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We consider a queuing system with multitype customers and nonhomogeneous
flexible servers, in the heavy traffic asymptotic regime and under acomplete
resource pooling~CRP! condition+ For the input-queued~IQ! version of such a
system~with customers being queued at the system “entrance,” one queue per
each type!, it was shown in the work of Mandelbaum and Stolyar that a simple
parsimonious Gcµ scheduling rule is optimal in that it asymptotically minimizes
the systemcustomer workloadand some strictly convex queuing costs+ In this
article, we consider a different—output-queued~OQ!—version of the model, where
each arriving customer must be assigned to one of the servers immediately upon
arrival+ ~This constraint can be interpreted as immediaterouting of each customer
to one of the “output queues,” one queue per each server+! Consequently, the
space of controls allowed for an OQ system is a subset of that for the corre-
sponding IQ system+

We introduce theMinDrift routing rule for OQ systems~which is as simple
and parsimonious as Gcµ! and show that this rule, in conjunction with arbitrary
work-conserving disciplines at the servers, has asymptotic optimality proper-
ties analogous to those Gcµ rule has for IQ systems+ A key element of the
analysis is the notion of systemserver workload, which, in particular, major-
izes customer workload+ We show that~1! the MinDrift rule asymptotically
minimizes server workload process among all OQ-system disciplines and~2!
this minimal process matches the minimal possible customer workload pro-
cess in the corresponding IQ system+ As a corollary, MinDrift asymptotically
minimizes customer workload among all disciplines in either the OQ or IQ
system+
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1. INTRODUCTION

1.1. The Problem

We consider a queuing system with multiple customer flows~types! i 51, + + + , I and
nonhomogeneous flexible serversj 5 1, + + + , J+ This means that the mean service
timeµij

21 of a typei customer by serverj depends on both the customer type and the
server+We study the “heavy traffic” asymptotic regime, when the system is close to
be “critically loaded,” and assume that a certaincomplete resource pooling~CRP!
condition holds+ Associated with the CRP condition is the notion of systemwork-
load, which in this article is called systemcustomer workload+

The “input-queued”~IQ! version of the model~see@3,8,9,12,20# ! is such that
arriving customers are placed in “input” queues, one queue per each typei , where
they await for service without being preassigned to any particular server until they
are actually “taken for service” by one of them+ It is shown in@12# that an IQ sys-
tem can be asymptotically optimally controlled in heavy traffic~and under the CRP
condition! by a very simple and parsimonious generalizedcµ~Gcµ! scheduling rule,
which, in particular, minimizes customer workload among virtually all service
disciplines+

In this article, we consider a different—“output-queued”~OQ!—version of the
model, where each arriving customer must be assigned~or routed! to one of the
servers immediately upon arrival+ ~This can be viewed as immediate routing of
each arriving customer to one of the “output” queues, one per each server+! Such
models arise in various applications, including wireless networks, manufacturing
systems, and call centers+A wireless application example is a system in which data
packets~“customers”! need to be delivered to multiple mobile users0destinations
~which determine “customer types”! via a set of transmitters~“servers”!; transmis-
sion ~“service”! rates depend on the~different! channel qualities between different
transmitters and users+

Due to the aboveimmediate routing~IR! constraint, the space of controls allowed
for an OQ system is a~strict! subset of that for the corresponding IQ system+ ~Gcµ
is not a valid discipline for OQ systems+! A natural question is: “Is it possible to
control an OQ system in heavy traffic as efficiently as the corresponding IQ system
could be controlled? For example, are there OQ-system controls that are as parsi-
monious as Gcµ but still able to minimize the system customer workload?” The
results of this article demonstrate that the answer to the latter question is “yes”—we
introduce theMinDrift routing rule, which, in particular,minimizes the system cus-
tomer workload in heavy traffic+We will describe our results shortly, after a brief
literature review+

1.2. Previous Work

The IQ version of our system~with nonhomogeneous flexible servers! and the def-
inition of the heavy traffic asymptotic regime for it~in terms of a certain linear
program! were introduced in@8# ~for a special two-server system! and in @9,20#
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~for the general setting!+ For the system in heavy traffic, these articles also define
the CRP condition and associated with it the notion ofcustomer workload, defined
asX~t ! 5 (i ni

*Qi ~t !, t $ 0, whereQi ~t ! is the typei queue length at timet and
ni
* . 0 is the fixed constant calledworkload contributionof a type i customer+

References@8,9# proposediscrete-reviewscheduling policies, which, in the heavy
traffic and under CRP condition, asymptotically minimize customer workload and
linear holding costs+ In @3,20# , continuous-review thresholdpolicies are proposed
that are asymptotically optimal, in the same sense and also under CRP condition+
~The asymptotic optimality proofs are given for a special two-server system+! The
common feature of discrete-review and continuous-review threshold policies is that
they require a priori knowledge of the flows’ mean arrival ratesl i +

In @12# , it is proved that a very simple Gcµ scheduling rule~which, in partic-
ular, doesnot require the knowledge of arrival ratesl i ! asymptotically minimizes
customer workload and strictly convex holding costs in a general IQ system under
the CRP condition+ Moreover, in the limit, the ~appropriately rescaled! queue-
length vector process~Q1~t !, + + + ,QI ~t !! exhibitsstate space collapse~SSC!: it “lives”
on a one-dimensional manifold+ ~The results of@12# are closely related to earlier
results in@14# for a discrete-timegeneralized switchmodel+ Also, they generalize
the earlier Gcµ optimality results for a single-server system@17#+! Following @14# ,
@12# provides equivalent~geometric! characterization of the CRP condition, as fol-
lows+ Let M be the systemservice rate region, which is roughly the set of all vec-
tors representing feasible long-term average service rates the system is capable of
jointly providing to different types+ Then the vectorn* 5 ~n1

*, + + + ,nI
*! of workload

contributions is theunique~up to scaling! outer normal vector to the boundary of
M at the pointl 5 ~l1, + + + ,lI !+

Most of the previous work on OQ systems is concentrated on load balancing
schemes for systems with homogeneous servers+ Much less work has been done on
a heavy traffic regime in systems with nonhomogeneous flexible servers+ Probably
the first was@10# , where a two-server system is considered, resource pooling in
heavy traffic is discussed, and threshold-based policies are proposed+ ~See also@11#
for an earlier discussion of resource pooling in systems with routing+! In a recent
article @16# a two-server system~different from that in@10# ! with exponential ser-
vice times is considered, and the asymptotic optimality of a threshold routing pol-
icy is proved, under linear holding costs+ We refer the reader to@16# for a more
extensive review of the previous work on OQ systems+

1.3. Our Results

In this article, we consider a general OQ system in a heavy traffic regime and
under the CRP condition+ First, we give further equivalent characterization of the
CRP condition, which is natural and convenient for the analysis of OQ systems;
namely, we consider theserver utilization regionK, which is the set of potential
server utilization vectors that can be imposed by the input flows with mean rates
l i or greater+ Then the CRP condition, in particular, implies the uniquenes~up to
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scaling! of the vector normal toK at the boundary point~1, + + + ,1!+ We call com-
ponentsaj

* . 0 of the vectora * 5 ~a1
*, + + + ,aJ

* !, opposite of the above-mentioned
normal vector, server workload contributionsof different servers, and we call by
systemserver workloadthe quantityuX~t ! 5 (j aj

*Uj ~t !, whereUj ~t ! is theunfin-
ished workof serverj at time t+ We establish the relations between customer and
server workload contributions, which show that the asymptotic relationX~t ! #
uX~t ! between customer workload and server workload exists+

We assume that a strictly convex increasing functionCj ~{! is defined for each
serverj, which is interpreted as the cost rate incurred by the unfinished work on
serverj+

We introduce two versions of theMinDrift routing rule+ MinDrift ~U ! assigns
an arriving typei customer to a server

j [ arg min
j

µij
21Cj

'~Uj ~t !!+ (1)

~This version may not be practical in many cases, because it assumes exact knowl-
edge of the unfinished work valuesUj ~t !+! The MinDrift~Q! rule is the same as
MinDrift ~U !, exceptUj ~t ! in ~1! is replaced by theQ-estimated unfinished work
qUj ~t ! 5 (m µmj

21Qmj~t ! of serverj, whereQij ~t ! denotes the number of typei cus-
tomers in the serverj queue+ ~MinDrift ~Q! is a more practical version+!

Our main result~see Theorems 1 and 2! is that, in the OQ system in the heavy
traffic asymptotic limit and under the CRP condition, the MinDrift rule ~either
version!, in conjunction with virtually arbitrary work-conserving scheduling dis-
ciplines at the servers, minimizes~among all service disciplines! the server work-
load and the instantaneous and cumulative costs corresponding to the cost rate
(j Cj ~Uj ~t !!+ Moreover, in the limit, the ~rescaled! unfinished work vector process
~U1~t !, + + + ,UJ~t !! exhibits SSC such that the vector~C1

'~U1~t !!, + + + ,CJ
'~UJ~t !!! is

always proportional toa *+ ~This behavior is analogous to that exhibited by IQ
systems in@12,14# , but with the server unfinished works replacing “input”-queue
lengths and server workload contributions replacing customer workload contribu-
tions+! In addition, the minimal server workload process~attained under MinDrift!
matches the minimal possible customer workload process in the corresponding IQ
system+ As a corollary, MinDrift ~Q! ~asymptotically! minimizes customer work-
load among all disciplines in either the OQ or IQ system~see Theorem 3!+ In this
sense, the MinDrift rule controls an OQ system as efficiently as the corresponding
IQ system~allowing a wider class of disciplines! can possibly be controlled+

Essentially as another corollary of the main results, we obtain a necessary con-
dition ~Theorem 4! for any OQ-system service discipline to have a~asymptotic!
workload minimization property+ Using this condition, we demonstrate~in Sec-
tion 13! that even some very natural service disciplines in OQ systems, known to
guarantee stability of the queues~if such is feasible at all!, donotminimize system
workload in heavy traffic+

Another contribution of the article is that, in addition to the CRP condition, we
in fact identify and characterize a weaker First-Order CRP~FO-CRP! condition+
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The purpose of doing this is twofold+ First, FO-CRP is sufficient to establish con-
vergence properties offluid sample paths, which arise in thefluid limit asymptotic
regime and~in addition to being an important step in proving the main heavy traffic
results! are of independent interest+ Second, this clarifies the role of the additional
assumption,which strengthens FO-CRP to CRP, in proving the heavy traffic results+

Finally, we would like to point out that despite the fact that the technical devel-
opment in this article is in many ways analogous to that in@12,14# , some parts of it
are quite different+ In particular, the representation of the server workload process
in Sections 9 and 10~roughly, as a sum of the “driving” and “regulation” processes!
is substantially different from the representation of customer workload processes in
@12,14# +

1.4. Outline of This Work

In Section 2, we set basic notations and conventions+ The OQ-system model is for-
mally introduced in Section 3+ In Section 4, we define the~two versions of! Min-
Drift routing rule and discuss its basic intuition and some examples+ The definition
and characterization of FO-CRP and CRP conditions in terms of an IQ system are
presented in Section 5+ Section 6 gives an equivalent characterization of FO-CRP
and CRP conditions in terms of an OQ system and establishes relations between
customer and server workload contributions+ The heavy traffic asymptotic regime
is defined in Section 7, which also contains the definitions of and the relations
between customer workload and server workload+ Section 8 contains formulations
of our main results~Theorems 1–4!, described earlier+ The analysis of fluid sample
paths is the subject of Section 9+ Section 10 contains the proof of Theorem 1, regard-
ing the asymptotic optimality of the MinDrift~U ! rule+ The proof of Theorem 2
~regarding the MinDrift~Q! rule! can essentially be reduced to that of Theorem 1—a
detailed outline of this reduction is given in Section 11+ Theorem 4, a necessary
condition for asymptotic workload minimization, is proved in Section 12+We con-
clude in Section 13 with a discussion of the relation between stability and heavy
traffic optimality properties of service disciplines+

2. BASIC NOTATION AND CONVENTIONS

We use the standard notationsR andR1 for the sets of real and real nonnegative
numbers, respectively; the not quite standardR11 is used for the set ofstrictly
positive real numbers+ CorrespondingN-times product spaces are denotedRN, R1

N ,
andR11

N + The spaceRN is viewed as a standard vector-space, with elementsx [ RN

being row-vectorsx5 ~x1, + + + , xN !+We write simply 0 for the zero vector inRN and
1 5{ ~1,1, + + + ,1! for a vector with all unit coordinates+ ~The dimensions of vectors 0
and1 are either specified explicitly or are clear from the context+!

The scalar product~dot product! of x, y [ RN is

x{y 5{ (
i51

N

xi yi
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and the norm ofx is

7x7 5{ Mx{x+

Vector inequalities are to be understood componentwise+ As an example, for
g, x [ RN, g , x meansgi , xi , i 5 1, + + + ,N+ Also,

g 3 x 5{ ~g1 x1, + + + ,gN xN !,

and if g [ R11
N , we slightly abuse notation by writing

10g 5{ ~10g1, + + + ,10gN !+

We denote the minimum and maximum of two real numbersj1 and j2 by
j1 ∧ j2 andj1 ∨ j2, respectively+

Let D~ @0,`!,R! be the standard Skorohod space of right-continuous left-limit
~RCLL! functions, defined on@0,`! and taking real values+ ~See, for example, @7#
for the definition of this space and its associated topology ands-algebra+!

