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We consider displacement flows in slightly diverging or converging plane channels.
The two fluids are miscible and buoyancy is significant. We assume that the channel
is oriented close to horizontal. Employing a classical lubrication approximation, we
simplify the governing equations to furnish a semi-analytical solution for the flux
functions. Then, we demonstrate how the non-uniformity of the displacement flow
geometry can affect the propagation of the interface between the heavy and light
fluids in time, for various parameters studied, e.g. the viscosity ratio, a buoyancy
number and rheological features. By setting the molecular diffusion effects to zero,
certain solution behaviours at longer times can be practically predicted through
the associated hyperbolic problem, using which it becomes possible to directly
compute the interfacial features of interest, e.g. leading and trailing front heights
and speeds. For a Newtonian displacement flow in a converging or uniform channel,
as the buoyancy number increases from zero, we are able to classify three flow
regimes based on the behaviour of the trailing front near the top of the channel:
a no-back-flow regime, a stationary interface flow regime, and a sustained back-flow
regime. For the case of a diverging channel flow, the sustained back-flow regime
is replaced by an eventually stationary interface flow regime. In addition, as the
displacement flow progresses, the leading front speed typically increases (decreases)
in a converging (diverging) channel, while the opposite is usually true for the front
height. For the no-back-flow regime (i.e. with small buoyancy), the solution of the
displacement flow at long times in all the geometries considered converges to a
similarity form, while no similarity form is found for the other flow regimes. As
the displacement flow develops, frontal diffusive effects are reduced (enhanced) in
a converging (diverging) channel and multiple fronts are progressively less (more)
present in a converging (diverging) channel. Regarding non-Newtonian effects, a
shear-thinning fluid displacing a Newtonian fluid exhibits an increasingly fast front
that has a short height in a converging channel. When a yield stress is present in the
displaced fluid, it is possible to find residual wall layers of displaced fluid that are
completely static. These layers disappear at a certain critical downstream distance in
a converging channel while they appear at a critical distance in a diverging channel.
Finally, the combination of strong buoyant and yield-stress effects can modify the
destiny of a second front that follows the leading front.
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1. Introduction

The displacement of one fluid by another in confined geometry is one of the
most common processes in nature. These interesting flows also find numerous
industrial applications in the petroleum industry (oil and gas exploration, extraction
and transportation; see e.g. Nelson & Guillot 2006), in manufacturing (coating flows,
co-extrusion; see e.g. Schweizer & Kistler 2012), in biomedical applications (digestion,
clearing of mucus plugs in alveoli; see e.g. Huh et al. 2007), and in food processing
(biofilm removal, cleaning of processing machinery; see e.g. Wiklund, Stading &
Trägårdh 2010). Displacement flows may emerge in uniform geometries but their
occurrence in geometries with at least a degree of non-uniformity is much more
prevalent (Al-Housseiny, Tsai & Stone 2012). Through developing a semi-analytical
model, our aim in this paper is to provide a basic understanding of the effects of the
simplest geometrical non-uniformity on laminar displacement flows.

In this work, we consider miscible displacement flows along a slightly non-uniform
two-dimensional plane channel of width D̂0 + tan αx̂ (i.e. ≈D̂0 + αx̂ considering
|α|� 1; cf. figure 1) in the large-Péclet-number limit, Pe= D̂0V̂0/D̂m� 1, where D̂m is
the molecular diffusivity and V̂0 is the mean displacement velocity. The consideration
of this limit implies that the two fluids do not have sufficient time to mix on the
time scales of interest. In this case, instead of a concentration diffusion-equation
approach, we rely on a kinematic equation as a reasonable approximation to model
the two fluids. This is in accordance with the previous studies finding that the
high-Péclet-number regime approaches the zero-surface-tension immiscible limit
(Pe→∞), provided that the flow remains stable (see e.g. Chen & Meiburg 1996;
Petitjeans & Maxworthy 1996; Rakotomalala, Salin & Watzky 1997; Yang & Yortsos
1997). In the limit of large-Pe displacement flows, we consider the flows with
the following characteristics: (1) buoyancy is a significant driving force affecting the
fluids’ motion; (2) the channel is slightly converging or diverging by simply assuming
that the channel upper wall is slightly inclined with respect to the lower wall; (3) a
viscous flow regime can be found for at least relatively small Reynolds numbers
(defined later); and (4) the lubrication/thin-film approximation is the principal tool
in this study and the scenarios that we consider involve fluids with Newtonian or
non-Newtonian Herschel–Bulkley rheology.

Miscible displacement flows of Newtonian fluids in uniform pipes and channels
have been studied in detail. For example, once viscous effects are negligible, Benjamin
(1968), Shin, Dalziel & Linden (2004) and Birman et al. (2007) studied displacement
flows that are characterized by a balance between buoyancy and internal stresses.
Taghavi et al. (2010, 2011, 2012c), Taghavi, Alba & Frigaard (2012a) and Alba,
Taghavi & Frigaard (2012) studied density-unstable and density-stable buoyant
miscible displacement flows along inclined pipes and channels and addressed the
effects of pipe/channel inclinations, viscosity and density ratios and the imposed
flow rate. Seon et al. (2004, 2005, 2006, 2007b) studied in depth the exchange
flow counterparts, i.e. with a zero imposed flow. Many authors have also considered
Newtonian displacement flows in capillary tubes (Chen & Meiburg 1996; Petitjeans &
Maxworthy 1996; Vanaparthya & Meiburg 2008) as well as in horizontal and vertical
Hele-Shaw (HS) geometries (see e.g. Talon, Goyal & Meiburg 2013; Heussler et al.
2014, respectively).

Displacement flows of non-Newtonian fluids have also received attention. However,
this has been mostly allied to studying the well-known viscous fingering (VF)
instability and pattern formations in HS geometries, for which of course significant
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developments date back to the classical stability analysis of Saffman & Taylor
(1958) considering the modification of the gap-averaged HS theory where there is a
wetting film of the displaced fluid at the walls. A whole diverse class of problems
has been studied in this domain for non-Newtonian fluids; see e.g. various features
studied in Coussot (1999), Fast et al. (2001), Nguyen et al. (2010) and Ebrahimi,
Taghavi & Sadeghy (2015), snowflake-like patterns in Buka, Palffy-Muhoray & Racz
(1987), and branched, fractal, or fracture-like structures in Nittmann, Daccord &
Stanley (1985), Lemaire et al. (1991) and Ignes-Mullol, Zhao & Maher (1995).
Shear-thinning properties may induce side branching or crack-like patterns (Kondic,
Shelley & Palffy-Muhoray 1998; Ben Amar & Poire 1999) and yield-stress features
strikingly modify the morphological patterns (Lindner, Coussot & Bonn 2000).

The literature on non-Newtonian displacement flows in geometries other than HS
is less developed. Bittleston, Ferguson & Frigaard (2002) derived a two-dimensional
model of laminar non-Newtonian displacement flows in an annulus, with applications
in the primary cementing of oil and gas wells, and they showed that a channel of
viscoplastic mud may be left behind in the narrow side of the annulus. Dimakopoulos
& Tsamopoulos (2003, 2007) and De Sousa et al. (2007) investigated gas–liquid
displacements in tubes, finding residual layers in steady-state displacements. Zhang
& Frigaard (2006) studied displacement flow for a range of simple non-Newtonian
fluids. Taghavi et al. (2009) studied heavy–light and light–heavy displacement of
viscoplastic fluids in a channel close to horizontal. They showed that a yield stress
in the displacing fluid enhances the displacement flow process, while a yield stress
in the displaced fluid leads to completely static residual wall layers. These interesting
layers have been first analysed in the displacement flow context by Allouche, Frigaard
& Sona (2000). By considering a symmetric displacement flow of two Bingham fluids
in a plane channel, they showed that, for these layers to exist, the yield stress of the
displaced fluid has to exceed that of the displacing fluid. Their work was extended
by Wielage-Burchard & Frigaard (2011), whose computational study provided further
insight into the effects of the dimensionless parameters (i.e. the Reynolds number,
Bingham number and viscosity ratio) and included the effects of flow rate oscillations.
Taghavi et al. (2012b) and Alba et al. (2013a) presented experimental results of a
viscoplastic fluid displacement flow in inclined pipes. They focused on the situations
where the yield stress is much larger than a typical viscous stress in the displacing
fluid and identified a ‘central-type’ and a ‘slump-type’ displacement regime for higher
density ratios.

Fluid flows along non-uniform channels have been studied over many years (e.g.
Hasegawa & Izuchi 1983; Nishimura et al. 1989), due to their industrial applications,
e.g. increasing heat transfer (Oviedo-Tolentino et al. 2008), peristaltic pumping (Burns
& Parkes 1967), etc. Displacements fluid flows in non-uniform channels have also
recently received attention. Recent studies (e.g. Al-Housseiny et al. 2012; Wilson
2012; Al-Housseiny & Stone 2013; Dias & Miranda 2013; Al-Housseiny 2014),
have considered immiscible Newtonian displacements in a tapered rectilinear HS by
introducing a small depth gradient, crafting a slightly converging or diverging HS and
showing that certain flow instabilities (e.g. VF) can be effectively stabilized through
a variable transverse curvature mechanism. Other relevant works (e.g. Pihler-Puzović
et al. 2012, 2013; Al-Housseiny, Christov & Stone 2013) have concentrated on
Newtonian displacements in a radial HS, finding that VF can be fascinatingly
suppressed when the upper boundary of the cell was replaced by an elastic membrane.
They have observed that the elastic wall creates a non-uniform displacement flow
geometry that strongly influences the finger shape and its development, replacing the
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characteristic dendritic patterns in a traditional HS with a large number of very short
fingers.

Relevant to our topic is a well-known argument, referred to as the ‘lubrication
paradox’, first made by Lipscomb & Denn (1984), who argued that the use of
classical lubrication scaling techniques for yield-stress fluids in spatially varying
geometries results in finding plug speed that slowly varies in the main flow direction.
This slow variation of the plug speed implies that plug regions predicted by classical
lubrication models are slowly deformable and therefore they are not ‘truly’ rigid.
This is in contrast to analytical and computational studies, which have confirmed the
existence of true unyielded plug regions (which are not deformable) in complex
geometries (Putz, Frigaard & Martinez 2009). Walton & Bittleston (1991) and
Putz et al. (2009) defined pseudo-plug regions while considering the problematic
deformable plugs for which the shear stress slightly exceeds the yield stress. The
observation of the pseudo-plugs has driven new discussions in the literature, e.g. on
the possibility of truly rigid plugs within the pseudo-plugs or the development of
pseudo-plugs to true plugs for sufficiently weak spatial variations (see Balmforth,
Frigaard & Ovarlez 2014, for a review). Frigaard & Ryan (2004) developed an
asymptotic solution for the Poiseuille flow of a Bingham fluid along a channel
of slowly varying width with a small-amplitude long-wavelength perturbation (a).
They showed that an asymptotic solution with an intact unyielded plug region can be
found for a< ac (critical) with ac∼O(δ), where δ is the aspect ratio. Lately, Roustaei
& Frigaard (2013) extended the work mentioned to larger amplitude perturbations.
Relevant to our work, we emphasize that there is no lubrication paradox. In fact,
identifying where there are true unyielded regions rather than pseudo-unyielded
regions for displacement of two viscoplastic fluids only requires a more elaborate
asymptotic analysis (Balmforth et al. 2014). In the current paper, our goal is not
to resolve these details by developing a higher-order lubrication model; instead, we
would like to provide a basic understanding of displacement flows in non-uniform
geometry based on the leading-order lubrication theory. Therefore, the predictions of
our model for the cases with a yield-stress rheology, focused on the appearance of
static residual wall layers (see § 5.2.1), may be qualitative.

