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SUMMARY
Robotic hands use rolling contact to manipulate a grasped object to a desired location, even
when the finger and the palm linkage mechanisms lack degrees of freedom. This paper presents
a systematic approach to the forward and inverse kinematics of in-hand manipulation. The
moving frame method in differential geometry is integrated into the product of exponential
formula to establish a pure geometric framework of the kinematics of a robot hand. The forward
and inverse kinematics of a multifingered hand are obtained in terms of the joint rates and
contact trajectories. A two-fingered planar robot hand and a three-fingered spatial robot hand
are used to demonstrate the proposed approach. The proposed formulation amounts to solving a
univariate polynomial, providing an alternative to the existing ones that require numerical integration.

KEYWORDS: Contact; Rolling, Kinematics; Multifingered hands; Manipulation; Product of
exponential; Moving frame method.

1. Introduction
In-hand manipulation involves manipulating a grasped object by a robot hand by itself. Rolling
contact between the fingertips and the object can be exploited to enlarge the reachable workspace and
simplify control. Rolling contact imposes nonholonomic constraints, where the equations relating
two smooth bodies are expressed in terms of their velocities. The kinematics of rolling contact is
essential for the subsequent development of path planning and control.

An increasing number of robotic hands use tactile fingertips, which shifts the focus of robot hand
studies from grasping to in-hand manipulation.1 Re-grasp or finger gaiting, which entails the change
of the grasping configuration of the robot hands, is one of the techniques for in-hand manipulation.
Re-grasp consists of a sequence of pick-and-place operations, for example repositioning some fingers
while maintaining grasping,2 utilizing external factors such as gravity,3 or throwing and re-catching
the object,4 for the object to reach the desired configuration.5−9

A more natural strategy for in-hand manipulation involves rotation, which typifies the dexterity of
the human hand.10,11 Robot hands are developed to emulate the movements of the human hand, so
rolling contact for in-hand manipulation has received extensive studies.12−17 Kinematics of rolling
contact is a problem of nonholonomic constraint in terms of velocities, and thus, the formulations of
in-hand manipulation consider the shapes of the grasped object and the fingertips.18−26

In literature, kinematics of rolling contact can be divided into two broad categories: pure-rolling
motion and spin-rolling motion. The object under pure-rolling contact has two degrees of freedom
(DOFs) with its two instantaneous rotation axes parallel to the common tangent plane of two objects.
The object under spin-rolling contact has three DOFs with its instantaneous rotation axes in any
arbitrary directions. The spin-rolling contact is also called twist-rolling contact and/or simply rolling
contact.19,24,27
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Slide-twist-rolling may occur in in-hand manipulation. Theoretical works on modelling dexterous
manipulation with sliding fingers have been presented in ref. [28, 29]. However, tactile sensors that
can keep track the onset slip are still in the early stage of development.30,31 The current strategy is to
prevent sliding from happening.32

A useful kinematic formulation of multifingered hands should consider computational efficiency
and the ease with which it can be manipulated. Further, it should be flexible enough to admit a degree
of coordinate independence, i.e. a given problem should not be confined to any specific choice of
reference frames to carry out the kinematic analysis.

Motivated in part by these considerations, the product of exponential formula33−35 has been widely
used in analysing kinematics of multifingered hands.33,36−39 However, since kinematics of rolling
contact is traditionally derived in terms of the coordinates of surface patches, these coordinates
inevitably appear in the in the kinematic formulations. This to some extent compromises the initial
motivation.40

The moving frame method in differential geometry is a powerful geometric tool for exploring
the geometric properties and invariants of submanifolds.41,42 The Frenet–Serret frame provides a
complete kinematic description of curves and leads to a complete classification of smooth curves in
Euclidean space.43 The Darboux frame extends the Frenet–Serret frame from a curve to a surface in
Euclidean space.44 The moving frame method was later developed extensively by Cartan and others
in the study of submanifolds of more general homogeneous spaces.41

This work presents a systematic approach to the kinematics of in-hand manipulation with rolling
contact, where the Darboux frame, which moves along a locus on each of a fingertip surface and
an object surface,19,21,22 is applied to the forward and inverse kinematics of the moving object.
The integration of the product of exponential and the moving frame method yields an algebraic
formulation, providing an alternative to a differential equation approach.

The rest of the paper is organized as follows. Sections 2 and 3 derive the forward and inverse
kinematics of a multifingered robot hand, respectively. Section 4 shows the application of the proposed
approach to a two-fingered planar hand with planar end-effectors manipulating a disc. Section 5 shows
a three-fingered hand with ellipsoidal fingertips manipulating an ellipsoidal object. Section 6 discussed
the application of the proposed approach with the three-fingered MetaHand. Section 7 concludes this
work.

2. Forward Kinematics of In-Hand Manipulation with Rolling Contact
We made three assumptions when obtaining the twist of the object under the effects of joint motion
of fingers and rolling contact. The first assumption is the system consists of a multifingered hand and
an object, where the fingertips and the object maintain rolling contact. The second assumption is the
contact trajectories of the fingers are within the workspace of the robot hand. The third assumption
is the fingertip and the object surfaces have partial derivatives up to the second order, and continuous
Gauss curvatures exist.