The symbol w
&& denotes convergence in distribution ofrandom processes~or

other random elements! ~i+e+, weak convergence of theirdistributions!+ Typically,
we consider convergence of processes inD~ @0,`!,R!, or itsN-times product space
DN~ @0,`!,R! equipped with product topology ands-algebra+

The symbol u+o+c+
&& ~or the abbreviation u+o+c+ after a convergence statement!

stands for convergence that isuniform on compact sets, for elementsof D~ @0,`!,R!
or its N-times productDN~ @0,`!,R!+ For functions with a bounded domainA , R,
the u+o+c+ convergence means uniform convergence+

We reserve the symboln for weak convergence ofelementsin the space
D~ @0,`!, OR!; the latter is the space of RCLL functions taking values in the setOR of
real numbers, extended to include the two “infinite numbers”1` and2` ~with
the natural topology onOR!+ If h, g [ D~ @0,`!, OR!, thenh n g meansh~t ! r g~t !
for everyt . 0 whereg is continuous+ ~Convergence att 5 0 is not required+! We
will not need any characterization of the topology onD~ @0,`!, OR! beyond the def-
inition of convergence given earlier+

3. THE MODEL

We consider a queuing system with a finite numberI of customertypesand a finite
numberJ of flexible servers+ For notational convenience, we use the symbolI also
for the set of types$1, + + + , I % + Similarly, J also denotes the set of servers$1, + + + , J% +

The arrival process for each typei [ I is a renewal process with the time
~from the initial time 0! until the first arrival beingui ~0!, and the rest of the
interarrival times being an independent and identically distributed~i+i+d+! sequence
ui ~n!, n 5 1,2, + + + + Let l i 5 10E @ui ~1!# . 0 denote the arrival rate for typei and
ai

2 5 Var@ui ~1!# + The service times of typei customers by serverj [ J form an
i+i+d+ sequencevij ~n!, n 5 1,2, + + + + Let µij 5 10E @vij ~1!# , ` andbi

2 5 Var@vij ~1!# +
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The conventionµij 5 0 is used when serverj cannot serve typei + All arrival and
service processes are assumed mutually independent+

A version of such a flexible~parallel! server model, which received most atten-
tion in the previous work~see@3,8,9,12,20# and references therein! is the input-
queuedmodel+ In the input-queued model, customers of each typei that await service
are waiting in a separate “input” queuei of infinite capacity+ This, in particular,
means that customers do not have to be assigned to the servers while waiting in the
input queue; such server assignment is~irreversibly! done when the customer is
“pulled” for service by one of the servers+

In this article, we concentrate on a different—output-queued~OQ!—model,
satisfying the following~additional! immediate routing~IR! condition:

Each new customer arriving in the system must be assigned to one of the servers j
immediately upon arrival, and after that, the customer can only be served by the
server to which it is assigned.

A natural way to interpret the IR condition~and this interpretation is in fact the
main motivation for the OQ model! is that, upon arrival, each new customer must
be routedto one of the servers or, more precisely, into the “output” queue associ-
ated with~or “located at”! that server+

Remark 1: It should be clear that the IR condition defines theonlydifference between
an OQ system and the corresponding IQ system+ Therefore, in general, the class of
controls~or service disciplines! for an OQ system is astrict subsetof that for the
corresponding IQ system+ For example, the Gcµ discipline for IQ systems, studied
in @12# , doesnotsatisfy the IR condition and, consequently, is nota valid discipline
for OQ systems+

A service disciplinein an output-queued system consists of two parts: routing
(server assignment) algorithmandscheduling ruleemployed by each server~and,
generally speaking, depending on the server! to determine which customer to serve
from its queue~i+e+, among the customers assigned to it!+

We will consider the class of service disciplines satisfying~in addition to IR!
the following condition on the routing algorithm:

~d0! The realizations of a customer’s service requirements are not known at the
time when routing decision (server assignment) for this customer is made. (The
distributions of the service requirements at different servers are known.)

Sometimes, but not always, we will further restrict the class of service disciplines
by imposing the following conditions on the server scheduling rules:

~d1! Scheduling rule of each server is nonpreemptive within each customer type;
namely, a server cannot take for service a new customer of type i if it already has
another type i customer “in service” (with both elapsed and residual service times
being nonzero). Consequently, at any given time, a server cannot have in service
more than one customer of any given type.
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~d2! A server does not “know” the realization of a customer service time before the
customer service starts.

Note that conditions~d1! and~d2! doallow a server idling~even if it has customers
in service! or preemption of service of one customer by another customer but of a
different type+ They also allow server-sharing by several customers but, again, each
of a different type+

Remark 2:Note that the class of IQ-system service disciplines, satisfying condi-
tions ~d0!–~d2! ~but not IR!, is well defined, and it, first, belongs to the class of
disciplines studied in@12# and, second, contains the Gcµdiscipline~see@12# !+More-
over, this class is obviously a superset of the above-defined class of OQ-system
disciplines satisfying~d0!–~d2! and IR+

4. THE MinDrift ROUTING RULE

4.1. Notation

Let Uj ~t ! denote the(unfinished) workof serverj at timet; namely the total amount
of unfinished processing time of all customers of all types present in serverj queue
at timet+We denote byQij ~t ! the number of typei customers in queuej at timet,
including those customers whose service is already started but not yet completed+
The quantity

qUj 5{ (
i

~10µij !Qij ~t !

we will call Q-estimated (unfinished) workof serverj+ Finally, by Qi ~t ! we will
denote the total number of typei customers in the system at timet+ In the OQ
system, we always have

Qi ~t ! 5 (
j

Qij ~t !,

but we note thatQi ~t ! is well defined for both the OQ and IQ systems+

4.2. MinDrift Rule Definition

Suppose that for each serverj, a cost functionCj ~z!, z $ 0, is given+ Assume that
the cost functions have the following properties:

Cj ~{! is continuous strictly increasing convex, with Cj ~0! 5 0+

Moreover, the first derivativeCj
'~{! is continuous strictly increasing, with

Cj
'~0! 5 0+

Finally, the second derivativeCj
''~{! is strictly positive continuous in the open

interval~0,`!, with Cj
''~0! 5 limzf0 Cj

''~z! $ 0, whereCj
''~0! is either finite or

is 1`+
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The MinDrift rule routes~assigns! customers to the servers as follows+When a new
customer of typei arrives in the system, it is routed to a serverj such that

j [ arg min
j[J

Cj
'~Uj ~t !!0µij + (2)

Ties are broken arbitrarily; for example, in favor of the smallest indexj+ Also, by
convention, a typei customer can never be routed to a serverj if µij 5 0+ ~Through-
out this article, we also adopt a related convention that any expression involving
division byµij holds under the additional assumption thatµij . 0, even if we do not
state this explicitly+!

Defined by~2! is the basic version of the MinDrift rule; we will refer to it as a
MinDrift ~U ! rule+

A version of MinDrift rule, with Uj in ~2! replaced byqUj , will be called Min-
Drift ~Q! rule; namely the MinDrift~Q! rule routes an arriving typei customer to a
serverj such that

j [ arg min
j[J

Cj
'~qUj ~t !!0µij + (3)

4.3. Nature of the MinDrift Rule

The nature of the MinDrift rule is simple—it “myopically”~or “greedily”! tries to
minimize the average drift of the aggregate cost function(j Cj ~Uj ~t !!+ Indeed,
Cj
'~Uj ~t !!0µij ~see~2!! approximates the expected increment of the aggregate cost

function, caused by routing one typei customer~arrived at timet ! to serverj; there-
fore, by ~2!,MinDrift ~U ! routes new arrivals in the way such that the~approximate!
expected increment of(j Cj ~Uj ~t !! is minimized+ In other words,MinDrift ~U ! rout-
ing tries tominimize the average rate of increase of(j Cj ~Uj ~t !!, due to placement
of new work (or load) to the servers+Note that in the OQ system, the “best” a service
discipline can do to maximize the rate at which(j Cj ~Uj ~t !! is decremented due to
processing of the unfinished work, is to never idle servers when they have work to
do+ Thus, the MinDrift~U ! routing rule ~in conjunction with arbitrary work-
conserving scheduling rules at the servers! strives to minimize the average drift of the
aggregate cost+

The MinDrift~Q! rule is based on the same principle as MinDrift~U !, except
that instead of using the exact valuesUj of unfinished work~which may not be
available in many applications!, it uses their~estimated! average valuesqUj ~which
may be more readily available!+As we will demonstrate, in the heavy traffic asymp-
totic regime we consider, the two versions MinDrift~U ! and MinDrift~Q! of the
rule are in a certain sense “indistinguishable,” under nonrestrictive additional
conditions+

The Gcµ scheduling rule for IQ systems, studied in@12# , is the rule that myo-
pically tries to minimize the drift of the aggregate cost function(i Ci ~Qi ~t !! of the
queue lengthsQi , with Ci ~{! being cost functions having the same properties as
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functionsCj ~{! defined earlier+ Consequently, Gcµ is such that a serverj always
tries to serve a queue

i [ arg max
i[I

Ci
'~Qi ~t !!µij ,

thusmaximizing the average rate at which(i Ci ~Qi ~t !! is decreased due to depar-
tures of served customers.The Gcµ does not—andcannot—exercise any control
over the rate of increase of(i Ci ~Qi ~t !! due to new arrivals+ Therefore, although
both Gcµ ~in an IQ system! and MinDrift ~in an OQ system! strive to minimize
drifts of certain cost functions, they differ in that they control different system state
variables: Gcµ controls the rates at which queue lengthsQi are depleted due to
service, and MinDrift controls the rates at which unfinished worksUj are increased
due to new arrivals+

4.4. Examples

Consider a special case when the cost functions have the formCj ~z! 5 gj z
h11, with

some fixedh . 0 andgj . 0+ Then the MinDrift~U ! becomes the rule routing an
arriving typei customer to a server

j [ arg min
j[J

gj ~h 1 1!
@Uj ~t !#

h

µij

, (4)

and similarly for MinDrift~Q!+
Consider a special case of the system such that, for any given pair~ij !, we have

eitherµij 5 0 or µij 5 µj . 0+ In other words, the system is such that each serverj
has a~depending onj ! subset of typesi that it can serve, but the average service
rates of all types within this subset are the same and equal toµj ~and the server
cannot serve at all any typesi outside the subset!+ For this system, the MinDrift~Q!
version of~4!, with h 5 1, becomes

j [ arg min
j[J

2gj

(
i

Qij ~t !

µj
2 + (5)

Since parametersgj . 0 can be set arbitrarily, we see from~5! that, for this special
system, such “popular” routing rules as “Join a serverj with the shortest queue,”

j [ arg min
j[J

(
i

Qij ~t !, (6)

and “Join a serverj with the smallest expected unfinished work,”

j [ arg min
j[J

(
i

Qij ~t !

µj

, (7)
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are special cases of MinDrift~Q!+ ~We remind the reader that, in both cases, routing
customers to servers where they cannot be served at all is prohibited+Also, note that
if we further assume that each server employs first-in-first-out~FIFO! scheduling,
then rule~7! is equivalent to the “Join the shortest expected delay” routing rule+!

It should be clear that in a general system, where service ratesµij depend on
both i and j more generally than in the special system described earlier, the Join-
shortest-queue and Join-smallest-expected-unfinished-work routing rules arenot
special cases of MinDrift+ Consequently, the heavy traffic optimality properties
~which we prove in this article for MinDrift! may not~and typicallydo not! hold
for these rules+

5. COMPLETE RESOURCE POOLING CONDITION

In this section, we present the definition of the complete resource pooling~CRP!
condition and related notions and results, which are “oriented toward” the analysis
of the IQ model and basically follow those in@12# + However, the development in
this section is more general than that in Section 5 of@12# + In particular, we consider
the notion of First-Order-CRP~FO-CRP! ~which is a weaker form of CRP! and
prove some additional properties related to this notion+ ~The results of this section
provide a “reference point” for the next section, which gives an equivalent charac-
terization of FO-CRP and CRP conditions “in terms of” the OQ model+!

Consider anI 3 J matrix f 5 $fij , i [ I, j [ J% , with all fij $ 0+ Each
elementfij can be interpreted as the average rate at which serverj time is allo-
cated to the service of typei customers, in the long run+ We do not call elements
fij “fractions” of serverj time, because, for the reasons which will become clear
in Section 6, it will be convenient for usnot to assume a priori that(i fij # 1, or
even thatfij # 1+

With a givenf we associate the vectorµ~f! 5 ~µ1~f!, + + + ,µI ~f!!, whose coor-
dinates are

µi ~f! 5{ (
j

fij µij , i [ I; (8)

this is the vector of mean long-run service rates provided to the typesi [ I, if each
serverj allocates its time to serving typei at the average ratefij +

Consider also a different vector-function of a matrixf; namely, let the vector
r~f! 5 ~r1~f!, + + + ,rJ~f!! [ RJ be defined as

rj ~f! 5{ (
i

fij , ∀ j [ J+ (9)

Each componentrj ~f! is naturally interpreted as the total “utilization” of serverj,
given the average rates at which its time is allocated to service of different typesi
are given byfij + ~Again, we do not assume a priori thatrj ~f! # 1+!
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Definition 1: We defineM to be the set of µ~f! corresponding to all possiblef,
satisfying the condition

r~f! # 1+ (10)

Further, letM* denote the set of allmaximalelements µ[ M such that µ[ R11
I .

~µ [ M is maximal if µ# z [ M impliesz 5 µ.)

Note thatM is a bounded convex polyhedron inR1
I + We assume thatM is

nondegenerate~i+e+, has dimensionI !, which is equivalent to assuming that each
customer typei can be served at nonzero rateµij by at least one serverj+ The setM
is in fact the closure of our system’sstability regionM0, which is the set of arrival
rate vectorsl 5 ~l1, + + + ,lI ! such thatl , µ~f! for somef satisfying~10! ~cf+
@1,2,6,13–15# !+

Definition 2: We say that the condition of FO-CRP holds for a vectorl if l lies
within the interior of one of the~~I 2 1!-dimensional) outer faces ofM and l [
M*. If, in addition, the matrixf such thatl 5 µ~f! and (10) hold is unique, then
we say that the CRP condition holds.

Remark: The CRP condition given above is the same as in@12# , and it is equivalent
to that introduced earlier in@9,20# ~see Assumption 3+4, Thm+ 5+3 and Cor+ 5+4 in
@20# for a summary!+ The fact of equivalence will, in particular, follow from the
results of this section+

When the FO-CRP condition holds, let us denote byn 5 ~n1, + + + ,nI ! the~unique
up to a scaling! “outer” normal vector to the polyhedronM at the pointl+ Note that
n [ R11

I + ~Otherwise, if someni # 0, a small increase of the componentl i would
produce a vectorl' $ l, l' Þ l, and such thatl' [ M—a contradiction to the
maximality ofl+! For concreteness, we use the normal vectorn *, which is the vec-
tor defined uniquely by the additional requirement that7n*75 1+ The components
ni
* of the vectorn* are sometimes called theworkload contributionsof customers

of the different typesi ~see@9,12,20# !; in this article, we will call themcustomer
workload contributions, to make a distinction from the server workload contribu-
tions introduced in Section 6+

The FO-CRP condition forl implies, in particular, that

n*{l 5 max
µ[M

n *{µ5 max
f:r~f!#1

n *{µ~f!; (11)

this in turn implies that, for any matrixf such that~10! holds andl 5 µ~f! ~in fact,
the equality in~10! must hold!; namely, we have

l 5 µ~f! and r~f! 5 1+ (12)

Givenl satisfying the FO-CRP condition, for eachj [ J let us denote

I j 5 arg max
i

ni
* µij 5{ Hi [ I 6ni

* µij 5 max
l

nl
* µlj J+
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Any pair ~ij ! such thati [ Ij is calledbasic activity; therefore, Ij indicates the set of
basic activities for serverj+ It is easy to see from~11! that, for anyf satisfying~12!,
fij . 0 implies i [ Ij +

Lemma 1: If l satisfies the FO-CRP condition, then the corresponding graphG*
with nodes being type i and servers type j and arcs being basic activities is connected.