As discussed, the literature addressing non-Newtonian displacement flows in
non-uniform geometries is not well developed, owing to the challenges in this
area. Firstly, these flows are very complex to study in generality because of the
number and the range of the dimensionless parameters involved. This has limited the
literature offering comprehensive pictures of various flow regimes and predictions of
the main flow features. In addition, despite some efforts (e.g. Hallez & Magnaudet
2008), the role of geometry in general and the role of geometrical non-uniformity
in particular are far from clearly understood. Almost certainly, some of the features
are a priori known, independent of the geometry (e.g. a more viscous displacing
fluid provides a more efficient removal of the displaced fluid). Thus, an important
question to address is when a geometrical non-uniformity becomes significant in
governing the flow motion. In the light of the challenges and the question mentioned,
some of the contributions of our model can be summarized as follows. (i) We take a
first natural step to systematically study and understand the effects of a geometrical
non-uniformity on displacement flows when various common features such as density
ratios, viscosity ratios and shear-thinning and yield-stress parameters are present.
(ii) Our semi-analytical model is useful in reducing the number of dimensionless
parameters, making the study of these flows possible via fast computations. (iii) Our
model helps to gain physical understanding of important laminar displacement flows
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by delivering regime classifications, interface behaviours, displacement front shapes,
front velocities, displacement efficiency, etc. versus the dimensionless parameters.
These results are valuable in providing guidance for future detailed experiments and
computational fluid dynamic (CFD) computations on the flow regimes of interest.
(iv) We focus mostly on the situations where a gentle convergence or divergence
of the channel may have a significant effect on flow behaviours. This approach
helps the identification of the mechanism by which we slowly deviate from the flow
regimes previously observed and well studied for uniform channel flows. (v) Recent
studies show the usefulness of small geometrical non-uniformities in controlling
important displacement flow patterns, e.g. in HS flows (see Al-Housseiny et al.
2012). In a related context, we would like to provide an understanding of the effects
of geometrical non-uniformities on displacement flows for which the fluids coexist
within the channel gap, while also adding the effects of buoyancy and non-Newtonian
rheology. For the latter, considerable deviation from Newtonian flow behaviours may
be expected. (vi) Simplified models such as ours are often developed to enable the
stability analyses, permitting the prediction of flow regime transitions (see e.g. Alba,
Taghavi & Frigaard (2013b), who have recently extended the thin-film approach
of Taghavi et al. (2009) into the weakly inertial range and performed a stability
analysis).

The outline of the paper is as follows. In § 2, the geometry of the problem, the
governing equations and the lubrication model are discussed. Section 3 presents the
numerical procedure implemented. In § 4, interfacial behaviours are discussed and
various flow regimes are classified for Newtonian displacement flows in a non-uniform
channel. In § 5, the effects of shear-thinning and yield-stress properties in combination
with the channel non-uniformity are discussed. Section 6 concludes the paper with a
brief discussion and summary.

2. Flow geometry and governing equations
We consider in this problem a two-dimensional region between two plates, which

are separated by distance D̂0 + tan αx̂ ≈ D̂0 + αx̂ (assuming |α| � 1). The lower
wall of the channel is oriented at an angle β ≈ π/2 with respect to the vertical.
We take into account two mechanically stable types of displacement flows: a heavy
fluid displacing a light fluid (1) in a slightly converging channel (for negative α) and
(2) in a slightly diverging channel (for positive α). The downstream region between
the two plates is initially filled with the lighter fluid (fluid L), which is displaced by
a heavier fluid (fluid H). The latter is injected at a distance far away from the initial
interface between the two fluids localized to x̂ = 0. The mean imposed velocity is
V̂0 at x̂= 0. Cartesian coordinates (x̂, ŷ) and the geometrical parameters are depicted
in figure 1. We assume that the fluids are of generalized Newtonian type, for which
the rheologies will be described later. The fluids studied are miscible but we consider
the large-Péclet-number limit, the consequence of which is that no significant mixing
occurs between the two fluids over the time scales of interest. We have made the
Navier–Stokes equations dimensionless using the channel height at x̂= 0 (i.e. D̂0) as
length scale and V̂0 as velocity scale. We have scaled time with D̂0/V̂0 and pressure
and stresses with µ̂HV̂0/D̂0. We can therefore write the model equations as

[1± At]Re[ut + u · ∇u] =−∇p+∇ · τ ± Re
Fr2

eg, (2.1)

∇ · u= 0. (2.2)
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FIGURE 1. (Colour online) Schematic of the displacement flow geometry considered. Here
α is negative so that the heavy fluid displaces the light one in a slightly converging
channel. For a positive value of α, the channel would be slightly diverging. Note that
|α| � 1.

In the equations above, u = (u, v) denotes the velocity, p the pressure and τ the
deviatoric stress. Also eg= (cosβ,−sinβ) is in directions (x, y) and the ± refers to the
heavy and light fluid layers, respectively. Note that we have subtracted the mean static
pressure gradient from the pressure before scaling. The interface height is represented
by y= h(x, t). There are four dimensionless parameters that appear in (2.1). These are
the inclination angle β, the Atwood number defined as At= (ρ̂H − ρ̂L)/(ρ̂H + ρ̂L), as
well as the Reynolds number, Re, and the densimetric Froude number, Fr, which are
defined as

Re≡ V̂0D̂0

ν̂
, Fr≡ V̂0√

AtĝD̂0

, (2.3a,b)

where ν̂ is defined using the mean density ρ̂ = (ρ̂H + ρ̂L)/2 and a viscosity scale
derived from the rheological properties of pure fluid H. We are interested in flows
with a small At, for which the flow is governed by the three dimensionless parameters
β, Re and Fr, a relevant dimensionless combination of which can be written as

χ = 2Re cos β
Fr2

, (2.4)

which represents the balance of viscous stresses (due to the imposed flow) and axial
buoyancy stresses (due to the density difference).

Before we proceed further, it should be clarified that we are not much interested
in miscible displacement flows in microfluidic devices where transverse dimensions
of flow geometry are extremely small, buoyant forces are negligible and dispersive
regimes may be prevalent. We are instead motivated by laboratory-scale laminar
displacement flow experiments and practical industrial-scale processes, which usually
involve aqueous liquids with small density differences (e.g. 10 %) in geometries
with a transverse dimension D̂0 ∼ 1 cm and mean velocities V̂0 . 10 cm s−1. These
flows essentially belong to the category of high-Pe flows (typically Pe > 106) and
they behave similarly to their immiscible analogues at infinite capillary number
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(i.e. vanishing surface tension). In the absence of instability, mixing and dispersion,
the displacement flow interface remains relatively sharp over experimental time scales.
For such flows, the Taylor-dispersion regime (Taylor 1953; Aris 1956) is strictly
found only for the dimensionless channel lengths �Pe. On the other hand, owing to
the small density differences considered, the effect of At itself on the displacement
flow is minor, although significant buoyancy effects (captured by Re/Fr2) still exist.
Consequently, our study of displacement flows of significant buoyancy effects at the
non-dispersive high-Pe limit has practical relevance.

As usual, no-slip conditions at walls are satisfied. The channel is assumed to be
sufficiently long in direction x. Thanks to our scaling, we can have in each cross-
section of the channel ∫ 1+αx

0
u dy= 1. (2.5)

For buoyancy-dominated flows, the heavier fluid is expected to propagate at the
bottom of the channel and the lighter fluid at the top. An interface, denoted by y=
h(x, t), separates the two pure fluids (see figure 1). We consider a two-layer flow so
that the interface is single-valued. We assume in a usual fashion that velocity and
stress are continuous across the interface, which is simply advected with the flow.
Thus, the interface satisfies a kinematic condition.

2.1. Constitutive laws for Herschel–Bulkley fluids
We consider our fluids to be generalized Newtonian fluids, governed by a Herschel–
Bulkley model, which comprises shear-thinning and yield-stress effects. This model
also includes the Bingham model, as well as the power-law and Newtonian models.
Constitutive laws for Herschel–Bulkley fluids are

γ̇ (u)= 0 ⇐⇒ τk(u)6 Bk, (2.6)

τk,ij(u)=
[
κkγ̇

nk−1(u)+ Bk

γ̇ (u)

]
γ̇ij(u) ⇐⇒ τk(u) > Bk, (2.7)

where the strain-rate tensor has components

γ̇ij(u)= ∂ui

∂xj
+ ∂uj

∂xi
, (2.8)

and the norms of these tensors, γ̇ (u) and τk(u), are defined by

γ̇ (u)=
[

1
2

2∑
i,j=1

[γ̇ij(u)]2
]1/2

, τk(u)=
[

1
2

2∑
i,j=1

[τk,ij(u)]2
]1/2

. (2.9a,b)

Here, subscripts k = H, L are used to distinguish the light and heavy fluids. Three
dimensional parameters describe Herschel–Bulkley fluids, i.e. a fluid consistency κ̂ , a
yield stress τ̂Y and a power-law index n. Owing to our scaling, the parameter κH = 1
and κL is the viscosity ratio m defined as

m≡ µ̂L

µ̂H
= κ̂L[V̂0/D̂0]nL−1

κ̂H[V̂0/D̂0]nH−1
, (2.10)
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where µ̂L is a viscosity scale for fluid L. Note that for two Newtonian fluids, we have
µ̂k = κ̂k. The Bingham numbers Bk are conventionally defined as

Bk ≡ τ̂k,Y

κ̂H[V̂0/D̂0]nH
. (2.11)

The scale for viscosity adopted in this paper is conventional and enables direct
comparisons between our results and those of previous studies on displacement flows
(e.g. Taghavi et al. 2009; Alba et al. 2013b). However, an alternative scaling approach
is presented in appendix A.

2.2. Lubrication model
We are interested in a regime where the interface between the two fluids is elongated
and where inertia is not dominant. The consideration of a near-horizontal angle has
been due to the fact that we have previously found nearly viscous regimes at these
angles in our experiment in uniform confined geometries (see e.g. Taghavi et al.
2010, 2011, 2012a,c). For example, the comparison between the lubrication model
and experiments showed that, even at relatively significant Reynolds numbers, the
displacement front velocities measured through experiments follow a viscous velocity
scale and they can be approximated using the lubrication approach. Since in this
paper we are dealing with a simple non-uniformity, i.e. a slightly converging or
diverging channel, we may also expect here to find nearly viscous regimes even at
relatively significant Re.

In order to scale our equations, we assume that the interface elongation is over a
dimensionless length scale, δ−1� 1, with a size of L̂/D̂0, where L̂ is the characteristic
spreading length. Aiming to derive a perturbation approximation, we rescale following
standard methods using δx = X, δt = T , δp = P and v = δV to obtain the following
reduced system of equations:

δ[1± At]Re
[
∂u
∂T
+ u

∂u
∂X
+ V

∂u
∂y

]
=−∂P

∂X
+ ∂

∂y
τXy ± χ2 +O(δ2),

δ3[1± At]Re
[
∂V
∂T
+ u

∂V
∂X
+ V

∂V
∂y

]
=−∂P

∂y
∓ δχ

2
tan β +O(δ2),

∂u
∂X
+ ∂V
∂y
= 0.


(2.12)

When δ→ 0 with Re fixed, we can find

0=−∂P
∂X
+ ∂

∂y
τk,Xy ± χ2 , (2.13)

0=−∂P
∂y
∓ δχ

2
tan β. (2.14)

We are interested in buoyancy-dominated displacement flows. We assume that
spreading of the interface is driven by buoyant stresses with size of (ρ̂H− ρ̂L)ĝ sinβ D̂0,
which act via the slope of the interface ∼D̂0/L̂. Considering that these stresses are
balanced by viscous stresses gives

δ−1 = L̂

D̂0
= (ρ̂H − ρ̂L)ĝ sin β D̂2

0

µ̂HV̂0
= χ tan β (2.15)

(see e.g. Alba et al. 2013b). Therefore, the last term in (2.14) simplifies to 1/2.
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Assuming δ → 0 is of course a mathematical limit to apply the lubrication
approximation at the leading order. In an experimental setting, δ needs to be small
(meaning that L̂/D̂0 � 1) so that the model results can be compared with those of
experiments. By rewriting the length scale versus the dimensionless parameters, we
arrive at δ−1= L̂/D̂0= (Pe sin β/ScFr2)� 1, where Sc= ν̂/D̂m is the Schmidt number,
leading to Pe sin β � ScFr2. For a typical set of experimental parameters we have
Pe≈ 106 and ScFr2 ≈ 2× 103, satisfying the relation mentioned.