When the fingertip surface maintains rolling contact with the object surface, the point of contact
moves across both surfaces, and the object undergoes a three-DOF spin-rolling motion with respect
to the fingertips. Each fingertip has to follow the object and maintain contact. The grasp constraints
analysis during manipulating an object has been presented before,45,46 hence the motion of a single
finger is examined in this work.

Let (P-ijk) represent a frame fixed at the palm, (T-i′j′k′) a tool frame fixed on the fingertip, and
(O-i′′j′′k′′) an object frame, S1 to Sn the screws related to the revolute joints, M the contact point, L

and L′ the contact trajectories, respectively, on the fingertip and on the object, e1 the common tangent
vector of L and L′, and e3 the common normal vector of the two surfaces, as in Fig. 1.

The tool frame (T-i′j′k′) on the fingertip with respect to the palm frame (P-ijk) can be obtained by
the product of exponential formula33 in terms of joint angles η1 to ηn as

gPT = eS′
1η1eS′

2η2 ...eS′
nηn gPT (0) (1)

where S′
i = AdeS1η1 eS2η2 ...eSi−1ηi−1 Si , and Si is the screw of the ith joint in the initial configuration.

The matrix gPT (0) is the initial location of the frame (T-i′j′k′). The twist of the frame (T-i′j′k′) with
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Fig. 1. The joint screws S1 to Sn, tool frame (T-i′j′k′), and the Darboux frame (M-e1e2e3) of a single finger.

respect to the frame (P-ijk) can be obtained as

SPT = ġPT g−1
PT = J (η) η̇ (2)

where J(η) = [ S′
1 S′

2 ... S′
n ] and η̇ = [ η̇1 η̇2 ... η̇n ]T

The homogeneous matrix of the frame (M-e1e2e3) with respect to the tool frame (T-i′j′k′) is

gT M =
[

E M
0 1

]
(3)

where E =[ eT
1 eT

2 eT
3 ] and the vector M is the position vector of the point M with respect to the

frame (T-i′j′k′). Please note that we followed the convention that the vectors e1 to e3 of the Darboux
frame are row vectors.41,42

The differentiation of the matrix Ewith respect to time t yields

dE
dt

= dE
ds

ds
dt

= σ�E (4)

where s is the arc length and σ = ds/dt is the rolling rate of the contact curve L, and

� =
⎡
⎣ 0 kg kn

−kg 0 τg

−kn −τg 0

⎤
⎦ (5)

The scalars kg, kn, and τg are the geodesic curvature, normal curvature, and geodesic torsion of
the contact curve L in the direction of e1, respectively. The differentiation M with respect to t yields

dM
dt

= dM
ds

ds

dt
= σ eT

1 (6)

It follows that the differentiation of gT M with respect to time t is

ġT M = σ

[
�E eT

1
0 0

]
(7)

The twist of the frame (M-e1e2e3) with respect to the frame (T-i′j′k′) can be obtained as

V T M = ġT M g−1
T M = σ

[
�E eT

1
0 0

] [
ET −ET M
0 1

]
= σ

[
� eT

1 − �M
0 0

]
(8)
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Fig. 2. The Douboux frames (M-eueve3), (M-eαeβ e3), and (M-e1e2e3).

It follows that the twist of the frame M with respect to the frame T is

ST M =
[

σ eT
1 + M × ωM

ωM

]
(9)

where

ωM = σ
(−τge1 + kne2 − kge3

)
(10)

Remark: The first three elements of ST M in Eq. (9) represent the linear velocity of the point M

with respect to the frame (T-i′j′k′). This velocity is the combined effects of a velocity σ eT
1 induced

by rolling and a velocity induced by rotation of the frame (M-e1e2e3).

The angular velocity of the object frame (O-i′′j′′k′′) with respect to the frame (M-e1e2e3) 19 is

ωO = ω1e1 + ω2e2 + ω3e3 (11)

where ω1 = −σ (τ ′
g − τg), ω2 = σ (k′

n − kn), ω3 = −σ (k′
g − kg), and τ ′

g , k′
n, k′

g are the geodesic
torsion, normal curvature, and geodesic curvature of the contact curve L’ on the object, respectively.
It follows that the twist of the object frame (O-i′′j′′k′′) with respect to the frame (M-e1e2e3) is

SMO =
[

O × ωO

ωO

]
(12)

where the vector O represents the vector MO with respect to the frame (M-e1e2e3).
It follows from Eqs. (2), (9), and (12) that the twist of the object frame (O-i′′j′′k′′) with respect to

the palm frame (P-ijk) can be obtained as

SPO = SPT + AdgPT
ST M + AdgPM

SMO (13)

This completes the forward kinematics of the robot hand under the effects of rolling contact and
the joint rates.

3. Inverse Kinematics of In-Hand Manipulation with Rolling Contact
In this section, we obtain the inverse kinematics of multifingered hands under the effects of joint
motion of fingers and rolling contact. Suppose that the surface of the fingertip is parameterized by
r(u, v) and that of the object r’(α, β). Let eu represent the unit vector tangent to u-curve of the
fingertip surface, eα the unit vector tangent to α-curve of the object surface, θ the angle between eu

and eα as in Fig. 2.
A general rigid object has six DOFs. Hence, the number of joints is at least three for a robotic

finger to manipulate the object in a three-dimensional space, since rolling contact provides the other
three terms to the system. In the authors’ previous work, ref. [7], these three terms were defined
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as the rolling rate σ , the angle ϕ between the rolling direction e1 and eα , and the complementary
spin speed ω′

3 . Hence the problem of inverse kinematics is to obtain the joint rates η̇1 to η̇n and the
aforementioned three terms from rolling contact, given the twist of the object Sobj.