Proof: Suppose not+ Consider any breakdown of the graphG* into two compo-
nents, G~1! andG~2! , disconnected from each other+ For m51,2, denote byI ~m! and
J ~m! the set of types and servers, respectively, within the componentG~m! + By our
construction, for anym5 1,2, j [ J ~m! implies Ij # I ~m! +

Consider anyf satisfying~12!+ Recall thatfij . 0 impliesi [ Ij + Let us fix a
smalld . 0, and consider vectorn** obtained fromn* by the following modifica-
tion: ni

** 5 ni
*~1 1 d! if i [ I ~1! , andni

** 5 ni
* if i [ I ~2! + Since there is no arc

connectingG~1! andG~2! , if d is small enough, thenf solves the problem

max
f:r~f!#1

n **{µ~f!

as well as the problem in the right-hand side~RHS! of ~11!+ In other words, l 5 µ~f!
solves the problem maxµ[Mn**{µ, as well as maxµ[Mn*{µ+ This means thatn** is
a normal~different fromn*! to the boundary ofM at pointl—a contradiction to
the FO-CRP condition+ n

Now, with anymatrix f let us associate graphG~f! with nodes being typesi
and serversj, and arcs~ij ! corresponding to pairs~ij ! with fij . 0+

Lemma 2:

(i) If FO-CRP holds, then there existsf satisfying (12) and such thatfij . 0
if and and only if i[ Ij .

(ii) The FO-CRP condition forl holds if and only ifl [ M* and there exists
f such that (12) holds and the graphG~f! is connected.

(iii) If CRP condition holds, thenf satisfying (12) is unique, the graph
G~f! 5 G* (i.e., fij . 0 if and only if i [ Ij ), and this graph is a tree.

Proof:

~i! Consider arbitraryf ' satisfyingr~f '! 5 1 and such thatfij
' . 0 if and

only if i [ Ij + Note thatn*{µ~f '! 5 n*{l, because the condition onf '

guarantees thatf ' solves the problem in the RHS of~11!+ Let

l'' 5
l 2 µ~df ' !

12 d
,

where 0, d , 1 is fixed+We have

n *{l'' 5
n *{l 2 dn *{µ~f ' !

12 d
5 n *{l,
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and we can always choosed to be small enough so thatl'' lies in the
interior of the same face ofM asl does+ Then there existsf '' such that
l'' 5 µ~f ''!, r~f ''! 5 1, andfij

'' . 0 implies i [ Ij + It is easy to verify
directly thatf 5 ~12 d!f ''1 df ' is a matrix with the properties we seek+

~ii ! Necessity follows from~i!+ Let us prove sufficiency+ Let f be a matrix
such that~12! holds, l [ M*, and the graphG~f! is connected+ Since
l [ M*, there exists an outer normal vectorn* to the boundary ofM at
point l, and it is such thatn* Þ 0, n* [ R1

I + Consequently, f solves the
problem~in the RHS of! ~11!+ From this, we conclude thatn* [ R11

I ;
otherwise~if ni

*5 0 for somei !, f could not be a solution to~11!, since
G~f! is connected+ Finally, the normaln* must be unique~up to scaling!+
Indeed, consider any other vectorn** [ R11

I , which is not a scaled ver-
sion of n*; that is, maxi ni

**0ni
* . mini ni

**0ni
*+ Then connectedness

of G~f! easily implies that sincef solves~11!, it cannot possibly solve
~11! with n* replaced byn**+ Therefore, n** cannot be a normal toM at
point l+

~iii ! The definition of CRP and statements~i! and~ii ! of the lemma immedi-
ately apply the uniqueness off satisfying~12!—the fact thatG~f! 5 G*
and that this graph is connected+ It remains to show thatG~f! must be a
tree+ Suppose not+ Let us pick any cycle on this graph+ It is easy to see that
we can “perturb” the~strictly positive! elementsfij along the arcs of the
cycle so as to produce a matrixf ' Þ f such thatµ~f '! 5 µ~f! 5 l and
r~f '! 5 1, a contradiction to the uniqueness off+ n

Remark: Just as in the case of the Gcµscheduling rule, studied for an IQ model in
@12# , we emphasize here that the notion of a basic activity isnotutilized in any way
~neither explicit nor implicit! by the MinDrift routing algorithm+ ~The algorithm
need not know which activities are basic+! It is only used as a tool for the analysis
of the algorithm+ Similarly, the algorithm need not know the values of workload
contributions+

6. EQUIVALENT CHARACTERIZATION OF THE CRP CONDITION
IN TERMS OF THE OQ MODEL

In this section, we give an equivalent~“dual”! characterization of the CRP condi-
tion and introduce notions and results that will be used in the analysis of our
OQ-model+

First, let us give a somewhat different~although closely related! interpretation
of the matrixf and functionsµ~f! andr~f!, defined in Section 5+ Suppose a matrix
f is given, and assume that customers of a typei arrive~routed! to a serverj at the
average rateµij fij + Thenµi ~f!, i [ I, is the total average rate at which typei cus-
tomers arrive in the system, and

rj ~f! 5 (
i

fij [ (
i

~µij fij !µij
21, j [ J,
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is the average rate at which thework ~i+e+, the required amount of processing time!
arrives~routed! to serverj+ ~We used the convention that~µij fij !µij

21 5 0 if µij 5 0+!

Definition 3: We define theserver utilization regionK # R1
J to be the set of all

possiblevalues ofr~f! with f satisfying the condition

µ~f! $ l+ (13)

Further, letK* denote the set of allminimal elementsr [ K such thatr [ R11
J .

~r [ K is minimal ifr $ z [ K impliesz 5 r+!

RegionK is a convex polyhedron inR1
J , and it is nondegenerate~i+e+, has

dimensionJ! as long asM is nondegenerate+ Note thatK is unbounded, but it is, of
course, “bounded below,” say by 0, since it lies in the positive orthant+

Lemma 3:

(i) The FO-CRP condition for a fixed vectorl holds if and only if the fol-
lowing is true:
(a) Vector 1 [ RJ lies within the interior of one of the~~J 2 1!-

dimensional) faces ofK.
(b) 1 [ K*.

(ii) When the FO-CRP condition forl (or, equivalently, (i)(a) and (i)(b)) holds,
then the unique (up to a scaling by positive constant) outer normal vector
2a * to the polyhedronK at the point1 is such thata * 5 ~a1

*, + + + ,aJ
* ! [

R11
J , anda * is related to the vectorn* as follows:

aj
* 5 max

i
µij ni

*, j [ J, (14)

ni
* 5 min

j
aj
*0µij , i [ I+ (15)

In addition:
(c) i [ Ij (i.e., activity~ij ! is basic) if and only if j[ Ji , where

Ji 5{ arg min
j

aj
*0µij + (16)

(d) Any matrixf satisfyingr~f! 5 1 and (13), in fact, satisfies (12).
(e) We have

a *{1 5 n *{l+ (17)

(iii) The CRP condition for a fixed vectorl holds if and only if (i)(a), (i)(b),
and the following property hold:
(f ) the matrixf satisfyingr~f! 5 1 and (13) is unique.
When CRP does hold, the matrixf is in fact the unique solution of (12).
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Proof:

~i! Let us prove the necessity of~a! and~b!+ Consider the vectora * defined
by ~14!+ ~Note thata * [ R11

J +! Then~15! holds+ Indeed, for a fixed i , we
haveaj

* 5 µij ni
* if ~ij ! is basic, andaj

* . µij ni
* otherwise+ ~Incidentally,

this means thati [ Ij is equivalent toj [ Ji +!
Let us choose any matrixf that solves~12! and such thatG~f! 5 G*+

~Recall that graphG* is connected+! Then since thisf is such thatfij . 0
implies j [ Ji , it is easy to observe thatf solves the problem

min
f:µ~f!$l

a *{r~f! (18)

or, equivalently, 1 solves the problem

min
r[K

a *{r+ (19)

~Compare problems~18! and ~19! to problem~11!+! This means, in par-
ticular, that1 is a minimal element ofK, anda * is a normal to the region
K at point1+ SinceG~f! is connected, it is easy to see from~18! thatr 5
1 could not possibly solve the problem~19! with a * replaced by any other
nonzero vectora ** [ R1

J , unlessa ** 5 ca * for somec . 0+ This com-
pletes the proof of necessity of~a! and~b!+

The sufficiency of~a! and~b! follows simply by the symmetry between
the definitions of the FO-CRP condition~for l! and conditions~a! and~b!
~expressed in terms of vector1!; namely if for the vector21 and the region
2K we define a condition analogous to FO-CRP forl and regionM, this
will be exactly conditions~a! and~b!+ Thus, from this condition~~a! and
~b!! we can obtain a condition analogous to~a! and~b!, but with 1 andK
replaced by2l and2M, respectively; this latter condition is exactly our
original FO-CRP+

~ii ! As part of the proof of~i!, we already proved all the properties stated in
~ii !, except~d! and~e!+ If ~d! would not hold, thenl could not be a max-
imal element ofM+ Property~e! follows from the fact that any matrixf,
chosen as in the proof of~i!, satisfies~12! and solves both problems~11!
and~18!+

~iii ! This follows from~i!, ~ii !, and the definition of CRP+ n

When the FO-CRP condition holds, the componentsaj
* of the vectora * we

will call server workload contributionsof different serversj+

7. HEAVY TRAFFIC REGIME

In this section, we introduce the notion of asequence of queuing systems in heavy
traffic+ Suppose a vectorl satisfying the CRP condition is fixed+ Associated with
thisl are the unique matrixf satisfying~12! and the corresponding normal vectors
n * [ RI anda * [ RJ+ ~We remark that all of the definitions and facts in this section

156 A. L. Stolyar

https://doi.org/10.1017/S0269964805050096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050096


are valid when the weaker FO-CRP condition holds, with arbitrary fixed f satis-
fying ~12!+ However, for our main results in Section 8, the stronger CRP condition
is essential+!

The quantity

X~t ! 5{ (
i51

I

ni
*Qi ~t !, t $ 0,

we will call thecustomer workloadof the system+ The customer workload process
X~{! is of primary interest in the analysis of the IQ model@3,8,9,12,20# +

For the OQ model, we define a different~although closely related, in the sense
specified later! notion ofserver workload:

uX~t ! 5{ (
j51

J

aj
*Uj ~t !, t $ 0+

In addition, we define theQ-estimated server workloadas

qX~t ! 5{ (
j51

J

aj
* qUj ~t !, t $ 0+

Informally speaking, for a service discipline satisfying constraints~d0!–~d2!, qX~t !
is a “good” ~asymptotically exact! estimate of the server workloaduX~t !+

Since for any pair ofi [ I and j [ J the inequalityaj
* 0µij $ ni

* holds, we
observe that theQ-estimated server workload cannot be less than customer workload:

qX~t ! [ (
i51

I

(
j51

J

~aj
* 0µij !Qij $ X~t !+ (20)

We also have the following inequality, which we record for future reference:

qXr ~t ! # C0 Xr ~t !, t $ 0, (21)

with

C0 5 max
~ij !:µij .0

aj
*0µij

ni
* + (22)

We now consider a sequence of queuing systems, indexed byr [ R 5 $r1, r2, + + + % ,
wherern . 0 for all n andrn F` asnr`+ ~Hereafter in this article, r r`means
that r goes to infinity along the sequenceR or some subsequence ofR; the choice
of the subsequence will be either explicit or clear from the context+! Each system
r [ R has, as earlier, I customer types andJ servers+ The primitives and the pro-
cesses corresponding to a systemr [ R will be appended with a superscriptr+

Assume that for each typei , the mean arrival ratel i
r 5 10E @ui

r ~1!# is such that

r ~l i
r 2 l i ! r bi , r r `, (23)
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wherebi [ R is a fixed constant+ Assume also convergence of the variance; that is,

@ai
r # 2 r ai

2, r r `+ (24)

In addition, we make the following technical assumption, needed, in particular, to
apply Bramson’s weak law estimates@4# ~and establish~75! later!: Uniformly over
i andr,

E @~ui
r ~1!!21$ui

r ~1! . x%# # h~x!, x $ 0, (25)

whereh~{! is a fixed function andh~x! r 0 asx r `+
For the initial interarrival times, we assume that for eachi ,

ui
r ~0!0r r 0, r r `+

Let Fi
r ~t !, t $ 0, denote the number of typei customers that arrived in the system by

time t, excluding “initial” customers present at time 0+Assumptions~23!, ~24!, and
~25! imply a functional central limit theorem~FCLT! for these arrival processes:

$r 21~Fi
r ~r 2t ! 2 l i

r r 2t !, t $ 0% w
&& $si B~t !, t $ 0%, (26)

wheresi
2 5 l i

3ai
2, B~{! is a standard~zero drift, unit variance! Brownian motion,

and w
&& denotes convergence in distribution~for processes in the standard Skoro-

hod space of RCLL functions!+
The service time distributions donot change with the parameterr+ ~This in

particular means that the condition analogous to~25! trivially holds for the service
timesvi, jr ~1!, uniformly on ~i, j ! andr+! Let us denote by

SVij
r ~l ! 5{ (

m51

l

vijr ~m!, l 5 0,1,2, + + + ,

the total amount of work~i+e+, total service time! brought to serverj by the first l
~newly arriving! type i customers routed to it+We extend the domain ofSVij

r ~{! to
all real nonnegativet $ 0 by adopting the convention thatSVij

r ~t ! 5 SVij
r ~ {t } !+ ~We

will use the same domain extension convention throughout the article for other func-
tions, which are originally defined on the integers, as well+! For SVij

r , we have the
following FCLT:

$r 21~SVij
r ~r 2t ! 2 µij

21r 2t !, t $ 0% w
&& $bij B~t !, t $ 0%+ (27)

For eachi [ I, let us fix a set of integer-valued nondecreasing nonnegative func-
tions ~sNij ~l !, l 5 0,1,2, + + + !, j [ J, satisfying the following conditions:

(
j

sNij ~l ! 5 l, l 5 0,1,2, + + + , (28)

max
l$0
6sNij ~l ! 2

µij fij

l i

l 6 , `, j [ J, (29)

sNij ~l ! [ 0 for l 5 0,1,2, + + + , j Ó Ji + (30)
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The value ofsNij ~l ! is interpreted as the number of typei customers routed to
serverj, out of the firstl type i customers arriving in the system+ Then it is clear
that for each flowi , the functionssNij ~{! define a fixed~“static”! pattern of rout-
ing customers to the servers inJi , such that, for any l, the fractions of customers
routed to different serversj [ Ji closely track the valuesµij fij 0l i ; recall that
(j µij fij 0l i 5 1+ ~The MinDrift rule does not require any knowledge of this static
routing pattern; it is only used as a tool for the analysis!! Such functions can be,
for example, constructed recursively as follows+ We setsNij ~0! 5 0 for all j [ Ji +
For eachl 5 1,2, + + + , we setsNij ~l ! 5 sNij ~l 2 1! 1 1 for one of thej [ Ji with the
smallest value ofsNij ~l 2 1! 2 ~µij fij 0l i ! l, and sNij ~l ! 5 sNij ~l 2 1! for all other
j+ ~The “ties” betweenj are broken arbitrarily, for example, in favor of the small-
est one+!

