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Abstract — Chitinozoans are considered as reproductive bodies of marine invertebrates, called
chitinozoophorans. These chitinozoophorans were most likely to have been small, pelagic or necto-
pelagic, soft-bodied, probably wormlike animals, and judging from the size of chitinozoans, they
probably measured from a few millimetres to a few centimetres in length. The chitinozoophorans
most likely survived by grazing on phytoplankton. There is no evidence of a large colonization of
the pelagic niche in the Cambrian, but from the Early Ordovician onward, this niche was exploited
chiefly by graptolites and chitinozoophorans. Both groups inhabited nearshore and offshore habitats,
but in contrast to the graptolites, the chitinozoans displayed their highest diversity at high latitude, in
less distal (that is, upper and lower offshore) environments. The chitinozoan group evolved rapidly
during the Ordovician and reached its maximum Ordovician diversity in the late Darriwilian. From
the first occurrence of chitinozoans in early Tremadocian times, to the biodiversity crisis in latest
Ordovician times, nearly 80 % of the morphological innovations took place. Until their extinction
in the latest Devonian, chitinozoans survived through several biodiversity crises: in the early Late
Ordovician, late Hirnantian, late Wenlock, earliest Emsian, and in the latest Frasnian (Kellwasser event).
During the melting of the Hirnantian ice sheet, most Ordovician genera and species became extinct,
but some genera extended beyond the boundary (e.g. Spinachitina, Belonechitina, Cyathochitina,
Ancyrochitina). The Hirnantian glaciation was not directly responsible for the dramatic extinction of
organic-walled microfossils, but it certainly accelerated the extinction of lineages that had already been
weakened since the early to mid-Katian. The late Wenlock and earliest Emsian graptolite crises affected
the chitinozoophorans to a lesser degree, and the latest Frasnian Kellwasser event did not greatly affect
chitinozoophorans. The disappearance of the chitinozoan group at the end of the Famennian resulted
from a combination of factors, for example, the chitinozoophorans probably no longer had the genetic
potential for successful adaptations to successive drastic environmental changes (only one species
is known from the latest Famennian), their usual niche was invaded by more efficient groups, and
their usual food supply disappeared or was no longer sufficient. The latter factor is supported by the
contemporaneous decline in phytoplankton.
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1. Introduction chitinozoan vesicles contained no chitin. The available
data do not allow us to establish which is correct (Jacob
et al. 2007).

Kozlowski (1963) was the first to use the mode
of chitinozoan aggradation in biological affinity argu-
ments. Specimens of the genus Desmochitina Eisenack
1931, which were contained within an organic-walled
cocoon, were considered by Kozlowski to be similar
to polychaete eggs enclosed in a similar structure.
However, the various types of attachments to form
chains or other types of vesicle aggregation cannot
be evaluated for their biological affinity significance,
since many invertebrates display a similar mode of egg
laying.

Grahn (1981) named the supposed marine metazoan
parent organisms ‘chitinozoophorans’, and considered
chitinozoans to be the reproductive bodies of a marine
invertebrate. Paris (1981) discussed the possibility of
small, pelagic or nectic, soft-bodied, wormlike (judging
* Author for correspondence: yngvegrahn@gmail.com from the elongate coiled chains) animals as the parent