Suppose the rolling direction is along the vector e1, which makes an angle ϕ with the vector eα , as
in Fig. 2. The vectors e1 ande2 can be expressed in the frame (M-eueve3) as

e1 = cos (θ + ϕ) eu + sin (θ + ϕ) ev

e2 = −sin (θ + ϕ) eu + cos (θ + ϕ) ev
(14)

The normal curvature kn, geodesic curvature kg , and the geodesic torsion τg in the direction of e1

can be obtained in terms of the curvatures of the coordinate curves eu and e21
v as

kn = knucos2 (θ + ϕ) + τgusin2 (θ + ϕ) + knvsin2 (θ + ϕ)
τg = τgucos2 (θ + ϕ) + 1

2 (knv − knu) sin2 (θ + ϕ)
kg = kgucos (θ + ϕ) + kgvsin (θ + ϕ) + ω′

3
σ

(15)

The coordinates of the contact point M and the curvatures of the coordinate u-, v-, α-, and β-curves
at the point M are known. It follows from Eq. (10) that

ωM = F1eu + F2ev + F3e3 (16)

where

F1 = − σ
2

(
(knu − knv) sin3 (θ + ϕ) + (knu + knv) sin (θ + ϕ) + 2τgucos (θ + ϕ)

)
F2 = σ

2

(
(knu − knv) cos3 (θ + ϕ) + (knu + knv) cos (θ + ϕ) + 2τgusin (θ + ϕ)

)
F3 = −σ

(
kgucos (θ + ϕ) + kgvsin (θ + ϕ)

) − ω′
3

Hence, the twist ST M of the frame (M-e1e2e3) with respect to the frame (T-i′j′k′) can be obtained
as

ST M =
[

M × ωM

ωM

]
(17)

The angular velocity of the object frame (O-i′′j′′k′′) with respect to the frame (M-e1e2e3) is

ωO = ω1eu + ω2ev + ω3e3 (18)

where the parameter ωi, i = 1, 2, 3 can be found in Appendix A. The twist SMO can be obtained as

SMO =
[

O × ωO

ωO

]
(19)

where O represents the position vector MO with respect to the frame (M-e1e2e3).
It follows from Eq. (13) that the inverse kinematics is now formulated as system of six nonlinear

algebraic equations:

J (η) η̇ + [
f1

(
σ, ϕ, ω′

3
) · · · f6

(
σ, ϕ, ω′

3
) ]T = Sobj (20)

where fi(σ, ϕ, ω′
3) are the elements yielded by the rolling contact. In these six scalar equations, the

number of unknowns is n+ 3, namely the joint rates η̇1 to η̇n, and the contact parameters σ, ϕ, ω′
3.

Hence, it takes at least three joints on each finger to manipulate an object in a three-dimensional
space, with the other three from rolling contact.

The joint rates η̇1 to η̇n can be eliminated by taking the reciprocal product on both sides of Eq.
(20) by matrix JR,47 which consists of the common reciprocal screws of those in J(η). A system of
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Fig. 3. A planar two-fingered robot hand manipulating a disc.

three nonlinear scalar equations containing the three variables σ, ϕ, ω′
3 can be obtained as

JR

[
f1

(
σ, ϕ, ω′

3
) · · · f6

(
σ, ϕ, ω′

3
) ]T = JR
Sobj (21)

where the symbol 
 represents reciprocal product.

4. In-Hand Manipulation of a Planar Two-Fingered Robotic Hand
It suffices to have two joints on each finger for a two-fingered robot to manipulate a disc of unit
radius. Set up a palm frame (P-ijk), a tool frame (T-i′j′k′), a Darboux frame (M-e1e2e3), and an object
frame (O-i′′j′′k′′), as in Fig. 3. Suppose that the origin of the palm frame (P-ijk) to the first joint of
each finger is d, and the length of each fingerer section is l. The contact locus on the end-effector of
the finger F1 is a straight line along the e1-axis, and the contact locus on the object (disc) is a circle
of radius R.

4.1. Forward kinematics
The frame (T-i′j′k′) on the fingertip with respect to the frame (P-ijk) can be obtained by the product
of exponentials formula in joint-space as

gPT = eS1η1eS2η2 gPT (0) =

⎡
⎢⎢⎢⎢⎣

cη12 −sη12 0 l (cη1 + cη12) − d

sη12 cη12 0 l (sη1 + sη12)

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (22)

where c represents cosine and s represents sine, η12 = η1 + η2, and η123 = η1 + η2 + η3. It follows
from Eq. (2) the twist SPT is

SPT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lη̇2sη1

dη̇1 + η̇2 (d − lsη1)

0

0

0

η̇12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)
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The homogeneous transformation matrix of the frame (M-e1e2e3) with respect to the frame (T-
i′j′k′) is

gT M =

⎡
⎢⎢⎢⎢⎣

0 0 1 Mx

1 0 0 My

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (24)

where Mx and My are the coordinates of the contact point M . The contact locus L on the fingertip is
a straight line, thus the geodesic curvature kg , normal curvature kn, and the geodesic torsion τg are 0.
The twist ST M can be obtained from Eq. (9) as

