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SUMMARY
Several static and dynamic stability criteria have been
defined in the course of walking robot history. Nevertheless,
different applications may require different stability criteria
and, to the authors’ best knowledge, there is no qualitative
classification of such stability measurements. Using the
wrong stability criterion to control a robot gait may prevent
the task from succeeding. Furthermore, if the optimum
criterion is found, the robot gait can also be optimized. In
this paper, the stability criteria that have been applied to
walking robots with at least four legs are examined in terms
of their stability margins in different static and dynamic
situations. As a result, a qualitative classification of stability
criteria for walking machines is proposed so that the proper
criterion can be chosen for every desired application.
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1. INTRODUCTION
Research on walking-robot stability began in 1968, when
McGhee and Frank first defined the static stability of an
ideal walking robot.1 Following their definition, an ideal
robot is statically stable if the horizontal projection of its
center of gravity lies inside the support pattern. The ideal
robot is supposed to have massless legs, and system
dynamics are assumed to be absent.

The idea of static stability was inspired by insects, whose
massless legs must support their body during walking and at
the same time provide propulsion. For this reason, their
sequence of steps must ensure their static stability. The first
generation of walking machines emulated this mechanism
of locomotion.2 These robots were huge mechanisms
featuring heavy limbs too difficult to control.3 The adoption
of statically stable gaits could simplify their control.
However, during the motion of the heavy limbs and body
some inertial effects and other dynamic components
(friction, elasticity, etc.) were found to arise, restricting the
robot’s movements to low, constant velocities. Thus, the
adoption of static stability limited these robots’ speed of
motion.

In the last two decades the walking-robots community
has displayed increasing interest in the field of biped robots.
Research on dynamic stability has focused on this particular
design.4–9 Although some dynamically stable quadrupeds
exist, they are very mechanically simplified machines
having only a few degrees of freedom, which adopt the
stability criteria designed for bipeds, extended to a couple of

legs10–12 The motion of these quadrupeds is limited to an
even terrain, because the stability criterion used (Zero
Moment Point) is only valid for that kind of surface.13–15

Little effort has been made to cope with the dynamic
effects that limit statically stable machines’ performance16–20

However, one of the main goals of research on legged
locomotion is the application of walking robots in industrial
processes and services, and such robots are not meant to trot
or gallop but to walk.

The few dynamic stability criteria defined for quad-
rupedal walking seem to give different forms and names to
a single idea: the sign of the moment around the edges of the
support polygon caused by dynamic effects acting on the
vehicle’s center of mass. The suitability of each criterion for
each particular application (i.e. manipulation forces and
moment present, uneven terrain, etc.) is not clear at all.
Nevertheless, the use of a stability criterion not suitable for
the current application may prevent the task from succeed-
ing. Therefore, a qualitative classification of the existing
static and dynamic stability criteria for robots of four or
more legs is absolutely required.

Furthermore, if the optimum criterion were found for
each application, robot speed could be increased. Moreover,
if some velocity-optimization technique were used for the
leg’s transfer phase,21,22 overall machine performance could
be optimized.

In this paper, the existing stability criteria are briefly
reviewed in Section 2. Then, a comparative study of their
stability margins is carried out through simulation using a
quadruped robot as a testbed in different static and dynamic
situations. The simulation features are described in Section
3 and a comparative study on stability margins according to
their suitability for measuring stability for a number of
representative situations is shown in Section 4. Also, a final
qualitative classification of the stability criteria is proposed.
Finally, Section 5 presents some conclusions.

