
is observed that presents amplitude and frequency response characteristics distinct from
those of the flapping regimes observed for the AR = 2 plate at α < 30◦. At the lower flow
speeds, the power spectra of the motion, displayed in figure 17(b), show the existence of
two peaks, which approach each other at the onset of the large-amplitude motion of the
plate. The proximity of these peaks suggests the presence of a coupled-mode mechanism,
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FIGURE 18. Critical non-dimensional flow speeds measured experimentally as a function of
angle of attack for a plate of AR = 2. Start of flapping regime (as defined by (6.2)), κlower (�,
brown), start of large-amplitude flapping regime (◦, blue), start of chaotic regime (∇, orange)
and start of deflected regime, κdef (	).

such as coupled-mode flutter. The detailed analysis of this new resonant motion is beyond
the scope of the present study, but these results highlight the variety of phenomena that
may arise at angles of attack intermediate to those typically studied, α = 0◦, 90◦ and 180◦,
that may be of interest in future investigations.

8. Conclusions

This study has reported and analysed the dynamics of an inverted cantilevered plate
placed at a moderate angle of attack (α � 30◦) to a uniform flow. First, a plate of
large aspect ratio (AR = 5) was investigated experimentally. At non-zero angle of attack,
four distinct dynamical regimes were identified as the non-dimensional flow speed,
κ , is increased: deformed (small oscillations around a small-deflection equilibrium),
small-amplitude flapping, large-amplitude flapping and deflected (small oscillations
around a large deflection equilibrium). A comparison with 2-D numerical simulations
revealed that the qualitative dynamical features remain unchanged for low Reynolds
numbers (Re = 200), although variations in the characteristic flow speeds, amplitudes and
frequencies are present.

The data obtained for the AR = 5 case showed that the plate, initially in the deformed
regime, does not undergo a divergence instability, but exhibits a gradual increase in
the amplitude of oscillation as it enters the small-amplitude flapping regime. A new
method based on the power spectra of the plate’s deflection was proposed to identify
the critical flow speed at which small-amplitude flapping is initiated. For small angles
of attack (α � 10◦) this transition occurs at the flow speed that generates a plate deflection
large enough for the flow to separate. For large angles of attack (α > 10◦) the flow is
always separated and an additional instability, which remains to be fully characterized,
determines this critical flow speed. The small-amplitude flapping regime was argued to
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be a limit-cycle oscillation produced by the quasi-steady fluid forcing and was associated
with a 2S vortex shedding mode.

At a flow speed of κ1/2 = 2, which was found to be independent of angle of attack, the
plate was observed to transition to the large-amplitude flapping regime. This transition
is marked by an abrupt change in flapping amplitude, Strouhal number and frequency of
motion (the latter for α < 16◦ only) as well as a shift to a 2P vortex shedding mode. The
large-amplitude flapping regime presents the same characteristics as the flapping motion
observed at zero angle of attack, which has been established to constitute a vortex-induced
vibration (Sader et al. 2016a). As the flow speed was increased, the plate transitioned to
the deflected regime. The flow speed at which this transition occurs decreases linearly
with angle of attack. Consequently, the range of flow speeds at which the large-amplitude
flapping motion is present decreases with increasing angle of attack. At an angle of attack
of α = 26.8◦ the large-amplitude flapping motion ceases to exist. The small-amplitude
flapping motion disappears at angles beyond α ≈ 28◦.

A subsequent set of measurements were performed on a plate of aspect ratio AR = 2
and revealed contrasting dynamics. Although the main dynamic regimes are still present,
the distinction between small- and large-amplitude flapping motions is no longer evident
for α > 8◦, with the amplitude and frequency of motion varying smoothly across the
flapping regimes. This was argued to be a result of the three-dimensional vortex shedding.
As a result of the modified dynamics, the flapping amplitude is fairly decreased with
respect to the large-aspect-ratio plate for angles of attack above α � 8◦. A new distinct
large-amplitude motion was observed to appear at α = 30◦, highlighting the diversity of
dynamics that may be present at larger angles of attack.
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