ST M = [
0 0 0 0 0 0

]T
(25)

On the contact locus L′, the geodesic curvature k′
g and the geodesic torsion τ ′

g are 0, and the normal
curvature k′

n is 1/R. It follows from Eq. (11) that the angular velocity of the disc frame (O-i′′j′′k′′)
with respect to the frame (M-e1e2e3) is

ωO = σ e2

R
(26)

The twist of the disc frame (O-i′′j′′k′′) with respect to the frame (M-e1e2e3) from Eq. (12) is as
follows:

SMO =
[

O × σ e2
R

σ e2
R

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−σ

0

0

0
σ
R

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

where the coordinates of the point O with respect to the frame (M-e1e2e3) are [0 0 R]T . It follows
from Eq. (13) the twist of the object frame (O-i′′j′′k′′) with respect to the palm frame (P-ijk) is

SPO = [
A1 A2 0 0 0 A3

]T
(28)

where

A1 = lη̇2sη1 + σ
R

(
Mycη12 + Mxsη12 + lsη12 + lsη1 + Rsη12

)
A2 = η̇1d + η̇2 (d − lcη1) + σ

R

(−d − Mxcη12 − Mysη12 + lcη12 + lcη1 − Rcη12
)

A3 = η̇12 + σ
R

This completes the forward kinematics.

4.2. Inverse kinematics
For inverse kinematics, the angular velocity is given at a certain configuration. Suppose the angular
velocity of the disc is ω when the centre O of the disc is at (Ox, Oy) at time t . The twist of the disc is

P SPO = [
Oyω, −Oxω 0 0 0 ω

]T
(29)

In this example, the contact locus on the end-effector is a straight line and the contact locus on the
object is the outer circle of the disc. Hence, the inverse problem is reduced to equating the elements
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Fig. 4. Singularities in an augmented joint space.

in Eq. (28) to the corresponding elements in Eq. (29). This generates a system of linear equations for
the inverse kinematics:

⎡
⎢⎣

0 lsη1
1
R

(
Mycη12 + Mxsη12 + lsη12 + lsη1 + Rsη12

)
d d − lcη1

1
R

(−d − Mxcη12 − Mysη12 + lcη12 + lcη1 − Rcη12
)

1 1 1
R

⎤
⎥⎦

⎡
⎢⎣

η̇1

η̇2

σ

⎤
⎥⎦ =

⎡
⎢⎣

Oyω

−Oxω

ω

⎤
⎥⎦ (30)

The variables η̇1, η̇2, σ can be obtained straightforwardly.

4.3. Singularities
Singularities occur when the determinate of the matrix in Eq. (30) is 0. The closed-form determinant
can be obtained as

det (A) = a

R

(
My cos η2 + Mx sin η2 + R sin η2 + l sin η2

)
(31)

Suppose l = 1, Mx = l/2 = 1/2, My in the range of [−1/2, 1/2], η2 in the range of [−π /2, 0]. In
this example, it can be found that the combinations of the joint angle η2 and My yield singularities at
certain configurations, as in Fig. 4.

To the best of the authors’ knowledge, it is the first time that the singularities caused by the
positions of the contact point are discovered.

5. In-Hand Manipulation of the Three-Fingered MetaHand
The MetaHand48 is used in the case study, where the palm is simplified to a rigid ring. Set up a palm
frame (P -ijk), a tool frame (T-i′j′k′), a Darboux frame (M-e1e2e3), and an object frame (O-i′′j′′k′′),
as in Fig. 5. Suppose that the origin of the palm frame P to the first joint of each finger is d, and the
length of each fingerer section is l.

The fingertip is a hemi-ellipsoid, which can be parameterized as

r1 (u, v) = [
b1 cos v a1 sin v cos u a1 sin v sin u

]T

u ∈ [0, 2π) , v ∈ [
0, π

2

) (32)
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Fig. 5. Three-fingered robot hand manipulating an ellipsoid object.

The object is an ellipsoid, which can be parameterized as

r2 (α, β) = [
b2cosβ a2sinβcosα a2 sin β sin α

]T

α ∈ [
0 2π

)
, β ∈ [0, π)

(33)

5.1. Forward kinematics
The frame (T-i′j′k′) on the fingertip with respect to the frame (P-ijk) can be obtained by the product
of exponentials formula in joint-space as

gPT = eS1η1eS2η2eS3η3 gPT (0) =

⎡
⎢⎢⎢⎢⎣

cη123 −sη123 0 l (cη1 + cη12 + cη123) + d

sη123 cη123 0 l (sη1 + sη12 + sη123)

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (34)

where c represents cosine and s represents sine, η12 = η1 + η2, and η123 = η1 + η2 + η3. It follows
from Eq. (2) the twist SPT is

SPT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l (η̇2sη1 + η̇3 (sη1 + sη12))

−dη̇1 − η̇2 (d + lcη1) − η̇3 (d + lcη1 + lcη12)

0

0

0

η̇123

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)

Suppose the contact locus L on the fingertip is a v-coordinate curve, which is circle, and the contact
locus L’ on the ellipsoidal object is an α-coordinate curve, which is an ellipse. Set up the Darboux
frame (M-e1e2e3) at the contact point M , where e1 is the common unit tangent vector along L and
L’, e3 is the common normal vector of the two surfaces, as in Fig. 6.

https://doi.org/10.1017/S026357471700008X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471700008X


2390 In-hand forward and inverse kinematics

Fig. 6. The contact locus L on the fingertip and L’ on the object.