For i [ I, let us denote by

Ai
r ~t ! 5{ (

j[J

aj
*S Vij

r ~sNij ~Fi
r ~t !!! [ (

j[J

aj
* (

m51

sNij ~Fi
r ~t !!

vijr ~m!, t $ 0,

the total amount of server workload brought to the system by the new arrivals of
flow i by timet $ 0 assuming the arrivals would be routed according to the ( fixed)
functionssNij ~{!+ From~26!–~30! we obtain the following FCLT for the sequence of
processesAi

r ~{!:

Hr 21SAi
r ~r 2t ! 2 l i

r

(
j

fij aj
*

l i

r 2tD, t $ 0J w
&& $usi B~t !, t $ 0%, (31)

where

usi
2 5{ l i F(

j

fij aj
*G2

ai
2 1 (

j

fij µij bij
2@aj

* # 2 (32)

5 @ni
*# 2Fl i

3ai
2 1 (

j

fij µij
3 bij

2G +
From ~31! and ~17! we obtain the following FCLT for the sequence of pro-

cesses(i Ai
r ~{!:

Hr 21S(
i

Ai
r ~r 2t ! 2 F(

j

aj
*Gr 2tD, t $ 0J w

&& $at 1 sB~t !, t $ 0%, (33)

where

s2 5{ (
i

usi
2, a 5{ n *{b+ (34)
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8. MAIN RESULTS

For each value of the~scaling! parameterr [ R, let us consider the following
processes+ Let U r ~{! and qU r ~{! be the~vector! processes, representing~unfin-
ished! work andQ-estimated~unfinished! work, respectively, at different servers;
let uXr ~{!, qXr ~{!, andXr ~{! denote the scalar processes representing server work-
load, Q-estimated server workload, and customer workload, respectively+

Assume that in a system with indexr [ R, each serverj, at any timet, incurs
a holding costat the~instantaneous! rate of

Cj
r ~Uj

r ~t !! 5 Cj ~Uj
r ~t !0r !,

whereCj ~{! are fixed convex increasing functions, with the additional properties
described in Section 4+

Note that in our asymptotic regime the cost function is “rescaled” as the param-
eter r changes+ ~In other words, in a system with indexr, the holding cost rate
corresponding to the unfinished workUj

r ~t ! is Cj ~Uj
r ~t !0r ! instead ofCj ~Uj

r ~t !!+!
Notice, however, that in the special case~described in Section 4+4! whenCj ~z! 5
gj z

h11, with some fixedh . 0 andgj . 0, the form of the corresponding MinDrift
rule does not change with r+ Indeed, in this case, replacingCj

'~Uj
r ~t !! in ~2! with

Cj
'~Uj

r ~t !0r !0r simply does not change the routing rule+
For our main results, we need the notion of a fixed point+A vector °u [ R1

J will
be called afixed pointif

@C1
'~°u1!, + + + ,CJ

'~°uJ !# 5 ca *, (35)

for some constantc$ 0+ If we recall that each derivativeCj
'~{! is continuous strictly

increasing withCj
'~0! 5 0, one deduces the following:

A fixed point °u corresponding to each c$ 0 exists and is unique. Moreover,
°u 5 0 for c 5 0, and °u [ R11

I ~i+e+ , has all components strictly positive! for any
c . 0.

Thus, the set of fixed points forms a one-dimensional manifold,which can be param-
eterized, for example, by the corresponding server workload valuesa *{°u+ In addi-
tion, it is easy to verify the following property:

A fixed point°u is the unique vector that minimizes(j Cj ~uj ! among all vectors
u [ R1

J with the same server workload (i.e., satisfying conditiona *{u 5 a *{°u).

Indeed, if °u5 0, the property is trivial+ If °u [ R11
J , condition~35! implies that the

~Lagrangian! function

(
j

Cj ~uj ! 2 c@a *{u 2 a *{°u#

has zero gradient~with respect tou! at point °u+ Since this Lagrangian is strictly
convex inR1

J , it is minimized by °u+ Then the desired property follows from the
Kuhn–Tucker theorem+
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Let us define thediffusion scalingoperator EG r , which acts on a scalar function
J 5 ~J~t !, t $ 0! as

~ EG r J!~t ! 5{
1

r
J~r 2t ! (36)

and is applied to vertor-functions componentwise+
Let us consider the followingdiffusion-scaledprocesses: Iur 5 EG rU r , q Iur 5

EG r qU r , u Ixr 5 EG r uXr , q Ixr 5 EG r qXr , and Ixr 5 EG rXr +

8.1. Optimality of the MinDrift(U ) Rule

Assume that the initial~scaled! amounts of unfinished work are deterministic and
converging:

Iur ~0! r Iu~0!, (37)

where Iu~0! is a fixed point, as defined earlier+ Consequently, u Ixr ~0! 5 a *{ Iur ~0! r
a *{ Iu~0! 5{ Kw~0!+

Let us define the following one-dimensional reflected Brownian motionIx 5
$ Ix~t !, t $ 0% :

Ix~t ! 5 Kw~0! 1 at 1 sB~t ! 1 Iy~t !, (38)

whereB~{! is a standard Brownian motion,

Iy~t ! 5{ 2 F0 ∧ inf
0#j#t

$ Kw~0! 1 aj 1 sB~j!%G , (39)

and the drifta and diffusion coefficients are given in~34! and~32!, respectively+

Theorem 1: Consider the sequence of queueing systems in heavy traffic, as intro-
duced in Section 7. Assume initial condition (37). LetIx be a reflected Brownian
motion defined by (38) and (39).

(i) Suppose that the service discipline is such that the routing rule is Min-
Drift(U) with cost functions Ci

r ~{!, for each value of the parameter r, and
each server employs an arbitrary work-conserving scheduling rule (namely
the server is not allowed to idle when there is unfinished work in its queue).
Then, as rr `,

u Ixr w
&& Ix,

and

Iur w
&& Iu,

where for each t$ 0, the vector Iu~t ! is the fixed point that is (uniquely)
determined bya *{ Iu~t ! 5 Ix~t !.
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(ii) The service discipline defined in (i) is asymptotically optimal within the
class of service disciplines satisfying condition (d0) in that it minimizes
the server workload and the unfinished work cost rate at all times. More
precisely, let IuG

r and u IxG
r be the scaled unfinished work and server work-

load processes corresponding to an arbitrary service discipline G (and
appropriately constructed on a common probability space with the sequence
of processes defined in (i)). Then, with probability1, for any time t$ 0,

lim inf
rr`

inf
j[@0, t #

@u IxG
r ~j! 2 Ix~j!# $ 0 (40)

and

lim inf
rr`

(
j

Cj ~ Iuj,G
r ~t !! $ (

j

Cj ~ Iuj ~t !!+ (41)

As a corollary, with probability1, for any T. 0,

lim inf
rr`

E
0

T

(
j

Cj ~ Iuj,G
r ~t !! dt $ lim

rr`
E

0

T

(
j

Cj ~ Iuj
r ~t !! dt

5E
0

T

(
j

Cj ~ Iuj ~t !! dt+ (42)

The proof of Theorem 1 is the subject of Sections 9 and 10+

8.2. Optimality of the MinDrift(Q ) Rule

Assume that, for eachr, the initial state of the system at time 0 is deterministic and
it conforms to conditions~d1! and~d2! on a service discipline~which are assumed
in Theorem 2 below!+ In particular, for each pair ofi andj, serverj has in its queue
at most one customer of typei whose service has already started, and the realiza-
tions of service times of the customers whose service has not yet started are not
known to the server+ For the initial residual service timesvi, jr ~0! ~if any! of the
customers whose service has already started, we assume

vi, jr ~0!0r r 0, r r `+

Finally, assume that the initial~scaled! amounts ofQ-estimated unfinished work
are converging:

q Iur ~0! r Iu~0!, (43)

where Iu~0! is a fixed point, as defined earlier+
It follows from the above initial conditions that

q Ixr ~0! 5 a *{q Iur ~0! r a *{ Iu~0! 5{ Kw~0! (44)
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and, in addition, with probability 1,

Iur ~0! r Iu~0! and u Ixr ~0! r Kw~0!+ (45)

For the fixed Kw~0!, we consider a one-dimensional reflected Brownian motionIx 5
$ Ix~t !, t $ 0% , defined in~38!+

Theorem 2: Consider the sequence of queuing systems in heavy traffic, as intro-
duced in Section 7, and with the initial conditions described in Section 8.2.

(i) Suppose that the service discipline is such that the routing rule is Min-
Drift(Q) with cost functions Cj

r ~{!, for each value of the parameter r, and
each server employs an arbitrary work-conserving scheduling rule satis-
fying conditions (d1) and (d2). Then, as rr `,

q Ixr w
&& Ix, u Ixr w

&& Ix

and

q Iur w
&& Iu, Iur w

&& Iu,

where, for each t$ 0, the vector Iu~t ! is the fixed point that is (uniquely)
determined bya *{ Iu~t ! 5 Ix~t !.

(ii) The service discipline defined in (i) is asymptotically optimal within the
class of service disciplines satisfying conditions (d0)–(d2) in that it min-
imizes both the server workload and the Q-estimated server workload
and the unfinished work cost rate at all times. More precisely, letIuG

r ,
q IuG

r , u IxG
r , and q IxG

r be the scaled unfinished work, Q-estimated unfinished
work, server workload, and Q-estimated server workload processes, respec-
tively, corresponding to an arbitrary service discipline G satisfying (d0)–
(d2) (and appropriately constructed on a common probability space with
the sequence of processes in (i)). Then, with probability 1, for any time
t $ 0,

lim inf
rr`

inf
j[@0, t #

@q IxG
r ~j! 2 Ix~j!# 5 lim inf

rr`
inf

j[@0, t #
@u IxG

r ~j! 2 Ix~j!# $ 0

(46)

and

lim inf
rr`

(
j

Cj ~
q Iuj,G

r ~t !! 5 lim inf
rr`

(
j

Cj ~ Iuj,G
r ~t !!

$ (
j

Cj ~ Iuj ~t !!+ (47)
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As a corollary, with probability 1, for any T. 0,

lim
rr`

E
0

T

(
j

Cj ~
q Iuj

r ~t !! dt 5 lim
rr`

E
0

T

(
j

Cj ~ Iuj
r ~t !! dt

5E
0

T

(
j

Cj ~ Iuj ~t !! dt (48)

and

lim inf
rr`

E
0

T

(
j

Cj ~
q Iuj,G

r ~t !! dt 5 lim inf
rr`

E
0

T

(
j

Cj ~ Iuj,G
r ~t !! dt

$ E
0

T

(
j

Cj ~ Iuj ~t !! dt+ (49)

The proof of Theorem 2 is essentially a slightly modified~and extended! ver-
sion of that of Theorem 1+ It is outlined in Section 11+

8.3. Customer Workload Minimization Under the MinDrift(Q ) Rule

Suppose that we are within the conditions of Theorem 2+ For the initial customer
workloads Ixr ~0!, we “automatically”~by ~20! and~44!! have

lim sup
r

Ixr ~0! # lim
r

q Ixr ~0! 5 Kw~0!+

Suppose, in addition, that in fact, Ixr ~0! converges to the same limit asq Iur ~0!:

lim
r
Ixr ~0! 5 lim

r

q Ixr ~0! 5 Kw~0!, (50)

which is equivalent to the condition that limr Iqij
r ~0! 5 0 for every nonbasic activity

~ij !+
Now, any service discipline in the OQ system, satisfying conditions~d0!–~d2!,

is within the class of disciplines for the corresponding IQ system studied in@12#
~see Remark 2 in Section 3 of this article!+ In particular, Theorem 1 in@12# estab-
lishes that reflected Brownian motion~RBM! with exactly the same distribution as
the RBM Ix ~defined in this article by~38!! is in fact the stochasticlower bound of
any limit of the customer workload processIxr , under any service discipline satis-
fying conditions~d0!–~d2! ~but not necessarily IR!, which includes service disci-
plines for both OQ and IQ systems+

However, from ~20! we have a pathwise relation

Ixr ~t ! # q Ixr ~t !, t $ 0, (51)

and, by Theorem 2~i!, under the MinDrift~Q! rule, q Ixr w
&& Ix+ Thus, Ix is both the

lower and upper~stochastic! bounds of Ixr and, therefore, Ixr w
&& Ix+We have proved
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the following result, which basically says that the MinDrift~Q! rule minimizes cus-
tomer workload among virtually all service disciplines in either the OQ or IQ system+

Theorem 3: Suppose that the conditions of Theorem 2 and, in addition, condition
(50) hold.

