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We present a model for ice formation in a thin, viscous liquid film driven by a
Blasius boundary layer after heating is switched off along part of the flat plate. The
flow is assumed to initially be in the Nelson et al. (J. Fluid Mech., vol. 284, 1995,
pp. 159–169) steady-state configuration with a constant flux of liquid supplied at
the tip of the plate, so that the film thickness grows like x1/4 in distance along
the plate. Plate cooling is applied downstream of a point, Lx0, an O(L)-distance
from the tip of the plate, where L is much larger than the film thickness. The
cooling is assumed to be slow enough that the flow is quasi-steady. We present a
thorough asymptotic derivation of the governing equations from the incompressible
Navier–Stokes equations in each fluid and the corresponding Stefan problem for ice
growth. The problem breaks down into two temporal regimes corresponding to the
relative size of the temperature difference across the ice, which are analysed in detail
asymptotically and numerically. In each regime, two distinct spatial regions arise, an
outer region of the length scale of the plate, and an inner region close to x0 in which
the film and air are driven over the growing ice layer. Moreover, in the early time
regime, there is an additional intermediate region in which the air–water interface
propagates a slope discontinuity downstream due to the sudden onset of the ice at
the switch-off point. For each regime, we present ice profiles and growth rates, and
show that for large times, the film is predicted to rupture in the outer region when
the slope discontinuity becomes sufficiently enhanced.

Key words: aerodynamics, boundary layers, icing

1. Introduction
When an aircraft flies through clouds at an ambient temperature close to or below

freezing, supercooled water droplets can accrete on elements of the aircraft, forming
ice. The growth of ice is of significant industrial and commercial importance due to
its detrimental effect on the aerodynamics, through increasing drag and loss of lift.
Such changes can reduce fuel efficiency and, in the worst possible cases, cause serious
accidents.

† Email address for correspondence: moorem@maths.ox.ac.uk
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Engine intakes and wings are particularly affected by ice accretion. Correspondingly,
these areas are often protected by anti-icing or de-icing systems. These vary from
using the hot bleed from the engine to heat components, to electro-thermal elements
embedded below the component surfaces, to actuators that dislodge ice off the
aircraft. Ice protection measures can be run continuously to prevent icing altogether
(anti-icing), or intermittently to remove ice that forms periodically (de-icing). In
the latter case, it is naturally of significant interest to understand how quickly ice
forms, how much ice forms between de-icing events and what the influence on the
aerodynamics is between events. However, even in anti-icing regimes, the resulting
liquid films can flow aft and form runback ice on unprotected areas of the aircraft.

There are two main types of ice formation in flight conditions. When the ambient
air is cold, the airspeed is low and the liquid water content of the clouds is low,
the supercooled droplets typically freeze completely on contact with the aircraft.
The resulting ice is called rime and is typically white and opaque. When the air
temperature is closer to freezing, the speed is higher or the liquid water content
of the air is larger, the droplets do not completely freeze: ice and liquid co-exist.
In this case, ice tends to be paler and translucent and is known as glaze icing.
Unsurprisingly, glaze icing is most associated with the runback of liquid causing ice
‘horns’ or ‘beaks’ to form aft of the droplet impact region.

Naturally, the processes involved in ice accretion and its removal or prevention are
very complicated, and have therefore been of interest to a plethora of researchers.
Gent, Dart & Cansdale (2000) give a comprehensive review of the field, concentrating
in particular on the physical processes involved in ice accretion, the trajectory of water
droplets and the collection efficiency of components of various aircraft. A number of
factors can influence the amount of water that is ‘caught’ by the aircraft, including
angle of attack, incoming airspeed, liquid water content of the air and ambient
temperature. Lynch & Khodadoust (2001) give a review of various forms of ice
accretion and the resulting degradation on the aerodynamics of an aircraft: namely
loss of lift, an increase in drag and a decrease in stall angle. A discussion of various
anti-icing and de-icing techniques can be found in Thomas, Cassoni & MacArthur
(1996).

The classical model used to predict ice accretion is the Messinger (1953) model.
This model is a one-dimensional surface energy balance accounting for effects such
as aerodynamic heating, the release of latent heat in freezing, kinetic heating of
droplet impacts, evaporation and the sensible heat needed to increase the droplets
to the freezing temperature. The resulting balance returns a fraction representing the
amount of fluid that freezes. If this fraction is larger than 1, then the model predicts
rime icing conditions, while a value between 0 and 1 indicates glaze conditions.

Myers & Hammond (1999) and Myers (2001) improve upon the Messinger model
by proposing a one-dimensional Stefan problem formulation of ice growth on a flat
substrate. They specify a subfreezing temperature on an initially dry plate, with
ice growth occurring in two stages. In the first stage, the incoming droplets freeze
completely on impact until, at a specific time, the ice layer is sufficiently thick to
act as an insulator, allowing a water film to persist on top of the ice.

Myers, Charpin & Thompson (2002b) incorporate the water flow as part of their
model of a thin film of fluid on a cold plane sustained by an influx of droplets. The
air dynamics is not considered, with the role of the air limited to the influx of droplets
and a shear applied on the film surface. Assuming the film is thin and that conduction
is the dominant method of heat transfer, Myers et al. (2002b) reduce the model to two
coupled equations for the free surface of the film and the ice thickness, which are
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solved numerically. Myers, Charpin & Chapman (2002a) present an equivalent model
for arbitrary three-dimensional bodies, which Myers & Charpin (2004) then apply to a
realistic airfoil shape. More recently, Mitchell & Myers (2008) and Mitchell & Myers
(2012) have used heat balance integral methods to tackle similar Stefan problems,
including de-icing scenarios.

At a more local scale, there are several recent studies on the freezing of a
supercooled droplet as it impacts a substrate: see, for example, Quero et al. (2006)
for numerical simulations of droplet impact; Vargas (2007) for a simple ballistic
model for several droplet impacts and comparisons to experimental pictures; Jung
et al. (2012) who consider the freezing front in a droplet placed on a cold plate; and
Elliott & Smith (2017) for droplet freezing in the context of classical impact theory.

Rothmayer (2003b) presents an in-depth scaling analysis for supercooled droplet
collection near the stagnation point of an airfoil. The analysis not only predicts
the collection efficiency of the airfoil, but also thin film and ice formation in the
boundary layer as accretion occurs. The Mach number is small, so the flow is
effectively incompressible and the thickness of the film and ice layers are found in
terms of the liquid water content of the air, the air–water density ratio, the Reynolds
number of the flow and the Mach number. The analysis is extended by Rothmayer
(2006) and Otta & Rothmayer (2009), who use a multiple time scale analysis to
investigate the stability of the ice and film on an airfoil nose. Otta & Rothmayer
(2007) use the model of Rothmayer (2003b) to develop a model for icing in transonic
and subsonic boundary layer flows. Ice and film profiles are derived for a given liquid
collection efficiency and compared to numerical simulations, with good agreement
found for rime icing conditions.

In this paper, we will be concentrating on predicting ice growth in liquid films
within an aerodynamic boundary layer. In particular, we will study ice growth in an
established liquid film after freezing is initiated downstream, perhaps modelling the
switch-off of a heating element between de-icing events or the malfunction of an
anti-icing system. Of especial relevance to our analysis is Nelson, Alving & Joseph
(1995), which considers a thin film situated well within a Blasius boundary layer.
The film is fed by a constant flux at the tip of a flat plate and is driven by the
Blasius shear in the air. Sufficiently far away from the tip of the plate, Nelson et al.
(1995) show that the resulting film approaches a steady, linear velocity profile and
its thickness grows like the 1/4-power in distance along the plate, while the air is
unaffected by the film at leading order.

Timoshin (1997) looks at the stability of this solution when the film thickness
is the same as the classical lower deck in triple-deck theory, see Neiland (1969),
Stewartson & Williams (1969) and Messiter (1970). Timoshin derives the nonlinear
viscous–inviscid interaction model and investigates the growth of Tollmien–Schlichting
and interfacial instabilities when the system is exposed to small perturbations
for a wide range of fluid parameters. A similar triple-deck stability analysis of
a thin film on an airfoil is given in Tsao, Rothmayer & Ruban (1997). Like
Timoshin (1997), Tsao et al. (1997) find that the film has a destabilising effect
on Tollmien–Schlichting waves, so that for very large values of the Reynolds number,
the unstable Tollmien–Schlichting mode has comparable growth rate to the interfacial
mode. Rothmayer & Tsao (2000) look at the propagation of interfacial waves for
a film within an aerodynamic boundary layer in icing conditions, in particular
considering when waves are driven by air shear and when they are driven by air
pressure.

Smyrnaios, Pelekasis & Tsamopoulos (2000) and Pelekasis & Tsamopoulos (2001)
adapt the Nelson et al. (1995) model to include rainfall, or equivalently, the collection
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of drops by the liquid film in the conservation of mass condition on the film
surface. In steady state, Smyrnaios et al. (2000) show that the film thickness grows
proportional to the 3/4-power in distance from the leading edge of the flat plate, as
opposed to the 1/4-power found by Nelson et al. (1995). Moreover for a NACA-008
airfoil profile the film thickness is shown to blow up at a finite distance from the
airfoil nose provided that the rainfall rate is sufficiently large, indicating that flow
separation may take place. Pelekasis & Tsamopoulos (2001) concentrate on the
stability of the flat-plate model, investigating the role of gravity and inertia in the
growth of Tollmien–Schlichting and interfacial waves.

There are several existing studies in the literature which look at ice formation in
thin films within aerodynamic conditions. They differ from what we attempt here
since they consider ice and film formation simultaneously, generally initiated through
a collection of supercooled droplets on the substrate, which encompasses both rime
and glaze icing conditions. In our analysis we will consider ice growth in the Nelson
et al. (1995) steady-state film after heating is lost on part of the plate. We will briefly
review the existing literature before expanding on what our model does differently and
what we hope to achieve by considering it.

Tsao & Rothmayer (2002) adapt the triple-deck model of Tsao et al. (1997)
for icing conditions. By solving a coupled ice–film–air system numerically, they
show that a classical boundary layer formulation cannot predict the waves and
ice roughness formation seen in experimental icing conditions. Therefore, they
conclude that flow instabilities are triggered by localised structures and switch to
the triple-deck regime. The resulting model predicts not only the interfacial and
Tollmien–Schlichting instabilities seen in the pure water case, but also ice modes that
propagate upstream and may eventually cause the film to rupture, forming dry patches
and water beads. These beads are often seen in icing experiments, see for example
Olsen & Walker (1987) and Hansman et al. (1991). Rothmayer (2003a) also considers
the formation of ice surface roughness due to surface instabilities and, in particular,
finds that for several film thicknesses that fall in regimes applicable to aircraft icing,
three-dimensional modes of instability are comparable to two-dimensional modes.