The unit vectors e1, e2, and e3 with respect to the frame (T-i′j′k′) are, respectively,

e1 = 1
D

[−b1 sin v a1 cos u cos v a1 sin u cos v
]

e2 = [
0 sin u −cos u

]
e3 = 1

D

[−a1 cos v −b1 cos u sin v −b1 sin u sin v
] (36)

where D1 =
√

a2
1 cos2v + b2

1 sin2v . The normal curvature kn, geodesic torsion τg , and geodesic
curvature kg in the direction of e1 at the point M of the fingertip are, respectively,

kn = −a1b1

D3
1

, kg = 0, τg = 0 (37)

The angular velocity of the frame (M-e1e2e3) with respect to the frame (T-i′j′k′) is

ωM = σ
(−τge1 + kne2 − kge3

) = −σa1b1

D3
1

e2 (38)

It follows that the twist of the frame (M-e1e2e3) with respect to the frame (T-i′j′k′) is

ST M =
[

T M × ωM

ωM

]
= σ

D

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2
1b1 sin v

D2

−a1b
2
1 cos u cos v

−a1b
2
1 sin u cos v

0

−a1b1 sin u

a1b1 cos u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

where T M = [b1 cos v a1 sin v cos u a1 sin v sin u ]T .
The normal curvature k′

n , geodesic torsion τ ′
g , and geodesic curvature k′

g in the direction of e1 at
the point M of the object are, respectively,

k′
n = −a2b2

D2
3 , k′

g = 0, τ ′
g = 0 (40)
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where D2 =
√

a2
2 cos2β + b2

2 sin2β . It follows from Eq. (11) that the angular velocity of the object

frame (O-i′′j′′k′′) with respect to the frame (M-e1e2e3) is

ωO = σ
((

τ ′
g − τg

)
e1 + (

k′
n − kn

)
e2 + (

k′
g − kg

)
e3

) = σ

(
−a2b2

D3
2

+ a1b1

D3
1

)
e2 (41)

It follows the twist of the object frame (O-i′′j′′k′′) with respect to the frame (M-e1e2e3) is

SO =
[

MO × ωO

ωO

]
= σ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a2
2b2

(
a2b2

D3
2

+ a1b1

D3
1

)
0

0

0

−a2b2

D3
2

− a1b1

D3
1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

where MO = 1

D2
2

(sin β cos β(a2
2 − b2

2)e2 − a2b2e3) .

The twist of the object frame (O-i′′j′′k′′) with respect to the palm frame (P -ijk) can be obtained
straightforwardly from Eq. (13).

5.2. Inverse kinematics
A numerical example was used to illustrate the proposed approach, since inverse kinematics of
in-hand manipulation does not admit closed-form solutions in general cases.

Suppose the desired twist of the unit ball is Sobj = [2 −0.5 −1.5 1 1 1]T and the structural
parameters are: d = 1.5, l = 1, a = 0.2, b = 0.15. The robot hand is in the following configuration:

η1 = π

3
, η2 = π

3
, η3 = π

6

u0 = π

4
, v0 = 3π

4

α0 = π

4
, β0 = π

4

It follows from Eq. (2) that the homogeneous transformation matrix gPT is

gPT =

⎡
⎢⎢⎢⎢⎣

−0.5 −0.866 0 0.634

0.866 −0.5 0 2.232

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦
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And the finger joint Jacobian is

J (η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.866 1.732

−1.5 −2.0 −1.5

0 0 0

0 0 0

0 0 0

1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The coordinates of the contact point M with respect to the frame (T-i′j′k′) is M = [0.106, 0.10,
0.10]T , and the unit tangent vectors eu and ev of the coordinate curves and the normal vector e3 of
the fingertip ellipsoid at the contact point M are, respectively,

eu = [
0 −0.71 0.71

]T

ev = [−0.6 0.57 0.57
]T

e3 = [−0.8 −0.42 −0.42
]T

(43)

On the fingertip ellipsoid, the normal curvature, geodesic torsion, and geodesic curvature at the
point M in the direction of eu and ev can be obtained21 as

knu = −4.243, knv = −5.431, kgu = −5.657, kgv = 0, τgu = τgv = 0 (44)

The unit tangent vector eα and eβ of the unit ball at the contact point M are, respectively,

eα = [
0 −0.866 0.5

]T

eβ = [−0.756 0.327 0.567
]T

On the unit ball, the normal curvature, geodesic torsion, and geodesic curvature at the point M in
the direction of eα and eβ can be obtained21 as

knα = 1.455, knβ = 2.493, kgα = −1.26, kgβ = 0, τgα = τgβ = 0 (45)

The angle θ between eu and eα is 0.268 rad. The unit vector e1 along the desired rolling direction
can be obtained from Eq. (14) as

e1 =

⎡
⎢⎣

−0.6 sin (ϕ + 0.262)

−0.707 cos (ϕ + 0.262) + 0.566 sin (ϕ + 0.262)

0.707 cos (ϕ + 0.262) + 0.566 sin (ϕ + 0.262)