(i) For the service discipline described in Theorem 2(i), we, in addition, have

Ixr w
&& Ix+ (52)

(ii) The service discipline described in Theorem 2(i) asymptotically mini-
mizes customer workload among all service disciplines, satisfying con-
ditions (d0)–(d2), in either the OQ or IQ system; namely, the customer
workload processIxG

r under any such discipline G can be constructed on
a common probability space with the RBMIx, so that, with probability 1,
for any time t$ 0,

lim inf
rr`

inf
j[@0, t #

@ IxG
r ~j! 2 Ix~j!# $ 0+

8.4. A Necessary Condition for Workload Minimization Under Any
Service Discipline: Vanishing Nonbasic Queues

Theorems 2 and 3 show that, roughly speaking, the MinDrift~Q! rule minimizes
both server and customer workload in the heavy traffic limit+ Theorem 4 demon-
strates that~either customer or server! workload in an OQ system can be minimized
by some discipline only if, under this discipline, the~scaled! queue lengthsIqij

r cor-
responding to nonbasic activities~ij ! vanish in the limit+

Theorem 4: Suppose that the conditions of Theorem 2 and, in addition, condition
(50) hold. Suppose that under some service discipline in the OQ system, satisfying
conditions (d0)–(d2), either (52) or

u Ixr w
&& Ix (53)

or

q Ixr w
&& Ix (54)

holds. Then, for any t$ 0,

Iqij
r ~t ! P

&& 0 for any nonbasic activity~ij !+ (55)

The proof is presented in Section 12+
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9. FLUID SAMPLE PATHS UNDER THE MinDrift RULE

9.1. Fluid Sample Paths: Definition and Basic Properties

In this section, we study the sequence of processes introduced in the previous sec-
tion under thefluid ~or “law of large numbers”! scaling and under the MinDrift
rule+More precisely, we need to consider onlysample pathsof the processes under
this scaling and then their limits, which we formally define here and callfluid sam-
ple paths~FSPs!+ The key property of FSPs that must be established~in Theorem 5!
is that as time increases to infinity, the queue length vector converges to a fixed
point+ This attraction property is used to prove~in Section 10! the state space col-
lapse property~i+e+, the property that the limit of the sequence ofdiffusion scaled
processes is a process “living” on the manifold of fixed points!+

Throughout Section 9 we assume the CRP condition+ However, all definitions
and results of this section hold under the weaker FO-CRP condition, with arbitrary
fixed f satisfying~12! andG~f! 5 G* ; in other words, the FSP definition and key
properties donot require a solutionf of ~12! to be unique+

First, we introduce some additional~random! functions, associated with the
process for each value of the scaling parameterr+ ~The functionsFi

r ~t !, Qi
r ~t !, and

Xr ~t !, have already been defined earlier+! Denote byGij
r ~t ! the amount of time

within @0, t # that serverj was serving typei customers+ For each pair~i, j ! we
defineNij

r ~n! as the number of typei arrivals actually routed to serverj, out of the
first n new typei arrivals, and denote

Hij
r ~t ! 5{ Nij

r ~Fi
r ~t !! 2 sNij

r ~Fi
r ~t !!+

Here, for any pair ~i, j !, sNij
r ~{! [ sNij ~{! for all r, where sNij ~{! are nonrandom

functions fixed earlier and satisfying conditions~28!–~30!+
We define the(server workload) regulationprocess as follows:

Yr ~t ! 5{ Yidle
r ~t ! 1 Yroute

r ~t !, t $ 0,

where

Yidle
r ~t ! 5{ (

j

aj
*St 2 (

i

Gij
r ~t !D,

Yroute
r ~t ! 5{ (

i

Yroute, i
r ~t !,

Yroute, i
r ~t ! 5{ (

j

aj
* µij

21Hij
r ~t !+

FunctionYidle
r is the regulation component due to physical idleness of the servers,

Yroute
r is the regulation component due to~possible! routing of customers to non-

basic servers, and functionsYroute, i
r represent the contributions intoYroute

r due to dif-
ferent flowsi [ I+
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The regulation componentYidle
r ~t ! is clearly nonnegative and nondecreasing+ It

is easy to verify that each regulation componentYroute, i
r ~t ! is also nonnegative and

nondecreasing+ ~Also, so is, therefore, Yroute
r ~t !+! Moreover, Yroute, i

r ~t ! is a piecewise
constant function,which is constant between typei customer arrivals, and jumps by
the valueaj

*0µij 2 ni
* $ 0 when a typei arrival is routed to serverj; note that the

size of the jump is strictly positive if and only if serverj is nonbasic for typei +
Finally, note thatYr ~t ! does not increase over some time interval if and only if,
during that interval, none of the servers idles and all new arrivals are routed to the
corresponding basic servers+

We record the above facts~along with their obvious generalization! in the fol-
lowing lemma for future reference+

Lemma 4: For each value of the scaling parameter r, consider a pair of time points
0 # t1

r , t2
r , ` and denote

B0
r 5{

Yr ~t2
r ! 2 Yr ~t1

r !

t2
r 2 t1

r ,

B1, i
r 5{ (

jÓJi

Fij
r ~t2

r ! 2 Fij
r ~t1

r !

t2
r 2 t1

r ,

B2, j
r 5{ (

i[I

Gij
r ~t2

r ! 2 Gij
r ~t1

r !

t2
r 2 t1

r +

Then B0
r 5 0 if and only if B1, i

r 5 0 for all i and B2, j
r 5 1 for all j. Also, lim rr` B0

r 5
0 if and only if lim rr` B1, i

r 5 0 for all i and lim rr` B2, j
r 5 1 for all j.

Let us consider the processZr 5 ~U r, uXr, F r, SV r, sNr,Nr,Gr,H r,Yr,Yidle
r ,

Yroute
r !, where

U r 5 ~Uj
r ~t !, t $ 0, j [ J!,

uXr 5 ~uXr ~t !, t $ 0!,

F r 5 ~Fi
r ~t !, t $ 0, i [ I !,

SV r 5 ~SVij
r ~l !, l $ 0, i [ I, j [ J!,

sNr 5 ~sNij
r ~l !, l $ 0, i [ I, j [ J!,

Nr 5 ~Nij
r ~l !, l $ 0, i [ I, j [ J!,

Gr 5 ~Gij
r ~t !, t $ 0, i [ I, j [ J!,

H r 5 ~Hij
r ~t !, t $ 0, i [ I, j [ J!,

Yr 5 ~Yr ~t !, t $ 0!,

Yidle
r 5 ~Yidle

r ~t !, t $ 0!,

Yroute
r 5 ~Yroute

r ~t !, t $ 0!+
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For eachr consider thefluid scaledprocess

G r Zr 5{ zr 5 ~ur, uxr, f r, Sv r, snr, nr, gr, hr, yr, yidle
r , yroute

r !,

where the fluid scaling operatorG r is applied componentwise and acts on a scalar
functionJ 5 ~J~t !, t $ 0! as follows:

~G r J!~t ! 5{
1

r
J~rt !+

Definition 4: A fixed set of functions z5 ~u, ux, f, Sv, sn, n, g, h, y, yidle, yroute! will
be called afluid sample path(FSP) if there exists a sequenceRf of values of r and
a sequence ofsample paths(of the correspondingprocesses) $zr % such that, as
r r ` along the sequenceRf ,

zr r z, u+o+c+ ,

and, in addition,

7u~0!7 , `,

~ fi
r ~t !, t $ 0! r ~l i t, t $ 0!, u+o+c+ , i [ I, (56)

~Svijr ~t !, t $ 0! r ~µij
21 t, t $ 0!, u+o+c+ , i [ I, j [ J+ (57)

Remark: A sequenceRf , the existence of which is required in Definition 4,may be
completely unrelated to the sequenceR we introduced earlier in the definition of
the heavy traffic regime+

The following lemma establishes some basic properties of FPSs+We omit the
simple proof, which is a direct consequence of the definitions involved+

Lemma 5: For any FSP z, all of its component functions are Lipschitz continuous
and, in addition,

fi ~t ! 5 l i t, t $ 0, i [ I,
Svij ~t ! 5 µij

21 t, t $ 0, i [ I, j [ J,
snij ~t ! 5 ~µij fij 0l i !t, t $ 0, i [ I, j [ J,

uj ~t ! 5 uj ~0! 1 (
i

µij
21nij ~l i t ! 2 (

i

gij ~t !, t $ 0, j [ J,

ux~t ! 5 a *{u~t ! 5 ux~0! 1 y~t !, t $ 0+

Furthermore, both y~{! and ux~{! are nondecreasing (with y~0! 5 0).

Since all component functions of an FSP are Lipschitz, they are absolutely con-
tinuous, and therefore for almost all pointst [ R1 ~with respect to the Lebesgue
measure!, the following property holds:

Each component function of z has ( finite) first derivative at t, and each function
nij ~{! has ( finite) first derivative atl i t.
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We refer to such time pointst asregular+We adopt a convention thatt 5 0 is not a
regular point~i+e+, in the definition of regular points, we require that proper deriv-
atives exist!+

The dynamics ofu~t ! satisfies the following differential equation and addi-
tional conditions at every regular pointt:

d

dt
u~t ! 5 r in~t ! 2 rout~t !, (58)

where the components of theJ-dimensional vectorsr in~t ! androut~t ! are defined
as

rj
in~t ! 5{ (

i

µij
21l i nij

' ~l i t ! [ K, (59)

rj
out~t ! 5{ (

i

gij
' ~t ! [ @0,1# , (60)

and forrout, we have

rj
out~t ! 5 1 if uj ~t ! . 0+ (61)

9.2. Uniform Attraction of Fluid Sample Paths

For u [ R1
J , denote

*A~u! 5{ max
j

Cj
'~uj !0aj

*, *A~u! 5{ min
j

Cj
'~uj !0aj

*;

F~u! 5{ 12 *A~u!0*A~u! if u Þ 0, andF~0! 5{ 0 by convention+
Consider the following functions associated with a fixed FSP+ First, define

J*~t ! 5 $ j [ J6Cj
'~uj ~t !!0aj

*5 *A~u~t !!%

and, similarly, J*~t ! ~with *A replaced by*A!+ Next, introduce

*uj ~t ! 5{ $z $ 06Cj
'~z!0aj

*5 *A~u~t !!%,

and note that*uj ~t ! is well defined since each functionCj
'~{! is strictly increasing

continuous+ Let *x~t ! 5{ a *{*u~t !, where*u~t ! 5 ~*u1~t !, + + + ,*uJ~t !!, and note that
ux~t ! # *x~t ! for all t $ 0+

Finally, note that, at any timet, the following five conditions foru~t ! are all
equivalent:

1+ u~t ! is a fixed point+
2+ *A~u~t !! 5 *A~u~t !!+
3+ F~u~t !! 5 0+
4+ *x~t ! 5 ux~t !+
5+ *u~t ! 5 u~t !+
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The following sequence of lemmas establishes further properties of fluid sample
paths, which are less obvious than the basic properties of Lemma 5+ The form of the
MinDrift rule is used in the proofs in an essential way+

Lemma 6: Consider a fixed FSP z. Suppose t. 0 is a regular point and u~t ! Þ 0.
Then the following properties hold at this t:

(i) uj ~t ! . 0 for all j [ J.
(ii) We have

(
j[J*~t !

aj
*uj
'~t ! # 0, (

j[J*~t !

aj
*uj
'~t ! $ 0+ (62)

(iii) Moreover, there exists a constante1 . 0, which depends on system param-
eters only, such that if, in addition, u~t ! is not a fixed point (i.e.,*A~q~t !! .

*A~q~t !!), then

(
j[J*~t !

aj
*uj
'~t ! # 2e1, (

j[J*~t !

aj
*uj
'~t ! $ e1+ (63)

Proof: Let us first prove~iii !+ Thus, consider regular time pointt . 0 and suppose
that *A~u~t !! . *A~u~t !!+ The following observation is true:

If i [ I andj [ J*~t !\Ji , thennij
' ~l i t ! 5 0+ (64)

Indeed, according to the MinDrift rule and Lemma 3~ii !~c!, for all sufficiently large
r, the prelimit pathzr is such that in a small interval@t, t 1 e# , e . 0, new arriving
customers of typei cannot be routed to a serverj [ J*~t !\Ji + This easily implies
that the corresponding FSP componentnij ~{! cannot increase in a small interval to
the right ofl i t, and thereforenij

' ~l i t ! 5 0 sincet is regular+ Using a similar argu-
ment, it is also easy to prove the following property:

If i [ I, Ji \J*~t ! Þ B, andj [ J*~t !, thennij
' ~l i t ! 5 0+ (65)

Let us denote byI *~t ! the ~nonempty! subset of typesi such thatJi ù J*~t ! Þ B+
Since graphG~f! 5 G* is connected, there exists at least onei [ I *~t ! such that
Ji \J*~t ! Þ B, in which case~by ~65!!, we have strict inequality:

(
j[J*~t !

aj
* µij

21l i nij
' ~l i t ! 5 0 , (

j[J*~t !

aj
*fij + (66)

If i [ I *~t ! andJi \J*~t ! 5 B ~i+e+, Ji # J*~t !!, then

(
j[J*~t !

aj
* µij

21l i nij
' ~l i t ! # (

j[J*~t !

aj
*fij + (67)

170 A. L. Stolyar

https://doi.org/10.1017/S0269964805050096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050096


Indeed, using~64!, the fact thataj
* µij

21 is the same across allj [ Ji ,(j[J nij
' ~l i t ! #1,

and(j[Ji
µij fij 0l i 51, we can write

(
j[J*~t !

aj
* µij

21l i nij
' ~l i t ! 5 (

j[Ji

aj
* µij

21l i nij
' ~l i t !

# (
j[Ji

aj
* µij

21l i

µij fij

l i

5 (
j[Ji

aj
*fij

5 (
j[J*~t !

aj
*fij +

As a corollary from~64!, we also obtain the following property:

If i Ó I *~t ! andj [ J*~t !, thennij
' ~l i t ! 5 0+ (68)

We will now show that

(
j[J*~t !

aj
*uj
'~t ! # 2e, (69)

wheree . 0 depends only on the subsetJ*~t !+ Indeed,

(
j[J*~t !

aj
*uj
'~t ! 5 (

j[J*~t !

aj
*(

i[I

µij
21l i nij

' ~l i t ! 2 (
j[J*~t !

aj
*,

and~using~68!, ~66!, and~67!! we have

(
j[J*~t !

aj
*(

i[I

µij
21l i nij

' ~l i t ! 5 (
i[I *~t !

(
j[J*~t !

aj
* µij

21l i nij
' ~l i t !

, (
i[I *~t !

(
j[J*~t !

aj
*fij 5 (

j[J*~t !

aj
* (

i[I *~t !

fij

# (
j[J*~t !

aj
*+ (70)

We have proved~69!, with e . 0 depending only on the subsetJ*~t ! , J+ Since
there is only a finite number of subsets ofJ, we have proved the first inequality in
~63!, with some fixede1 . 0+

The second inequality in~63! is proved analogously+ We denote byI*~t ! the
~nonempty! subset of typesi such thatJi ù J*~t ! Þ B+ Then we use the following
property~obtained using the argument analogous to that leading to~64! and~65!!:

If i [ I*~t ! andj Ó Ji ù J*~t !, thennij
' ~l i t ! 5 0+

We omit details+
The proof of the nonstrict inequalities in property~ii ! is a straightforward exten-

sion of the proof of~iii !; namely we need to consider an additional~degenerate!
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case whenJ*~t ! 5 J*~t ! 5 J+ In this case, for example to prove the first inequality
in ~62!, we observe that the nonstrict inequality~67! always applies, and~70! holds
with the strict inequality replaced by a nonstrict one+

Finally, ~i! is proved by contradiction+ Suppose, uj ~t ! 5 0 for somej [ J+Obvi-
ously, the set of suchj is exactlyJ*~t !+ Sinceu~t ! Þ 0, u~t ! is not a fixed point+
Therefore, the second inequality in~63! should hold+ However, this is impossible,
because we must haveuj

'~t ! 5 0 for all j [ J*~t !+ Indeed, the conditionuj ~t ! 5 0 and
the existence ofuj

'~t ! imply thatuj
'~t ! 5 0+ ~Otherwise, uj ~{! would be negative just

before or right after timet+! n

Lemma 7: Consider a fixed FSP. Suppose a time interval@t1, t2# , with 0 # t1 , t2,
is such that

min
t1#t#t2

min
j[j

uj ~t ! . 0+

Then, over@t1, t2# , the functions*A~q~t !!, *A~q~t !!, *x~t !, and *uj ~t ! for all j [ I
are Lipschitz continuous. Moreover, for almost all t[ @t1, t2# ,

d

dt
@*A~u~t !!# # 0,

d

dt
@*A~u~t !!# $ 0,

d

dt
@*x~t !# # 0, (71)

and if, in addition,*A~u~t !! . *A~u~t !! (i.e., u~t ! is not a fixed point), then

d

dt
@*x~t !# # 2e1, (72)

wheree1 . 0 is defined in Lemma 6.