Shapiro & Timoshin (2006) and Shapiro & Timoshin (2007) also consider the
freezing of thin films on substrates, although their analysis is primarily focused on
instabilities driven by gravity. They also find ice modes that propagate upstream and
suggest that, provided that the time scale for ice growth is longer than the time
scale associated with the film flow, this upstream propagation can be explained by
considering the imbalance in heat flux when the ice surface is perturbed by a small
amount. Ueno & Farzaneh (2011) consider the Nelson et al. (1995) steady-state film
with the plate replaced by a large ice region. They find the undisturbed solution,
which is then perturbed and the growth of free surface and ice instabilities are
investigated. Like Tsao & Rothmayer (2002), the ice modes propagate upstream.
Furthermore, Ueno & Farzaneh (2011) show that the heat transfer coefficient at the
air–water interface is strongly affected by disturbances to the air shear stress.

In this paper, we take a different approach to the icing models in aerodynamic
conditions discussed above, by considering the response of an existing, heated film
on a flat plate after the temperature along part of the plate is reduced and phase
change occurs. In particular, we consider the Nelson et al. (1995) steady-state flow
in the absence of icing and ‘switch-off’ the heating at a point downstream of the
leading edge of the plate. Although the model possibly represents a somewhat artificial
situation, it is a useful benchmark for highlighting the important processes in the
resulting icing. Our main aim is to deduce the ice shape and to discern the response
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of the liquid film on the ice growth time scale, showing that it will rupture in a finite
time.

Our configuration bears similarities to Higuera (1991), who considers a similar
problem with an infinite pool of fluid moving past a flat plate. Since the fluid bath
is infinite, he is able to find a steady-state solution to the problem and investigate
the effect of the ice growth on the fluid flow. When the ice is sufficiently large, in
particular as large as the classical lower deck, flow separation is shown to occur just
in front of the leading edge of the ice. We will adapt some of the methodology to
our model, although since the film is very thin – as opposed to the infinite bath
of fluid in Higuera (1991) – there cannot be a steady-state solution, as the freezing
induces the film to rupture in finite time.

After introducing the dimensionless model in § 2, we review the steady-state flow
of Nelson et al. (1995) in § 3, and give more details about the corresponding thermal
problem. We then discuss the early time ice growth and show how the problem breaks
down into three distinct asymptotic regions in § 4. The large-time solution is presented
in § 5, and the limitations and possible extensions for the model are discussed in § 6.

2. Problem configuration

Our analysis aims to model various scenarios in which loss of heating on a solid
surface causes a thin film of fluid within an aerodynamic boundary layer to freeze. We
shall restrict our analysis to two-dimensional flat-plate flow, which to leading order is
applicable to bodies with suitably small curvature.

Consider a semi-infinite flat plate lying on the positive x∗-axis in a Cartesian
(x∗, y∗)-plane, where here and hereafter an asterisk indicates a dimensional variable.
The free stream of speed U∞ is parallel to the plate. The air drives a shear flow in
a thin film of liquid attached to the plate. Before the heating switches off, the plate
is kept at a constant temperature Tw, which is greater than the freezing temperature,
Tf . The external air stream has temperature T∞, which can vary from temperatures
below freezing, simulating high-level clouds involved in aircraft icing, to the surface
temperature Tw. We note that, in practice, it is somewhat difficult to maintain a plate
– or indeed, an aircraft component – at a fixed temperature, which is a limitation to
our modelling assumptions.

At time t∗ = 0, the heating along part of the plate is turned off, continuously
decreasing the temperature until eventually ice forms as the film freezes. Let Lx0

where x0 = O(1) be a typical distance along the plate at which the heating is
switched off and let `w, `i represent typical film and ice thicknesses respectively. The
configuration is summarised in figure 1.

We denote the air and film viscosity and density by µj and ρj, where the subscript
j = a, w respectively, while the density of ice is represented by ρi. The interfacial
tension between the air and liquid is denoted by σ . The specific heat at constant
pressure and the thermal conductivity of each fluid and the ice are denoted by cj and
λj, j = a, w, i. The effects of gravity and viscous dissipation in the two fluids are
neglected (i.e. the Froude and Eckert numbers are small), although the analysis can
be readily extended to incorporate these effects.

The air velocity, pressure and temperature are denoted by u∗ = (u∗, v∗), p∗ and
θ∗ respectively, with the corresponding variables in the film denoted by the upper
case counterparts. The ice temperature is denoted by Q∗. The air–water free surface
is denoted by H∗, while the ice thickness is denoted by h∗.
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Air boundary layer

Liquid film
Ice layer

O (L)

FIGURE 1. Problem configuration after switch-off: an ice layer forms on the plate for
x∗ > Lx0. The air Reynolds number is defined by Re= ρaLU∞/µa, where ρa, µa are the
density and viscosity of air respectively.

2.1. Non-dimensionalisation
For the sake of brevity, we present the model directly in dimensionless form and use
the following scales:

x∗ = Lx, (H∗, h∗)= L(H, h), (u∗,U∗)=U∞(u,U),
(p∗, P∗)= ρaU2

∞(p, P), (θ∗, Θ∗,Q∗)= Tf − (T∞ − Tf )(θ, Θ,Q).

}
(2.1)

We may take Tf > T∞ without loss of generality and the above temperature scaling is
purely for analytical convenience, since it fixes the film and ice temperatures on the
ice surface at zero.

The above rescaling thus introduces the following dimensionless numbers into the
model:

Re= ρaLU∞
µa

, We= ρaLU2
∞

σ
, Pr= µaca

λa
, Pei = ρiciLU∞

λi
, Ste= ci(Tf − T∞)

L ,

(2.2a−e)
which are the air Reynolds, Weber and Prandtl numbers, the Péclet number in the
ice and the Stefan number respectively; L denoting the latent heat of ice–water phase
change. Furthermore, the air–water density, viscosity, thermal conductivity and specific
heat ratios, and the water–ice density and thermal conductivity ratios are defined by

ρ = ρa

ρw
, µ= µa

µw
, λ= λa

λw
, c= ca

cw
, ρ̂ = ρi

ρw
, λ̂= λi

λw
. (2.3a−f )

In the course of this analysis, ρ̂, λ̂, c and Pr are assumed O(1), which is reasonable
for air–water–ice systems – for example, when Tf − T∞ ≈ 10 K, ρ̂ = 0.9, λ̂ = 4.11,
c= 0.24, Pr= 0.69 (cf. table 1 in § 6.1). However, we shall also assume that ρ, µ and
λ are O(1), which are less reasonable assumptions for air–water–ice systems, although
the assumption is not uncommon in the literature and it does not greatly affect the
asymptotic structure, as discussed in § 6.1. Note that when Tf − T∞ ≈ 10 K, ρ/µ ≈
0.26, so that Re= 0.26Rew, where Rew = ρwLU∞/µw is the Reynolds number in the
liquid, so that throughout the analysis, we shall replace Rew by µRe/ρ where it would
appear, and we assume that Rew =O(Re).
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Finally, we shall assume that the fluid properties are independent of the fluid
temperature throughout the analysis, which decouples the flow and thermal problems
in each phase. In general, this assumption would need to be checked carefully, since
in an aircraft icing scenario, there can be a wide range of temperatures, from subzero
external air flow to heating elements fed by excess bleed heat from the engines,
which can be very high.

2.2. Dimensionless problem
The Navier–Stokes equations in each fluid are given by

ut + uux + vuy =−px + 1
Re
(uxx + uyy), (2.4)

vt + uvx + vvy =−py + 1
Re
(vxx + vyy), (2.5)

ux + vy = 0, (2.6)

Ut +UUx + VUy =−ρPx + ρ

µRe
(Uxx +Uyy), (2.7)

Vt +UVx + VUy =−ρPy + ρ

µRe
(Vxx + Vyy), (2.8)

Ux + Vy = 0. (2.9)

On the plate, the no-slip, no-flux boundary conditions are given by

U = 0, V = 0 on y= 0, (2.10a,b)

while on the ice, the no-slip, no-flux conditions are

(U, V)T = (1− ρ̂)htn on y= h, (2.11)

where n = (−hx, 1)T/(1 + h2
x)

1/2 is the outward unit normal to the ice surface. On
the air–water interface, continuity of velocity and the kinematic condition must be
satisfied, so that

u=U, v = V on y=H, (2.12a,b)

V =Ht +UHx on y=H. (2.13)

Moreover, continuity of normal and tangential stress on the interface give

p = P+ Hxx

We(1+H2
x )

3/2
+ 2

Re(1+H2
x )

[
H2

x

(
ux − Ux

µ

)
+ vy − Vy

µ
−Hx

(
uy + vx − (Uy + Vx)

µ

)]
on y=H, (2.14)

and

µ[2Hx(ux − vy)+ (H2
x − 1)(uy + vx)] = 2Hx(Ux − Vy)+ (H2

x − 1)(Uy + Vx) (2.15)

on y=H. These are supplemented with the far-field conditions

u→ 1, p→ 0 as x2 + y2→∞. (2.16a,b)
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Similarly, the energy equations in each fluid and the heat equation in the ice are
given by

θt + uθx + vθy = 1
Pr Re

(θxx + θyy), (2.17)

Θt +UΘx + VΘy = ρc
λPr Re

(Θxx +Θyy), (2.18)

Qt = 1
Pei
(Qxx +Qyy), (2.19)

respectively. We discuss the plate temperature profile, Twall(x, t), in § 2.3, but will give
the appropriate boundary conditions on the non-iced and iced regions here. On the
non-iced part of the plate, the film temperature must satisfy

Θ = Twall(x, t), (2.20)

while on the iced part of the plate, we naturally have

Q= Twall(x, t). (2.21)

Continuity of temperature and continuity of heat flux across the free surface of the
film are given by

θ =Θ, λ(θy −Hxθx)=Θy −HxΘx on y=H. (2.22a,b)

On the ice surface, we must have

Θ(x, h, t)=Q(x, h, t)= 0, (2.23)

while the Stefan condition is given by

Pei

Ste
ht =Qy − hxQx − 1

λ̂
(Θy − hxΘx) on y= h. (2.24)

Finally, the far-field condition is

θ→−1 as x2 + y2→∞. (2.25)

2.3. The plate temperature condition
At time t= 0− the plate is held at a constant temperature β = (Tw−Tf )/(Tf −T∞)> 0,
at which point the plate heating is switched off for x > x0, where x0 = O(1). It
transpires that the small-time response of the flow to temperature change has a major
role on the long-time film dynamics. For this reason, we consider a wall boundary
condition that is continuous in time. Therefore, we set

Twall(x, t)=
{
β for x< x0,

β − (β + α)f
( t
τ

)
for x> x0,

(2.26)

where α= (Tf − Tcold)/(Tf − T∞) > 0, Tcold < Tf is specified, τ � 1 and the function f
is such that f (0)= 0 and f→ 1 as t→∞ for all x> x0. Assuming that f is continuous
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and monotonic in time, there is a time t= τ tc with tc=O(1) at which ice first begins
to form – corresponding to the first time at which the plate temperature reaches the
freezing temperature for x > x0. Though we have chosen a step profile for the plate
temperature here, it is relatively straightforward to generalise to continuous profiles,
which give a more physical representation of the plate temperature distribution,
although the horizontal location of the ice front is a function of time in such
instances.