Another interpretation of the buoyancy parameter χ is a measure for the relative
significance of the slope of the channel to that of the interface. For near-horizontal
angles, the slopes of the interface and the channel are of tantamount importance.
Therefore, χ may be regarded to be a parameter of order unity. For very large χ , the
model may be still valid; however, a wrong scaling has been chosen. The case of very
large χ can be interpreted as higher inclinations or smaller mean imposed velocities.
In both cases, V̂0 may not be the appropriate velocity scale. Instead, the appropriate
velocity scale would be a characteristic viscous velocity that is obtained by balancing
viscous and buoyant stresses. Therefore, the correct dimensionless parameter would
be reduced to something like cos β, as the channel slope has a dominant effect. In
this work, we assume χ > 0, which may be interpreted as the slope of the channel
being downhill in the direction of the flow.

Integrating (2.14) across both fluid layers delivers the pressure as

P(X, y, T)=


P0(X, T)+ X

χ

2
− y

2
, y ∈ [0, h],

P0(X, T)+ X
χ

2
+ (y− 2h)

2
, y ∈ [h, 1+ αX],

(2.16)

where P0(X, T) is defined by P0(X, T) = P(X, 0, T) − X(χ/2). On substituting into
(2.13), we arrive at

0=−∂P0

∂X
+ ∂

∂y
τH,Xy, y ∈ (0, h), (2.17)

0=−∂P0

∂X
+ ∂

∂y
τL,Xy − χ + ∂h

∂X
, y ∈ (h, 1+ αX). (2.18)

The leading-order strain-rate component in the lubrication approximation is γ̇Xy =
∂u/∂y. The leading-order shear stress, τk,Xy, is also defined in terms of γ̇Xy using the
following leading-order constitutive laws for pure fluid k:

∂u
∂y
= 0 ⇐⇒ |τk,Xy|6 Bk, (2.19)

τk,Xy =

κk

∣∣∣∣∂u
∂y

∣∣∣∣nk−1

+ Bk∣∣∣∣∂u
∂y

∣∣∣∣
 ∂u
∂y

⇐⇒ |τk,Xy|> Bk. (2.20)

Equations (2.17) and (2.18) define an elliptic problem for u(y), for given h and
∂h/∂X. For u(y), the boundary conditions are u = 0 at the lower wall (y = 0) and
at the upper wall (y = 1 + αX). At the interface between the two fluids (y = h) the
velocity is continuous. The stress continuity can also be represented by τH,Xy = τL,Xy.
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The conditions stated allow for the determination of u for a given ∂P0/∂X. Equation
(2.5) has to be satisfied as the additional constraint to determine the pressure gradient.
The interface is advected via a kinematic condition furnishing the dependence of the
velocity on space and time:

∂h
∂T
+ u

∂h
∂X
= V. (2.21)

Combining the incompressibility condition with the kinematic condition results in

∂h
∂T
+ ∂q
∂X
= 0, (2.22)

where q is defined through

q=
∫ h

0
u dy. (2.23)

In the rest of our paper we concentrate on providing the solutions to the system (2.22)
and (2.23).

Regarding boundary conditions, we assume that the channel is full of pure fluid L
and fluid H at its two ends. Concerning initial conditions, we must consider an initial
profile compatible with the far-field conditions, leading to

h(X, 0)→ 1+ αX −H(X)(1+ αX). (2.24)

Here H(X) is the usual Heaviside function, used to ensure that the initial variation in
h localized to X= 0 is sharp. Note that we always limit the length of the channel so
that the channel upper wall never contacts the lower one. This is intuitively required
to conform to the inlet and exit conditions. For a diverging channel (positive α) we
limit the length to X ∈ (−α−1,∞) and for a converging channel (negative α) to X ∈
(−∞,−α−1). In the following sections, for simplicity we may refer to X as distance,
providing a measure of a distance from X= 0, the spatial location of the initial sharp
variation in h.

2.3. Computing the flux function
We assume that, for physically sensible dimensionless parameters, there is always a
velocity solution, from which the flux can be computed. In this section we explain
how this can be done in practice. First, note that, for fixed h and ∂h/∂X, equations
(2.17) and (2.18) may be written as

∂

∂y
τH,Xy = ∂P0

∂X
, y ∈ (0, h), (2.25)

∂

∂y
τL,Xy = χ − hX + ∂P0

∂X
, y ∈ (h, 1+ αX). (2.26)

The equations above show that the shear stresses are linear in y, in each pure fluid
layer. For Newtonian displacement flow, the analytical solution may be easily found
as

q(h, χ, hX,m, αX)=

4∑
i=0

fi(αX)i

4∑
i=0

gi(αX)i
, (2.27)
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where the functions fi are

f0 = 1
3 h2 (9m− 4χh4 + h2mχ − 3h3mχ + 3h4mχ − h2mhX + 3h3mhX − 3h4mhX

+ h5mhX − hhX + 4h2hX + 4hXh4 − 3h2m+ h5χ + hχ − 4h2χ − h5mχ + 6χh3

− 6hXh3 + 3h2m2 − 6hm− h5hX), (2.28)
f1 = 1

3 h2 (12χh3 + 4hXh4 + 3h2mχ − 6h3mχ + 12h2hX − 3h4mhX − 6hm− 3h2mhX

+ 3h4mχ − 12h2χ + 4hχ − 12hXh3 − 4hhX + 6h3mhX + 18m− 4χh4), (2.29)
f2 = 1

3 h2 (3h3mhX − 12h2χ + 12h2hX + 9m+ 6hχ − 3h3mχ − 3h2mhX + 6χh3

+ 3h2mχ − 6hhX − 6hXh3), (2.30)
f3 = 1

3 h2(−h2mhX + h2mχ + 4h2hX − 4h2χ − 4hhX + 4hχ), (2.31)

f4 = 1
3 h2(hχ − hhX). (2.32)

Similarly, the functions gi are obtained as

g0 = 1− 4h+ h4 + h4m2 − 2h4m+ 4hm− 4h3 − 6h2m+ 4h3m+ 6h2, (2.33)
g1 = 4− 12h+ 4h3m+ 12hm− 12h2m+ 12h2 − 4h3, (2.34)
g2 = 12hm+ 6− 12h+ 6h2 − 6h2m, (2.35)
g3 = 4hm− 4h+ 4, (2.36)
g4 = 1. (2.37)

In the case of α= 0, we find q= f0/g0, which is the same as the flux function for a
uniform channel flow, for which we have successfully compared our result with that
given in Taghavi et al. (2009).

Figure 2 shows examples of contours of q versus h and X for various values of α
and m, for Newtonian displacements. Comparing figures 2(a–c), for a fixed interface
height in a uniform channel, we observe that the flux increases for larger m. On
the other hand, for a fixed flux, the interface height is larger for smaller m. This
implies that, even before performing numerical simulations, we may expect to find
larger interface heights for smaller m, meaning that displacing fluid is relatively more
successful in pushing the displaced fluid out of the channel geometry. The effect of
the viscosity ratio for a converging channel flow is similar (see figure 2d–f ), although
at larger X the interface height varies over such a narrow channel that the flux value
becomes very sensitive to the exact value of the interface height. For flows occurring
in a diverging channel (see figure 2g–i), the flux can become larger than 1 for
particular values of interface heights at certain distances (e.g. at X ' 20 in figure 2g).
This implies that, for these interface heights, there has to exist a local flow reversal
of the displaced fluid against the direction of imposed flow to compensate for the
large flux of the displacing fluid.

The analytical form of the Newtonian flux function may be used as a test solution
for the more general problem, to which we now turn. The wall shear stresses in fluids
H and L are denoted by τH and τL, respectively. These can be defined versus the
pressure gradient ∂P0/∂X and interfacial stress τi following

τH = τi − h
∂P0

∂X
, (2.38)

τL = τi + (1+ αX − h)
(
χ − hX + ∂P0

∂X

)
. (2.39)
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FIGURE 2. (Colour online) Examples of contours of q versus h and X for χ = 20 and
hX = 0, for Newtonian displacements. In each row, α is fixed: 0 (a–c), −0.01 (d–f ), 0.01
(g–i). In each column, m is fixed: 0.1 (a,d,g), 1 (b,e,h), 10 (c, f,i).

The shear stresses in terms of τi, τH and τL in each layer are

τH,Xy(y)= τH

(
1− y

h

)
+ τi

y
h
, (2.40)

τL,Xy(y)= τL
h− y

h− 1− αX
+ τi

1+ αX − y
1+ αX − h

. (2.41)

The velocity gradient ∂u/∂y can be defined at each point using the constitutive laws
governing the displacing and displaced fluids. It then becomes possible to integrate
∂u/∂y away from the walls at y= 0 and y= 1+ αX, where the no-slip conditions are
applied, towards the interface. For given τH , τL and τi, and the rheological parameters
of each fluid, two interfacial velocities can be found as

ui(h−)=
∫ h

0

u(y; τH, τi)

∂y
dy, (2.42)

ui(h+)=
∫ h

1+αX

u(y; τL, τi)

∂y
dy. (2.43)

These velocities are not necessarily the same for given wall stresses (τH, τL). However,
it is possible to simply iterate on τi to reach

1ui(τi)≡ ui(h−)− ui(h+)= 0. (2.44)
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FIGURE 3. (Colour online) Examples of contours of q versus h and X for m = 1, χ =
20 and hX = 0, for non-Newtonian displacements. In each row, α is fixed: −0.01 (a–d),
0.01 (e–h). In each column, [nH, nL, BH, BL] = [0.25, 1, 0, 0] (a,e), [1, 0.25, 0, 0] (b, f ),
[1, 1, 20, 0] (c,g), [1, 1, 0, 20] (d,h).

For the case of a uniform channel (i.e. α = 0), the detailed procedure is given in
appendix A of Taghavi et al. (2009) and we follow the same approach, albeit for
boundary conditions of a non-uniform channel. After some algebra, it is indeed
possible to provide lengthy analytical expressions for the two interfacial velocities
(versus τi, τH and τL) and, subsequently, for the flux functions in each fluid layer, for
a non-uniform channel flow. For brevity, we do not present these here.

Examples of contours of q versus h and X for non-Newtonian displacements
are shown in figure 3. It can be seen that the non-Newtonian rheology can
significantly affect the variation of the flux in both converging and diverging channels.
Regarding a converging channel flow (see figure 3a,b), the shape of the contours is
modified depending on which fluid (displacing or displaced) is shear-thinning. In the
diverging situation (see figure 3e, f ), the maximum flux is seen at large distances
at an intermediate interface height, the value of which depends on which fluid
is shear-thinning. Yield-stress effects can modify the flux contours. A particularly
interesting example is when a Newtonian fluid displaces a yield-stress fluid in a
diverging channel (i.e. figure 3h), where one observes a large contour region with the
flux almost equal to 1. The height at which the flux reaches unity seems to be only
slowly increasing over a large length of the diverging channel.

2.4. Remarks
Before proceeding, we comment on a few points for clarification and justification of
the direction taken for the rest of the paper.

(i) For a uniform channel boundary condition, Taghavi et al. (2009) showed that
there are no steady travelling wave solutions to (2.22). This fact has been
implicitly discussed in Seon et al. (2007a) for an exchange flow of Newtonian
fluids with identical viscosities. These arguments can be rigorously extended to
a slightly non-uniform channel flow. However, we proceed, without a proof, to
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consider that (2.22) has no steady travelling wave solutions with non-uniform
channel boundary conditions. This implies that, under the lubrication assumption,
for no combination of the parameters involved, a complete removal of the
displaced fluid by the displacing fluid can be achieved. As a consequence,
in general, numerical simulations of the interface evolution in time must be
conducted to survey as many parameters as possible, in order to identify which
displacement is ‘better’ or ‘worse’. The procedure for numerical simulations is
given in § 3.

(ii) One may be interested by the main features of displacement flows that can be
studied using a lubrication model, e.g. long- and short-time behaviours of the
interface (cf. Taghavi et al. 2009), stationary interface flows (cf. Taghavi et al.
2011), front height and speeds (cf. Seon et al. 2007a; Taghavi et al. 2012c) and
displacement efficiencies. One approach to study these features is directly solving
the kinematic equation for a given set of parameters to simulate the spatial and
temporal evolution of the interface. Nevertheless, as discussed in § 4.2, some of
the chief features of the interface may be approximated using the long-time limit
assumption and without fully solving the equations.