Proof: First, the Lipschitz continuity of each functionCj
'~ui ~t !! in @t1, t2# follows

from Lipschitz continuity ofuj ~{! and the fact that, for the range of possible values
of uj ~t ! in @t1, t2# , Cj

''~{! is continuous bounded away from both infinity and zero+
~This is the only place where we use the assumption that the functionsCi ~{! are
twice continuously differentiable+!

This implies that for an arbitrary fixed subsetZJ # J, the following functions are
also Lipschitz continuous in@t1, t2# :

max
i[ ZJ

Cj
'~uj ~t !!0aj

*, min
i[ ZI

Cj
'~uj ~t !!0aj

*+

In particular, *A~q~t !! and*A~q~t !! are Lipschitz, which ~along with the fact that
the second derivativesCj

''~{! are bounded away from zero! implies that all*uj ~t !
and *x~t ! are Lipschitz+ We see that almost all pointst [ @t1, t2# are regular~as
defined earlier! and, in addition, are such that all the max and min functions in the
last display, for all ~nonempty! subsets ZJ # J, have derivatives+Within the present
proof, let us call such pointst strictly regular+
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Consider an arbitrary strictly regular pointt [ @t1, t2# + The proof will be com-
plete once we prove~71! and ~72! for this point t+ Sincet is strictly regular, the
derivativesd0dt@*A~u~t !!# andd0dt@Cj

'~uj ~t !!0aj
* # for j [ J*~t ! are all equal+ ~In

particular, this implies that*uj
'~t ! 5 uj

'~t ! for all j [ J*~t !+! We cannot have
d0dt@*A~u~t !!# . 0 because this would imply thatuj

'~t ! . 0 for all j [ J*~t !,
which would contradict~62!+ This proves the first~and, with it, the last! inequality
in ~71!+ The second inequality in~71! is proved analogously+

We can now write

d

dt
@*x~t !# 5 (

j[J

aj
* *uj

'~t ! # (
j[J*~t !

aj
* *uj

'~t ! 5 (
j[J*~t !

aj
*uj
'~t !,

where the inequality follows from the fact that*uj
'~t ! # 0 for all j [ J ~which is

implied by~71!!, and the second equality is because*uj
'~t ! 5 uj

'~t ! for j [ J*~t !+ In
the case*A~q~t !! . *A~q~t !!, by ~63!, the RHS of the above display is bounded
above by2e1, which proves~72!+ n

Lemma 8: Consider a fixed FSP z. Suppose u~t1! Þ 0 for some t1 $ 0. Then u~t !
has all strictly positive components (i.e., u~t ! [ R11

J ) for all t . t1. Moreover, in
@t1,`!, *A~q~t !! is nondecreasing, and both*A~q~t !! and *x~t ! are nonincreasing.

Proof: Indeed, we can always find a regular pointj . t1 arbitrarily close tot1 so
that u~j! Þ 0+ By Lemma 6, u~j! [ R11

J + Then, using Lemma 7, it follows that
*A~u~t !! is nondecreasing~and*A~u~t !! and*x~t ! are nonincreasing! starting from
time j, and thereforeu~t ! [ R11

J for all t $ j+ Sincej can be chosen arbitrarily
close tot1, the proof is complete+ n

Lemma 9: Consider a fixed FSP z. If u~0! 5 0, then u~t ! 5 0 for all t $ 0.

Proof: Suppose not+ By continuity of *x~{!, for an arbitrarilye . 0, there exists
time t1 . 0 at which*x~t ! reaches levele for the first time+Of course, u~t1! Þ 0+ By
Lemma 8, *x~t ! cannot increase starting at timet1, and therefore*x~t ! # e for
all t $ 0+ Sincee . 0 can be chosen arbitrarily small, *x~t ! 5 0, and therefore
u~t ! 5 0 for all t $ 0+ n

The following theorem easily follows from the lemmas presented earlier in this
subsection+

Theorem 5: For any fluid sample path,F~u~t !! is a nonincreasing function, and
the server workloadux~t ! is a nondecreasing function. Moreover, there exist fixed
constants T1 . 0 and K$ 1 such that, for any FSP, u~t ! reaches a fixed point°u
within finite timeux~0!T1 and then stays there, anda *{°u # ux~0!K.

Proof: The fact thatx~t ! is nondecreasing has already been established earlier+
Supposeu~0! Þ 0+ By Lemma 8, *A~u~t !! is nondecreasing and*A~u~t !! is

nonincreasing in@0,`!, and thereforeF~u~t !! is nonincreasing+ Further, by Lemma 8,
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u~t ! [ R11
J for all t . 0+ Then, by Lemma 7, for almost allt . 0, *x~t ! . ux~t !

implies

*x '~t ! # 2e1+

Since*x~0! # ux~0!@(j aj
* #0@minj aj

* # , ux~t ! # *x~t !, andux~t ! is nondecreasing,
we immediately see thatu~t ! must reach a fixed point within a time proportional to
ux~0!+

Therefore, the statement of the theorem, with some fixedT1 . 0 andK $ 1,
holds for the FSPs withu~0! Þ 0+ By Lemma 9, it trivially holds for u~0! 5 0 as
well+ n

For future reference, we record the following property of prelimit paths+

Lemma 10: There exists a constante2 . 0 such that the following holds. For any
prelimit (scaled) path ur 5 ~ur ~t !, t $ 0!, and0 # t1

r , t2
r , `, the property

ur ~t ! Þ 0 and F~ur ~t !! # e2, ∀t [ @t1
r , t2r # ,

implies that yr ~t2
r ! 2 yr ~t1

r ! 5 0 or, equivalently, that in the (scaled) interval
~t1

r , t2r # , all new arriving customers are routed to their corresponding basic servers
and none of the servers idles.

Proof: First, since ur ~t ! Þ 0 in @t1
r , t2r # , none of the servers idles in this time

interval+ Second, a small value of F~ur ~t !! implies that the vector
~C1
'~u1

r ~t !!, + + + ,CJ
'~u1

r ~t !!! is “almost proportional” to vectora *+ Thus, if F~ur ~t !!
is small, it follows from the form of the MinDrift~U ! rule and Lemma 3~ii !~c!
that in @t1

r , t2r #, a new arrival of any typei [ I can only be routed to a server
j [ Ji + We omit thee-d formalities+ n

10. PROOF OF THEOREM 1

For eachr [ R, consider the following process, obtained by diffusion scaling:

EG r ~U r, uXr,F r, SV r, sNr,Nr,Gr,H r,Yr,Yidle
r ,Yroute

r !

5{ ~ Iur, u Ixr, Df r, S Iv r, s Inr, Inr, Igr, Dhr, Iyr, Iyidle
r , Iyroute

r !,

where the diffusion scaling operatorEG r is defined in~36!+
To prove the properties stated in Theorem 1, it will suffice to show that for any

subsequenceR1 # R there exists another subsequenceR2 # R1 such that these
properties hold whenr r ` alongR2+ As in @14# , to do this, we will choose sub-
sequenceR2 and construct all processes~for all r [ R2! on the same probability
space in a way such that the desired properties hold with probability 1~or are implied
by certain probability 1 properties!+

Let us fix an arbitrary subsequenceR1 # R of indices$r % + According to Sko-
rohod’s representation theorem~see, for example, @7# !, for eachi , the sequences
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~on r ! of the processes$Fi
r % and$SVij

r % , j [ J, can be constructed on a probability
space such that the convergence in~31! holds u+o+c+ with probability 1~w+p+1!:

Hr 21SAi
r ~r 2t ! 2 l i

r

(
j

fij aj
*

l i

r 2tD, t $ 0J u+o+c+
&& $usi Bi ~t !, t $ 0%, (73)

whereBi is a standard Brownian motion+
We can and do assume that our underlying probability spaceV 5 $v% is a direct

product of the aboveI probability spaces+ ~Without loss of generality, we assume
that this probability space is complete+! On this probability space the convergence
~33! holds u+o+c+ w+p+1 as well:

Hr 21S(
i

Ai
r ~r 2t ! 2 F(

j

aj
*Gr 2tD, t $ 0J u+o+c+

&& $at 1 sB~t !, t $ 0%, (74)

whereB is a standard Brownian motion+
Now, from condition~25! and Bramson’s weak law estimates~ @4, Prop+ 4+3# !,

we know that for anyT3 . 0, anye . 0, and anyi , for all larger, we have~see the
proof of property~5+19! in Proposition 5+1 of @4# !

PH max
0#l#T3 r

sup
0#j#1

6 fi r ~l 1 j! 2 fi
r ~l ! 2 l i j6 $ eJ , e+ (75)

~The max in~75! and~76!, as well as in~76!–~78!, is over integers l[ @0,T3r # +!
Also, using Proposition 4+2 of @4# , it is easy to show~similarly to the derivation of
property~71! in @14# ! that for anyT3 . 0, anye . 0, and any pair of~i, j !, for all
larger, we have

PH max
0#l#T3 r

sup
0#j#1

6Svijr ~l 1 j! 2 Svijr ~l ! 2 µij
21j6 $ eJ , e+ (76)

Estimates~75! and~76! enable us to choose a subsequenceR2 # R1, such that as
r r ` alongR2, with probability 1, for anyT3 . 0 we have

max
0#l#T3 r

sup
0#j#1

6 fi r ~l 1 j! 2 fi
r ~l ! 2 l i j6r 0, i [ I, (77)

and

max
0#l#T3 r

sup
0#j#1

6Svijr ~l 1 j! 2 Svijr ~l ! 2 µij
21j6r 0, i [ I, j [ J+ (78)

Properties~77! and~78!, in turn, imply the following property+
With probability1, for any fixed T4 . 0 and d. 0, for any~i, j !, we have the

following:
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Uniformly on any sequence of pairs~t1
r , t2r !, r [ R2, such that0 # t1

r , t2
r #

r 2T4, t2
r 2 t1

r $ rd,

lim
rr`, r[R2

SVij
r ~sNij

r ~Fi
r ~r 2t2!!! 2 SVij

r ~sNij
r ~Fi

r ~r 2t1!!!

fij ~t2
r 2 t1

r !
5 1; (79)

Uniformly on any sequence of pairs~l1
r , l2

r !, r [ R2, such that0 # l1
r , l2

r #
r 2T4, l2

r 2 l1
r $ rd,

lim
rr`, r[R2

SVij
r ~l2

r ! 2 SVij
r ~l1

r !

µij
21~l2

r 2 l1
r !

5 1+ (80)

For eachj [ J, we have

Uj
r ~r 2t ! 5 Uj

r ~0! 1 (
i

SVij
r ~Nij

r ~Fi
r ~r 2t !!! 2 (

i

Gij
r ~r 2t !,

and therefore the expression for the scaled server workload can be written as

u Ixr ~t ! (81)

5 u Ixr ~0! 1 r 21F(
j

aj
*(

i

SVij
r ~sNij

r ~Fi
r ~r 2t !!! 2 (

j

aj
* r 2tG (82)

1 r 21 (
j

aj
*Sr 2t 2 (

i

Gij
r ~r 2t !D (83)

1 r 21 (
j
(

i

aj
* @SVij

r ~Nij
r ~Fi

r ~r 2t !!! 2 SVij
r ~sNij

r ~Fi
r ~r 2t !!!# (84)

5 Kwr ~t ! 1 Iyidle
r ~t ! 1 y̆route

r ~t ! 5 Kwr ~t ! 1 y̆r ~t !, (85)

where Kwr ~t ! is the term~82!, Iyidle
r ~t ! denotes the term~83!, y̆route

r ~t ! denotes the
term ~84!, and y̆r ~t ! 5{ Iyidle

r ~t ! 1 y̆route
r ~t !+ We know from~74! that

~ Kwr ~t !, t $ 0! u+o+c+
&& ~ Kw~t !, t $ 0!,

where

Kw~t ! 5{ Kw~0! 1 at 1 sB~t !,

B~{! is the realization of a standard Brownian motion, and the parametersa ands
are those defined in~34!+ ~The realization Kw~{! is, of course, continuous+! As seen
from ~85!, the key step in proving Theorem 1 will be the proof of the following
convergence:

~ y̆r ~t !, t $ 0! u+o+c+
&& ~ Iy~t !, t $ 0!+ (86)

In the rest of this section, we restrict ourselves to a~measurable, probability 1!
subsetV2 # V of elementary outcomesv, such that all the specified above proba-
bility 1 properties hold, whenr r ` alongR2+
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Lemma 11: Consider a fixedv [ V2. As rr ` alongR2, the functions̆yroute
r and

Iyroute
r , and theny̆r and Iyr, are “asymptotically close” in the following sense. For

any fixed T4 . 0 and any fixedd1 . 0 and d2 . 0, for all sufficiently large r,
uniformly on t[ @0,T4# ,

~12 d1! Iyroute
r ~t ! 2 d2 # y̆route

r ~t ! # ~11 d1! Iyroute
r ~t ! 1 d2 (87)

and then

~12 d1! Iyr ~t ! 2 d2 # y̆r ~t ! # ~11 d1! Iyr ~t ! 1 d2+ (88)

The proof of Lemma 11 is analogous to the proof of Lemma 9 in@12# + The key
observation here~which follows from~79! and~80!! is that, for fixed T4 . 0 and
~arbitrarily small! d . 0, if t [ @0,T4# and 6Hij

r ~Fi
r ~r 2t !!6 $ rd, then for all suffi-

ciently larger, the ratio

SVij
r ~Nij

r ~Fi
r ~r 2t !!! 2 SVij

r ~sNij
r ~Fi

r ~r 2t !!!