The various shapes of chitinozoan vesicles (e.g.
discoidal, spherical, tubular, conical, etc.) are com-
monly represented in numerous unrelated fossil and
extant unicellular organisms or reproductive cycles of
metazoans. Thus, chitinozoan affinities based on shape
have led to numerous radically different biological
assignments (for a discussion, see Paris et al. 1999).
The inferred chitinous composition of the chitinozoan
vesicle wall was used by Eisenack (1931, 1968),
Collinson & Schwalb (1955) and Jenkins (1970)
to support particular inferred biological affinities.
However, Voss-Foucart & Jeuniaux (1972) and Jacob
et al. (2007) were unable to establish the presence of
chitin in the organic vesicle wall. This presents two
possibilities: (1) that the molecular structure of chitin is
not preserved through geological time or (2) the wall of
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organism, and based on the size of the chitinozoans,
deduced that these would range from a few millimetres
to a few centimetres in length. The distribution and
biodiversification pattern of the chitinozoans may
not exactly reflect those of the chitinozoophorans.
A pelagic or necto-pelagic animal may use different
strategies (see Paris & Nolvak, 1999) in laying its eggs:
(1) the eggs were freely spread in the water, or (2) they
were attached to floating objects (e.g. seaweed) or the
chitinozoophorans attached their eggs to any object that
offered protection (e.g. Grahn, 1984b). It is likely that
two modes of occurrence could be expected for such
eggs in a fossil state: (1) evidence of eggs before laying,
that is, the ‘intra-oviduct stage’ (e.g. frequently coiled
chains persisted after the decay of the females; see Paris
& Nolvak, 1999; fig. 3), and (2) evidence of eggs after
laying (cocoons, organized clusters, isolated vesicles).
The chitinozoan vesicles were probably surrounded by
a mucous or gelatinous layer (e.g. Paris & Nolvak,
1999; fig. 4). This is corroborated by the occurrence of
a chain of Lagenochitina esthonica Eisenack, 1955,
found in Tremadocian beds from England (Y. G,
unpub. data), which was surrounded by framboidal
pyrite where a mucous or gelatinous layer could be
expected. Soft tissues, even of a gelatinous nature, are
known to be frequently preserved through alteration
of organic sulphur compounds to pyrite (Stanley &
Sturmer, 1983). An important condition for such
preservation is a quick burial, preferably in organic-
rich sediments (Brett & Baird, 1986). These clusters
should not be confused with secondary stacking (e.g.
faecal pellets, stuck vesicles, etc.).

Chitinozoans evolved rapidly during Ordovician
times. From their first occurrence in the early
Tremadocian to the biodiversity crisis in the latest
Ordovician, nearly 80 % of morphological innovations
took place (Paris & Nolvak, 1999; Paris et al. 1999).
Chitinozoans had already reached their maximum
Ordovician diversity by the late Darriwilian (Fig. 1).
Until their extinction in latest Devonian times, the
chitinozoan group survived several biodiversity crises:
in the early Late Ordovician (Paris et al. 2004), late
Hirnantian, late Wenlock, earliest Emsian, and in the
latest Frasnian (Kellwasser event). The general trend
through time is shown in Figure 1.

The occurrence of chitinozoans in all types of
sedimentary rocks (except for reefs and coarse, well-
sorted sandstones), including black shales and cherts
devoid of any bioturbation or evidence of benthic
fauna, suggests that the chitinozoophorans were, most
likely, part of the zooplankton (Vandenbroucke et al.
2010). It is probable that chitinozoophorans grazed
on phytoplankton. This pelagic niche appeared in the
Cambrian (Servais et al. 2008), but was only exploited
from the Early Ordovician onward. It was also occupied
by graptolites, which appeared a little earlier in the
fossil record than chitinozoophorans (Cooper, 1999).
However, the specific diversities of these two groups
are inverted with relation to climatic belts: intertropical
zones were dominated by highly diversified graptolite
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faunas and higher latitudes by chitinozoophorans.
This is demonstrated for the early Sandbian by
Vandenbroucke et al. (2010). These authors also
concluded that graptolites and chitinozoophorans did
not share exactly the same ecosystem.

The fluctuation of the diversity of the chitinozoans
through time, from the origination of the group in the
early Tremadocian, to its final extinction in the latest
Famennian, was evaluated using the ‘CHITINOVOSP’
database initiated by Paris & Bernard (1994) and
updated by one of us (F. P.). All chitinozoan species
described since Eisenack’s first species description in
1931 are recorded in this database (1214 species).
Besides the various taxonomic form fields, the data-
base also includes palacogeographic and stratigraphic
information. The latter entries contain the total range
of the recorded species at System, Series and Stage
levels. The database has been periodically updated and
the last international subdivisions adopted by IUGS are
used (that is, the most recent Ordovician global stages).

The number of species per stage can be found
by querying the database. These numbers should be
regarded as approximate values, as the total range
of each species is often a matter of estimation,
related to the accuracy of the available stratigraphic
information. In addition, ill-defined species included
in the database add some further bias. Nevertheless,
as the same treatment has been applied throughout
the Palaeozoic record of chitinozoan species, the
resulting general trends seem to reflect fairly well
the actual biodiversification pattern of the group
(Fig. 1), as supported by detailed sections providing
a well-documented diversity trend for some short time
intervals.