(iii) There are seven dimensionless parameters that govern the problem that we study,
i.e. χ , m, Bk, nk and αX. This relatively large number of parameters makes
it hard to deliver quantitative predictions for all the possible flow features (e.g.
those mentioned above). Therefore, in order to provide essential understanding of
displacement flows in non-uniform channels, we will consider the Newtonian and
non-Newtonian fluids separately, focusing on varying m, χ and the rheological
parameters, respectively.

(iv) This paper is focused on density-unstable displacements (i.e. a heavy fluid
displacing a light fluid). Although, with almost no effort, the model presented
in this paper can also be exploited to obtain the results for density-stable
displacements (i.e. a light fluid displacing a heavy fluid), this has not been done,
for the following reasons. First, instead of adding results, we would like to
keep the paper focused on the effects of the flow geometry. Second, while there
are good comparisons between density-unstable displacement experiments and
the associated lubrication model (see e.g. Taghavi et al. 2012c), comparisons
between the lubrication model and density-stable experiments are limited: unlike
the model, experiments show that the trailing front is not pinned to the wall and
it moves downstream (see e.g. Alba et al. 2012).

3. Numerical procedure
For numerically solving our equations, we suppose fully developed flows of pure

heavy and light fluids at the two ends of the channel. We have observed that the
interface propagation at T ∼O(1) is insensitive to reasonably sharp initial conditions,
taken as a linear function of X: typically h(X, T = 0) = −X + 0.5. The kinematic
condition (2.22) is discretized in conservative form, second-order in space and first-
order explicitly in time. It is integrated using a Van Leer flux limiter scheme (see e.g.
Yee, Warming & Harten 1985) for shock capturing.

To explore the performance of the numerical procedure, figure 4 examines
convergence with varying spatial mesh step dX = 0.02, 0.5, 0.1. The inclined thick
lines in figure 4 (and in the rest of the figures in this paper) indicate the position
of the inclined upper wall. The interface evolutions observed result in an advancing
displacement front, stretching out the upper part of the interface. We have selected
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FIGURE 4. Dependence of the interface evolution on mesh size in a converging channel:
(a) a Newtonian fluid displacing another Newtonian fluid; (b) a Newtonian fluid displacing
a yield-stress fluid with BL = 5 and nL = 1; (c) a Newtonian fluid displacing a
shear-thinning fluid with nL = 0.5. The other parameters used are α = −0.01, m = 1,
χ = −20 at T = 35, with mesh steps dX = 0.02 (dash-dotted line), dX = 0.05 (dashed
line) and dX = 0.1 (solid line). The time step is fixed to dT = 0.001 in all panels. The
insets are zoomed at the fronts.

one Newtonian and two non-Newtonian displacements. Figure 4 illustrates that the
interface propagation does not depend on the choice of the mesh step as long as dX
is selected to be sufficiently small. However, the mesh step has little effects on the
front of the interface; see the insets in figure 4. We have benchmarked our results
against those for uniform channel flows of Taghavi et al. (2009, 2010). Around 300
simulations have been performed, from which the main findings are presented in this
paper.

4. Newtonian fluids
We start by exploring Newtonian fluid displacements, mainly for three reasons.

First, some of the major qualitative behaviours are observed in Newtonian fluid
displacements. Second, having fewer dimensionless parameters greatly simplifies the
analysis of these fluids. Finally, numerical solution is markedly faster due to the
analytical expression obtained for the flux function.

In this work, for simplicity, we fix α to two small values, i.e. α = −0.01
(converging) and α = 0.01 (diverging), and compare the results against those of
uniform channel flows (α = 0).

4.1. Examples of typical qualitative behaviour
Examples of displacements of Newtonian fluids for a fixed χ and various values of m
are plotted in figure 5. The results are shown at χ = 0, which is a representative case
for either of the following situations: (i) the channel is strictly horizontal (β = π/2);
(ii) the channel is slightly inclined but χ is very small, meaning that viscous forces
are relatively very large. Our simulations (not shown here) confirm that the results for
χ = 0, 0.1 and 0.5 are in fact identical. The length of domain is the same in all of the
panels in figure 5, so that a direct visual comparison between the results in different
geometries becomes possible. In uniform channel displacement flows in figure 5(a–c),
the initially steep interface elongates as time grows. Our simulations demonstrate
that the interface between the two fluids develops into a slumping profile, for which
the solution generally has two segments. The first segment is an advancing leading
front towards the bottom of the channel that has a constant shape and that moves
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FIGURE 5. (Colour online) Examples of Newtonian displacements for χ = 0 and T =
0, 3, . . . , 30. In each row, α is fixed: 0 (a–c), −0.01 (d–f ), 0.01 (g–i). In each column,
m is fixed: 0.1 (a,d,g), 1 (b,e,h), 10 (c, f,i). The dashed lines illustrate the front height
predictions of (4.4) for long times.

at constant speed. At the top of the interface there is a second region, where the
interface is stretched. This has a trailing front towards the top of the channel, which
for the cases shown in figure 5 appears to be pinned to the upper wall. For larger m,
the height of the interface is relatively smaller and its front speed is larger; therefore,
the interface advances relatively farther over the same period of time. When the
channel is converging, figure 5(d–f ) show similarities but also differences compared
with the uniform channel flow results. First of all, the interface analogously has the
two segments as explained before. Nonetheless, as the interface evolves, its height
decreases while its front speed increases. The effect of m is expectedly the same
as observed for the uniform channel flow. Figure 5(g–i) suggest that the interfacial
behaviour for the diverging channel displacement flow is the opposite of that for
the converging one. The front height increases whereas the front speed decreases as
the interface evolves. The dashed lines in each panel of figure 5 depict the front
height predictions at long times using (4.4) (discussed in § 4.2), showing very good
agreement. Having computed front heights from (4.4), it becomes possible to predict
front speeds matching the simulation results as expected (although the results are not
shown).

Figure 5 presented the results for fixed χ = 0, which exemplifies cases of very
large viscous stresses compared with buoyant stresses in the direction of the flow,
e.g. large imposed flows and vanishingly small density differences. Figure 6 shows,
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FIGURE 6. (Colour online) Interface evolution in time, T = 0, 3, . . . , 27, 30, for m = 1.
In each row, α is fixed: 0 (a–c), −0.01 (d–f ), 0.01 (g–i). In each column, χ is fixed: 20
(a,d,g), 70 (b,e,h), 100 (c, f,i). The dashed lines illustrate the front height predictions of
(4.4) for long times. For panel ( f ) only, a very small artificial diffusion has been added
to stabilize the numerical method.

on the other hand, the effect of increasing χ (buoyancy) for displacement flows in
uniform and non-uniform channels. For relatively small χ , in figure 6(a,d,g) (for χ =
20), the existence of buoyancy modifies the interface shape. However, compared to
figure 5, the displacement patterns generally seem similar. As can be seen, for large
χ in figure 6(c, f,i), the buoyancy force is so strong that it creates a motion of the
displaced fluid against the flow direction. The trailing front is no longer pinned to
the upper wall and it starts to move backwards. It is interesting to note that the onset
of the appearance of the back-flow depends on the buoyancy parameter (χ ) but not
on the geometry parameter (α). For example, figure 6(b,e,h) display nearly stationary
interfaces for all values of α at χ = 70, which is approximately the critical χ for the
onset of the back-flow. In addition, figure 6(c, f,i) illustrate that there exists a back-flow
for all values of α at χ = 100. Despite these similarities, in § 4.4 we will discuss a
fundamental difference between displacements at large χ in converging and diverging
channels by demonstrating that, for any given parameter set, there is a distance at
which the back-flow stops only for the diverging channel flow (i.e. positive α).

The (red) dashed lines superimposed in figure 6 depict the front height predictions
from (4.4) for long times. The predictions for the uniform channel flows in figure 6(a–
c) are nearly perfect. The agreement of the predicted front heights and the simulations
of converging channel flows are reasonable, although a deviation is noticeable as time
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grows. However, the results for the diverging channel flows in figure 6(g–i) tell a
different story. While at χ = 20, the agreement is not bad, at χ = 70 and χ = 100,
the predictions and simulation results do not agree and follow opposite paths, e.g. the
predicted front heights increase with X whereas the simulation front heights decrease.
Therefore, owing to the crude and approximate nature of the approach given in § 4.2,
it cannot provide accurate predictions of the front height for diverging channel flows
at large χ . The decrease in the front heights observed in figure 6(h,i) is actually a
contour-intuitive feature, which we now attempt to explain. For large χ , the buoyancy
is stronger. As time grows, the leading front penetrates into the displaced fluid so that
it advances through a wider channel. Therefore, it locally experiences progressively
larger buoyancy forces (proportional to the thickness of the channel) at larger X, due
to which the front needs to move faster. The flux constraint instead restricts the fast
front to have a shorter height. In fact, it is noteworthy that, among all the results
presented in figure 6, the diverging channel flow front is the one that travels fastest
and farthest!

We conclude this section with a few comments. Firstly, regarding the interface,
one may anticipate to observe diffusive behaviours (concerning the interface slope)
at short times. However, our investigation both analytically and numerically shows
that the flow behaviour in a non-uniform channel at short times recovers that in
a uniform channel. Therefore, the rest of our study will be concentrated on the
longer-time behaviour of the interface. Secondly, long times in terms of our lubrication
model are when T > 1 but we also typically have T < 100, considering the typical
length of the channel. This long time is much smaller than the time scale over
which molecular diffusion dominates the flow. It can be shown that smearing of
the interface and effective diffusion across the channel are observed at tdiffusion ∼ Pe,
eventually approaching the dispersive limit (see also Chen & Meiburg 1996; Petitjeans
& Maxworthy 1996; Rakotomalala et al. 1997; Yang & Yortsos 1997). This time can
be rewritten as Tdiffusion∼Fr2Sc using our lubrication rescaling and assuming sin β ≈ 1.
For typical physical parameters, we find that Tdiffusion ∼ O(103–105), which is much
longer than the long times that we consider in the lubrication model results. Thirdly,
the brief overview of the typical, qualitative examples of displacement flows showed
that two main flow regimes may be distinguished thus far for both uniform and
non-uniform channel flows through our lubrication model: a no-back-flow regime
(for small values of χ ), discussed further in § 4.3, and a sustained back-flow regime
(for relatively large values of χ ), discussed in § 4.4. The buoyancy force is weak in
the no-back-flow regime while it is fairly strong in the sustained back-flow regime,
causing the displaced fluid to move backwards in the opposite direction of the mean
imposed flow. The transition between the two regimes, quantified by a critical value
of χ for a given set of parameters, is marked by a stationary interface flow regime
discussed further in § 4.4. Finally, the results for no-back-flow and sustained back-flow
regimes are fundamentally different. For example, for the no-back-flow regime, § 4.3
reveals that it is possible to find a similarity form to superimpose the interface
evolutions at very long times for both converging and diverging channel geometries,
i.e. for both negative and positive α. However, such a superposition of results cannot
be attained for the sustained back-flow regime in a non-uniform channel.

4.2. Behaviour of the interface at long times
Since we have directed our focus on the behaviour of the interface at long times,
it is natural to attempt to directly compute this long-time behaviour (using some
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assumptions), in place of computations. We have already observed that a typical
interface has two segments. Looking at the upper stretched region, we have seen that
at long times the slope of the interface, hX , is small, which we assume to be zero as
T � 1. Thus, the interface evolution at long times in the stretched region should be
governed approximately by the following hyperbolic (rather than parabolic) equation:

∂h
∂T
+ ∂ q̃(h, αX)

∂X
= 0, (4.1)

where q̃= qhX=0. The interface is elongated between the location of the leading front,
Xf , and that of the trailing front, Xt. The interface height between these two values
varies in the interval of h ∈ [0, 1+ αXt]. At long times, as the total area behind the
interface must conserve mass, we can write∫ 1+αXt

0

∂ q̃(h, αX)
∂h

dh= 1. (4.2)

Additionally, introducing Vf and hf , respectively, as the interface speed and the leading
front height at Xf , we can rewrite∫ 1+αXt

0

∂ q̃(h, αX)
∂h

dh= Vf hf +
∫ 1+αXt

hf

∂ q̃(h, αX)
∂h

dh= 1. (4.3)

Using a crude estimation for the leading front velocity as Vf ≈ (∂ q̃/∂h)(hf , αXf ), we
arrive at

q̃(hf , αXf )≈ hf
∂ q̃
∂h
(hf , αXf ). (4.4)

This approximate equation can now be used to estimate the front height hf , for
which the solution can be directly obtained through the use of the conventional equal
areas rule. When the approximate value of the front height is obtained, the front
velocity can be calculated straightforwardly. As discussed earlier, the dashed lines in
figures 5 and 6 show the results of the front height predictions at long times through
solving (4.4).