As seen in the definition of Twall, equation (2.26), the cooling of the plate happens
over a long time scale, τ � 1. This means that the flow is quasi-steady and temporal
effects arise in the ice growth and the film evolution. Thus, there are three distinct
temporal regimes in the switch-off problem:

(i) when 0 < t < τ tc, there is no ice growth, the flow is steady and the thermal
problem accounts for the change in plate condition;

(ii) when t > τ tc, t − τ tc = O(1), there is ice growth, but the magnitude of the
temperature jump across the ice layer is small;

(iii) when t>τ tc, t− τ tc=O(τ ), the temperature jump across the ice layer is of order
unity.

We shall discuss each of these regimes separately in §§ 3, 4 and 5 respectively.

3. Before freezing, 0< t< τ tc
For times 0 < t < τ tc, the plate temperature for x > x0 exceeds the freezing

temperature and thus there is no ice present. This temperature change is slow since
τ � 1 and, since the flow and thermal problems decouple, it transpires that the
flow problem is exactly equivalent to the steady-state problem discussed by Nelson
et al. (1995) and Timoshin (1997). Here we present only a brief description of the
steady-state flow solution following the analysis of Nelson et al. (1995), where the
liquid is supplied at a given flux at the leading edge of the plate; the steady-state
thermal problem is discussed in greater detail.

The key assumption in the model is that the aspect ratio of the film, εw = `w/L,
is much smaller than that of the air boundary layer, so that εwRe1/2� 1, where the
Reynolds number is defined by Re= ρaLU∞/µa. This does not fix `w, rather it places
an upper bound on the dimensional film thickness.

In the air, the usual boundary layer scalings are applicable and we set

y= Re−1/2ŷ, u= û, v = Re−1/2v̂, p= p̂, θ = θ̂ . (3.1a−e)

In the liquid film, the tangential component of velocity U is driven by the shear in
the air boundary layer, so that, considering (2.9) and (2.15), the appropriate film scales
are given by

y= εwȳ, U = εwRe1/2Û, V = ε2
wRe1/2V̂, P= P̂, Θ = Θ̂, H = εwĤ. (3.2a−f )

We specifically note that, when εwRe1/2�1, the film velocity is an order of magnitude
smaller than the air velocity, so that the air does not notice the film to leading order.
Finally, we scale time according to the cooling rate by setting

t= τ t̄. (3.3)
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3.1. The flow problem
The flow problem decouples from the thermal problem and hence remains steady. We
expand variables in asymptotic series of the form (recall εwRe1/2� 1)

û= û0 + εwRe1/2û1 + ε2
wRe û2 + · · · . (3.4)

To leading order,

û0 = F′
(

ŷ√
x

)
, v̂0 = −1

2
√

x

(
F
(

ŷ√
x

)
− ŷ√

x
F′
(

ŷ√
x

))
, p̂0 = 0 (3.5a−c)

in the air, where F satisfies Blasius’s equation

F′′′ + FF′′

2
= 0, F(0)= F′(0)= 0, F′(∞)= 1. (3.6a−c)

In particular, note that F(η)= λ̃η2/2+O(η5) as η→ 0+, where λ̃= 0.332. In the film,
the leading-order problem is given by

Û0ȳȳ = 0, P̂0ȳ = 0, Û0x + V̂0ȳ = 0, (3.7a−c)

such that

Û0(x, 0)= 0, V̂0(x, 0)= 0, Û0ȳ(x, Ĥ0)=µû0ŷ(x, 0), P̂0(x, 0)= 0. (3.8a−d)

Therefore, it is straightforward to show that

Û0 = λ̃µȳ√
x
, V̂0 = λ̃µȳ2

4x3/2
, P̂0 = 0, Ĥ0 =A0x1/4, (3.9a−d)

where A0 is a constant determined by prescribing the flux of fluid at x= 0.
At O(εwRe1/2), the correction to the Blasius solution in the air satisfies

(û0û1)x + v̂0û1ŷ + v̂1û0ŷ =−p̂1x + û1ŷŷ, 0=−p̂1ŷ, û1x + v̂1ŷ = 0, (3.10a−c)

subject to

û1(x, 0)= λ̃(µ− 1)Ĥ0√
x

, v̂1(x, 0)= 0, (3.11a,b)

while at infinity, we require

û1→ 0, p̂1→ 0 as ŷ→∞. (3.12a,b)

Hence p̂1= 0, and we typically have to solve for û1, v̂1 numerically, which we do not
pursue here. In the film, the O(εwRe1/2)-correction to the flow solution is given by

Û1 =µû1ŷ(x, 0)ȳ, V̂1 = −µû1xŷ(x, 0)ȳ2

2
, P̂1 = 0, Ĥ1 = A1x1/4

A0λ̃
− û1ŷ(x, 0)A0x3/4

2λ̃
,

(3.13a−d)
where in the O(εwRe1/2)-form of the shear stress condition, we have used the fact that
the second derivative of the Blasius solution vanishes on the plate, that is û0ŷŷ(x,0)=0.
The constant A1 is the O(εwRe1/2)-correction to the flux of fluid at the plate tip.
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3.2. The thermal problem
To leading order, the thermal problem is given by

û0θ̂0x + v̂0θ̂0ŷ = 1
Pr
θ̂0ŷŷ, (3.14)

0= ρc
λPr

Θ̂0ȳȳ, (3.15)

such that

Θ̂0(x, 0)= Twall(t̄), θ̂0(x, 0)= Θ̂0(x, Ĥ0), Θ̂0ȳ(x, Ĥ0)= 0, θ̂0→−1 as ŷ→∞.
(3.16a−d)

Therefore, it is straightforward to show that the film temperature is constant across
the layer, with

Θ̂0 =
{
β for y= 0, x< x0,

β − (β + α)f (t̄) for y= 0, x> x0.
(3.17)

The leading-order film temperature acts as a Dirichlet condition for the leading-
order problem for air temperature. To solve this problem, we note that if we consider
a problem in which θb satisfies (3.14) subject to

θb(x, 0, t̄)= β, θb→−1 as ŷ→∞, (3.18a,b)

we can use the Blasius similarity variable, η= ŷ/
√

x, to integrate (3.14) and we deduce
that θb = β − (1+ β)G(η), where

G(η)=

∫ η

0
exp

(
−Pr

2

∫ s

0
F(τ ) dτ

)
ds∫ ∞

0
exp

(
−Pr

2

∫ s

0
F(τ ) dτ

)
ds
. (3.19)

Clearly, θ̂0 = θb is the solution for all 0< t̄< tc for x< x0. For x> x0, we write θ̂0 =
θb(x, ŷ)+ θ̃ (x, ŷ, t̄) and make use of the Lighthill approximation, which assumes that
the perturbation to the steady-state solution due to the change in the plate temperature
is confined to a sublayer of the thermal boundary layer in which u0 and v0 are well
approximated by their shear profiles for small ŷ, see Lighthill (1950) and Higuera
(1991). In the appendix A, we show that the Lighthill approximation is reasonable by
computing the full solutions and comparing with the approximation. Thus, the velocity
components are approximated by

û0 ∼ λ̃ŷ√x
, v̂0 ∼ λ̃ŷ

2

4x3/4
, (3.20a,b)

so that
λ̃ŷ√

x
θ̃x + λ̃ŷ

2

4x3/4
θ̃ŷ = θ̃ŷŷ

Pr
, (3.21)

subject to
θ̃ (x, 0, t̄)=−(β + α)f (t̄), θ̃→ 0 as ŷ→∞. (3.22a,b)
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We can solve (3.21) and (3.22) explicitly by seeking a similarity solution of the
form θ̃ = L(ζ , t̄), ζ = ŷ/d(x) and find that

d(x)=
(

4

λ̃Pr

)1/3

x1/4(x3/4 − x3/4
0 )1/3, (3.23)

L(ζ , t̄)=−(β + α)f (t̄)
(

1− 32/3

Γ (1/3)

∫ ζ

0
e−s3/3 ds

)
. (3.24)

The behaviour of d(x) – which essentially represents the size of the region where the
change to the steady-state temperature profile is appreciable – as x→ x+0 is given by

d(x)∼
(

3x1/2
0

λ̃Pr

)1/3

(x− x0)
1/3 + · · · as x→ x+0 . (3.25)

Proceeding to O(εwRe1/2) in the film, we find that

Θ̂1 =


−λ(1+ β)G

′(0)ȳ√
x

for x< x0,[
−λ(1+ β)G

′(0)√
x

+ 32/3λ(β + α)f (t̄)
Γ (1/3)d(x)

]
ȳ for x> x0.

(3.26)

Now, since 1/d(x) is singular at the switch-off point, cf. (3.25), clearly the O(εwRe1/2)-
correction for Θ̂ is singular at x = x0. Therefore, there is an inner region centred
around x = x0 in which the air and film thermal problems are coupled at leading
order and the expressions used for the velocities in the Lighthill approximation have
to be amended to account for the O(εwRe1/2)-terms in the velocity expansion. This
inner region has horizontal extent of O(ε3

wRe3/2) and thickness O(εw). However, before
freezing, the inner region does not contribute anything significant to the analysis, so
we shall forgo looking at it until § 4.3.

Thus, we have described how each fluid changes from the steady state once the
plate cooling is introduced. Specifically, the flow remains unchanged from the Nelson
et al. (1995) steady state discussed in § 3.1, while the temperature in each fluid
decreases due to the cooling effect of the plate for x> x0. Due to the nature of our
problem configuration, there is a singularity in the air and film temperature profiles
close to the switch-off point x = x0, which will need further investigation once ice
growth begins.