The durations of the Wenlock and Ludlow stages
as calculated by Sadler, Cooper & Melchin (2009) are
much shorter than the duration of the Ordovician and
Devonian stages. Consequently, in order to have a time
slice roughly in the same range, the chitinozoan specific
diversity is expressed at series level for Wenlock and
Ludlow on Figure 1. However, a more detailed graph
is provided for the Silurian (Fig. 2) with specific
diversity also evaluated at stage level for the Wenlock
and the Ludlow. This different time slicing points
out a drop in diversity in the Homerian roughly
contemporaneous with the late Wenlock graptolite
crisis (see the lundgreni event in Section 5). The two
graphs also illustrate the great influence of the time
slicing on the diversity curves.

Some discrepancies are noted when calibrating
chronostratigraphic subdivisions with the most recent
numerical scales. The mean chitinozoan diversity per
million years shows higher values for the Darriwilian,
the Aeronian and the Pridoli, when using the numerical
calibration of Ogg, Ogg & Gradstein (2008), with
regard to those proposed by Sadler, Cooper & Melchin
(2009). However, these different calibrations do not
introduce significant bias, as the general trends of the
resulting graphs are similar (Fig. 1). As demonstrated
by a more detailed evalution of the diversity of
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Figure 1. Global evaluation of the chitinozoan biodiversification from the origin of the group in the early Tremadocian to its extinction
in the latest Devonian. The solid circles indicate the number of species per stage (Ordovician and Devonian) or per series (Silurian).
The graph represents the mean diversity of the chitinozoans per million years for the stages or series (durations based on Sadler, Cooper
& Melchin, 2009). An alternative graph (dashed line) is based on the time calibration by Ogg, Ogg & Gradstein (2008). The most
significant events are indicated along the time scale. Open arrow: Darriwilian cooling (Trotter e al. 2008; Ainsaar ef al. 2010); black
arrow: biological and oceanological events (Jaeger, 1978, 1991; Meyer-Berthaud, Scheckler & Wendt, 1999; House, 2002; Joachimski
et al. 2002; Kaljo et al. 2008; Servais et al. 2008; Bergstrom et al. 2009a; Hints et al. 2010); black star: main anoxic events (Chlupac¢
& Kukal, 1988; House, 2002); circled star: main glacial events (Streel ef al. 2000; Lehnert ef al. 2010). The values of the biodiversity
of the chitinozoan at species level are from the database ‘CHITINOVOSP’ of F. Paris.
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Figure 2. Global biodiversity of the Silurian chitinozoans
species per stage (solid circles) and mean value of their specific
diversity per million years for each stage. (Numerical calibration
from Sadler, Cooper & Melchin, 2009.)

Ordovician chitinozoans (Paris et al. 2004), one of
the critical points when elaborating such curves is the
unbalanced quality of the available data; for instance,
some time slices and some areas have been more
extensively investigated than others (e.g. the diversity
curve tends to mirror the number of available samples;
see Paris et al. 2004, fig. 28.2-3) and this must be kept
in mind when discussing diversity fluctuations.