4.3. No-back-flow regime
The no-back-flow regime occurs at relatively smaller values of χ , i.e. for smaller
ratios of buoyant to viscous stresses. For small χ , we have observed that the interface
evolves quickly into a shape consisting of a front region and a stretched region. For
α = 0, the front region has a constant height and advances at steady speed in the
lower part of the channel. For α < 0 (α > 0) the front region shortens (expands)
and accelerates (decelerates) as the flow develops. Regarding the stretched region
for all values of α, the interface is continuously extended as time increases. Perhaps
interesting is that there exists a similarity form for the interface evolution for both
uniform and non-uniform channel flows, where the interfaces at long times can be
superimposed. The longer-time profiles of h/(1 + αX) can be conveniently plotted
against (X+αX2/2)/T , in which the interface profiles collapse onto a single similarity
profile as T � 1 (see figure 7). It is easy to obtain this similarity form. Postulating
that the varying front speed for a non-uniform channel flow (Vf ) may be related to
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FIGURE 7. Superposition of the interface heights in Newtonian displacements for χ = 0
and T = 3, . . . , 30 by plotting h/(1+ αX) as a function of (X+ αX2/2)/T for α=−0.01
(solid line), α = 0 (dashed line) and α = 0.01 (dash-dotted line): m= 0.1 (a), 1 (b) and
10 (c). Note that the same parameters as in figure 5 have been used. The insets are for
T = 0.3, 0.6, . . . , 3.

the steady front speed for a corresponding uniform channel flow (V∗f ) through the
relation (1 + αXf )Vf ≈ V∗f , we can replace Vf with dXf /dT and integrate to find the
similarity variable as (X + αX2/2)/T , where Xf has been substituted by X. On the
other hand, we postulate that the front height at long times in a non-uniform channel
flow may be found through the relation hf /(1+ αXf )≈ h∗f , where h∗f is the constant
interface height in a corresponding uniform channel flow. Thus, we can generalize
and obtain that the interface height must be scaled as h/(1 + αX) to furnish the
superposition.

At relatively long times, the following relation between the leading front speed and
the location of the leading front can be straightforwardly obtained:

Vf ≈ 1
T

(
Xf

(1+ αXf )
+ αXf

2

2(1+ αXf )

)
. (4.5)

For a converging channel flow, this relation shows, at small Xf , that the leading
front speed may be approximated by Xf /T , which is the same as the constant
leading front speed in a uniform channel. This may lead to the interpretation that
the displacement front does not feel the existence of the wall non-uniformity at short
distances. However, as the channel narrows down and the front advances, the front
speed increases significantly and essentially approaches infinity as Xf → −1/α. We
define a critical transition distance at which the front speed becomes twice as large
as the speed at short distances as a breakthrough distance where the effect of the
non-uniformity starts to become significantly felt by the leading front. This transition
distance can be found as Xα<0

trans ∼−2/3α. On the other hand, for a diverging channel
flow, the front speed varies between approximately Xf /T at short distances and Xf /2T
at very long distances (as Xf → ∞). In this case, we may define a breakthrough
transition distance as Xα>0

trans ∼ 1/α at which the front speed drops below the average
of the speeds at short and long distances. In fact, our simulations (not shown here)
confirm that the behaviour of the flow at the breakthrough distances starts to change.
Nevertheless, we acknowledge that no single measure or definition might be universal
for breakthrough distances of such displacement flows.

Let us take another look at figure 7 showing a nearly perfect superposition of
the interface heights versus the similarity variable for the same parameters as in
figure 5 for all the values of α studied. This finding has an important implication:
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for the no-back-flow regime it is possible to extract the behaviour of the interface in
a converging or diverging channel flow through the solution readily obtained for the
corresponding uniform channel flow. For example, the large amount of data existing
in the literature for displacement flows in uniform channels may be directly extended
to the non-uniform channel through scaling of the interface height/speed. Moreover,
defining a displacement efficiency parameter, η, as the area fraction behind the front
displaced at time T , we can find η ≈ 1/((1+ αXf )Vf ) ≈ 1/V∗f . This means that the
displacement efficiency is the same for uniform and non-uniform channel flows in
the no-back-flow regime. In summary, at time T we can directly obtain the following
relations between the frontal features in uniform and non-uniform channels:

Xf =
−1+√1+ 2αV∗f T

α
, (4.6)

Vf =
V∗f√

1+ 2αV∗f T
, (4.7)

hf = h∗f
√

1+ 2αV∗f T, (4.8)

η= η∗, (4.9)

where ∗ denotes the corresponding value in a uniform channel geometry.
There is an explanation as to why the similarity variables/reductions discussed

must exist. The solutions for uniform and non-uniform channel flows are similar
in the sense that, as the front advances, different heights of channel are locally
achieved and this comes back in some of the similarity solutions. Therefore, provided
that an appropriate scaling is adopted, the local base flow velocities that feed into
the lubrication model (and therefore the fluxes) will be locally similar. To find
the appropriate scaling, for a given αX, we can use the local channel thickness
(D̂0(1 + αX)) and the local mean flow velocity (V̂0/(1+ αX)) to rescale the various
dimensionless groups, leading to

h∗(αX)= h(1+ αX)−1, (4.10)
m∗(αX)=m(1+ αX)2(nH−nL), (4.11)
χ∗(αX)= χ(1+ αX)2nH+1, (4.12)
B∗k(αX)= Bk(1+ αX)2nH , (4.13)

Re∗(αX)= Re(1+ αX)2(nH−1), (4.14)
Fr∗(αX)= Fr(1+ αX)−3/2. (4.15)

Figure 9 shows some examples of local base flow velocity profiles and fluxes in a
converging channel at different values of X, confirming that they are similar when
the rescaled dimensionless groups (denoted by ∗ in the relations above) are used.

So far, we have been able to define/quantify the characteristics of the no-back-flow
regime through a similarity form and by looking at the cases where buoyancy is
weak (i.e. χ is small). However, our investigation shows that, when χ increases, a
deviation from the similarity form starts to appear, especially when χ exceeds a
critical value for which a sustained back-flow regime appears. For example, figure 8
plots the interfaces of figure 6 versus the similarity variable, where it is evident
that the interfaces do not collapse for large χ when α 6= 0. Therefore, for strongly
buoyant flows in non-uniform channels, it is not possible to extract the behaviour
of the interface (e.g. interfacial heights and speeds) directly from the corresponding
uniform channel flows. We will quantify the various features of these flows in § 4.4.
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FIGURE 8. The same as figure 6 but plotted versus the similarity variable.
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FIGURE 9. (Colour online) Local base flow velocity profiles and fluxes in a converging
channel (α =−0.01) at X = 0 (solid line), X = 20 (dashed line) and X = 50 (dash-dotted
line) using the rescaled dimensionless groups for χ∗ = 15, m∗ = 0.1. (a) Newtonian
displacement: local base flow velocity profiles at for h∗= 0.7. (b) Newtonian displacement:
local fluxes versus h∗ = h/(1 + αX). (c) Non-Newtonian displacement: local base flow
velocity profiles for h∗ = 0.7, B∗H = 2, B∗L = 5, nH = nL = 0.5. (d) Non-Newtonian
displacement: local fluxes versus h∗ = h/(1+ αX) with the parameters of panel (c). The
interface slope is zero in all the panels.

4.3.1. Single or multiple fronts
Regardless of the displacement flow geometry, we have observed that, for certain

parameter sets, the interface has multiple fronts. For a uniform channel Newtonian
flow, the competing displacement flow effects are buoyancy (quantified by χ ), driven
by the downhill slope that spreads the interface, and the viscosity ratio (quantified
by m) that sharpens the front. Multiple fronts appear when these physical effects are
opposing each another. This is also the case for a non-uniform channel flow, but
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FIGURE 10. (Colour online) Parameter regime in the (m, χ ) plane in which there exists
multiple fronts of displacements (marked by the shaded area). Elsewhere there is only a
single front. In each row, α is fixed: −0.01 (a–c), 0.01 (d–f ). In each column, Xf is fixed:
5 (a,d), 20 (b,e), 50 (c, f ). The insets show the interface at different Xf for the same χ
and m.

it may become more interesting as the leading front locally experiences decreasing
or increasing buoyancy forces as it advances in a converging or diverging channel,
respectively. Through repeated computation of q̃ for different m, χ , α and Xf , we can
approximate the regime of multiple fronts in the plane of (m, χ) for various α and
Xf , as seen in figure 10. To obtain this figure, (∂ q̃/∂h)(h, αX) (for X ∈ [Xt, Xf ]) has
been very crudely approximated by (∂ q̃/∂h)(h, αXf ), which is then simply inspected
for the existence of a second shock. Our simulations confirm that, using this crude
approach, we can approximate the boundary between single and multiple fronts. As
the leading front progresses forwards (i.e. Xf increases), the shaded region shrinks for
a converging channel flow, while it expands for a diverging one. This signifies that
it is more (less) likely to find multiple fronts in a diverging (converging) channel as
the leading front advances forwards. For example, the insets in figure 10(a–c) for a
converging channel flow show that one of the two fronts advancing at short distances
disappears, leaving the displacing fluid with a single leading front. Similarly, an
interface with a single leading front in a diverging channel flow may split to multiple
fronts (although the results are not shown).

4.3.2. Front shape
Regarding the front height, (4.4) is exactly the same equation that would be solved

for the hyperbolic conservation law to compute a kinematic shock. However, the front
in both uniform and non-uniform channels is not a shock, since diffusive effects of
the interface slope are present for h ∈ (0, 1 + αXt). Finding the approximate shape
of the front is straightforward. We should first find hf from (4.4) and then use Vf ≈
(∂q/∂h)(hf , αXf ). We then shift to a moving frame of reference, Z=X−Vf T , and try
to find a steadily travelling solution to (2.22). This relation that we are seeking needs
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FIGURE 11. Example front shapes in the moving frame of reference, computed from
(4.16) for χ = 0 and m= 1 at different distances, i.e. Xf = 0 (solid line), Xf = 20 (dashed
line) and Xf = 50 (dash-dotted line): α =−0.01 (a), 0 (b), 0.01 (c).

to satisfy

d
dZ
[hVf − q(h, χ, hZ,m, αXf )] = 0 H⇒ hVf − q(h, χ, hZ,m, αXf )= 0. (4.16)

The next step is to simply solve (4.16) numerically for h ∈ (0, hf ), to find the
shape of the front, examples of which are shown in figure 11. This figure shows
leading displacement front shapes for fixed m = 1 and χ = 0 for various distances
(Xf ) in both uniform and non-uniform channels. These results clearly show that the
frontal region is not a kinematic shock, as it is a region in which the diffusive effects
of the interface slope remain significant. Figure 11(a) shows that in a converging
channel the frontal diffusive region is shortened as the front advances. Figure 11(b)
shows that the frontal region in a uniform channel does not vary with distance as
expected. Figure 11(c) for a diverging channel flow illustrates that the transition from
the stretched interface region to the frontal region is smoothed out. The front is
more diffusive in a diverging channel, i.e. as the front advances the frontal region
is extended axially along the channel. Finally, it can be seen in figure 11 that the
stretched interface segment also becomes nearly horizontally when h approaches hf ,
which is compatible with the solution of the interface at long times being smooth at
the front height.