⎤
⎥⎦

T

,

e2 =

⎡
⎢⎣

−0.6 cos (ϕ + 0.262)

0.707 sin (ϕ + 0.262) + 0.566 cos (ϕ + 0.262)

−0.707 sin (ϕ + 0.262) + 0.566 cos (ϕ + 0.262)

⎤
⎥⎦

T (46)

The unit normal vector e3 has been obtained in Eq. (43). The homogeneous transformation matrix
from the frame (T-i′j′k′) to the frame (M-e1e2e3) is

gT M =
[

eT
1 eT

2 eT
3 M

0 0 0 1

]
(47)
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It follows from Eq. (16) the angular velocity of the frame (M-e1e2e3) in terms of the rolling rate
σ , rolling direction ϕ, and the compensatory spin rate ω′

3 is

ωM =

⎡
⎢⎣

σ
(−1.008 cos3ϕ + 1.008 cos2ϕ sin ϕ + 0.168 sin ϕ − 0.812 cos ϕ

) + 0.8ω′

σ
(
2.138 cos3ϕ + 0.238 cos2ϕ sin ϕ − 2.034 sin ϕ − 7.45 cos ϕ

) + 0.424ω′

σ
(−0.238 cos3ϕ − 2.138 cos2ϕ sin ϕ − 3.898 cos ϕ + 5.167 sin ϕ

) + 0.424ω′

⎤
⎥⎦ (48)

The twist ST M of the frame (M-e1e2e3) with respect to the frame (T-i′j′k′) can be obtained as

ST M =
[

M × ωM

ωM

]
(49)

where M = [0.106, 0.10, 0.10]T . It follows from Eq. (18) that the angular velocity of the object frame
(O-i′′j′′k′′) with respect to the frame (M-e1e2e3) is

ωO =

⎡
⎢⎣

−σ
(−1.68 cos3ϕ − 1.68 cos2ϕ sin ϕ + 7.501 sin ϕ + 2.888 cosϕ

)
σ

(−1.68 cos3ϕ + 1.68 cos2ϕ sin ϕ − 2.317 sin ϕ + 7.337 cos ϕ
)

σ (−1.464 sin ϕ + 4.204 cos ϕ) + ω′

⎤
⎥⎦ (50)

The coordinates of the centre O of the ellipsoid respect to the frame (M-e1e2e3) is

O =

⎡
⎢⎣

−0.282 sin (ϕ + 0.262)

0.1345 sin (ϕ + 0.262)

0.4611

⎤
⎥⎦ (51)

Hence, the twist SMO of the frame (O-i′′j′′k′′) with respect to the frame (M-e1e2e3) is

SMO =
[

O × ωO

ωO

]
(52)

It follows from Eq. (20) that the inverse kinematics in terms of the joint rates η̇1, η̇2, η̇3 and the
rolling rate, rolling direction, and the compensatory spin rate σ, ϕ, ω′

3 is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.866 1.732

−1.5 −2.0 −1.5

0 0 0

0 0 0

0 0 0

1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

η̇1

η̇2

η̇3

⎤
⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
(
σ, ϕ, ω′

3
)

f2
(
σ, ϕ, ω′

3
)

f3
(
σ, ϕ, ω′

3
)

f4
(
σ, ϕ, ω′

3
)

f5
(
σ, ϕ, ω′

3
)

f6
(
σ, ϕ, ω′

3
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= SObj (53)

where f1(σ, ϕ, ω′
3) to f6(σ, ϕ, ω′

3) can be found in Appendix B.
Let JR represent the reciprocal matrix of J, and taking the reciprocal product on the both sides of

Eq. (53) eliminates the joint rates η̇1, η̇2, η̇3 , yielding three nonlinear algebraic equations in terms of
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σ, ϕ, ω′
3 :

σ

⎛
⎜⎜⎝

−0.207 + 0.385 cos2ϕ − 0.196 cos3ϕ + 0.624 cosϕ + 2.196 sinϕ

+ 0.112 cos 3ϕ cosϕ + 0.227 cos 3ϕ sin ϕ + 0.227 sin 3ϕ cos ϕ − 0.112 sin 3ϕ sin ϕ

− 5.783 cos ϕ sin ϕ − 0.992 cos2 ϕ sin ϕ

⎞
⎟⎟⎠ = 1

σ

⎛
⎜⎜⎝

7.259 + 13.49 cos2ϕ − 2.356 cos3ϕ + 6.183 cos ϕ + 1.798 sinϕ

+ 0.550 cos 3ϕ cos ϕ − 0.225 cos 3ϕ sin ϕ − 0.225 sin 3ϕ cos ϕ − 0.550 sin 3ϕ sin ϕ

− 1.844 cos ϕ sin ϕ + 0.298 cos2ϕ sin ϕ

⎞
⎟⎟⎠ = 1

σ

⎛
⎜⎜⎜⎜⎜⎝

−0.683 + 13.11 cos2 ϕ + 1.943 cos3ϕ + 2.002 sin3ϕ − 0.419 cos2ϕ

+ 0.039 cos 4ϕ − 5.722 sin 2ϕ + 0.003 sin 4ϕ − 3.483 cos ϕ

+ 1.839 sin ϕ − 0.256 cos 3ϕ cos ϕ + 0.699 cos 3ϕ sin ϕ + 0.699 sin 3ϕ cos ϕ

+ 0.256 sin 3ϕ sin ϕ

⎞
⎟⎟⎟⎟⎟⎠

+ ω′
3
(
0.178 − 0.079 sin 2ϕ − 0.234 cos2ϕ

) = 1.5
(54)