2. The emergence of the chitinozoan group

The first chitinozoans appear during a transgression
event with shaly facies above the Cambrian sandstones
and after the negative TOCE (Top of Cambrian
Excursion) §'*C curve (Zhu, Badcock & Peng, 2006).
The chitinozoophorans colonized the niche as pelagic
zooplankton together with dendroid graptolites (e.g.
Dendrograptids, Anisograptids) and then with the first
graptoloids. No undisputable chitinozoans have been
recorded before the Ordovician, and the microfossils
reported as chitinozoans from the Neoproterozoic
Chuar Group by Bloeser et al. (1977) are most
probably testate amoebas (Porter & Knoll, 2000; Porter,
Meisterfeld & Knoll, 2003). Simple, smooth, quite
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large chitinozoan forms (Lagenochitina, Conochitina)
appear in the early Tremadocian. They are known
from the middle part of the Fezouata Formation
in Morocco (Elaouad-Debbaj, 1988), where the first
known chitinozoans (Lagenochitina destombesi) occur
below the Adelograptus tenellus graptolite Zone, and
above early Tremadocian taxa (Destombes, Holland &
Willefert, 1985; Paris, 1990). Early Tremadocian
chitinozoans have also been reported from the Yangtze
area in south China (Chen, Paris & Zhang, 2008).
During the late Tremadocian, chitinozoans spread to
areas outside north Gondwana, and the morphological
diversification now also includes species with smaller
vesicles (Desmochitina, Euconochitina), together with
large specimens from the Lagenochitina esthonica
group. Early late Tremadocian (Adelograptus tenellus
graptolite Zone) chitinozoans have been reported from
the upper El Gassi Formation in Algeria (Poumot,
1964, 1968; Combaz, 1967; Videt et al. 2010) and
from the New Fields Farm borehole (908.15 m), 5 km
west of Southam, Warwickshire, England (Y. G., unpub.
data). De la Puente & Rubinstein (2009) described La-
genochitina from the Aorograptus victoriae graptolite
Zone (Saladillo Formation), and chitinozoans from the
lower Parsha Formation, Argentina. Chen, Paris &
Zhang (2008) reported Lagenochitina destombesi from
the late Tremadocian in the Yichang area (Fenxiang
Formation), Hubei Province, China. The same species
has been recovered from the Varangu regional stage of
Estonia (Nolvak, 1999). During the latest Tremadocian,
chitinozoophorans expanded to all the paleocontinents,
for example, the upper Cienguillas and lower Obispo
formations, east Codillera, Bolivia (Heuse, Grahn &
Erdtmann, 1999), and the Montagne Noire/Aquitaine
Basin, southwest France (Paris, 1984). Outside Gond-
wana they are known from a number of places such
as the Bjorkasholmen Formation in Skéne, south
Sweden (Nolvak & Grahn, 1993; Grahn & Nolvak,
2010), Oslo Region, south Norway (Grahn & Nolvak,
2007a), and Isle of Riigen, NE Germany (Samuelsson,
1999); Leetse Formation, Estonia (Grahn, 1984a;
Hints & Nolvak, 2006); Cow Head, Ledge Section,
Newfoundland, Canada (Williams et al. 1999); and
Altai, Siberia (Sennikov et al. 2008).

3. Chitinozoan maximum diversity in the late
Darriwilian

The chitinozoophorans quickly expanded during Early
and Middle Ordovician times (Fig. 1), and reached their
maximum Ordovician diversity (only to be exceeded in
the early Wenlock and Pridoli) in the late Darriwilian
(Paris & Nolvak, 1999; Paris et al. 1999, 2004; Hints
et al. 2010) after about 15 Ma. The genetic potential
was probably high with a ‘plasticity’ of the genome
of the chitinozoophorans favouring new combinations
(Paris et al. 2004). The sea-levels were rising, but in the
late Darriwilian a short lived regression (Dabard, Loi &
Paris, 2007) occurred with the onset of a cooler climate
(Trotter et al. 2008; Ainsaar ef al. 2010). The regression
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and the climate change affected chitinozoophorans, and
chitinozoan diversity decreased until a recovery in the
Katian (Fig. 1).