4.4. Flow regimes for large buoyancy
Regarding the large-scale features of displacement flows, it is critical to identify
whether or not a back-flow occurs. The displacement flows without a back-flow are
those where the displaced fluid does not travel upstream during the displacement
process. Therefore, in order to quantify this, it is important to study the features
of the trailing front. We have found that, as the relative buoyancy forces increase,
or equally the relative viscous forces decrease, the trailing front presents distinct
interesting patterns, which can be easily observed when increasing χ from zero. For
small χ , due to the weak buoyancy, the trailing front does not move upstream during
the entire displacement process. In this case, the trailing front seems to be pinned to
the upper wall of the uniform/non-uniform channel. We term this flow a no-back-flow
regime. As the leading front travels downstream, the thickness of the displacement
layer close to the pinned point progressively decreases. Therefore, experimentally, one
may expect this point to move at some later time due to molecular diffusion. This
effect is obviously absent from our model. For a critical larger value of χ , we find
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a marginal state where the trailing front is at the verge of moving upstream. In this
case, the displaced layer has a relatively large finite thickness identified by the trailing
front height at X ≈ 0. Meanwhile, the downstream leading front is advected along
the channel, leaving behind an apparently stationary residual layer of the displaced
layer. This phenomenon has been observed and studied before for uniform pipes
and channels, analytically, experimentally and computationally (see e.g. Taghavi et al.
2011). Curiously, the value of the critical χ =χc at which the stationary interface flow
regime occurs is independent of α. For even larger values of χ , the trailing front starts
to move backwards. For uniform and converging channels, we have observed that the
trailing front advances continuously upstream, demonstrating a sustained back-flow
regime. However, for any given large χ in a diverging channel, although the trailing
front initially starts to move upstream, it slows down and eventually stops at some
location. We have christened this flow an eventually stationary interface flow regime.
When the trailing front propagates backwards in a diverging channel, it is in fact
moving in a progressively narrower channel, for which the local buoyancy stresses
are progressively smaller. The back-flow is able to resist the imposed flow until
it reaches a critical upstream location where the viscous stresses perfectly balance
the local buoyancy stresses. Thus, the back-flow stops. After this critical distance is
reached, the flow behaviours become similar to that of a stationary interface flow
regime.

The stationary interface flow identifies the transition between the no-back-flow and
the sustained back-flow regimes for uniform and converging channels. It equally
identifies the transition between the no-back-flow and the eventually stationary
interface flow regimes for diverging channels. The existence of a displaced fluid
layer that is apparently stationary with a constant flow rate of displacing heavy fluid
implies that the interfacial speed is zero and the flux is unity at the interface. At
long times, the interface is expected to elongate so that the effect of the slope of
the interface in all regions may be negligible except local to the advancing frontal
regions. Therefore, to find the condition of the stationary interface, we can rely on
the approximate hyperbolic part of (2.22) by setting hX = 0. Taghavi et al. (2011,
2012a) and Moyers-Gonzalez et al. (2013) have quantified the conditions for the
occurrence of stationary flows for various parameters, e.g. the viscosity ratio, the
buoyancy number and even viscoplastic rheology, for uniform channels and pipes.
Our investigation shows that the conditions for the occurrence of stationary interface
flow regimes is not affected when the flow geometry becomes slightly non-uniform.

Let us consider the case of displacement flows in a diverging channel separately.
For a given viscosity ratio, m, and any given χ >χc, our simulations show that there
is a critical upstream distance where the back-flow stops moving, demonstrating an
eventually stationary interface flow regime. When the back-flow stops, the interface
is elongated, varying in the interval h ∈ [0, 1 + αXes], where the subscript es refers
to eventually stationary. The interface at Xes has a finite height denoted by hes.
Two conditions must be simultaneously met for the interface to eventually become
stationary, i.e. ∫ hes

0

∂ q̃(h, αX)
∂h

dh= q̃(hes, αXes)= 1, (4.17)

and the approximate relation for the interface speed at hes,

Ves ≈ ∂ q̃
∂h
(hes, αXes)= 0. (4.18)
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FIGURE 12. (a) Variation of χes versus Xes for large viscosity ratios (i.e. m = 10)
showing the numerical solution of (4.17) and (4.18) (solid line) and (4.20) (dashed line).
(b) Variation of χc versus Xes for small viscosity ratios (i.e. m = 0.1) showing the
numerical solution of (4.17) and (4.18) (solid line) and (4.21) (dashed line). (c) Variation
of χc versus Xes for large viscosity ratios (i.e. m= 1) using (4.19). Black circles show the
simulation results. The insets are explained in the text.

Equations (4.17) and (4.18) can be solved to obtain Xes for given m and χ . Although
in general we need to numerically find the conditions for the eventually stationary
interface flow regime, for m = 1 we can derive an analytical relationship between a
given χes and the critical upstream distance, Xes, where the back-flow stops:

χes = 12

√
2(1+√2)

(−2+√2)(1+ αXes)
3 , α > 0 and Xes < 0. (4.19)

After some algebra, for large viscosity ratios m� 1, we can also find

χes = −3

√
5+ 1

(−2+√5)(1+ αXes)
3(
√

5− 3)
3 − 9

1

(1+ αXes)
3(
√

5− 3)
4
m
+O(m−2),

α > 0 and Xes < 0. (4.20)

Finally, for small viscosity ratios m� 1, we arrive at

χes = 1
6
(362/3 + 102 3

√
6m2/3 + 63m1/3)

3
√

6
(αXes + 1)3

+O(m), α > 0 and Xes < 0. (4.21)

From the equations above, it is clear that χes→χc as Xes→ 0. Thus, we can simplify
and write

Xes ≈−
(

1−
(
χc

χes

)1/3
)
α−1, α > 0 and χes >χc, (4.22)

where χc is a constant that can be found as χc = 3.3 for m� 1, χc = 69.9 for m= 1,
and χc = 92.2 for m� 1. First of all, (4.22) quantifies that, for any large value of
χes, there exists a critical upstream distance where the interface eventually becomes
stationary. Second, this equation shows that, for very large values of χes, the stopping
distance of the trailing front varies like Xes ∼ α−1.

Figure 12 shows the variation of χes versus Xes for various viscosity ratios.
Figure 12(a) shows that the prediction of analytical equation (4.20) and the solution
of (4.17) and (4.18) are in perfect agreement with each other, and also with the
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simulation data (black circles) for large m. Figure 12(b) shows that the prediction
of analytical equation (4.21) provides a good approximation to the solution of (4.17)
and (4.18) matching with the simulation data for small m. Figure 12(c) shows that
(4.19) matches the simulation data for m = 1. The inset in figure 12(a) depicts the
trailing front evolution from the simulations, showing that the trailing front slows
down until it stops. The inset in figure 12(b) plots the variation of the trailing front
velocity (from the simulations) eventually reaching zero for the data point marked by
the arrow. Note that, to obtain the simulation data, for certain cases it takes a very
long time (e.g. T ∼ O(103)) for the back-flow to stop completely. Within this time,
for a miscible displacement, molecular diffusion may come into play and modify the
flow regime, the characterization of which is beyond the scope of this work.

5. Non-Newtonian fluids
Before we proceed to provide the results for non-Newtonian displacements, two

points are worth mentioning, as follows.

(i) Overall, the regime classifications discussed for Newtonian displacements are
also intuitively valid for non-Newtonian fluids. For small χ , we have the
no-back-flow regime; and for sufficiently large χ , we pass through the stationary
interface flow regime and enter the sustained back-flow regime (for uniform
and converging channels) or eventually stationary interface flow regime (for
diverging channels). Similar to Newtonian displacements, various flow features,
such as the condition for the existence of multiple fronts, the conditions for
the stationary and the eventually stationary interface flow regimes, front shapes,
front heights and speeds, etc., can be obtained for shear-thinning and yield-stress
fluid displacements. We will not present these results, since we will be focusing
on presenting other interesting effects relevant to non-Newtonian features.

(ii) The superposition of the interface heights for the no-back-flow regime can
be obtained for shear-thinning fluids (although the results are not shown), but
for yield-stress fluids it is not possible, even in the case of uniform channels.
Therefore, one has to perform simulations and cannot simply obtain the behaviour
of the interface at long times through a similarity form.

5.1. Shear-thinning effects
The Herschel–Bulkley model considers shear-thinning and yield-stress features of
non-Newtonian fluids. Here, we start by exploring only shear-thinning effects, Bk = 0.
Many features of the shear-thinning fluid displacement may be predictable, even for
non-uniform geometry. For example, for both uniform and non-uniform channels, we
observe that, as nL (nH) decreases, the front height increases (decreases) for fixed
nH (nH). This is similar to effects of the viscosity ratio parameter, as varying the
power-law indices makes one fluid progressively more or less viscous. To observe a
significant effect of the geometry on the flow, we concentrate on a converging channel
flow with no buoyancy. Figure 13 shows the interface evolution with time, showing a
shear-thinning fluid displacing a Newtonian fluid at χ = 0, m= 1 and three power-law
indices, i.e. nH = 0.75, 0.5, 0.25. Figure 13 is interesting: as the channel narrows
down, the leading front is naturally advancing faster and therefore it experiences
a larger shear rate. Consequently, the displacing fluid becomes progressively less
viscous so that the relative local ratio of the viscosity will drop further, causing the
leading front to slump more and move even faster. This effect becomes magnified
especially at longer distances: as can be seen in figure 13, the front is moving very
fast for the lowest value of nH at large distances.
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FIGURE 13. Examples showing a shear-thinning fluid displacing a Newtonian fluid for
χ = 0, m= 1 and T = 0, 3, . . . , 30 for α =−0.01: nH = 0.75 (a), 0.5 (b), 0.25 (c).

5.2. Yield-stress effects
In this section, we discuss the general effects of a yield stress present in the displaced
fluid on the displacement flow. Some of features might be common between uniform
and non-uniform channel flows. For example, the displacement efficiency is usually
enhanced through the effects that make the displacing fluid more viscous. For instance,
it may be expected that increasing BH improves the efficiency of the displacement,
thanks to the enhanced effective viscosity, and increasing BL makes the displacement
less efficient. Another physical phenomenon that is expected is that, for larger BL, it
is possible to have a static residual wall layer, in which fluid L occupying the upper
part of the channel is not displaced. Static residual wall layers have been observed and
studied in uniform geometries, for a static situation as well as a transient displacement
flow (see e.g. Allouche et al. 2000; Frigaard, Leimgruber & Scherzer 2003). We will
discuss static residual wall layer solutions further in § 5.2.1.

Some effects are definitely harder to predict. For example, varying m, χ and Bk
at the same time may result in behaviours that might not be expected beforehand.
Some other features, such as the existence of multiple fronts, the onset of the
back-flow regime and the critical stopping distance of the back-flow, may not be
known beforehand. Our model provides a tool to approximate these features for
two generalized Newtonian fluids; however, employing our model to derive all these
conditions is lengthy and beyond the scope of this paper. In addition, it should be
mentioned that, regardless of the flow geometry, there seems to be two critical χ for
a yield-stress fluid: first, for χ = χc the displaced fluid is about to move backwards;
second, for χ = χ ′c the static residual layers of the displaced fluid are about to be
displaced forwards (i.e. when the absolute value of the upper wall shear stress is
equal to the yield stress). It is interesting that for χ ′c < χ < χc the lighter displaced
fluid is not displaced. We leave the in-depth study of these critical χ for a future
work.

The most interesting case to look at would be perhaps the effect of non-uniform
geometry on the displacement of a viscoplastic fluid by a Newtonian fluid. We also
set nL= 1, for simplicity, so that the displaced fluid is a Bingham fluid. Owing to the
yield stress, these fluids are shear-thinning while no additional power-law behaviour
is imposed.