4. Thin-ice regime
We now move on to discuss the growth of ice after the plate temperature has

reached the freezing temperature, that is t > τ tc. The first of the ice growth regimes
considered is the early stage, where the ice remains much thinner than the film. In
particular, we write

t= τ tc + T, (4.1)

and assume that T =O(1). Hence, the ice temperature, Q, on the wall is given by

Q(x, 0, T)=−(β + α)
(

f ′(tc)T
τ
+ f ′′(tc)T2

2τ 2
+ · · ·

)
. (4.2)
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The thickness of the ice layer is then determined by a balance of terms in the Stefan
condition, (2.24). Alluding to § 3.2, the temperature in the film is driven by the heat
flux from the air and is thus small over the majority of the plate. Hence, the thickness
of the ice is determined by balancing the dominant terms of latent heat, (Pei/Ste)ht,
and ice heat flux, Qy, so that

Pei

Ste
εi ∼ 1

τεi
, so that εi ∼

√
Ste

Peiτ
. (4.3)

A key assumption is that ice growth has a leading-order effect on the film flow.
Along most of the plate, we expect the steady-state scalings to apply for the sizes of
the flow velocities in the film, so that V ∼ ε2

wRe1/2. Therefore, maintaining a leading-
order balance in the water–ice surface condition (2.11) gives

εi ∼
√

Ste
Peiτ
= ε2

wRe1/2, (4.4)

whereby, since εwRe1/2 � 1, this assumption also guarantees that the ice is much
thinner than the film.

Even though we do not require any further conditions in this section, note that in
our large-time analysis of § 5, the assumption that the ice growth has a leading-order
effect on the film flow enforces that τ = 1/(εwRe1/2), which we use henceforth. We
discuss whether these assumptions are reasonable in § 6.

4.1. Asymptotic structure
The asymptotic structure is pictured in figure 2. Away from the switch-off point in
regions Ia–c upstream (i.e. for x< x0), the air and the film do not undergo any change
from their steady-state solutions at leading order and we expect the scalings of §§ 3.1
and 3.2 to hold there. Furthermore, under the assumptions made on the size of the
ice growth and the thickness of the ice, the air and film should also evolve on the
steady-state scales downstream. In the outer ice region Ic, there is an O(1/τ)-jump in
the temperature over a vertical distance of size εi.

Close to the switch-off point, we expect there to be a slightly different behaviour
caused by the sudden change in morphology due to the presence of the ice. Indeed, as
alluded to in § 3.2, our outer analysis in § 4.2 breaks down when x− x0=O(ε3

wRe3/2)

and y=O(εw) in the air, so there is an inner problem to consider on this scale, denoted
by regions IIIa–c. In the inner region, the air and film flows are coupled at leading
order. We assume that ε3

wRe3/2 � εw, so that the inner region still has a long, thin
aspect ratio. Therefore, there is in fact a further ‘inner–inner’ region in which x −
x0 ∼ εw and the quasi-steady Navier–Stokes equations hold. We do not consider the
inner–inner region in any detail in this paper.

It transpires that the free surface solutions in the inner and outer regions do not
match, so we need an additional intermediate region between the inner and the
downstream outer in which x − x0 = O(εwRe1/2) and y = O(εw). We denote the air,
film and ice parts of this region by IIa–c respectively. In this region, the flow and
temperature solutions are essentially local forms of the outer solution, but the equation
describing the evolution of the free surface is hyperbolic.
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Film

Air

Ia

IIIa

IIIb

IIIc

IIa

IIb Ib

IIc Ic

O (1)

FIGURE 2. Asymptotic structure of the switch-off problem for T =O(1) as described in
the text: the outer regions Ia–c, the intermediate regions IIa–c and the inner regions IIIa–c,
where a, b, c correspond to the air, film and ice respectively.

4.2. Outer region
For the sake of brevity we define h ≡ 0 for x < x0. The scalings for the outer
regions Ia–c are given by (3.1) and (3.2), along with the time scale (4.1) and the ice
layer scalings

y= ε2
wRe1/2Y, h= ε2

wRe1/2ĥ, Q= εwRe1/2Q̂. (4.5a−c)

We note in particular that the horizontal coordinates in the air, film and ice regions
are denoted by ŷ, ȳ and Y respectively. After substituting these into (2.4)–(2.25), we
return the same problem as in § 3 with τ = 1, which brings in the time derivatives in
the leading-order momentum and energy equations in the air; with the no-slip, no-flux
conditions on the ice surface replaced by

Û + ε3
wRe1/2ĥxV̂ = 0, V̂ = (1− ρ̂)ĥT on ȳ= εwRe1/2ĥ, (4.6a,b)

and, recalling that τ = 1/εwRe1/2, the plate temperature condition is given by

Θ̂(x, 0, T)= β for x< x0,

Q̂(x, 0, T)=−(β + α)
(

f ′(tc)T + εwRe1/2 f ′′(tc)T2

2
+ · · ·

)
for x> x0.

 (4.7)

Additionally, the energy equation in the ice (2.19) becomes

ε4
wRe Pei Q̂T = ε4

wRe Q̂xx + Q̂YY, (4.8)

and we also require the temperature and Stefan conditions on the ice surface (2.23)–
(2.24), which are given by

Θ̂(x, εwRe1/2ĥ, T)= 0, Q̂(x, ĥ, T)= 0, (4.9a,b)

and
ĥT = (Q̂Y − ε4

wRe ĥxQ̂x)|Y=ĥ −
1

λ̂
(Θ̂ȳ − ε3

wRe1/2ĥxΘ̂x)|ȳ=εwRe1/2ĥ (4.10)

respectively.
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4.2.1. Outer flow problem
Treating ĥ as a known quantity, the flow problem decouples from the thermal

problem, as in § 3.1. With the exception of the free surface profile, each of the
variables is expanded as an asymptotic series of the form

û= û0 + εwRe1/2û1 + ε2
wRe û2 + · · · . (4.11)

For the free surface profile, since the coefficient of ĤT in the kinematic boundary
condition is large (cf. (2.13)), we need to write H as a perturbation to the leading-
order steady-state free surface profile: this is not surprising, since the ice is much
thinner than the film, we do not expect the change to the steady-state film thickness
to be of order unity. Hence, we write

Ĥ =A0x1/4 + εwRe1/2Ĥ0 + ε2
wRe Ĥ1 + · · · . (4.12)

At leading order, the steady solution prevails in the air, so that û0, v̂0 and p̂0 are
given by (3.5). In the film, the leading-order flow is still given by (3.9), but with the
vertical component of velocity altered to take account of the ice growth through (4.6),
so that

V̂0 = λ̃µȳ2

4x3/2
+ (1− ρ̂)ĥ0T . (4.13)

Substituting Û0 and V̂0 into the leading-order form of (2.13), integrating and applying
the initial condition given in (3.13), we find that

Ĥ0 = (1− ρ̂)ĥ0 + A1x1/4

A0λ̃
− û1ŷ(x, 0)A0x3/4

2λ̃
. (4.14)

For convenience, we shall define

Hs1(x)= A1x1/4

A0λ̃
− û1ŷ(x, 0)A0x3/4

2λ̃
, (4.15)

henceforth. Therefore, defining Ĥ0 − ĥ0 as the leading-order correction to the
steady-state film thickness, we see that the film thickness in the outer region decreases
uniformly according to the amount of fluid lost to the ice layer.

We do not seek to solve the flow problems at O(εwRe1/2) and O(ε2
wRe) in detail,

but for future reference, we do note that the first- and second-order slip conditions
felt by the air layer are given by

û1(x, 0)= λ̃√
x
(µ− 1)A0x1/4,

û2(x, 0, T)= û1ŷ(x, 0)A0(µ− 1)x1/4 + λ̃√
x
(µ− 1)Ĥ0 − λ̃µĥ0√

x
,

 (4.16)

and that the first-order correction to the horizontal component of the film velocity is

Û1 =µû1ŷ(x, 0)ȳ− λ̃µĥ0√
x
. (4.17)
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4.2.2. Outer thermal problem
The leading-order thermal problem is very similar to the before freezing problem

in § 3.2. To leading-order, the film temperature does not vary across the layer, so that

Θ̂0 =
{
β for x< x0,

0 for x> x0.
(4.18)

Therefore, the leading-order air temperature must satisfy

θ̂0T + ubθ̂0x + vbθ̂0ŷ = θ̂0ŷŷ

Pr
, (4.19)

subject to
θ̂0 = Θ̂0 on ŷ= 0, θ̂0→−1 as ŷ→∞, (4.20a,b)

with the initial condition

θ̂0(x, ŷ, 0)=
{
θb(x, ŷ) for x< x0,

θb(x, ŷ)+ L
(
ŷ/d(x), tc

)
for x> x0.

(4.21)

It is straightforward that to show the initial condition satisfies (4.19) and (4.20) exactly
for all T > 0.

Assuming that ε4
wRe Pei � 1, by (4.8), the leading-order ice temperature profile

varies only linearly across the layer, so that applying (4.7) and (4.9), we find that

Q̂0 =−(β + α)f ′(tc)T
(

1− Y

ĥ0

)
. (4.22)

Hence, using the leading-order form of the Stefan condition, (4.10) along with the
initial condition, ĥ0 = 0, we find that

ĥ0 =
√
(β + α)f ′(tc)T. (4.23)

At O(εwRe1/2), the correction to the film temperature is driven purely by the heat
flux from the air. We find that

Θ̂1 =


−λ(1+ β)G

′(0)ȳ√
x

for x< x0,(
−λ(1+ β)G

′(0)√
x

+ 32/3λβ

Γ (1/3)d(x)

)
ȳ for x> x0.

(4.24)

Provided that ε4
wRe Pei � εwRe1/2, the first-order form of (4.8) is Q̂1YY = 0. Hence,

applying the O(εwRe1/2)-forms of (4.7) and (4.9), the first-order correction to the ice
temperature is given by

Q̂1 = (β + α)
ĥ0

(
f ′′(tc)T2

2
− f ′(tc)Tĥ1

ĥ0

)
Y − (β + α)f

′′(tc)T2

2
. (4.25)
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Therefore, the O(εwRe1/2)-form of the Stefan condition can be used to show that ĥ1
must satisfy

ĥ1 =−λT
2λ̂

(
−(1+ β)G

′(0)√
x

+ 32/3β

Γ (1/3)d(x)

)
+ f ′′(tc)T2

6

√
(β + α)

f ′(tc)
, (4.26)

where we have applied the initial condition ĥ1(x, 0)= 0.
We recall that 1/d(x) is singular as x→ x0, so that εwRe1/2ĥ1 is of the same order

of magnitude as ĥ0 when x− x0=O(ε3
wRe3/2). Therefore, as alluded to in § 3.2, there

is an inner region in the neighbourhood of the switch-off point in which the heat flux
from the film determines the leading-order ice shape, which we investigate next.