4. The Hirnantian/Rhuddanian biodiversity crisis

The first major biodiversity crisis for chitinozoophor-
ans on a global basis coincides with the Guttenberg §'3C
excursion (GICE) in the early Late Ordovician (Paris &
Nolvak, 1999; Paris et al. 2004; Achab & Paris, 2007;
Bergstrom et al. 2009a,b). The decline in chitinozoan
species diversity (Fig. 1) is in general connected
with decreases in sea-level, most likely caused by the
development of restricted intra-continental ice sheets
(Hamoumi, 1999; Ainsaar, Meidla & Martna, 2004,
Bourahrouh, Paris & Elaouad-Debbaj, 2004; Loi et al.
2010), or by increased tectonic activity. Subsequently,
a change in sedimentation led to a positive change in
813C, extinction, and a microfaunal crisis. Glaciation
pulses leading to the Hirnantian glaciation (Bergstrom,
Saltzman & Schmitz, 2006; Kaljo et al. 2008) started
in the late mid-Katian (Bourahrouh, Paris & Elaouad-
Debbaj, 2004; Loi et al. 2010). During the deglaciation
of'the Hirnantian ice sheet, most Ordovician genera and
species became extinct. A few Ordovician genera (e.g.
Acanthochitina, Armoricochitina) disappeared during
the deglaciation of the Hirnantian ice sheet, when
about 33 % of the chitinozoan genera became extinct
during the Late Ordovician. Almost all the species that
originated in the Ordovician became extinct during
the last part of the Hirnantian. The first chitinozoans
with Silurian affinity (Spinachitina oulebsiri) oc-
curred in the latest Hirnantian (upper Normalograptus
persculptus Zone). Continuous sedimentation across
the Ordovician/Silurian boundary is rare, but known
from Skéne, south Sweden (Grahn, 1978, 1998; Nolvak
& Grahn, 1993; Grahn & Nolvak, 2007b), possibly
Anticosti Island, Canada (Achab, 1981; Soufiane &
Achab, 2000; Bergstrom, Saltzman & Schmitz, 2006;
Achab, Asselin & Desrochers, 2008; Melchin, 2008)
and Dob’s Linn, Scotland (Verniers & Vandenbroucke,
2006). In the former area, a barren zone occurs within
the Normalograptus persculptus Zone, and before
the appearance of Silurian chitinozoan lineages (e.g.
Belonechitina postrobusta). At Dob’s Linn the fossil
record is not continuous. In Bohemia and southwestern
France (A. Bourahrouh, unpub. Ph.D thesis, Univ.
de Rennes, 2002), and Algeria (Paris, Bourahrouh
& Le Hérissé, 2000; F. Paris, unpub. data), charac-
teristic Ordovician species (e.g. Desmochitina minor,
Armoricochitina nigerica, Calpichitina lenticularis,
Tanuchitina elongata) thrived in open marine shelf
environments after the end of the glaciation. They
become extinct at the same level as in Skéne (that
is, the uppermost Normalograptus persculptus Zone),
but after the first occurrence of Silurian related taxa,
such as Spinachitina oulebsiri-fragilis (Vandenbroucke
et al. 2009b). The Hirnantian glaciation was therefore
not directly responsible for the dramatic extinction
of organic-walled microfossils. However, it certainly
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accelerated the extinction of lineages that had already
been weakened since the Katian, and favoured devel-
opment of taxa better adapted to the habitats available
high in the water column above the anoxic sea-
bottom environments that persisted in some northern
Gondwana areas for 10-15 Ma (Paris, Bourahrouh &
Le Hérissé, 2000; Le Hériss¢ et al. 2003). Chitinozoans
are abundant and highly diversified (Fig. 1) and
recorded with other pelagic or epipelagic organisms
such as graptolites, orthocones and leiospheres in the
Silurian black shale. The poisoned anoxic sea-bottom
was not suitable for any metazoan life (as indicated
by lack of bioturbation, no benthic fossils, and no
degradation of the organic matter). In western Gond-
wana the chitinozoophorans thrived during the early
Silurian (Llandovery) deglaciations when the intrac-
ratonic basins had sea-way connections with the Rheic
Ocean and subsequently shared the same fauna and
phytoplankton (Grahn & Caputo, 1992; Grahn, 2005;
Villeneuve et al. 1989; S. De la Puente, unpub. Ph.D.
thesis, Univ. Nacional de Cordoba, 2009).