The rolling rate σ can be eliminated from the first two equations in Eq. (54), yielding a trigonometric
equation containing only the rolling angle ϕ. The half-angle formulas sin ϕ = 2x/(1 + x2), cos ϕ =
(1 − x2)/(1 + x2), where x = tan(ϕ/2) , can be used to transform this trigonometric equation to a
polynomial of degree eight:

9.37x8+2.484x7 − 2.158x6 + 38.12x5 − 103.2x4

−28.18x3 − 33.03x2 − 6.052x + 2.572 = 0
(55)

Of the eight roots of this polynomial, the four real roots are

x1 = −2.193, x2=1.632, x3= − 0.353, x4=0.186 (56)

Substituting these roots into the first equation in Eq. (54) yields the four rolling rates σ as

σ1 = −0.210, σ2 = 0.256, σ3=0.488, σ4 = −1.484 (57)

Since the rolling rate cannot be negative, σ1 and σ4 are discarded. Substituting the two sets left
into the third equation in Eq. (54) yields the compensatory spin rate ω′

3 as

ω′
31 = −0.116, ω′

32 = 0.017 (58)

The two sets (ϕ= 2.042, σ = 0.256, ω′
3 = −0.1022), (ϕ= − 0.679, σ = 0.488, ω′

3 = 1.0591)
can be substituted into Eq. (53) to yield the joint rates as

(η1= 0.1604,η2= 1.1265,η3= − 2.6857)

(η1= 1.2230,η2= − 1.9444,η3= 0.8709)
(59)

This completes the inverse kinematics.

6. Results and Discussions
This paper does not discuss dynamic analysis of in-hand manipulation with rolling contact for the
following reasons. Robotic hands in general operate at low speeds and low accelerations, where
inertial forces are negligible.49 Hence, dynamic analysis of in-hand manipulation can be treated as
quasi-static analysis,50,51 where the wrenches generated by rolling contact, which is termed point
contact with friction, include one along the common normal vector and two parallel to the tangent
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Fig. 7. Piecewise smooth contact trajectories.

Fig. 8. The MetaHand rotating a tennis ball.

plane.33 An in-depth study of quasi-static analysis of multifingered hands has been extensively
investigated, for example ref. [33, 36, 50, 51] and is not repeated here.

Contact trajectories can be piecewise smooth curve with discontinuous tangent vectors, where L1

and L2 are the contact trajectories on the fingertip. At the point M , where the discontinuity occurs,
the tangent vector e1 of L1 and the tangent vector e′

1 of L2 make an angle ψ , as in Fig. 7.
Assume at time t = t0 the finger stops rolling the object along the trajectory L1 and starts to roll

the object along the L2. To apply the proposed approach, the moving frame from (M-e1e2e3) can be
replaced to (M-e′

1e′
2e3) and use the curvatures of L2 and L’2 after t = t0, where e3 remains unchanged

and e′
1 = cos ψ e1 + sin ψe2, e′

2 = −sinψe1 + cosψe2 .
The degree of final polynomials for more complex surfaces is still six. This can be seen from the

equations in Appendix A, where the parameters Ai, Bi , and Ci are constants. The first step to obtain
the rolling direction ϕ is to eliminate the rolling rate σ by dividing ω1 by ω1. This yields a nonlinear
trigonometric equation with highest terms, including cos3ϕ, sin3ϕ, cos2ϕ sin ϕ, and sin2ϕ cos ϕ.
Substituting the half-tangent-angle x = tanϕ

2 yields a polynomial of degree six. This is valid for any
complex surface.

The proposed approach has been implemented on the MetaHand,48 which has an articulated palm
with three identical fingers attached on it. The palm is formed by a spherical five-bar linkage that can
alter its geometry to relocate the fingers to implement in-hand manipulation. Product-of-exponential-
based kinematics analysis of the MetaHand and its corresponding grasp constraints analysis during
manipulating an object were presented in the literature.45 A preliminary experiment to verify the
rolling contact model based on the Metahand is shown in Fig. 8. More specifically, the three-fingered
hand first executes a tripod grasp to catch a tennis ball with its fingertips. Then, the palm is actuated to
change its configuration to reposition and reorientate the fingers in such a way that the rolling between
the object and fingertips occurs during maintaining the grasp, triggering the in-hand manipulation as
a consequence. Hence, the ball changes its location by the three fingers and an articulated palm using
rolling contact.

7. Conclusions
We integrated the product of exponential formula and the moving frame method to yield a compact
form for the forward kinematics; this laid the foundation of the inverse kinematics, which was
formulated as a system of nonlinear algebraic equations in terms of the joint rates of the finger linkage
mechanism and the parameters of the contact trajectories. This approach provides an alternative to the
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existing one that is in the form of a system of nonlinear differential equations. One advantage of the
proposed approach is that the nonlinear equations can solved by being transformed into a polynomial
that admits reliable and fast root approximation, as demonstrated by a three-fingered robot hand with
hemi-ellipsoid fingertips manipulating an ellipsoid object.