4.3. Inner region
In the inner region, we scale (2.4)–(2.25) by

x= x0 + ε3
wRe3/2x̄, (4.27)

along with

y= εwȳ, u= εwRe1/2ū, v = v̄

εwRe
, p= ε2

wRe p̄, θ = θ̄ , (4.28a−e)

in the air (region IIIa in figure 2);

y= εwȳ, U = εwRe1/2Ū, V = V̄
εwRe

, P= ε2
wRe P̄, Θ = Θ̄, H = εwH,

(4.29a−f )
in the film (region IIIb in figure 2), where H=A0x1/4+ εwRe1/2H̄ has been introduced
for notational convenience; and

y= ε2
wRe1/2Y, Q= εwRe1/2Q̄, h= ε2

wRe1/2h̄ (4.30a−c)

in the ice (region IIIc in figure 2).
The inner region depends on the relative size of

ε = 1
ε4

wRe3 . (4.31)

In this paper, we assume that ε� 1, i.e. εw� Re−3/4, which is equivalent to saying
that the inner region has a small aspect ratio and thus that the pressure is essentially
constant across the air and film layers. Therefore, the flow model is very similar to
the outer region, although now the air and film problems are coupled at leading order.
Clearly, there is a further ‘inner–inner’ region where the aspect ratio is of order unity
and the Navier–Stokes equations apply at leading order. It will become apparent we do
not need to consider this region in detail to resolve the leading-order outer singularity.
Note that we shall also assume that

1
ε7

wRe4We
� 1 (4.32)

throughout this paper in order to neglect surface tension at this stage of the analysis.
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Furthermore, note that given the outer solution predicts an O(ε2
wRe1/2)-jump in the

free surface profile at the switch-off point, it is natural to entertain the possibility of
viscous–inviscid interactions occurring as the boundary layer is displaced. In particular,
the inner region scales (4.27)–(4.29) correspond to the lower deck of the classical
triple-deck when εw =O(Re−5/8). This is an interesting limit in its own right, but we
do not wish to concentrate on these interactions here; we assume that the film is much
thinner than the lower deck, so that εw� Re−5/8.

When εw� Re−5/8, the classic triple-deck structure acts as an intermediate region
between the inner and outer regions in which there is no viscous–inviscid interaction
until a lower order than we consider here. This is discussed in detail by Smith
(1973), who considers triple-deck theory over surface irregularities whose length is
much greater than O(Re−3/8L), with thickness of O(Re−5/8L). His analysis shows that
the disturbance to the Blasius boundary layer flow is small, viscous and pressure
free. In our model, the protrusion is much thinner than O(Re−5/8L), so the viscous
perturbation to the boundary layer solution is of an even lower order, hence we can
simply match between the inner and outer regions directly.

4.3.1. Inner flow problem
After expanding variables in asymptotic series of the form ū= ū0+ εwRe1/2ū1+ · · · ,

where the size of the first-order correction is chosen to match with the upstream flow,
the leading-order inner flow problem is given by

ūūx̄ + ūv̄ȳ =−p̄x̄ + ūȳȳ, p̄ȳ = 0, ūx̄ + v̄ȳ = 0,
ŪŪx̄ + ŪV̄ȳ =−P̄x̄ + Ūȳȳ, P̄ȳ = 0, Ūx̄ + V̄ȳ = 0,

}
(4.33)

such that
Ū(x̄, 0, T)= 0, V̄(x̄, 0, T)= 0, (4.34a,b)

and

Ū = ū, V̄ = v̄, V̄ = A0

4x3/4
0

Ū, P̄= p̄, Ūȳ =µūȳ on ȳ=A0x1/4
0 . (4.35a−e)

It is straightforward to show that the appropriate solution matching with the outer flow
up- and downstream is

ū0 = λ̃√
x0

(ȳ+ (µ− 1)A0x1/4
0 ), v̄0 = 0, p̄0 = 0, Ū0 = λ̃µȳ√

x0
, V̄0 = 0, P̄0 = 0,

(4.36a−f )
which is exactly the local shear profile of the leading-order outer solution.

In order to find the first-order correction to the free surface profile, we require Ū1
and V̄1. At O(εwRe1/2), the inner region flow problem is given by

λ̃√
x0

(ȳ+ (µ− 1)A0x1/4
0 )ū1x̄ + λ̃v̄1√

x0
=−p̄1x̄ + ū1ȳȳ, (4.37)

0=−p̄1ȳ, (4.38)
ū1x̄ + v̄1ȳ = 0, (4.39)

λ̃µȳ√
x0

Ū1x̄ + λ̃µV̄1√
x0
=−ρP̄1x̄ + ρ

µ
Ū1ȳȳ, (4.40)
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0=−ρP̄1ȳ, (4.41)
Ū1x̄ + V̄1ȳ = 0, (4.42)

subject to the no-slip, no-flux conditions

Ū1(x̄, 0, T)=− λ̃µh̄0√
x0

, V̄0(x̄, 0, T)= 0; (4.43a,b)

the continuity of velocity conditions

ū1(x̄,A0x1/4
0 , T)= Ū1(x̄,A0x1/4

0 , T)− λ̃(µ− 1)H̄0√
x0

, (4.44)

v̄1(x̄,A0x1/4
0 , T)= V̄1(x̄,A0x1/4

0 , T); (4.45)

and the stress conditions

p̄1(x̄,A0x1/4
0 , T)= P̄1(x̄,A0x1/4

0 , T), µū1ȳ(x̄,A0x1/4
0 , T)= Ū1ȳ(x̄,A0x1/4

0 , T). (4.46a,b)

The pressure must decay in the far field, that is

p̄1→ 0 as ȳ→∞, p̄1, P̄1→ 0 as x̄→−∞. (4.47a,b)

Upstream, we must match to the oncoming flow from regions Ia–b. In the air, we
have

ū1→ u1ŷ(x0, 0)(ȳ+ (µ− 1)A0x1/4
0 )+ (µ− 1)λ̃Hs1(x0)√

x0
, v̄1 = 0 as x̄→−∞,

(4.48a,b)
while in the film we have

Ū1 =µu1ŷ(x0, 0)ȳ, V̄1 = 0 as x̄→−∞. (4.49a,b)

If we consider the solution in the main part of the boundary layer in region Ia as
ŷ→ 0 and x→ x0, we deduce that the first-order inner air velocity must satisfy

ū1→ u1ŷ(x0, 0)(ȳ+ (µ− 1)A0x1/4
0 )+ (µ− 1)λ̃H̄0√

x0
− λ̃µh̄0√

x0
, v̄1→ 0 (4.50a,b)

as ȳ→∞.
Therefore, the O(εwRe1/2)-inner solution is

ū1 = u1ŷ(x0, 0)(ȳ+ (µ− 1)A0x1/4
0 )+ (µ− 1)λ̃H̄0√

x0
− λ̃µh̄0√

x0
, (4.51)

v̄1 =− λ̃µ√x0

(ȳ+ (µ− 1)A0x1/4
0 )((µ− 1)H̄0x̄ −µh̄0x̄), (4.52)

Ū1 =µu1ŷ(x0, 0)ȳ− λ̃µh̄0√
x0

, (4.53)

V̄1 = λ̃µh̄0x̄ȳ√
x0

. (4.54)
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Hence using the O(εwRe1/2)-form of the kinematic boundary condition, we find that

H̄0 = h̄0 +Hs1(x0), (4.55)

where the constant of integration is chosen to match with the incoming free surface as
x̄→−∞. Note that the free surface correction simply tells us that, in the inner region,
the film moves up over the ice that forms, without losing mass (which is a lower-order
effect), so its thickness remains constant. This will present a problem when matching
with the outer region.

4.3.2. Thermal problem in regions IIIa–c
The leading-order thermal problem is given by

λ̃√
x0
(ȳ+ (µ− 1)A0x1/4

0 )θ̄0x̄ = θ̄0ȳȳ

Pr
, (4.56)

λ̃µȳ√
x0
Θ̄0x̄ = ρc

λPr
Θ̄0ȳȳ, (4.57)

Q̄0YY = 0, (4.58)

subject to

Θ̄0(x̄, 0, T)=
{
β for x̄< 0,
0 for x̄> 0,

(4.59)

Q̄0(x̄, 0, T)=−(β + α)f ′(tc)T, (4.60)
Q̄0(x̄, h̄0, T)= 0, (4.61)

θ̄0(x̄,A0x1/4
0 , T)= Θ̄0(x̄,A0x1/4

0 , T), (4.62)

λθ̄0ȳ(x̄,A0x1/4
0 , T)= Θ̄0ȳ(x̄,A0x1/4

0 , T). (4.63)

In order to match with the thermal solutions in the outer region upstream in regions
Ia–b and to region Ia for large ȳ, we also require

θ̄0, Θ̄0→ β as x̄→−∞, θ̄0→ β as ȳ→∞. (4.64a,b)

The second of these conditions follows from the similarity form of the outer solution:
if we fix x− x0=O(ε3

wRe3/2) and set y= (εwRe1/2)ky†, for 0< k< 1, the integral term
in (3.24) vanishes, so that θ̄0 ∼ β.

It is straightforward to integrate (4.58), so that after applying (4.60) and (4.61), we
find that

Q̄0 =−(β + α)f ′(tc)T
(

1− Y
h̄0

)
, (4.65)

which is unchanged from the leading-order outer solution, (4.22). In general, we
must tackle (4.56), (4.57), (4.59), (4.62)–(4.64) numerically, but first we note that the
problem is independent of time, so we can use (4.65) along with the leading-order
form of the Stefan condition to find that

h̄0 =
(
−1

λ̂
Θ̄0ȳ(x̄, 0)+

√
1

λ̂2
Θ̄0ȳ(x̄, 0)2 + 4(β + α)f ′(tc)

)
T
2
, (4.66)
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FIGURE 3. (Colour online) (a) The film temperature on the air–water interface in the inner
region and the outer solution asymptote (red crosses) for the parameters given in the text.
(b) The ice surface profile in the inner region and its asymptote according to the outer
solution (red crosses) for the parameters given in the text.

where we have applied the initial condition h̄0(x̄, 0) = 0. Note that, provided that
Θ̄0ȳ → 0 as x̄→∞, clearly this matches with the outer solution, (4.23), in the far
field.