5. The late Wenlock crisis (C. lundgreni event) and
earliest Emsian (pre-basal Zlichov event) graptoloid
extinction

Atthe end of the Wenlock, a regression (Johnson, Kaljo
& Rong, 1991; Johnson & McKerrow, 1991; Kaljo
& Mirss, 1991) severely affected the monograptids
(C. lundgreni event) on a global basis (Koren &
Urbanek, 1994: Storch, 1995; Kozlowska-Dawidziuk,
Lenz & Storch, 2001). Only Pristograptus dubius
survived from the monograptid line. Although the
chitinozoophorans shared part of the same niche as
graptolites, they were less affected, but nevertheless
the diversity decreased considerably (Figs 1, 2) in the
late Wenlock—early Ludlow (Paris & Nolvak, 1999;
Paris et al. 1999). No glaciations or extraterrestrial
(Jaeger, 1991) events (as indicated by the lack of
unusually high presence of iridium) are known from
the end of the Wenlock that can explain the graptolite
crisis on a global basis. Quinby-Hunt & Berry (1991)
discussed a hydrochemical explanation. A high global
temperature during the Silurian, and a low oxygen
concentration in the atmosphere, probably led to an
extensive oceanic anoxia (Quinby-Hunt & Berry, 1991;
Koren & Urbanek, 1994). A possible scenario is,
therefore, a change in reduction conditions in the
oceans leading to anoxic waters at low depths, far from
the bottom, and expanding into the graptolite habitat,
which would lead to only a thin layer of pelagic waters
suitable for life (Quinby-Hunt & Berry, 1991; Koren
& Urbanek, 1994). The appearance of dolomites with
interbedded graptolitic shales in the latest Wenlock
corroborates the presence of anoxia in the oceans.
Deep-sea dolomites occur only under an increased
reducing potential of sediments. A global oceanic
disturbance, as yet unidentified, which severely affected
graptolites, should consequently be reflected in carbon
isotope (8'3C) curves. These show depletion in some
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sections in the late Wenlock—early Ludlow (Corfield
& Siveter, 1992; Corfield et al. 1992; Kaljo, Kiipli &
Martma, 1998). Chitinozoophorans were less affected
(see Nestor, 2009) since they dominated in upper layers
of the lower offshore to nearshore environments, while
graptolites inhabited the pelagic (Vandenbroucke ef al.
2009a) or alternatively the deeper parts of the ocean
(Cooper, Fortey & Lindholm, 1991).

Graptoloid and chitinozoophoran diversity de-
creased dramatically during a regressive phase in the
Pragian and earliest Emsian (Fig. 1), which resulted
from the same oceanographic conditions as during the
latest Wenlock (Jaeger, 1991). In the Prague Basin
the last graptoloids became extinct in the uppermost
Dvorce-Prokop Limestone (Jaeger, 1978), very close
to base of the bursa chitinozoan biozone and to
the former Pragian—Emsian transition (F. P, unpub.
data). However, it must be stressed that this level is
significantly younger than the controversial GSSP of
the Emsian defined by the FAD of the Polygnathus
kitabicus conodont index species (Yolkin et al. 2000).
Only benthic dendroids survived the event (Chlupac &
Kukal, 1988). During a transgressive phase in the early
Emsian (basal Zlichov event), the chitinozoans were
still abundant but fairly poorly diversified (e.g. Paris,
1981). However, the disappearance of graptoloids had
no major impact on the chitinozoan distribution, as new
pelagic competitors occupied this more or less vacant
pelagic niche after the disappearance of the graptoloids
(e.g. ‘“Thuringian ecotype’ ostracods; see Lethiers &
Raymond, 1991).

6. Latest Frasnian anoxic crisis (Kellwasser event)

The latest Frasnian anoxic crisis (Kellwasser event)
may be the consequence of a multiplicity of impacts
(e.g. Alamo, Siljan, Flynn Creek). Moreover, these
contributed to successive crises in the Frasnian (House,
2002), and finally resulted in the latest Frasnian mass
extinction (McGhee, 2001). Kellwasser sediments are
characterized by a general decrease of detrital input,
and an increasing burial of organic matter. There was
a decrease in oceanic CO, concentrations, that were
very high during the Devonian, and an acceleration of
terrestrial weathering (Elick, Driese & Mora, 1998).
The increasing bioproductivity and eutrophication of
the epiric seas (Joachimski et al. 2002; Filipiak,
2002; Racki et al. 2002) caused a decrease of
oxygen levels and the development of anoxic sea-
bottom conditions. Major tectonic movements (Racki,
1998) in the late Frasnian are reflected in a higher
hydrothermal volcanic influence (Pujol, Berner &
Stiiben, 2006). A transgressive phase in the end of the
Frasnian (Kellwasser event) occurred during a warm
climate (Streel et al. 2000 and references therein).
A regression in the beginning of the Famennian
(Streel et al. 2000; House, 2002) was caused by a
cooler global climate (possibly a short-lived glaciation
in the earliest Famennian). The exceptional high
concentration of chitinozoans in the basal Famennian
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beds at La Serre, France, is probably not related to
any physical mechanisms alone (Paris et al. 1996). The
Kellwasser event affected benthic fauna and probably
also chitinozoan predators, and the chitinozoophorans
could therefore expand in the cooler earliest Famennian
environment. Despite the very high abundance of
chitinozoans in the lowermost Famennian bed at La
Serre, the assemblage is monospecific (Paris et al.
1996). This drop of biodiversity was counterbalanced
during the Famennian by a diversification of the group
(Grahn & Melo, 2002) prior to the latest Famennian
extinction. The peak in the ¥Sr/**Sr curve (Burke
et al. 1982; Veizer et al. 1997) indicates an increase
of silica in the oceans that might have been caused
by the onset of the Eovariscan uplift and a mountain
building-enhanced continental weathering (Averbuch
et al. 2005).