Appendix A

ω1 = σ

(
A1 cos3ϕ + A2 sin3ϕ + A3 cos2ϕ sin ϕ +
A4 cos ϕ sin2ϕ + A5 cos ϕ + A6 sin ϕ

)

ω2 = σ

(
B1 cos3ϕ + B2sin3ϕ + B3 cos2ϕ sin ϕ +
B4 cosϕ sin2ϕ + B5 cos ϕ + B6 sin ϕ

)

ω3 = σ (C1 cos ϕ + C2 sin ϕ) + ω′
3

where

A1 = −knα sin θ + (−2knv + 3knu) cos 2θ sin θ + 4τgu cos 3θ

− (
2τgu cos 2θ + 2τgα

)
cos θ + knv sin 3θ

A2 = −2τgu sin θ cos 2θ + (−knβ + knu sin 2θ
)

cos θ + knv cos 3θ

A3 = (−2knv + 3knu) cos 3θ + 2τgu sin θ − 4τgu sin θ cos 2θ

+ (
(5knv − 4knu) sin 2θ − knβ − knu + knv

)
cos θ − 2τgu sin 3θ

A4 = (5knv − 4knu) sin θ cos 2θ + 2τgu cos 3θ − 2τgα cos θ

+ knu sin 3θ + (knu − knv − knα) sin θ

A5 = cos θ
(−2τgu cos 2θ + (−knu + knv) sin θ cos θ + τgα + τgu

)
A6 = sin θ

(
2τgu cos 2θ + (knu − knv) sin θ cos θ − τgα − τgu

)

B1 = knα cos θ + (−2τgα − 2τgu sin 2θ
)

sin θ

+ (2knu − 3knv) cos θ sin 2θ + knu cos 3θ

B2 = −2τgu sin 2θ cos θ + (−knβ + knv cos 2θ
)

sin θ + knu sin 3θ

B3 = knv sin 3θ + (
(7knu − 6knv) cos 2θ + knv − knβ − knu

)
sin θ

− 2τgu cos θ + 2τgu cos 3θ

B4 = (−3knu + 2knv) cos θ sin 2θ − 2τgα sin θ

+ (knα + knv − knu) cos θ + (2knu − 3knv) cos 3θ − 2τgu sin 3θ

B5 = sin θ
(
(−knu + knv) cos θ sin θ − 2τgu cos 2θ + τgα + τgu

)
B6 = cos θ

(−2τgu cos 2θ + (−knu + knv) sin θ cos θ + τgα + τgu

)

C1 = −kgα + kgu cos θ + kgv sin θ

C2 = −kgβ − kgu sin θ + kgv cos θ
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Appendix B

f1
(
σ, ϕ, ω′

3
) = ω′

3
(−0.092 + 0.033 sin 2ϕ + 0.1157cos2ϕ

)
+ σ

(
−1.013 − 2.765cos2ϕ − 1.074cos3ϕ + 5.041sin3ϕ − 0.894 cos 2ϕ + 0.564 cos 4ϕ

− 13.93 sin 2ϕ + 1.079 sin 4ϕ + 0.051 cos 3ϕ + 0.051 sin 3ϕ − 4.228 cos ϕ + 4.829 sin ϕ

)

f2
(
σ, ϕ, ω′

3
) = ω′

3
(−0.225 − 0.13 sin 2ϕ + 0.171cos2ϕ

)
+ σ

(
0.9116 − 1.726cos2ϕ − 0.123cos3ϕ − 2.418sin3ϕ + 0.322 cos 2ϕ − 0.192 cos 4ϕ

+ 5.84 sin 2ϕ − 0.476 sin 4ϕ − 0.03 cos 3ϕ − 0.03 sin 3ϕ + 1.965 cos ϕ − 0.88 sin ϕ

)

f3
(
σ, ϕ, ω′

3
) = ω′

3
(−0.178 + 0.079 sin 2ϕ + 0.234cos2ϕ

)
+ σ

(
6.831 − 13.11cos2ϕ − 1.943cos3ϕ − 2.002sin3ϕ + 0.419 cos 2ϕ + 0.217 cos 4ϕ

+5.722 sin 2ϕ − 0.702 sin 4ϕ + 3.383 cos ϕ − 1.839 sin ϕ

)

f4
(
σ, ϕ, ω′

3
) = σ

(
0.207 + 0.385cos2ϕ − 0.196cos3ϕ + 0.112 cos 4ϕ + 0.227 sin 4ϕ

+0.624 cos ϕ + 2.196 sin ϕ − 5.783 cos ϕ sin ϕ − 0.992cos2ϕ sin ϕ

)

f5
(
σ, ϕ, ω′

3
) = σ

(
7.259 − 13.49cos2ϕ − 2.356cos3ϕ + 0.55 cos 4ϕ − 0.225 sin 4ϕ

+6.183 cos ϕ + 1.798 sin ϕ − 1.844 cos ϕ sin ϕ − 0.298cos2ϕ sin ϕ

)

f6
(
σ, ϕ, ω′

3
) = σ

(−1.0 + 1.857cos2ϕ − 0.238cos3ϕ + 0.196 cos 4ϕ + 0.501 sin 4ϕ

−2.114 cos ϕ + 4.546 sin ϕ − 12.19 cos ϕ sin ϕ − 2.138cos2ϕ sin ϕ

)
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