In order to find Θ̄0, we return to (4.56), (4.57), (4.59), (4.62)–(4.64). We note that
it is possible to use Fourier transforms to find a solution in Fourier space in terms of
Airy functions, but since we would need to invert the resulting solution numerically,
it is easier to simply compute solutions to the partial differential equations directly.
The equations are parabolic, with linear coefficients, which can be solved numerically
at each value of x̄ as a tridiagonal system in ȳ. To simplify the computation, we first
make the scalings

x̄= λ̃PrA3
0x1/4

0 x̌, ȳ=A0x1/4
0 y̌, θ̄0 = βθ̌, Θ̄0 = βΘ̌, (4.67a−d)

which reduces the number of parameters in the system to three: µ, λ and κ=µλ/(ρc).
We truncate the computational domain so that we solve on the rectangle [−N1,N2]×
[0, M], where M, N1 are taken to be suitably large in order to impose the far-field
conditions. The most significant changes in behaviour happen close to x̌ = 0, close
to the plate and close to the air–water interface. Therefore, we use a non-uniform
grid whose points are clustered in the vicinity of these regions. Starting from −N1,
we solve the problem successively at each station in x̌, where the derivatives are
approximated by a centred finite difference scheme. The leading-order inner thermal
problem can then be written as a large, sparse tridiagonal system that is readily
inverted.

We consider the results of this code for N1 = 10, N2 = 50, M = 50, κ = 2/3, λ =
µ= 1/2. The distances between neighbouring points vary between 10−3 and 10−1. In
figure 3(a), we have plotted the film temperature on the free surface, Θ̌(x̌, 1), along
with the first term of the outer solution for the film temperature expanded in inner
variables, viz.

β−1Θ0 ∼ 31/3λ

Γ (1/3)x̌1/3
as x− x0 = ε3

wRe3/2
(
λ̃PrA3

0x1/4
0 x̌
)
→ 0 (4.68)
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calculated from (4.24). We only present the solution for x̌> 0 since Θ̌0 is identically
1 for x̌ < 0. As we can see, the temperature rapidly decays from the steady-state
temperature towards the outer solution as x̌ gets large. It is clear that Θ̌0x̌ is
discontinuous at the switch-off point, but this is something that can readily be
regularised by making the plate temperature continuous or by considering the
‘inner–inner’ region in which the full Navier–Stokes equations hold.

Given a heating function f (·), we use the numerical solution for Θ̌0 to solve for the
leading-order inner ice profile using the analytic solution (4.66). We take

f (s)= 1− e−s, (4.69)

which gives tc =− log(α/(β + α)). For α= 5, β = 1.4, A0x1/4
0 = 1 and λ̂= 0.714, the

ice profile at time T = 1 is plotted against x̌ in figure 3(b), along with the first term
of the inner expansion of the outer ice profile solution (4.23), (4.26), viz.:

ĥ∼√(β + α)f ′(tc)T − 31/3βλT

2λ̂Γ (1/3)A0x1/4
0 x̌1/3

as x− x0 = ε3
wRe3/2(λ̃PrA3

0x1/4
0 x̌)→ 0.

(4.70)
We see very good agreement between the asymptotic results and analytic solutions,
which indicates that the numerical scheme is convergent. What is also clear, is the
sharp front the ice forms as x̄→ 0+, forming a step-like profile. This could lead to
interesting interactions with the air flow for larger εw – recall that the free surface
correction is simply given by the ice profile, cf. (4.55).

We noted previously that the solution for the correction to the free surface profile
in the inner region suggests that no mass is lost to the ice layer, which means that
H̄1 cannot match with the outer solution as x̄→∞. This means that we require a
further intermediate region in order to match between the inner and outer free surface
profiles, cf. regions IIa–c in figure 2.

4.4. Intermediate region
In the inner region, the kinematic boundary condition on the free surface is dominated
by the nonlinear uHx term, while in the outer region, it is dominated by the Ht term.
In the intermediate region, we therefore expect to retain the full kinematic boundary
condition, which should allow a solution to be found that matches with both the inner
and outer regions. The appropriate horizontal scale in (2.4)–(2.25) is

x= x0 + εwRe1/2 ◦x. (4.71)

Note that we are only interested in the intermediate region for ◦x> 0. Furthermore, in
the air (IIa in figure 2), we scale

y= εwȳ, u= εwRe1/2 ◦u, v = εw
◦
v, p= ◦p, θ = ◦

θ; (4.72a−e)

and in the film (IIb in figure 2), we set

y= εwȳ, U = εwRe1/2 ◦U, V = εw
◦
V, P= ◦

P, Θ = ◦
Θ, H = εw

◦
H, (4.73a−f )

where
◦
H =A0(x0 + εwRe1/2 ◦x)1/4 + εwRe1/2 ◦H. In the ice (IIc in figure 2), we set

y= ε2
wRe1/2Y, Q= εwRe1/2 ◦Q, h= ε2

wRe1/2 ◦h. (4.74a−c)
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The method of solution is very similar to the inner region, so we omit details here.
We expand the variables in asymptotic series of the form ◦u = ◦u0 + εwRe1/2 ◦u1 + · · ·.
At leading order, we find that the flow solution is again the local shear profile of the
outer solution:

◦u0 = λ̃√
x0
(ȳ+ (µ− 1)A0x1/4

0 ),
◦
v0 = 0, ◦p0 = 0,

◦
U0 = λ̃µȳ√

x0
,

◦
V0 = 0,

◦
P0 = 0.

(4.75a−f )
At O(εwRe1/2), we have

◦u1 =
(
−λ̃ ◦x
2x3/2

0

+ u1ŷ(x0, 0)

)
ȳ− λ̃(µ− 1)A0

◦x

4x5/4
0

+ (µ− 1)A0x1/4
0 u1ŷ(x0, 0)+ λ̃(µ− 1)

◦
H0√

x0
− λ̃µ

◦
h0√
x0
, (4.76)

◦
v1 = λ̃

4x3/2
0

(
ȳ2 −A2

0
√

x0
)+ λ̃µȳ2

4x3/2
0

+ (1− ρ̂) ◦h0T

+ λ̃√
x0

(
(µ− 1)A0

4x0
− (µ− 1)

◦
H0
◦
x +µ

◦
h0
◦
x

)(
ȳ−A0x1/4

0

)
, (4.77)

◦
U1 = µ

(
−λ̃ ◦x
2x3/2

0

+ u1ŷ(x0, 0)

)
ȳ− λ̃µ

◦
h0√
x0
, (4.78)

◦
V1 = λ̃µȳ2

4x3/2
0

+ (1− ρ̂) ◦h0T, (4.79)

along with ◦p1 =
◦
P1 = 0.

Therefore, using the O(εwRe1/2)-form of the kinematic boundary condition, we find
that

◦
H0T + λ̃µA0

x1/4
0

◦
H◦x = (1− ρ̂)

◦
h0T . (4.80)

We require an initial condition and a boundary condition to solve this hyperbolic
problem. Initially, the steady-state solution prevails, so that

◦
H0(

◦x, 0)=Hs1(x0) for ◦x> 0. (4.81)

Furthermore, matching with the far-field behaviour of the inner solution, the boundary
condition we must prescribe is given by

◦
H0(0, T)=√(β + α)f ′(tc)T +Hs1(x0) for T > 0. (4.82)

We require the leading-order ice shape in the intermediate region to solve (4.80). On
the horizontal length scale of the inner region, however, our outer solution is still valid,
thus the thermal region is completely passive in the intermediate region at leading
order, whereby

◦
θ0 = 0,

◦
Θ0 = 0,

◦
Q0 =−(β + α)f ′(tc)T

(
1− Y

◦
h0

)
,

◦
h0 =

√
(β + α)f ′(tc)T.

(4.83a−d)
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Hence, we can solve (4.80)–(4.82) using the method of characteristics, finding that

◦
H0 =

(1− ρ̂)
√
(β + α)f ′(tc)T +Hs1(x0) for ◦x > ζT, T > 0,√

(β + α)f ′(tc)T − ρ̂
√
(β + α)f ′(tc)

◦x
ζ

+Hs1(x0) for 0< ◦x 6 ζT, T > 0,

(4.84)
where ζ = λ̃µA0x−1/4

0 . By fixing T and letting ◦x→∞, it is clear that (4.84) matches
with (4.23) in the far field, while it must match with the inner solution due to our
choice of boundary condition (4.82).

Clearly, we see that the solution is continuous in ◦x, but its slope is not continuous.
Differentiating (4.84), we see that

◦
H0
◦
x =
0 for ◦x > ζT, T > 0,

− ρ̂
√
(β + α)f ′(tc)

ζ
for 0< ◦x 6 ζT, T > 0,

(4.85)

so that a slope discontinuity propagates along the characteristic emanating from the
switch-off point at T = 0. It is possible we can remove this slope discontinuity by
considering the problem at even earlier time scales or by introducing further physical
effects, but we do not pursue this any further here.

Perhaps more importantly, if we let T and ◦x become large simultaneously –
specifically when T, ◦x= O(1/(εwRe1/2)) – we see that the slope discontinuity moves
into the outer region, so that in the large-time problem that we now move on to
consider, we expect the outer free surface to be more complex than that which we
saw in § 4.2, where the free surface was perturbed simply by the loss of mass into
the ice region.

5. Large-time solution
Now let us suppose that t = τ(tc + t̄), so that the temperature jump across the ice

layer is O(1). The dimensionless Stefan condition, (2.24), tells us that the ice thickness
on this time scale is

[h] ∼
√

Ste τ
Pei

, (5.1)

which is O(τ ) larger than in § 4. Hence, the ratio of the ice to film thickness is O(τ )
larger in this region. However, the flux condition on the film velocity is of the same
order of magnitude, since both h and t are scaled with τ . Therefore, assuming that
the ice is at most the same thickness as the film, we take

1
εw

√
Ste τ
Pei
=O(1), (5.2)

which, combined with (4.4) gives τ = 1/(εwRe1/2) as we stated a priori in § 4.

5.1. Asymptotic structure
The asymptotic structure is simpler in the large-time limit. Upstream of the switch-
off point, nothing has changed, and the steady-state solution still holds. Furthermore,
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the steady-state scalings still apply in the outer region downstream, although we now
expect O(1)-perturbations in the free surface profile due to the presence of the ice. As
in the early time model, we denote the outer air, film and ice regions by Ia–c.

Therefore, akin to § 4.2, we shall find that the outer thermal solution is singular
when x − x0 = O(ε3

wRe3/2), so that we require an inner region about the switch-off
point. As in the early time model, we denote the inner air, film and ice regions by
IIIa–c. We shall be able to match between these directly when t=O(1/(εwRe1/2)), so
the intermediate region is not necessary. Hence the schematic in figure 2 still applies,
except regions IIa–c are no longer the result of a formal asymptotic solution.