7. Extinction of the chitinozoophoran group

Despite numerous palynological investigations of early
Carboniferous marine strata, no chitinozoans have
been recorded in situ. However, Middle and Late
Devonian chitinozoans are frequently found reworked
into Tournaisian strata. Tasch & Hutter (1978) reported
finding chitinozoans from the Carboniferous. However,
these are reworked from the Devonian and we inter-
preted some of them (blistered structures) as cyanobac-
teria colonies. The last records of chitinozoans in situ
are from Brazil (Grahn & Melo, 2002; Grahn, Loboziak
& Melo, 2003) in the late Famennian prior to the latest
Famennian glaciation (lower VH Zone = upper VCo
Zone) and from the Retispora lepidophyta biozones
in the Illizi Basin, Algeria (Abdesselam-Rouighi &
Coquel, 1997; Boumendjel et al. 1988). In both areas,
Fungochitina fenestrata is generally followed by a
monospecific Fungochitina ultima assemblage (Paris
et al. 2000; Grahn & Melo, 2002; Grahn, Loboziak
& Melo, 2003). The disappearance of the chitinozoans
and therefore the extinction of the chitinozoophorans
(Fig. 1) coincide with a regression and fall in sea-level
(Hangenberg event) in connection with the glaciation
in western Gondwana at the end of Famennian
(lepidophyta biozones).

There are, however, several possible contributing
factors to the extinction of the chitinozoophorans:

(1) The closing of oceans also disturbed the currents
and thus the distribution of the food supply, as well
as areas of upwelling. The assembly of Pangaea did
not destroy the habitat of the chitinozoophorans as
these planktic animals were in all Devonian oceans, in-
cluding in the Panthalassa Ocean surrounding Pangaea.
Moreover, suitable shallow marine environments were
still available in the Early Carboniferous.

(2) The first forests developing in the early Fa-
mennian (Meyer-Berthaud, Scheckler & Wendt, 1999)
drastically modified the terrigenous input in the ocean.
The resulting chemical changes in the oceans and
seas possibly affected the entire marine food chain,
especially the phytoplankton.
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(3) The development of these first significant forests
led to an increase in the atmospheric oxygen level
and possibly a decrease in the CO, pressure. The
influence of the latter on chitinozoan diversity may be
better evaluated when well-documented 513C0rg curves
are available and can be calibrated with chitinozoan
biodiversity curves.

(4) The proliferation of more efficient predators
in the pelagic niche, such as ‘Thuringian ecotype’
ostracods (see Lethiers & Raymond, 1991, fig. 6),
generated a drastic increase in competition with the
chitinozoophorans for the use of the food supply.
Moreover, some components of this microfauna were
potential chitinozoan consumers and thus affected
the number of vesicles reaching the sea-bottom. The
arrival of new competitors happened earlier with the
development of the ostracods of ‘Thuringian ecotype’
during the Frasnian (Lethiers, Baudin & Casier, 1998),
and even earlier with the entomozoidea ostracods in
the Silurian. Because no dramatic consequences are
noted for the abundance and diversity of the pre-
Famennian chitinozoans, the role of these predators
in the extinction of the chitinozoans should not be
overestimated.

(5) The drop in acritarch diversity and subsequently
of the phytoplankton productivity during the Late
Devonian has to be stressed (Riegel, 2008). This
might represent an important factor in the survival
of chitinozoophorans: that is, insufficient food supply
and more efficient new competitors, such as pelagic
ostracods.

(6) The latest Famennian glaciation generated a
drop in the sea-level with drastic changes in marine
environments: much shallower seas, uplift and even
erosion of land, as demonstrated by the common
reworking of Middle and Late Devonian palynomorphs
into the Carboniferous. In western Gondwana the onset
ofthe latest Famennian glaciation changed open marine
conditions to brackish environments as indicated by
the appearance of Protosalvinia (Niklas, Phillips &
Carozzi, 1976; Loboziak et al. 1997) that occur
somewhat later than the last chitinozoans (Grahn &
Melo, 2002). This suggests that the chitinozoophorans
were holomarine and could not adapt to brackish water
conditions.