2. A SURVEY ON STABILITY CRITERIA
2.1. Static stability margins
The first static stability criterion for an ideal machine
walking at a constant speed along a constant direction and
over a flat, even terrain was proposed by McGhee and
Frank.1 The Center of Gravity Projection Method claims
that the vehicle is statically stable if the horizontal
projection of its center of mass (c.o.m.) lies inside the
support polygon (defined as the convex polygon formed by
connecting footprints). Later, this criterion was extended to
an uneven terrain23 by redefining the support polygon as the
horizontal projection of the real support pattern. The Static
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Stability Margin, SSM, was defined for a given support
polygon as the smallest of the distances from the c.o.m.
projection to the edges of the support polygon. The SSM is
the optimum stability margin for an ideal machine on
horizontal, even terrain. However, the equation for calculat-
ing the SSM is complex. Thus, Zhang and Song proposed
the Longitudinal Stability Margin, LSM, defined as the
smallest of the distances from the c.o.m. projection to the
front and rear edges of the support polygon along the
machine’s longitudinal axis.24 The LSM is a good approx-
imation to the SSM, and it is simpler to calculate.

Considering the walking robot as a non-ideal vehicle
where inertial effects arise during acceleration, the use of
the Crab Longitudinal Stability Margin, CLSM,25 will be
more convenient. The CLSM is the smallest of the distances
from the c.o.m. projection to the front and rear edges of the
support polygon along the machine’s motion axis. Figure 1
shows the SSM, LSM and CLSM for a given support
polygon.

Mahalingham et al.26 define the Conservative Support
Polygon, CSP, as a subset of the support polygon, in order
to limit the motion of the c.o.m. projection to guarantee
system stability in the case of failure of any of the
supporting legs. However, the use of the CSP is restricted to
machines with six or more legs using a crawl gait.

The above stability criteria are all based on geometric
concepts; the SSM, LSM and CLSM are independent of
c.o.m. height and consider neither kinematic nor dynamic
parameters. Intuitively speaking, the stability of a non-ideal
walking machine should depend on those parameters.

A better stability measurement was proposed by Mes-
suri.27 He defined the Energy Stability Margin, ESM, as the
minimum potential energy required to tumble the robot
around the edges of the support polygon, that is:

SESM =min
ns

i
(mghi) (1)

where i denotes the segment of the support polygon
considered the rotation axis, ns is the number of supporting
legs, and hi is the variation of c.o.m. height during the
tumble, which arises from:

hi = | Ri | (1�cos �) cos � (2)

where Ri is the distance from the c.o.m. to the rotation axis,
� is the angle that Ri forms with the vertical plane, and � is

the inclination angle of the rotation axis relative to the
horizontal plane.

The ESM is a more efficient static stability measurement.
It gives a qualitative idea of the amount of impact energy the
vehicle withstands and also considers the height of the
c.o.m. However, the ESM still does not consider any
dynamic effects that might disturb vehicle stability. The
ESM considers neither the effect of compliant terrains nor
the stabilizing effect of a non-supporting leg. This is
precisely what was proposed by Nagy28 as an extension of
the ESM that considers foot sinkage on soft and compliant
terrain (the Compliant Energy Stability Margin, CESM);
Nagy also extended the concept to consider the stabilizing
effect of a leg of a foot that is in the air (the Tipover Energy
Stability Margin, TESM). For most walking machines, the
ESM and the TESM coincide, because the nonsupporting
legs are too far from the floor to enhance stability. Only
frame-based vehicles will find this stability margin an
advantage.

Finally, Hirose et al. normalized the ESM to the robot
weight and proposed the Normalized Energy Stability
Margin, NESM, defined as:29

SNESM =
SESM

mg
=min

ns

i
(hi) (3)

The NESM was shown to be the most efficient stability
margin for statically stable walking machines. However,
when dynamic effects arise during walking, machine
stability cannot be judged precisely. Such situations exist in
real walking robot applications, and therefore dynamic
stability margins are more suitable.

2.2. Dynamic stability margins
The first dynamic stability criterion for quadrupeds using
crawl gaits was proposed by Orin as an extension of the
Center of Gravity Projection Method. The Center of
Pressure Method, COP,30 claims that a robot is dynamically
stable if the projection of the c.o.m. along the direction of
the resultant force acting on the c.o.m. lies inside the
support polygon. The Dynamic Stability Margin is thus
defined as the smallest distance from the COP to the edges
of the support polygon (see also ref. 16). The COP Method
coincides with the Center of Gravity Projection method
under static conditions and uneven terrain. Thus, it presents
the same limitations.