5.2. Outer region
The outer region (Ia–c in figure 2) scales are again given by (3.1) and (3.2) along
with the ice scales

y= εwȳ, Q= Q̂, h= εwĥ. (5.3a−c)

We expand all the variables in the outer region in asymptotic series of the form û=
û0 + εwRe1/2û1 + · · · . At leading order, it is unsurprising that (3.5) still holds in the
air, while the leading-order film flow is modified slightly due to the ice, so that

Û0 = λ̃µ√x
(ȳ− ĥ0), V̂0 = λ̃µ4x3/2

(ȳ− ĥ0)+ λ̃µĥ0x√
x
(ȳ− ĥ0)+ (1− ρ̂)ĥ0t̄, P0 = 0.

(5.4a−c)
Hence, using the kinematic condition, the free surface must satisfy

(Ĥ0 − ĥ0)t̄ +
(
λ̃µ(Ĥ0 − ĥ0)

2

2
√

x

)
x

=−ρ̂ĥ0t̄. (5.5)

We shall talk more about solving this equation after considering the thermal problem.
The leading-order thermal problem is also very similar to § 4.2. The film

temperature does not vary across the layer and is given by (4.18), while the air
temperature problem is the steady equivalent of (4.19) and (4.20), so the solution is
given by (4.21). The ice temperature satisfies

Q̂0ȳȳ = 0, Q̂0(x, ĥ0, t̄)= 0, Q̂0(x, 0, t̄)= β − (β + α)f (tc + t̄), (5.6a−c)

whereby

Q̂0 = (β − (β + α)f (tc + t̄))
(

1− ȳ

ĥ0

)
. (5.7)

Therefore, the leading-order outer ice profile is found from the Stefan condition to be

ĥ0 =
(
−2
∫ t̄

0
β − (β + α)f (tc + s) ds

)1/2

, (5.8)

which clearly matches with (4.23) as t̄→ 0.
Since the leading-order air temperature is given by (4.21), the O(εwRe1/2)-correction

to the film temperature is given by (4.24) with ȳ replaced by (ȳ − ĥ0). Thus, the
O(εwRe1/2)-correction to the ice profile is given by

ĥ1 = −λ
λ̂ĥ0(t̄)

(
−(1+ β)G

′(0)√
x

+ 32/3β

Γ (1/3)d(x)

) ∫ t̄

0
ĥ0(s) ds. (5.9)
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Wherefore, since d(x) is singular at the switch-off point, there is a non-uniformity
in the asymptotic expansions of Θ̂ and ĥ as x− x0→ 0. In particular, when x− x0 =
ε3

wRe3/2 and ŷ=O(εwRe1/2), the air and film heat fluxes across the free surface balance
at leading order. Hence, an inner region exists around the switch-off point.

We will not go into the inner region in detail here, since the analysis is essentially
the same as the thin-ice case presented in § 4.3. The important information is the far-
field behaviour of the inner free surface, which is readily found to be

H̄0 ∼A0x1/4
0 + ĥ0 as x̄→∞, (5.10)

where H̄0 is the leading-order inner free surface profile and x̄ is the horizontal inner
coordinate. We can use this condition to apply a boundary condition at x= x0 on (5.5).

5.3. Free surface equation
We now return to the evolution equation for the free surface profile in the leading-
order outer problem. Recall that

(Ĥ0 − ĥ0)t̄ +
(
λ̃µ(Ĥ0 − ĥ0)

2

2
√

x

)
x

= −ρ̂
˙̂h0

ĥ0

. (5.11)

From the leading-order inner solution, the appropriate boundary condition to apply at
x= x0 is

Ĥ0(x0, t̄)=A0x1/4
0 + ĥ0. (5.12)

If we consider what happens as T →∞ in § 4.4, it transpires that the appropriate
initial condition is

Ĥ0 ∼
A0x1/4 +√(β + α)f ′(tc)t̄− ρ̂

√
(β + α)f ′(tc)(x− x0)

ζ
for x0 < x< ζ t̄+ x0,

A0x1/4 + (1− ρ̂)√(β + α)f ′(tc)t̄ for x> ζ t̄+ x0

(5.13)
as t̄→ 0.

We need to solve (5.11)–(5.13) numerically. We pick an initial time station, t0� 1,
and march the problem forward in time using a Lax–Wendroff scheme with a
Superbee flux limiter, see Sweby (1984). The flux limiter uses a Lax–Wendroff
scheme away from any rapid changes in H̄0 and an upwind scheme close to these
regions of rapid change. The flux limiter should capture any rapid changes in height
in the free surface that may arise due to the non-smooth initial data we supply.

With f chosen as in (4.69), we plot the thickness of the ice film, Ĥ0− ĥ0, at various
times and for various values of α in figure 4. Changing α essentially dictates how fast
the ice grows through the ice heat flux in the Stefan condition, cf. (5.8). The initial
time is chosen to be t0 = 0.01, with the time step taken to be 10−5. The switch-off
point is taken to be x0=2, and the computational domain extends to x=22 with space
steps of size 10−3.

In figure 4(a), α = 1/7, which represents relatively slow ice growth. The
discontinuity in the slope of the free surface clearly moves downstream and
accentuates as time increases, eventually steepening into what appears to be a shock.
The magnitude of the jump across the discontinuity also grows, until eventually the
thickness of the water film vanishes in finite time, at t̄=8.2. The discontinuity persists
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FIGURE 4. The film thickness at various times for: (a) α = 1/7; (b) α = 1/2; (c) α = 1.

because the fluid in the inner region does not lose mass to the ice layer at leading
order, so it is imposing the steady-state profile on the film thickness. Downstream of
the discontinuity, the mass of water in the film is being rapidly reduced by freezing.
Even for this relatively small value of α, there is no way that the downstream film
can be replenished quickly enough to prevent the film rupturing. If we increase α
further, see figure 4(b) for α = 1/2 and figure 4(c) for α = 1, rupture of the liquid
film happens more rapidly, at t̄ = 2.82 and t̄ = 1.73 respectively. Furthermore, the
rupture point is closer to the switch-off point.

We investigate the time, t̄d, and location, x0 + xd, of rupture in figure 5 for 0.05<
α < 5. As expected, increasing the strength of the heat flux in the ice layer speeds
up the rupturing process, whilst also causing it to occur closer to the switch-off point,
x0 = 2.

Hence, we see that for large time, even when the plate temperature is only just
below freezing, we expect to see rupture of the liquid film in finite time. This is in
contrast to Tsao & Rothmayer (2002), whose coupled model for icing on an arbitrary
airfoil shape does not see any rupture of the liquid film without accounting for local
effects, such as the Gibbs–Thomson relationship between the ice–surface curvature and
the freezing temperature. We see rupture here because of the competition between the
incoming steady-state flux from upstream and the loss of mass to the ice layer in the
film downstream. Note that our model is limited in the same sense as Nelson et al.
(1995). If we allowed the film to be replenished by a droplet influx at the free surface,
we might expect a delay of – or even a prevention of – rupture. This needs to be
investigated in more detail.
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FIGURE 5. Plot of the time (a) and location (b) of rupture of the liquid film as a function
of the ice heat flux strength, α.

Since the film is thinning underneath the steepening free surface, our assumption
that the ice and film are of equal thickness breaks down. Moreover, the region about
the shock where there is a large jump in the free surface height has a short horizontal
length scale (cf. figure 4). Therefore, close to the shock we expect our model to no
longer be applicable. The local solution may influence the ice growth close to the
shock. We do not speculate on this local problem any further here.

The question of what happens after this film rupture occurs is also an open one.
There is a large bulk of fluid upstream of the rupture, which is still freezing. We
postulate that this will cause a build-up of ice upstream of the rupture, close the
switch-off point. This will, in turn, cause the film to be held up and accentuate the
ice growth. The ice should eventually grow to a significant enough size to induce
viscous–inviscid interaction in the air and a resultant change in aerodynamics. Such a
problem is likely to be very difficult to pursue either analytically or numerically, since
the film terminates on the ice.

6. Discussion and summary
6.1. Applicability of the model

We have made several assumptions in our model, the most important of which are

εwRe1/2� 1, εw� Re−5/8, εw� Re−3/4,
Ste
Pei
=O(ε3

wRe1/2). (6.1a−d)

The first of these conditions demands that the film be much thinner than the
aerodynamic boundary layer, the second precludes the possibility of viscous–inviscid
interactions developing in the steady-state regime and the inner region, the third
allows us to assume that the inner region in § 4.3 has a long, thin aspect ratio, and
the final condition leads to the ice growth having a leading-order influence on the
film velocity profile. The assumption that the film is thinner than the triple-deck
limit is stronger than the assumption that the film lies deep inside the aerodynamic
boundary layer.
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Parameter Value Parameter Value

L 1 m λa 2.32× 10−2 J s−1 m−1 K−1

U∞ 2.5× 102 m s−1 λi 2.18 J s−1 m−1 K−1

ρa 1.349 kg m−3 λw 0.53 J s−1 m−1 K−1

ρi 9.17× 102 kg m−3 ca 103 J kg−1 K−1

ρw 9.98× 102 kg m−3 ci 2× 103 J kg−1 K−1

µa 1.61× 10−5 kg m−1 s−1 cw 4.25× 103 J kg−1 K−1

µw 3× 10−3 kg m−1 s−1 Tf − T∞ 10 K
σ 7.7× 10−2 N m−1 L 2.84× 106 J kg−1

TABLE 1. Example values of some of the key parameters in the model, taken from
a high-speed aerodynamic flow in which the free-stream temperature is lower than but
close to the freezing temperature. The data for supercooled water are taken from Hare
& Sorensen (1987), Holten et al. (2012), Biddle et al. (2013), Hrubý et al. (2014) and
Dehaoui, Issenmann & Caupin (2015).

We have also neglected surface tension throughout our analysis. It is at its most
relevant in the inner region, so that our assumption of small surface tension is
equivalent to

1
ε7

wRe4We
� 1. (6.2)

It seems pertinent to check whether these assumptions are reasonable. We consider a
generic high-speed air flow past a flat plate and without loss of generality assume that
the external air flow is supercooled, i.e. colder than the freezing temperature of water.
We have assumed that the steady-state plate temperature is warm enough to prevent
the water from freezing at any point within the film. We summarise the parameters
we use for our example in table 1.

Using these parameters,

Re∼ 2.09× 107, Pei ∼ 2.1× 108, Ste= 7× 10−3, We= 1.1× 106. (6.3a−d)

Therefore, the restrictions on the film thickness are

3.23× 10−6� `w� 2.66× 10−5, (6.4)

giving a range of film thicknesses over which the analysis is applicable. For the
parameters in table 1, we require the film to be approximately 20 µm thick. At
larger Reynolds numbers, naturally, the range is wider, allowing for thicker films.
Rothmayer & Tsao (2000) note that typical supercooled droplets impacting an airfoil
surface can reasonably be expected to form surface films that are 10–40 µm in
thickness, so it is encouraging that (6.4) overlaps this range.