The chitinozoophorans became extinct for multiple
and in some cases related reasons:

(1) They possibly no longer had the genetic
potential to develop innovations favouring successful
adaptations to rapid environmental changes (intrinsic
factors). The monospecific assemblage in the latest
Famennian supports this possibility.

(2) Their predators became more and more efficient
(extrinsic factors). There are examples of selective
predation from the late Llandovery in Saudi Arabia,
documented by faecal pellets with cracked vesicles of
a large species of Cyathochitina (F. P, unpub. data).
Based on the size of the pellets, the predators were not
very large and would have been part of the zooplankton
(e.g. entomozoidea ostracods, including the Devonian
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“finger-print’ ostracods) or of the necto-pelagos (small
polychaetes or arthropods such as crustaceans or
crustacean larvae, but the poor preservation potential
has left no body fossils recorded).

(3) Their usual niche was invaded by a more efficient
group, such as pelagic ostracods (extrinsic factor), but
this can be envisaged only if the competitor group had
a dramatic increase in abundance in the Famennian
(e.g. the ‘Thuringian ecotype’ ostracods; see Lethiers &
Raymond, 1991, fig. 6). Indeed, other pelagic ostracods
(pelagic entomozoidea and myodocope ostracods) are
reported from the Wenlock onwards (see Siveter,
Vannier & Palmer, 1991); V. J. Perrier, unpub. Ph.D.
thesis, Univ. Claude Bernard, Lyon, 2007; Perrier,
Vannier & Siveter, 2007) and they had no lethal effects
on the chitinozoophorans.

(4) Their usual food supply disappeared or was not
sufficient to share with more efficient feeding groups.
This is supported by the contemporaneous decline in
phytoplankton.

As a hypothesis, the chitinozoan record may pro-
mulgate a false idea of the situation if the chitinozo-
ophorans had drastically changed their mode of life
(e.g. become parasites) or their usual environment. For
instance, the chitinozoophorans may have moved onto
land, with an insect-type behaviour and a subsequent
dramatic change in their eggs (see Paris, 1981, p. 83).
That is, there would no longer be any need to
control osmotic pressure, but new membranes might
have been necessary for the survival of the embryos.
There are a number of similarities in ultrastructures
between chitinozoans and modern insect eggs (Grahn
& Afzelius, 1980; Paris, 1981). Arthropods are known
to have colonized land in the Silurian when the chitino-
zoophorans were thriving, for example, chelicerates
in the early Llandovery (F. P, unpub. data) including
myriapods (Morrissey & Braddy, 2004) and arachnids
(Jeram, Selden & Edwards, 1990) in the late Silurian.
However, no significant diversification changes are
noticed in the chitinozoan group at this time.

8. Concluding remarks

The chitinozoan group existed for about 130 Ma, from
early Tremadocian to latest Famennian times. Chitino-
zoophorans (the chitinozoan animal) were pelagic zo-
oplankton and shared part of this niche with graptolites
and others. They were therefore less affected than
other groups by the development of anoxic conditions
in the deeper part of the water column (Rhuddanian
black shales, Kellwasser event). Extinction of typical
Ordovician taxa took place during the Hirnantian
deglaciation, and while not directly responsible for the
dramatic extinction of organic-walled microfossils, it
certainly accelerated the extinction of lineages that had
already been weakened since the Katian. This event
also favoured the development of taxa better adapted to
low oxygen levels in the anoxic oceanic environments
prevalent during the Early Silurian (Rhuddanian).
These Silurian lineages first appeared in the latest
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Hirnantian (upper Normalograptus persculptus Zone).
Extinction of the chitinozoan group occurred after a
combination of events that restricted the environments
for the chitinozoophorans and favoured new competit-
ors. This, combined with the fact that lineages had been
weakened since the Frasnian and were monospecific
in the latest Famennian, meant that they no longer
had the genetic potential to develop innovations
to adapt to successive environmental changes. The
contemporaneous decline in phytoplankton indicates
that the food supply disappeared or was insufficient
for the chitinozoophorans. Together with the pressure
of more predators, these factors contributed to their
extinction.
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