µij
21Hij

r ~Fi
r ~r 2t !!

is close to unity+We do not present the details+We note that~analogous to the sit-
uation with Lemma 9 in@12# ! Lemma 11 applies to any service discipline satisfy-
ing condition~d0!, and the uniqueness off ~in the CRP condition! is used in the
proof of Lemma 11 in an essential way+

It follows from Lemma 11 that to prove~86!, it suffices to prove

~ Iyr ~t !, t $ 0! u+o+c+
&& ~ Iy~t !, t $ 0!, (89)

becauseIy~{! is bounded on finite intervals+
Since regulationIyr is a nondecreasing function~for anyr !, for any fixedv [ V2,

from any subsequenceR3~v! # R2 ~which may depend onv!!, it is always pos-
sible to find a further subsequenceR4~v! # R3~v! such that

Iyr n Iy, (90)

where Iy is some nondecreasing RCLL function+ ~We will prove that this limit Iy is
indeed the regulation of the one-dimensional Brownian motion defined earlier+! In
principle, Iy may take the values1`+ ~In other words, Iy [ D~ @0,`!, OR+! Recall that
the notation “n” stands for convergence at every point of continuity of the limit
function except maybe the point 0+! We note that~90! implies that

u Ixr n Ix 5{ Kw 1 Iy, (91)

and thereforeIx~t ! , ` if and only if Iy~t ! , `+
The following lemma~and its proof! is analogous to Lemma 7 in@14# and

Lemma 10 in@12#; it contains key observations used in the proof of Theorem 1+ The
key construction of the proof, which involves “slowing down” the diffusion scaled
process to consider a family of processes on the “fluid” time scale and then expoit-
ing the uniform attraction property of fluid sample paths, is essentially the same as
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that in Section 5 of@4# + This construction is central for establishing SSC in the
heavy traffic asymptotic regime for multiclass queuing networks~see@4,19# !+

Lemma 12: Suppose that the service discipline is such that the routing rule is Min-
Drift(U) and scheduling rules at the servers are work-conserving. Suppose that
v [ V2 and a subsequenceR4~v! # R2 are fixed such that, along this sub-
sequence, (90) holds. Suppose, a sequence$ It r, r [ R4~v!% is fixed such that

It r r t ' $ 0

and

u Ixr ~ It r ! r C . 0+

Let d . 0 be fixed and

e 5{ sup
j1,j2[@t '23d, t '13d#ùR1

6 Kw~j1! 2 Kw~j2!6 , C+

Then the following hold:

(a) Iy (and Ix) is finite in @0, t ' 1 d# .
(b) Iy does not increase in~t ', t ' 1 d# (i.e., Iy~t ' 1 d! 2 Iy~t '! 5 0).
(c) The following bound holds

C 2 e # Ix~t ! # CK 1 e, ∀t [ @t ', t ' 1 d# ,

with K defined in Theorem 5.
(d) For anyd ' . 0,

~ Iur ~t !, t [ @t ' 1 d ', t ' 1 d#! u.o.c.
&& ~ Iu~t !, t [ @t ' 1 d ', t ' 1 d#!,

where Iu~t ! is the (unique) fixed point such thata *{ Iu~t ! 5 Ix~t !.

If, in addition, It r 5 t ' for all r, and Iur ~t '! r ° Iu, where° Iu is a fixed point
(necessarily, witha *{° Iu 5 C), then the following hold:

(c'! Ix~t '! 5 C and, consequently,Iu~t '! 5 ° Iu.
(d'! ~ Iur ~t !, t [ @t ', t ' 1 d#! u.o.c.

&& ~ Iu~t !, t [ @t ', t ' 1 d#!+

Proof: The proof essentially repeats that of Lemma 10 in@12# + For completeness,
and since some adjustments are required, we present it here+

Let us consider the functions of interest on the fluid time scale; namely con-
sider earlier defined functionsuxr ~t ! [ u Ixr ~t0r !, yr ~t ! [ Iyr ~t0r !, t $ 0, and simi-
larly defined functionwr and other related ones+

Let us choose a fixedT . 0 as follows+ Let us fix e3 [ ~0,C 2 e!, denote

C3 5 ~C 1 e3!K 1 e 1 e3,
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and fix arbitrary

T $ C3T1,

whereK andT1 are the constants defined in Theorem 5+ As seen later in the proof,
C3 will be the upper bound ofu Ixr ~{! in the interval@ It r, It r 1 d# or, equivalently, the
upper bound ofuxr ~{! in the interval@r It r, r It r 1 rd# + Thus, the choice of the constant
T is such that an FSP with initial server workload not exceedingC3 will converge to
a fixed point within timeT+

For each integerl [ @0,2dr0T # , consider

u Sxr, l ~j! 5{ uxr ~r It r 1 Tl 1 j!, j $ 0,

and similarly defined Uwr, l , Tyr, l , and other related functions+
Let us fix arbitrarye4 [ ~0, e202!, wheree2 is defined in Lemma 10+ Then the

following property holds+

Property 1: For all sufficiently large r, relation (92) below holds for all integer
l [ @0,2dr0T # , and relations (93)–(95) hold for all integer l[ @1,2dr0T # :

C 2 e 2 e3 # u Sxr, l ~j! # C3, ∀j [ @0,T # , (92)

F~ Sur, l ~j!! # e4 for j 5 0 andj 5 T, (93)

F~ Sur, l ~j!! # 2e4, ∀j [ @0,T # , (94)

Tyr, l ~T ! 2 Tyr, l ~0! 5 0+ (95)

To prove Property 1, we first observe that~92! must hold forl 5 0 for all large
r, because otherwise we would be able to choose a subsequence of indicesr along
which the sequence of pathsSzr,0 converges to an FSPz with u Sx~0! 5 C and either
u Sx~j! . CK or u Sx~j! , C for somej [ @0,T # , which contradicts Theorem 5+
Moreover, this observation shows that in fact for all larger,

C 2 e302 # u Sxr,1~0! # ~C 1 e302!K, (96)

and, given our choice of the constantT,

F~ Sur,1~0!! # e4+ (97)

Next, suppose Property 1 does not hold+ Then we can choose an~infinite! sub-
sequence ofr such that~along this subsequence! l ' 5 l '~r ! is well defined as the
smallestl $ 1 such that one of the conditions~92!–~95! does not hold+ ~Note that,
by this construction and~97!, property~93! always holds forl 5 l ' andj 5 0+! We
will show that this construction leads to a contradiction+

Indeed, for all larger, both~92! and~93! hold for l 5 l ' andj 5 0+ This follows
from the combination of the following facts:
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1+ Property~96!+
2+ 6 Kw~j1! 2 Kw~j2!6 # e as long asj1,j2 [ @t ' 2 3d, t ' 1 3d# ù R1+
3+ Kwr r Kw uniformly in @t ' 2 3d, t ' 1 3d# ù R1+
4+ Property~95! for each 1# l # l ' 2 1+
5+ The functions Iyr andy̆r are asymptotically close~in the sense of Lemma 11!+

Since~92! and~93!, with l 5 l ' andj 5 0, hold for larger, we see that~93! and~94!
hold for l 5 l ' and all larger+ ~Otherwise, we would be able to choose a sub-
sequence ofr along which Szr, l ' converges to an FSPz, violating Theorem 5+! Sim-
ilarly, the lower bound in~92! must hold~for larger ! for l 5 l ' andj [ @0,T # + This,
in conjunction with~94! and Lemma 10, means that~95! holds forl 5 l ' ~for large
r !+ Finally, this and the argument we already used to prove bound~92! for l 5 l ' ,
j 5 0, shows that in fact~92! holds for l 5 l ' and allj [ @0,T # ~for larger !+ We
have proved that~92!–~95! hold for l 5 l '~r ! for all larger+ This is a contradiction
with the construction of the functionl ' 5 l '~r !, which proves Property 1+

Property 1~namely~92!! implies that, for all larger,

C 2 e 2 e3 # u Sxr, l ~j! # C3, j [ @0,T # , 0 # l # 2dr0T+

Statements~a!–~c! of the lemma follow from this estimate+
To prove~d!, we first notice that~a!, ~b!, and Lemma 11 imply the following

uniform convergence for the workload process:

~u Ixr ~t !, t [ @t ' 1 d ', t ' 1 d#! u+o+c+
&& ~ Ix~t !, t [ @t ' 1 d ', t ' 1 d#!+ (98)

Statement~d! then follows from Property 1, the fact thate4 can be chosen arbi-
trarily small, and convergence~98!+

To prove properties~c'! and~d'!, we use the same exact construction+ It is easy
to see that, under the additional assumptions, all conditions~92!–~95! in Property 1
hold for all integerl [ @0,2dr0T # ~including zero!+ Given this, properties~c'! and
~d'! are proved analogously to properties~c! and~d!+We omit details+ n

The rest of the proof of Theorem 1 repeats that of Theorem 1 in@14# , and that
of Theorem 1 in@12# , virtually verbatim+We reproduce it here, with the necessary
minor adjustments, for completeness+

10.1. Proof of Theorem 1(i)

To prove this part it suffices to prove the following:

Property 2: As rr ` (alongR2), for anyv [ V2 (i.e., with probability 1), we
have the following convergence:

~ Iyr ~t !, t $ 0! u.o.c.
&& ~ Iy~t !, t $ 0!, (99)
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where Iy is defined by (39), and

~ Iur ~t !, t $ 0! u.o.c.
&& ~ Iu~t !, t $ 0!, (100)

where for each t, Iu~t ! is the fixed point such thata *{ Iu~t ! 5 Ix~t !.

Proof of Property 2: Let us fix v [ V2+ As explained earlier, for an arbitrary
subsequenceR3~v! # R2 there exists another subsequenceR4~v! # R3~v! such
that the convergence~90! holds along this subsequence+ Then, the proof of Prop-
erty 2 will be complete if we can prove the following statements~for the chosenv,
with r r ` alongR4~v!!+We recall that, at this point, the function Iy is justsome
limit function—the fact that it is equal to the function defined by~39! is what needs
to be proved in order to establish~100!+

Step 1. The limit functionIy is finite everywhere in@0,`!.
Step 2. The functionIy is continuous, andIy~0! 5 0.
Step 3. If Ix~t ! . 0, then t is not a point of increase ofIy.
Step 4. The functionIy, defined above as a limit, satisfies (39).
Step 5. Convergence (100) holds.

In this proof, we will use the convention thatIy~02! 5 0, Kw~02! 5 Ix~02! 5
Kw~0!+ So, the caseIy~0! . 0 will be viewed as a discontinuity ofIy ~and Ix! at 0+Also,

we will use the notation

e~d, t ! 5{ sup
j1,j2[@t2d, t1d#ùR1

6 Kw~j1! 2 Kw~j2!6+

Proof of Step 1.Suppose the statement does not hold+ Denotet * 5 inf $t $
06 Iy~t ! 5`% + The inf is attained becauseIy is RCLL+

We choose a smalld such thatd [ ~0, t *! if t * . 0, and arbitraryd . 0 if
t * 5 0+ Let us fix e 5 e~4d, t *!+ Then we choose a smallDt [ ~0,d! and a largeC
such thatC . Ix~t * 2 Dt ! 1 e if t * . 0, andC . Ix~02! 1 e if t * 5 0+We define

It r 5 min$t $ ~t * 2 Dt ! ∨ 06u Ixr ~t ! $ C%

and choose a further subsequence of$r % such that

It r r t ' [ @t * 2 Dt, t * # +

~We must havet ' # t *, because thelimit function Iy~t !, and thereforeIx~t !, is infi-
nite for all t $ t *+! It is also easy to see~from ~77!! that

u Ixr ~t ! r C+

The conditions of Lemma 12 are satisfied, and so Iy is bounded in@t ', t ' 1 d# —a
contradiction, sincet ' 1 d . t *+ Step 1 has been proved+

Proof of Step 2.Suppose that the statement does not hold+ The contradiction is
obtained very similarly to the way it is done in the proof of Step 1+ Let t * be a
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discontinuity point~the caset * 5 0 is included! ~i+e+, Iy~t *2! , Iy~t *!!+ Since Ix 5
Kw 1 Iy and Kw is continuous, Ix~t *! 2 Ix~t *2! 5 Iy~t *! 2 Iy~t *2!+ There are two pos-

sible cases:

~a! Ix~t *2! . 0+
~b! Ix~t *2! 5 0+

Case (a)+ In this case, we must havet * . 0+ ~Indeed, by the definition of Kw and
our conventions, Ix~02! 5 Kw~0! 5 limr

u Ixr ~0!+ If Kw~0! . 0, then, by Lemma
12~c'!, Ix~0! 5 limr

u Ixr ~0!, which means thatIx, and thereforeIy, has no jump at
0+ If Kw~0! 5 0, then Ix~02! 5 0+! We can always fix a smalld . 0 and small
Dt [ ~0,d!, such thatt ' 5 t * 2 Dt is a point of continuity of Iy ~and Ix! and
e 5 e~4d, t *! , Ix~t '! 5 C+We have convergenceu Ixr ~t '! r C ~since Ix is con-
tinuous att '!, and by Lemma 12, Iy cannot increase in the interval~t ', t ' 1 d#
which containst*+ So, Ix cannot have a jump att*+

Case (b)+ In this case, let us fix a smallC . 0 and then a sufficiently small
d . 0 so that

C1 5 KC 1 e , Ix~t * !,

wheree 5 e~4d, t *! andK $ 1 is defined in Theorem 5~and used in Lemma
12!+ Then if t * . 0, we fix a smallDt such that

lim sup
rr`

sup
@t *2Dt, t * #

u Ixr ~j! , C+

If t * 5 0, we fix an arbitraryDt . 0+We define

It r 5 min$t $ ~t * 2 Dt ! ∨ 06u Ixr ~t ! $ C%,

and choose a further subsequence of$r % such that

It r r t ' [ @~t * 2 Dt ! ∨ 0, t * # +

The conditions of Lemma 12 are satisfied, and so Ix~t ! , C1 for all t [
@t ', t ' 1 d# , which contradicts the assumption of case~b!, sincet * belongs to
the latter interval+ Step 2 has been proved+

Proof of Step 3.Let t * $ 0 be such thatIx~t *! . 0+ If t * 5 0, then the fact that
Iy does not increase in a small interval@0,d# follows from Lemma 12~b'!+ If t * . 0,
then precisely the same construction as in the proof of Step 2~a! shows that Iy does
not increase in a small interval@t ', t ' 1 d# containingt * in its interior+ Step 3 has
been proved+

Proof of Step 4.Follows from the statements of Steps 2 and 3 and Proposition 1
~in the Appendix!+