Figure 14 shows examples of Bingham displacements for a fixed viscosity ratio
(m = 1) and no buoyancy (χ = 0). In each row of figure 14 the yield stress of
the displaced fluid increases as BL = 5 (a,d,g), 20 (b,e,h) and 40 (c, f,i). The
heights of the maximal static residual wall layers, approximated by the theory of
§ 5.2.1, are superimposed as dash-dotted lines on all the plots, showing reasonable
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FIGURE 14. (Colour online) Interface evolution in time for T = 0, 3, . . . , 30 with m= 1,
χ = 0 and nL = 1. In each row, α is fixed: 0 (a–c), −0.01 (d–f ), 0.01 (g–i). In each
column, BL is fixed: 5 (a,d,g), 20 (b,e,h), 40 (c, f,i). The displacing fluid is Newtonian.

agreement. Figure 14(a–c) shows the results for a uniform channel flow. In (d–f ), for
a converging channel flow, we can see that at BL = 5 there is no static residual wall
layer (figure 14d). By increasing the yield stress to BL = 10 there exists a relatively
thick static residual wall layer, at small distances (figure 14e). We observe that the
predictions of the static residual wall layer thickness at smaller X perfectly matches
the simulation results. We also note that the height of the leading front decreases as
the displacement flow develops; however, the height of the channel decreases at a
faster rate, so that static residual wall layer thickness has to decrease. This decline
continues until a critical distance at which the static residual wall layer completely
disappears. We quantify this distance in § 5.2.1. Figure 14( f ) shows more or less
the same behaviour as observed in figure 14(e) but for an initially thicker static
residual wall layer. Figure 14(g–i) displays the results for a diverging channel flow.
Figure 14(g) is noteworthy in that there is initially no static residual wall layer but at a
certain distance, as the dash-dotted line shows, a progressively growing static residual
wall layer appears. In figure 14(h,i), we observe that, starting around T ∼O(1), there
exists a static residual wall layer, the thickness of which is progressively increasing.

Before we proceed further, we can draw qualitative comparisons between our
results and those available in the literature with regard to static layers in non-uniform
channels, e.g. with the results of Roustaei & Frigaard (2013) (see also Roustaei
& Frigaard 2015; Roustaei, Gosselin & Frigaard 2015), who studied the onset and
characteristics of static layers through extensive Stokes flow computations of a single
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FIGURE 15. (Colour online) Examples of Bingham fluids (BL = 20, nL = 1) displaced by
Newtonian fluids for χ = 200, m= 1 and T = 0, 3, . . . , 30; α= 0 (a), −0.01 (b), 0.01 (c).

Bingham fluid in non-uniform channels. (i) Our study and theirs both find that
the combination of rheology and channel non-uniformity causes the formation (or
destruction) of static layers (see figure 14f,e and further discussions in § 5.2.1). Also,
both works find that static layers intuitively appear first at the widest part of the
channel. (ii) Roustaei & Frigaard (2013) discovered that static layers are found at a
certain depth of the wall perturbation. Comparably, we find that static layers appear at
a certain length of a diverging channel, since, as the front advances, larger depths of
the channel are achieved (see e.g. figure 14f ). (iii) They showed that, when the static
layers are formed, their thickness grows as the depth of the wall perturbation increases.
We also find that, as X increases, the static layer thickness increases. (iv) Roustaei
& Frigaard (2013) found that the product h̄δ (with δ the aspect ratio and h̄ the
maximal depth of the wall perturbation) is the relevant geometrical parameter that
governs the onset of static layers. For example, for sufficiently large h̄δ (at fixed
Bingham number), there exist static layers. Considering the lubrication rescaling, our
comparable geometrical parameter is αX, which has the same effect as h̄δ. (v) Finally,
Roustaei & Frigaard (2013) provided relationships of h̄δ as a function of the Bingham
number to portray the existence of static layers. We can also quantify the existence
of these layers for our buoyant two-fluid system, examples of which are relations
(5.12) and (5.13), discussed in § 5.2.1.

One may wonder about the effect of combining a yield stress of the displaced fluid
with buoyancy. Our investigation has shown that, for small buoyant forces (i.e. small
χ ), the buoyancy does not modify the flow features. However, for a relatively large
χ , the flow can present stimulating patterns. For example, figure 15 shows examples
of Bingham displacements (BL = 20) for χ = 200 and m = 1, in the three channel
geometries. Figure 15(a) shows that there exists a static residual wall layer and there
are also two fronts travelling with different constant speeds. In figure 15(b), there
is initially a static residual wall layer at small distances but it eventually disappears.
There are also two fronts: the faster one initially seems to have more or less a constant
height and a constant speed; however, at some distances it suddenly starts to feel the
presence of the converging upper wall. At this point the front height suddenly drops
and the front speed increases significantly. The second front follows the first one with
progressively smaller speed; consequently, the second slows down and eventually stops
moving. Figure 15(c) shows that there exists a static residual wall layer in a diverging
channel and there are initially two fronts. The lower front (i.e. closer to the lower
wall) is initially moving faster. Later, the second front moves faster and merges with
the first one to form a single front. Figure 15 also reveals that the theory of § 5.2.1
generally overestimates the thickness of the static layer for large χ .
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5.2.1. Static residual wall layers
Static residual wall layers have been first analysed in the displacement flow context

by Allouche et al. (2000), who considered displacement flows in a vertical uniform
channel. In their setting, the interface slope does not enter the equations for the
interface propagation and the lubrication displacement model is hyperbolic. For
parameters that admit a static residual wall layer, Allouche et al. (2000) found that
the interface approaches the maximal static layer thickness at long times. In our
model, away from the moving fronts, the flow at long times is governed by the
hyperbolic model by abandoning the slope of the interface. Therefore, we expect
that the interface will also approach the maximal layer thickness at long times. Here,
we outline the calculation of the maximal layer thickness in non-uniform channel
geometry. We rely on a similar procedure to that presented in Allouche et al. (2000)
and Taghavi et al. (2009).

First, let us suppose that the light displaced fluid is static for y ∈ [h, 1+ αX], for
some h ∈ (0, 1+ αX]. The flow in the heavy fluid layer is thus governed by

∂

∂y
τH,Xy = ∂P0

∂X
, y ∈ (0, h), (5.1)

u(0)= u(h)= 0, (5.2)

and must also satisfy the flow-rate condition,∫ h

0
u(y) dy= 1. (5.3)

On integrating to find the velocity field and then integrating across the heavy fluid
layer, (5.3) becomes

1
2

(
B̃H

ζ

)1/nH

h2

(1− ζ )1+1/nH

1+ 1
nH

− (1− ζ )2+1/nH(
1+ 1

nH

)(
2+ 1

nH

)
= 1, (5.4)

where B̃H = BH/κH , and ζ is related to ∂P0/∂X by

∂P0

∂X
=−2BH

ζh
. (5.5)

It can be shown that (5.4) has a unique root that lies between 0 and 1, which can
be found numerically. Thus, we may write ζ = ζ (h, B̃H, nH). We suppose that χ is
sufficiently small that the stress within the light fluid layer at the upper wall has
the same sign as the interfacial stress. The wall shear stress at the upper wall is
−(1+ αX − 0.5h)(−∂P0/∂X)+ χ(1+ αX − h) and the initial assumption of a static
layer is only valid provided that∣∣∣∣(1+ αX − h

2

)(
−∂P0

∂X

)
− χ(1+ αX − h)

∣∣∣∣6 BL. (5.6)

We denote the minimal value of h for which (5.6) holds by hmin to define a maximal
static layer by

Ystatic = 1+ αX − hmin. (5.7)
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FIGURE 16. (Colour online) Maximal static residual wall layer thickness, Ystatic, with
contours spaced at intervals Ystatic = 0.05 for χ̃ = 1 and nH = 1. In each row, α is fixed:
−0.01 (a–c), 0.01 (d–f ). In each column, X is fixed: 10 (a,d), 50 (b,e), 90 (c, f ).

Substituting ∂P0/∂X from (5.5) into (5.6), we find

(2+ 2αX − hmin)B̃Y

ζ (hmin, B̃H, nH)hmin
− (1+ αX − hmin)χ̃ = 1. (5.8)

Therefore, the computation of the maximal residual wall layer yields a solution that
depends only on five parameters, i.e. nH , B̃H =BH/kH , B̃Y =BH/BL, χ̃ =χ/BL and αX.

The critical condition for which any static residual wall layer exists occurs when
hmin→ 1+ αX, and it is seen to be completely independent of the buoyancy ratio χ̃ .
This is given by

B̃Y

ζ (1+ αX, B̃H, nH)
= 1. (5.9)

The maximum static residual wall layer Ystatic varies with the parameters B̃Y and B̃H ,
as seen in figure 16 for converging and diverging channels at three distances. Using
the shaded area, we have marked on this figure the limit where static residual wall
layers cannot exist. Figure 16(a–c) shows that the region of no static residual wall
layer expands as X increases, i.e. when the displacing fluid progresses forwards. This
means that it is more likely for the static residual wall layers to disappear at large
distances in a converging channel. Figure 16(d–f ) shows that in a diverging channel
the region of no static residual wall layer slightly shrinks as X increases. This implies
that it is more likely for the static residual wall layers to appear at large distances in
a diverging channels.

Note that the limit BH→ 0 is indeterminate in the above calculation, and so must be
treated separately. The relation between flow rate and pressure drop is easily found for
any static h, which we insert into (5.6), furnishing the minimal h (or maximal static
layer):

2(1+ αX)− hmin

h2nH+1
min

(
4nH + 2

nH

)nH

− (1+ αX − hmin) ˜̃χ − B̃L = 0, (5.10)
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where ˜̃χ =χ/κH and ˜̃BL=BL/κH . The above equation contains interesting findings. For
example, one can postulate that, in a diverging channel at X→∞, hmin may reach a
constant value, which we can calculate as

hmin ≈
(

2
˜̃χ

(
4nH + 2

nH

)nH
)1/(2nH+1)

. (5.11)

Therefore, for any ˜̃χ , there exists an hmin, meaning that there exists a static residual
wall layer at least at large distances. Equation (5.10) also provides other results. For
example, it can be shown that, in a diverging channel (i.e. α > 0), even for small
values of ˜̃BL, there is a distance at which the static residual wall layer starts to appear:

Xappear
static =

1
α

(√
1
˜̃BL

(
4nH + 2

nH

)nH

− 1

)
, 0< ˜̃BL <

(
4nH + 2

nH

)nH

. (5.12)

On the other hand, in a converging channel (i.e. α < 0), even for large values of ˜̃BL,
there is a distance at which the static residual wall layer has to disappear:

Xdisappear
static = 1

α

(√
1
˜̃BL

(
4nH + 2

nH

)nH

− 1

)
,
˜̃BL >

(
4nH + 2

nH

)nH

. (5.13)

We note that Xdisappear
static → α−1 as ˜̃BL→∞, which is consistent with the assumptions of

our model.
These aforementioned findings are in agreement with the simulation results in

figure 14(e–g).

6. Discussion and conclusions
We have considered the viscous limit of a miscible, significantly buoyant

displacement flow in non-uniform channel geometry. We have used a lubrication/thin-
film approximation to study fluids of generalized Newtonian type. We can summarize
our findings as follows.

For small buoyancy, we find a no-back-flow regime. We have analysed principally
the long-time behaviours, where the displacement flow is characterized by two
intervals. In the first interval, the trailing front of the interface is pinned to the upper
wall as the interface gradually stretches. The lower part of the interface forms a
leading front that is sharp and that moves downstream. The leading front propagates
in time with a constant speed in uniform channels, an increasing speed in converging
channels, and a decreasing speed in diverging channels. Correspondingly, the height
of the interface at the front is constant for uniform channel flows, typically decreasing
for a converging channel flow, and usually increasing for a diverging channel flow. By
consideration of the associated hyperbolic problem, we are able to directly determine
the front heights and front velocities for this regime. Quite interesting is that the
solutions of the displacement flow at long times in all the geometries considered
converge to the similarity form (X + αX2/2)/T .

We have also quantified other characteristics of the no-back-flow regime. It is
possible for the displacing fluid to exhibit more than one leading front. We quantify
this feature through a regime map versus the buoyancy number and the viscosity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.232


Buoyant displacement flows in slightly non-uniform channels 909

ratio for converging and diverging channels. As the displacement flow develops, it is
progressively less (more) likely to have multiple fronts in a converging (diverging)
channel. Another feature is the presence of diffusive effects of the interface slope
at the front, which do not vary with distance for a uniform channel, decrease with
distance in a converging channel, and expand with distance in a diverging channel.