Kang et al. lately renamed the COP the Effective Mass
Center, EMC,17 and redefined it as the point on the support
plane where the resultant moment due to terrain-reaction
forces and moments vanishes. In the literature of biped
robots, this point is commonly named as the Zero Moment
Point, ZMP.13,31 However, Yoneda and Hirose stated that the
CME or ZMP method is not valid for an uneven terrain
because the support polygon is not confined in a plane.20

Some momentum-based stability criteria have been
defined as well. Here only the most meaningful ones are
reviewed. The statement is as follows: Given a robot
+manipulator system, as shown in Figure 2(a), the forces
and moments acting on the c.o.m. may destabilize it,Fig. 1. Support polygon and different static stability margins.
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making the system tumble. Dynamic equilibrium at the
c.o.m. requires:

FI =FS +FG +FM (4)

MI =MS +MG +MM (5)

where subscripts I, S, G and M denote inertia, support,
gravitational and manipulation effects, respectively.

During the tumble the robot loses most of its support feet,
leaving only those that conform a rotation axis (see Figure
2(b)). An interaction force FR and moment MR between
robot and terrain result from the addition of reaction forces
at every foot (Fri

) and the momentum they generate around
the c.o.m., respectively. This reaction force and moment
generate a moment Mi about the rotation axis i that must
compensate for the destabilizing forces and moments to
ensure system stability. When such compensation is not
enough, the system is said to be dynamically unstable.

Based on this statement, Lin and Song18 redefined the
Dynamic Stability Margin, DSM, as the smallest of all
moments Mi for every rotation axis in the support polygon,
normalized by the weight of the system, that is:

SDSM =mini�Mi

mg�=mini�ei · (FR� Pi +MR )
mg � (6)

where Pi is the position vector from the c.o.m. to the i-th
support foot, and ei is a unit vector that goes round the
support polygon in the clockwise sense, as shown in Figure
2(a). If all moments are positive (if they have the same
direction and sense than ei), then the system is stable.

Note that the term DSM is used for both Orin’s dynamic
stability margin and Lin and Song’s criterion, but in this
paper, the term DSM will be reserved for Lin and Song’s
criterion, while Orin’s dynamic stability margin will be
referred to as the EMC.

A few years later, Yoneda and Hirose20 proposed the
Tumble Stability Judgment, TSJ, based on the same
statement. In the dynamic equilibrium of the system, they
assumed massless legs, so leg-support and foot-reaction
forces coincide. Therefore they obtained the resultant
reaction force FR and moment MR from:

FR =FI �FG �FM (7)

MR =MI �MG �MM (8)

Thus, the moment Mi around the rotation axis is calculated
as follows:

Mi =MR · ei +FR� pi · ei (9)

Note that the moment calculated by Equation (9) is exactly
the same as is used in Equation (6).

The TSJ states that the system is dynamically stable if
there exists any support foot j in the direction of rotation
that prevents the system from tumbling. Then, the Tumble
Stability Margin, TSM, becomes:

STSM =mini�Mi

mg� (10)

Recently Zhou et al.32 proposed the Leg-end Supporting
Moment criterion, LSM. This stability margin is exactly the
same as the TSM, but its users obtain the resultant force FR

and moment MR from force sensors at the feet. Therefore,
the LSM stability margin avoids the sort of errors that can
appear in the TSM from neglecting leg dynamics.

Apart from ZMP-based and momentum-based stability
criteria, a different criterion was proposed by Papadopoulos
and Rey.19 The Force-Angle stability criterion finds the
angle �i between the resultant force acting from the c.o.m.
on the ground (the opposite to the reaction force FR) and the
vector Ri, normal to the rotation axis from the c.o.m. (see
Figure 3). The system becomes unstable when this angle
becomes zero. The stability margin is the product of the
angle times the resultant force FR, that is:

SFASM =min(�i) · || FR || (11)

These are the main stability criteria used today in walking
machine control. Some of them seem to define the same
stability margins, and there are no clear differences between
them. Furthermore, their suitability for judging stability in
any real situation, e.g. on a sloped terrain, or where there are
manipulation forces and moments or dynamic effects during
the transfer of the legs, cannot be extracted directly from the
definitions.