The condition on the ice growth and thickness, i.e. the fourth condition in (6.1),
requires that the film thickness approximated by

`w ∼
(

Ste
Re1/2Pei

)1/3

, (6.5)

lies in the range (6.4). Using the values in (6.3) we find that `w∼ 1.01× 10−5, which
is indeed within the bounds of (6.4). Hence our assumptions on the ice growth rate
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and thickness, as well as the resulting asymptotic structure outlined in §§ 4.1 and 5.1,
are reasonable.

Finally, we look at the assumption of small surface tension. Using (6.2) and (6.3),
we can neglect surface tension provided that

`w� 8.97× 10−6, (6.6)

which suggests that surface tension may be important in the inner region. However,
as in general ρ� 1, our analysis will hold even if surface tension has a leading-order
effect on the film pressure in the inner region.

In general, the range of acceptable film thicknesses is relatively small, so we expect
one of two situations to arise in practice. For `w much larger than the range (6.4),
we expect triple-deck effects to play a significant role in the model, even when the
ice layer is thin. Timoshin (1997) explicitly considers this limit for the steady-state
problem without icing and shows that the solution given in § 3.1 is unstable to
small disturbances. There are both interfacial and Tollmien–Schlichting waves, and,
in particular, the film enhances the Tollmien–Schlichting disturbances. Therefore, the
perturbation to the film flow due to ice growth in our model could cause instabilities
to arise if `w is sufficiently large. Moreover, in this regime, the inner region is exactly
the same size as the lower deck, making the problem highly nonlinear and much less
tractable.

For `w much smaller than the range (6.4), the aspect ratio of the inner region can no
longer be assumed to be large, so that the full (steady) Navier–Stokes equations must
be solved in the inner region. Naturally such a problem will be extremely expensive
computationally.

As discussed in § 2, our assumptions that ρ, µ and λ are of order unity are not
strictly true for water–air systems – indeed, by table 1, ρ∼ 1.4× 10−3, µ= 5.4× 10−3

and λ∼ 4.38× 10−2. We briefly assess how we can adapt our model to accommodate
this.

In order to incorporate the small viscosity ratio into the problem, we would choose
µεwRe1/2 as the film velocity scale in order to balance the shear stress on the air–water
interface. This would change the slip felt by the first-order correction to the Blasius
solution (equivalent to just setting µ = 0 in (4.16)) and, moreover, decouple the air
and film in the inner region. There would also be slight changes to the asymptotic
expansions of the other variables in § 4 to account for µ� 1: for example the free
surface profile in § 4.2 would have an expansion of the form

Ĥ =A0x1/4 + εwRe1/2Ĥs1(x)+ · · · +µεwRe1/2Ĥ1 + · · · . (6.7)

Furthermore, the appropriate time scale would now be τ = 1/(µεwRe1/2). However, the
general structure and analysis of what we have seen in this paper would remain the
same.

The small density ratio, ρ, has no major effect on our analysis, other than to
diminish the role of surface tension in the inner region. The pressure terms in the
inner region are O(ρ), compared to the viscous term, which is of O(ρ/µ). Hence
the pressure term, and therefore surface tension, has a lower-order effect on the film
flow.

To consider a small thermal conductivity ratio, we can simply expand our derived
expressions in asymptotic series as λ → 0 under appropriate restrictions on the
comparative size of λ and εwRe1/2.
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We have also neglected several physical effects in this paper. The exclusion of
gravity and viscous dissipation in the two fluids was for a matter of convenience; these
effects could readily be brought back into the model. However, perhaps the boldest
assumption made in the derivation was that the flow parameters are independent of
the fluid temperature. In aircraft icing conditions, the external air flow is typically
subzero. The plate temperature, which plays the role of an anti-icing heating element,
is typically very high, since these elements often make use of the bleed heat from the
aircraft engines. Therefore, due to this large range of temperatures, we might expect
there to be significant variation in the fluid properties. These considerations will form
part of future work.

6.2. Summary
In this paper, we have modelled the freezing of a thin film situated within an
aerodynamic boundary layer due to the loss of heating on part of a flat plate.
Throughout, we have assumed that the liquid film is much thinner than the air
boundary layer thickness. We systematically derived models for the behaviour of the
flow before and after freezing.

Prior to freezing, the flow is steady, as described by the work of Nelson et al.
(1995) and Timoshin (1997). The thermal problem is driven by the changing plate
boundary condition. We looked at a specific case where the plate temperature cools
sufficiently slowly that the thermal problem is quasi-steady, with time only entering
through the boundary condition. Due to the change in film temperature, a sublayer
develops in the air thermal boundary layer in which the temperature changes from the
steady profile to the reduced film temperature. We used the Lighthill approximation
on the flow variables to solve for the temperature in this sublayer analytically.

Once the plate temperature reaches the freezing temperature at time t= tc, ice begins
to form on the plate. We assumed throughout that the ice growth rate has a leading-
order effect on the film velocity profile. We outlined two temporal regimes. When
t − tc = O(1), the ice layer is thin and the temperature jump across the ice is small.
Since the ice is so thin, the film thickness only changes by a small amount from its
steady solution. In the second temporal regime, when t− tc =O(1/(εwRe1/2)), the ice
layer is comparable to the film in thickness, which causes a leading-order variation to
the steady-state solution.

When t − tc = O(1), there are three distinct asymptotic regions: an outer region
where the length and velocity scales are the same as the steady-state problem; an
inner region close to the switch-off point where the air and film heat fluxes balance
on the free surface; and an intermediate region in which the free surface profile can
be matched between the inner and outer solutions.

Upstream of the switch-off point, the outer flow is unchanged from the steady
solution. In the outer region downstream of the switch-off point, since the film is
much thinner than the air boundary layer, ice growth is driven purely by the heat flux
from the ice layer. Hence, the height of the ice layer depends purely on the applied
temperature on the plate: if the applied temperature is uniform along the plate, ice
growth is uniform along the plate. Therefore, the outer region sees the ice layer as a
small step on the plate. In the regime in which the film is thinner than the classical
lower-deck scale, this step is not enough to trigger viscous–inviscid interaction at
leading order. In the inner region, the flow solution is simply given by the local shear
profile of the boundary layer solution, while the thermal problem is straightforward
to solve numerically. For our specific plate temperature profile, we showed that the
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ice growth rate in the inner region is proportional to t − tc, with an x-dependence
coming through the film heat flux evaluated on the ice surface.

The inner and outer solutions for the film thickness are matched via an intermediate
region in which there is a full balance in the kinematic equation. The free surface
is continuous, but not smooth, with a slope discontinuity propagating along the
characteristic that emanates from the switch-off point at t = tc. Upstream of the
slope discontinuity, the free surface profile is driven by the steady-state flux, while
downstream the free surface is driven by the mass loss due to freezing.

When t− tc=O(1/(εwRe1/2)), the characteristic along which this slope discontinuity
propagates enters the outer region. Furthermore, on this time scale, the ice thickness
is of the same order of magnitude as the film. We now must solve a nonlinear
hyperbolic equation in the outer region for the film thickness. Matching with the
small-time solution gives an initial profile that is continuous but not smooth. The
slope discontinuity in the free surface is accentuated by the nonlinearity and eventually
leads to shock formation. We solved the equation numerically and showed that the
film can rupture in finite time. The location and speed of rupture depend strongly on
the size of the applied temperature at the wall.

Naturally, since the film thins rapidly before rupture, our assumption that its
thickness is of the same order of magnitude as the ice breaks down. While we
have not looked in detail at what happens when this assumption breaks down, it
is interesting to postulate on possible behaviours. There is a large bulk of liquid
upstream of the touchdown, while downstream the film is much thinner, and is
freezing rapidly. It seems likely that a bias toward ice growth will form upstream
of film rupture, causing an ice hump to develop close to the switch-off point. This
is akin to the ice ‘horns’ seen in runback flow on aircraft. In conditions when
the surrounding air has a high liquid water content and is close to the freezing
temperature, not all of the film freezes on the aircraft elements. Some water flows aft
along the elements, with a localised thickening of the ice layer forming ‘horned’ or
‘beaked’ ice shapes. Whether or not we see this in our model after rupture remains
to be studied.
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Appendix A. Justification for the Lighthill approximation
Making no assumptions about the velocity profiles, the leading-order outer problem

for θ̃ in § 3.2 for x> x0 is

ub(x, ŷ)θ̃x + vb(x, ŷ)θ̃ŷ = 1
Pr
θ̃ŷŷ, (A 1)

θ̃ (x, 0, t̄)=−(β + α)f (t̄), (A 2)
θ̃→ 0 as ŷ→∞, (A 3)
θ̃ (0, 0, t̄)= 0. (A 4)

If we write θ̃ = θ̃lh + θ †, where θ̃lh = L(ζ , t̃) is the Lighthill solution found in § 3.2,
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FIGURE 6. (Colour online) Numerical solution of (A 5)–(A 8). This contour plot depicts
the difference between the full solution and the Lighthill approximation. Clearly, this
difference is very small, suggesting that the approximation is valid.

the correction θ † satisfies the parabolic problem

ubθ
†
x + vbθ

†
ŷ =

θ
†
ŷŷ

Pr
− 32/3(β + α)f (t̄)e−ŷ3/d(x)3/3

Γ (1/3)d(x)

×
(
vb − λ̃ŷ

2

4x3/2
− yd′(x)(ub − λ̃ŷ/√x)

d(x)

)
, (A 5)

θ †(x, 0, t̄)= 0, (A 6)
θ †→ 0 as ŷ→∞, (A 7)
θ †(0, 0, t̄)= 0. (A 8)

After truncating the domain in ŷ by choosing a suitably large value at which to apply
the far-field condition, say ŷ=N, we can solve this problem numerically. Since time
is a parameter in the problem, it is sufficient to solve it at one time instant only. We
select t̄ = tc/3 without loss of generality. Moreover, the problem has homogeneous
boundary conditions, so it is relatively easy to solve by marching upstream from
x = x0, solving a tridiagonal system in ŷ for each value of x. In figure 6 we plot
the contours of constant θ † when the heating condition is given by (4.69). In this
simulation, α = 5, β = 1.4, Pr= 1, N = 20 and we have marched from x= x0 = 4 up
to x = 20. The grid is uniform with ∆x = 10−2. Clearly the difference between the
full solution and the Lighthill approximation is very small, even for ŷ=O(1). Hence,
the approximation is excellent.
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