Proof of Step 5.It suffices to show the following:
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For any t* $ 0 and anye . 0, there existsd . 0 such that

lim sup
rr`

sup
j[@t *2d, t *1d#ùR1

7 Iur ~j! 2 Iu~j!7 , e+ (101)

~The u+o+c+ convergence will then follow from the Heine–Borel lemma+!
If Ix~t *! 5 0, then~101! must hold because both functionsIu and Iur ~for larger !

are bounded by an arbitrarily small constant in a sufficiently small neighborhood of
t *+ If Ix~t *! . 0 andt *5 0, then~101! follows from Lemma 12~d'!+ If Ix~t *! . 0 and
t * . 0, then to obtain~101! we can repeat the construction of the proof of Step 2~a!
and then apply Lemma 12~d!+ Step 5 has been proved+

Thus, the proof of Property 2, and with it the proof of statement~i! of the
theorem, is complete+ n

10.2. Proof of Theorem 1(ii)

We use the same construction of the probability spaceV, the subsequenceR2, and
the probability 1 subsetV2, as specified earlier+ Consider an arbitrary disciplineG+
Sample paths for both the Gcµ andG disciplines are constructed on this common
probability space+ Forv [ V2, consider paths ofu IxG

r , IyG
r , and KwG

r , corresponding to
the disciplineG+ Since KwG

r is invariant with respect to the discipline, KwG
r 5 Kwr , and

therefore KwG
r r KwG 5 Kw u+o+c+

We claim that, along the subsequenceR2, for any t $ 0,

lim inf
rr`

inf
j[@0, t #

@u IxG
r ~j! 2 Ix~j!# $ 0, (102)

and therefore~40! holds+ To prove this, we first recall that Lemma 11 holds for any
disciplineG satisfying condition~d0!+

For any subsequenceR3~v! # R2~v!, we can choose a further subsequence
R4~v! # R3~v! such that IyG

r n IyG, where IyG is some nondecreasing nonnegative
RCLL function+ ~The case thatIyG~t ! takes value1` starting from some finite time
t* is possible+! Therefore, for any t $ 0 where IyG~{! is continuous, asr r ` along
R4~v!,

limu IxG
r ~t ! 5 Kw~t ! 1 IyG~t !+

Sinceu IxG
r ~t ! is nonnegative, we see that Kw 1 IyG is nonnegative at every point of

continuity of IyG, and therefore it is nonnegative for allt $ 0 ~by right-continuity!+
Then, by Proposition 1~ii ! ~in the Appendix!, IyG~t ! $ Iy~t ! for all t $ 0+ Since Iy is
continuous and nondecreasing andIyG and all IyG

r are nondecreasing, for any t $ 0
we obtain the uniform bound

lim inf
rr`

inf
j[@0, t #

@ IyG
r ~j! 2 Iy~j!# $ 0+
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By Lemma 11, we have an analogous bound for ˘yG
r as well:

lim inf
rr`

inf
j[@0, t #

@ y̆G
r ~j! 2 Iy~j!# $ 0,

which proves~102!, with r r` along subsequenceR4~v!, and therefore alongR2

as well ~since the subsequenceR3~v! can be arbitrary!+ The proof of~102! ~and
therefore~40!! is complete+

Since the function(j Cj ~uj ! is continuous in the vectoru, and the fixed point
Iu~t ! in ~41! minimizes the value of(j Cj ~uj ! over vectorsu with server workload

u Ix~t !, property~41! also holds+ Finally, the equality in~42! follows from the fact
that Iur r Iu u+o+c+, and the inequality follows from~41! and Fatou’s lemma+

The proof of Theorem 1 is now complete+

11. PROOF OF THEOREM 2

The proof of Theorem 2 is a relatively straightforward extension of that of Theo-
rem 1+ The extension is based on the fact that, given the assumptions of Theo-
rem 2~ii !, the processesq Iur and Iur are in fact “asymptotically close”~see~103!!+As
a result, the behavior of the system~in the diffusion limit! under MinDrift~Q! is the
“same” as that under MinDrift~U !+ In this section, we provide a detailed sketch of
such a proof extension+We believe the details can be easily filled in by a reader+

Construction of the probability space and subsequencesR1 and R2. For
the proof of Theorem 2, we assume that, for eachr, the service times of the “initial
customers” of typei at serverj, whose service has not yet started at initial time 0,
are given by an i+i+d+ sequenceSvijr ~n!, n 5 1,2, + + + + Thus, the sequence$ Svijr ~n!% is
separate from the sequence$vijr ~n!% , defining service times of customers arriving
after time 0, but, of course, Svijr ~1! has the same distribution asvijr ~1!+We denote by

S PVij
r ~n! 5{ (

m51

n

Svijr ~m!, n 5 0,1,2, + + + ,

the total amount of unfinished work “contained” in the the firstn ~in the order of
them being taken for service! initial type i customers at the serverj+ As with other
functions, we extend the domain ofS PVij

r ~{! to all real nonnegativet $ 0 and denote
its fluid-scaled version byS Svijr 5 G r S PVij

r+
The underlying probability space is the same as in the proof of Theorem 1,

except it is augmented by taking a direct product with the space on which the
sequences~on r ! of the processes$SVij

r % are defined+ The subsequenceR1 is
defined exactly the same way+ The property analogous to~78! holds for the pro-
cessesS Svijr , as well asSvijr + Then, the subsequenceR2 can be chosen in a way such
that, additionally, the properties analogous to~78! and~80! hold for the processes
S Svijr and S PVij

r , respectively+
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“Asymptotic closeness” ofq Iur and Iur + Using~78! and~80!, and their analogs
for S Svijr and S PVij

r , it is easy to demonstrate the following property, which holds for
any service discipline within the class specified in Theorem 2~ii !:

As rr` alongR2, with probability 1, for any T3 . 0 and anye . 0, we have

sup
0#t#T3

7q Iur ~t ! 2 Iur ~t !7

max~ Iur ~t !, e!
r 0+ (103)

This property is the key in showing that, in the heavy traffic limit, MinDrift ~Q!
induces the same system behavior as the MinDrift~U !+

Definition and properties of the FSPs under MinDrift ~Q). The processZr is
augmented by the following components:

Qr 5 ~Qij
r ~t !, t $ 0, i [ I, j [ J!,

S PV r 5 ~S PVij
r ~l !, l $ 0, i [ I, j [ J!,

qU r 5 ~qUj
r ~t !, t $ 0, j [ J!,

qXr 5 ~qXr ~t !, t $ 0!+

The fluid-scaled processzr and an FSPzare augmented by the corresponding com-
ponentsqr, S Sv r, qur, qxr , andq, S Sv, qu, qx, respectively+ The definition of the FSP is
the same, except it includes the additional conditions

qu~0! 5 u~0!

and an analog of~57! for Svijr + This augmented definition of an FSP easily yields the
following additional FSP property~which can be added into Lemma 5!:

qu~t ! 5 u~t !, ∀t $ 0, (104)

which, of course, also impliesqx~t ! 5 ux~t !, t $ 0+ Using ~104!, it can be easily
shown thatall of the FSP properties established for MinDrift~U ! hold for Min-
Drift ~Q! as well+

Proof of Theorem 2.Given property~103! and the fact that FSPs under Min-
Drift ~Q! satisfy all of the properties of FSPs under MinDrift~U ! ~plus ~104!!, the
rest of the proof is the same as that of Theorem 1+

12. PROOF OF THEOREM 4

Before proceeding with the proof, note that, in addition to~51!, we have another
pathwise relation~see~21! and~22!!:

q Ixr ~t ! # C0 Ixr ~t !, t $ 0+ (105)

Proof: The argument leading to Theorem 3 shows that, given the conditions of
Theorem 4, either of the convergences~53! or ~54! implies ~52!+ So, it will suffice
to prove that~52! implies ~55!+

ROUTING IN OUTPUT-QUEUED SYSTEMS 185

https://doi.org/10.1017/S0269964805050096 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964805050096


Assume~52!+ Suppose, for somet1 $ 0, property~55!, with t 5 t1, does not
hold+ This implies that, in addition to the pathwise inequalityIxr ~t1! # q Ixr ~t1! ~see
~51!!, we have, for some fixed constantc . 0,

lim inf
rr`

P$q Ixr ~t1! 2 Ixr ~t1! . c% . c+ (106)

Consider a subsequence of indicesr along which the distributions of bothIxr ~t1!
and q Ixr ~t1! ~weakly! converge to some distributions, which we denoteh and qh,
respectively+ Distributionh is necessarily equal to the distribution ofIx~t1!, andqh
~stochastically! dominatesh andis not equal toh, which follows from~106!+

Consider the processesIxr and q Ixr restarted at timet1+ Let us fix arbitraryt2,
t1 , t2 , `+ Then we have

lim inf
r

PH inf
@t1, t2#

Ixr ~t ! , eJ $ p1, ∀e . 0, (107)

where

p1 5 P$ Ix~t ! hits 0 within@t1, t2#%+

Since pathwise inequality~105! holds, we see that~107! holds for the processq Ixr

as well:

lim inf
r

PH inf
@t1, t2#

q Ixr ~t ! , eJ $ p1, ∀e . 0+ (108)

Consider now an RBMq Ix with the drift a and diffusion coefficients ~same as for
the RBM Ix!, defined within interval@t1, t2# , with the initial distributionqh at time
t1+ Sinceqh strictly dominatesh,

P$q Ix~t ! hits 0 within@t1, t2#% 5 p2 , p1+ (109)

Using Theorem 2~ii !, it is easy to see that the RBMq Ix is an asymptotic~stochastic!
lower bound of the sequence of processesq Ixr ~in the sense specified in Theo-
rem 2~ii !!+ From this fact we see that for anyd . 0, we can choose a sufficiently
smalle . 0, so that

lim inf
r

PH inf
@t1, t2#

q Ixr ~t ! . eJ $ ~12 p2! 2 d+ (110)

If we fix d [ ~0, p1 2 p2! and a correspondinge . 0 as above, we obtain the fol-
lowing from the estimates~110! and~108!:

lim inf
r FPH inf

@t1, t2#

q Ixr ~t ! . eJ 1 PH inf
@t1, t2#

q Ixr ~t ! , eJG $ p1 1 ~12 p2! 2 d . 1,

a contradiction, which completes the proof+ n
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13. STABILITY VERSUS HEAVY TRAFFIC WORKLOAD MINIMIZATION

Consider a special case of the MinDrift routing rule, with cost functionsCj ~z! 5
~ 1

2
_!z2 ~see Section 4+4!+ The corresponding MinDrift~Q! rule is as follows: route an

arriving type i customer to a server j such that

j [ arg min
j[J

qUj ~t !0µij + (111)

Our heavy traffic results apply to this rule+ ~The form of the rule does not change
with r, as explained in Section 8+!

Using the approach of@1,2,6,14,15# , it is not hard to show that under this rout-
ing rule ~plus arbitrary scheduling rules satisfying~d1! and~d2!!, both the queue
length process~~Qij ~t !, i [ I, j [ J!, t $ 0! and the unfinished work process~~Uj ~t !,
j [ J!, t $ 0! arestable, as long as the vector of mean ratesl is within the system
stability regionM0, defined in Section 5+ In fact, as explained in@14# , the analysis
of the FSPs~Section 9!, required to establish the heavy traffic results, is essentially
a “superset” of the analysis needed to prove stability+ ~We do not provide details of
the stability proof, as it is not the focus of this article+!

Thus, the above rule is able to both keep queues stable~as long asl [ M0!
and minimize system workload in the heavy traffic limit+ The Gcµ scheduling rule
for the IQ system possesses the same property~see@12# ! and so does the Max-
Weight scheduling rule for a different, but closely related, “generalized switch”
model~see@14# !+ All of these results may suggest the intuition that a dynamic ser-
vice discipline that keeps queues stable~as long asl [ M0!, “typically” will also
minimize system workload in heavy traffic+ Such a “conjecture” cannot be formally
correct, because it is not hard to devise somecontriveddisciplines, for which it
does not hold+ We note, however, that this conjecture does not hold even forvery
natural service disciplines, as the following example demonstrates+

Consider a service discipline for our OQ system, which strives to minimize the
drift of the cost~Lyapunov! function

(
ij

1

2
Qij

2~t !+

Then the discipline has the following form+ ~It is close to the class of network sched-
uling disciplines introduced in@15# +!

Routing rule (“Join the shortest queue of your type”): Route an arriving type i
customer to a server j such that

j [ arg min
j[J:µij .0

Qij ~t !+ (112)

Scheduling rule (“Gcµ within each server”): Server j picks a customer of type i
such that

i [ arg max
i[I

Qij ~t !µij + (113)
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This discipline ensures stability of the queues,whenl [ M0+ ~Again, the approach
and techniques of@1,2,6,14,15# can be applied+!

However, it is not hard to see that, under this discipline and under the condi-
tions of Theorem 4, condition~55! cannot possibly hold, as long asµij . 0 for at
least one nonbasic activity~ij !+We do not provide a formal proof here+ The key part
of a proof is showing the following very intuitive fact, which is implied by the
nature of the routing rule: FSPs under this discipline are such that if the initial
workload is nonzero, then after some finite time, all nonbasic queue lengths are
bounded away from zero+We also exploit the fact that since the limiting workload
process is lower bounded by an RBM, at any timet . 0 the limiting workload is
nonzero with nonzero probability+ Thus, by Theorem 4, none of the workload min-
imization properties~52!–~54!, can hold+
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APPENDIX

The One-Dimensional Skorohod Problem

The following proposition describes standard properties of solutions to the one-dimensional
Skorohod problem+ ~See, for example, @5# for the proof+ The proof is also contained in the
proof of Theorem 5+1 of @18# !+

Proposition 1: Let w5 ~w~t !, t $ 0! be a continuous function in D~ @0,`!,R! such that
w~0! $ 0. Then the following hold:

(i) There exists a unique pair~x, y! of functions in D~ @0,`!, OR!, such that the follow-
ing hold:
(a) x~t ! 5 w~t ! 1 y~t ! $ 0, t $ 0.
(b) y is nondecreasing and nonnegative.
(c) y~0! 5 0.
(d) For any t$ 0, if x~t ! . 0, then t is not a point of increase of y; that is, there

existsd . 0 such that y~j! is constant in@t 2 d, t 1 d# ù R1. This unique pair
is ~x°, y°!, where

y°~t ! 5{ 2F0 ∧ inf
0#u#t

w~u!G , x°~t ! 5 w~t ! 1 y°~t !, t $ 0+

(ii) For any pair ~x, y! of functions in D~ @0,`!, OR! satisfying (a) and (b), we have

y~t ! $ y°~t !, x~t ! $ x°~t !, t $ 0+
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