The appearance of back-flow is a characteristic of the flows with large buoyancy,
independent of the flow geometry. For these flows, we have classified the flows
using the stationary interface flow regime, the sustained back-flow regime (only
for uniform and converging channels), and the eventually stationary interface flow
regime (only for diverging channels). The latter is remarkable, since we find that
the displaced fluid moves backwards but stops at a critical distance with respect
to the initial interface. We have provided predictions of this critical distance by
consideration of the associated hyperbolic problem, agreeing well with the simulation
results. Nevertheless, the approximate equation from the associated hyperbolic problem
cannot provide accurate predictions of the leading front heights of these flows.

Regarding the shear-thinning features, the case of our interest was a shear-thinning
fluid displacing a Newtonian fluid in a converging channel. When the power-law index
is low, the displacing fluid undergoes a large shear rate at larger distances and it thins
relatively more rapidly, resulting in a significant increase in the front speed and a
significant decrease in the front height.

When a yield stress is present in the displaced fluid, it is possible for there to exist
completely static residual wall layers. Our theoretical analysis delivers the maximal
static residual wall layer thickness for displacement flows, which may be significantly
affected by the non-uniformity of the geometry. In particular, in a converging channel
and for a given parameter set, it is possible for an initially significantly thick static
residual wall layer to disappear at a critical distance. In diverging channels, we have
quantified that, for any non-zero value of the yield stress, the static residual wall layer
starts to appear at a critical distance. In addition, a combination of buoyancy and a
large yield stress in the displaced fluid may result in the appearance of a second front
moving downstream. This front may develop at a different speed from that of the first
leading front in a uniform channel, it may merge with the first leading front at some
distance in a diverging channel, or it may stop moving in a converging channel. We
recall that our analysis of the static residual wall layer must be seen in the light
of providing mainly qualitative understanding rather than definitive answers to the
question of where the boundaries of static and yielded regions are.

It is appropriate to discuss some of the important differences between the current
problem and the parallel-wall, channel problem studied in Taghavi et al. (2009).
First of all, while developing a classical lubrication model is the main approach for
the two works, the current study extends the previous one by including another key
dimensionless parameter that is geometrical (i.e. αX). The analysis is directed towards
understanding where this parameter (for small α) may significantly affect displacement
flows. For small buoyancy, a similarity solution form is expectedly generalized and
extended to include the geometrical parameter. In a sense, the displacement fronts
in these flows simply advance in a progressively narrower/wider channel with no
significant or unexpected effect of the geometrical parameter. In contrast, at large
buoyancy, while no similarity solution is found, the geometrical parameter becomes
more relevant and results in interesting findings (e.g. controlling the trailing front
position in a diverging channel). The reason is that, for these flows, the front locally
experiences different buoyant forces depending on the spatial location and this
modifies the interface behaviour globally. Lastly, the full parabolic problem must
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be computationally analysed to extract interface behaviours in non-parallel channels,
whereas the associated hyperbolic problem is sufficient to directly deliver long-time
flow features in parallel channels.

Finally, our model and its results can be validated with experiments and CFD
computations. Experiments will be straightforward, although aspect ratios and
buoyant effects should be large at the same time, which may impose restrictions
on experimental apparatus dimensions. Computations may exhibit more challenges
that must be overcome. Note that our model is focused on long-time behaviours
(implying large aspect ratios) and include complex fluid rheologies, increasing
the number of dimensionless parameters. While three-dimensional computations
of miscible displacement flows of Newtonian fluids are common on large parallel
machines (e.g. John et al. 2013; Hallez & Magnaudet 2009), existing computational
speeds restrict these studies to low/moderate aspect ratios and impose limits on the
ranges of dimensionless parameters. Despite the challenges, similar displacement flow
models (for uniform geometries) have been numerically and experimentally validated
(see e.g. Taghavi et al. 2012c).

There are possible interesting extensions of the current work, which we leave for
future consideration, e.g. including surface tension forces in the model and studying an
immiscible version of the displacement flow studied, or studying fluid flow instabilities
and other fluid phenomena, which may result in the breakdown of the underlying
model assumptions.
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Appendix A. Alternative scale for viscosity
Based on the scaling balanced between the two fluids, an alternative scale for

viscosity is presented here, which may facilitate the understanding of increasing/
decreasing viscosity in the displacing/displaced fluid. While a mean density has
already been defined (i.e. ρ̂ = (ρ̂H + ρ̂L)/2), we define a mean viscosity for which a
choice would be

µ̂=
√
µ̂Hµ̂L. (A 1)

Therefore, we can make the Navier–Stokes equations dimensionless, the same
as before, except that we should use µ̂V̂0/D̂0 to scale pressure and stresses. The
mean viscosity is then used to define the Reynolds number in (2.3). Using the
new alternative scaling, the ratios of viscosity in the heavy and light layers are
µ̂H/µ̂= 1/

√
m and µ̂L/µ̂=√m, respectively, where m is the viscosity ratio parameter

in the main text. Similarly, the new Bingham numbers are defined as

Bk = τ̂k,Y

√
κ̂H κ̂L

[
V̂0

D̂0

](nL+nH)/2
. (A 2)
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PIHLER-PUZOVIĆ, D., PÉRILLAT, R., RUSSELL, M., JUEL, A. & HEIL, M. 2013 Modelling the
suppression of viscous fingering in elastic-walled Hele-Shaw cells. J. Fluid Mech. 731,
162–183.

PUTZ, A., FRIGAARD, I. A. & MARTINEZ, D. M. 2009 On the lubrication paradox and the use of
regularisation methods for lubrication flows. J. Non-Newtonian Fluid Mech. 163 (1), 62–77.

RAKOTOMALALA, N., SALIN, D. & WATZKY, P. 1997 Miscible displacement between two parallel
plates: BGK lattice gas simulations. J. Fluid Mech. 338, 277–297.

ROUSTAEI, A. & FRIGAARD, I. A. 2013 The occurrence of fouling layers in the flow of a yield
stress fluid along a wavy-walled channel. J. Non-Newtonian Fluid Mech. 198, 109–124.

ROUSTAEI, A. & FRIGAARD, I. A. 2015 Residual drilling mud during conditioning of uneven
boreholes in primary cementing. Part 2: Steady laminar inertial flows. J. Non-Newtonian Fluid
Mech. 226, 1–15.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.232


Buoyant displacement flows in slightly non-uniform channels 913

ROUSTAEI, A., GOSSELIN, A. & FRIGAARD, I. A. 2015 Residual drilling mud during conditioning of
uneven boreholes in primary cementing. Part 1: Rheology and geometry effects in non-inertial
flows. J. Non-Newtonian Fluid Mech. 220, 87–98.

SAFFMAN, P. G. & TAYLOR, G. I. 1958 The penetration of a finger into a porous medium in a
Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. 245, 312–329.

SCHWEIZER, P. & KISTLER, S. F. 2012 Liquid Film Coating: Scientific Principles and their
Technological Implications. Springer.

SEON, T., HULIN, J.-P., SALIN, D., PERRIN, B. & HINCH, E. J. 2004 Buoyant mixing of miscible
fluids in tilted tubes. Phys. Fluids 16 (12), L103–L106.

SEON, T., HULIN, J.-P., SALIN, D., PERRIN, B. & HINCH, E. J. 2005 Buoyancy driven miscible
front dynamics in tilted tubes. Phys. Fluids 17 (3), 31702.

SEON, T., HULIN, J.-P., SALIN, D., PERRIN, B. & HINCH, E. J. 2006 Laser-induced fluorescence
measurements of buoyancy driven mixing in tilted tubes. Phys. Fluids 18, 041701.

SEON, T., ZNAIEN, J., SALIN, D., HULIN, J.-P., HINCH, E. J. & PERRIN, B. 2007a Front dynamics
and macroscopic diffusion in buoyant mixing in a tilted tube. Phys. Fluids 19, 125105.

SEON, T., ZNAIEN, J., SALIN, D., HULIN, J.-P., HINCH, E. J. & PERRIN, B. 2007b Transient
buoyancy-driven front dynamics in nearly horizontal tubes. Phys. Fluids 19 (12), 123603.

SHIN, J. O., DALZIEL, S. B. & LINDEN, P. F. 2004 Gravity currents produced by lock exchange.
J. Fluid Mech. 521, 1–34.

TAGHAVI, S. M., ALBA, K. & FRIGAARD, I. A. 2012a Buoyant miscible displacement flows at
moderate viscosity ratios and low Atwood numbers in near-horizontal ducts. Chem. Engng
Sci. 69, 404–418.

TAGHAVI, S. M., ALBA, K., MOYERS-GONZALEZ, M. & FRIGAARD, I. A. 2012b Incomplete
fluid–fluid displacement of yield stress fluids in near-horizontal pipes: experiments and theory.
J. Non-Newtonian Fluid Mech. 167–168, 59–74.

TAGHAVI, S. M., ALBA, K., SEON, T., WIELAGE-BURCHARD, K., MARTINEZ, D. M. & FRIGAARD,
I. A. 2012c Miscible displacement flows in near-horizontal ducts at low Atwood number.
J. Fluid Mech. 696, 175–214.

TAGHAVI, S. M., SEON, T., MARTINEZ, D. M. & FRIGAARD, I. A. 2009 Buoyancy-dominated
displacement flows in near-horizontal channels: the viscous limit. J. Fluid Mech. 639, 1–35.

TAGHAVI, S. M., SEON, T., MARTINEZ, D. M. & FRIGAARD, I. A. 2010 Influence of an imposed
flow on the stability of a gravity current in a near horizontal duct. Phys. Fluids 22, 031702.

TAGHAVI, S. M., SEON, T., WIELAGE-BURCHARD, K., MARTINEZ, D. M. & FRIGAARD, I. A.
2011 Stationary residual layers in buoyant Newtonian displacement flows. Phys. Fluids 23,
044105.

TALON, L., GOYAL, N. & MEIBURG, E. 2013 Variable density and viscosity, miscible displacements
in horizontal Hele-Shaw cells. Part 1. Linear stability analysis. J. Fluid Mech. 721, 268–294.

TAYLOR, G. I. 1953 Dispersion of soluble matter in a solvent flowing slowly through a tube. Proc.
R. Soc. Lond. A 219, 186–203.

VANAPARTHYA, S. H. & MEIBURG, E. 2008 Variable density and viscosity, miscible displacements
in capillary tubes. Eur. J. Mech. (B/Fluids) 27 (3), 268–289.

WALTON, I. C. & BITTLESTON, S. H. 1991 The axial flow of a Bingham plastic in a narrow
eccentric annulus. J. Fluid Mech. 222, 39–60.

WIELAGE-BURCHARD, K. & FRIGAARD, I. A. 2011 Static wall layers in plane channel displacement
flows. J. Non-Newtonian Fluid Mech. 166 (5), 245–261.

WIKLUND, J., STADING, M. & TRÄGÅRDH, C. 2010 Monitoring liquid displacement of model and
industrial fluids in pipes by in-line ultrasonic rheometry. J. Food Engng 99 (3), 330–337.

WILSON, M. 2012 Flow geometry controls viscous fingering. Phys. Today 65 (10), 15–16.
YANG, Z. & YORTSOS, Y. C. 1997 Asymptotic solutions of miscible displacements in geometries of

large aspect ratio. Phys. Fluids 9 (2), 286–298.
YEE, H. C., WARMING, R. F. & HARTEN, A. 1985 Implicit total variation diminishing (TVD)

schemes for steady-state calculations. J. Comput. Phys. 57, 327–360.
ZHANG, J. Y. & FRIGAARD, I. A. 2006 Dispersion effects in the miscible displacement of two

fluids in a duct of large aspect ratio. J. Fluid Mech. 549 (1), 225–251.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.232

	Buoyant displacement flows in slightly non-uniform channels
	Introduction
	Flow geometry and governing equations
	Constitutive laws for Herschel–Bulkley fluids
	Lubrication model
	Computing the flux function
	Remarks

	Numerical procedure
	Newtonian fluids
	Examples of typical qualitative behaviour
	Behaviour of the interface at long times
	No-back-flow regime
	Single or multiple fronts
	Front shape

	Flow regimes for large buoyancy

	Non-Newtonian fluids
	Shear-thinning effects
	Yield-stress effects
	Static residual wall layers


	Discussion and conclusions
	Acknowledgements
	Appendix A. Alternative scale for viscosity
	References