The following sections of this paper are devoted to coping
with this lack of qualitative information about existing
stability margins. For this purpose, a comparative analysis
of stability margins is presented for different static and
dynamic situations. This analysis was carried out through
simulation of a walking robot on different terrain profiles

Fig. 2. (a) Forces acting on a robot + manipulator system. (b)
Robot tumbling around the rotation axis.
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and in different dynamic situations. The following section
resumes the main features of the simulation, and Section 4
describes the comparative analysis and simulation results.

3. SIMULATION SETUP
To set up the features of the stability margins reviewed
herein above, a comparative analysis was performed
through simulation. A commercial Simulation Construction
Set (SCS)33 was chosen for this purpose, because it provides
suitable tools for dynamic simulation. The SILO4 quadru-
ped robot was used as a comparative testbed,34 and the
stability margins were computed while the robot was
walking using a two-phase discontinuous gait.35 Using the
Java-based SCS library, robot kinematics and dynamics
were defined, as well as the ground profile and ground
contact model. The simulation parameters and main features
are described herein below.

3.1. Simulation parameters
The integrator used for the simulation is based on the
Runge-Kutta 4th-order method with an integration period of
0.4 ms. However, the data is collected for graphic
comparison at a sampling time of 0.02 seconds.

3.2. Kinematic and dynamic modeling
Robot kinematics are defined as a tree of joints. Therefore,
the body is the root joint, and four branches of joints define
the four legs. Each leg consists of three pin joints, and each
joint has a link associated to it, which defines the shape, size
and color of the structure.

The mass and inertia of each link are also defined so that
the robot’s dynamics can be computed from the defined
parameters using the Featherstone algorithm.36

3.3. Gait control
The SILO4 robot walks using a two-phase discontinuous
gait, which is programmed by means of a finite state

machine, as shown in Figure 4. Two swing states precede
each body support phase, where the body is propelled
forward. The swing of a leg consists of three straight-line
trajectories at the foot (lift, forward motion and landing),
which are generated on-line. The body support phase
consists of the straight backward motion of the four legs
simultaneously. Every trajectory generation process deter-
mines desired joint trajectories, which are PD-controlled at
the joint level, that is:

�i =Kp(�
des
i ��i)+Kv(�̇

des
i ��̇i) (12)

where subscript i denotes the joint number, � and �̇ are joint
position and velocity, respectively, � des and �̇ des are the
reference joint position and velocity, respectively, and Kp

and Kv are the elastic and dumping constants. The output of
the PD controller in Equation (12) is the torque �i required
at the joint i.

3.4. Ground profile
The shape of the terrain is programmed as an elevation
function relative to a fixed reference frame. Therefore a
sloped terrain in the x direction is described by the
following function:

z=�x (13)

where z is the height of the terrain surface, and � represents
the slope.

A random uneven terrain can be modeled by:

z=A1 sin(�1x+	1)A2 sin(�2y+	2) (14)

where A1 and A2 are the amplitude of roughness, �1 and �2

are their frequencies, and 	1 and 	2 denote their phases.

3.5. Ground contact model
The dynamic model of the robot/terrain interaction consists
of three orthogonal spring-dumper systems along the
simulated x, y and z spatial directions, respectively, attached

Fig. 3. Geometric problem of the Force-Angle stability margin.

Fig. 4. Finite state machine for a two-phase discontinuous gait.
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to the feet (see Figure 5). Each time the z coordinate of a
foot enters the ground profile, a ground-reaction force is
applied against it, whose Cartesian coordinates are given
by:

Fx =kp(xdes �xf )�kv ẋf (15)

Fy =kp( ydes �yf )�kv ẏf (16)

Fz =kp(zdes �zf )�kvżf (17)

where (xdes, ydes, zdes) are the Cartesian coordinates of the
point Pdes at the initial foot/terrain contact, and (xf , yf , zi) are
the coordinates of point Pf , which represents the foot
position at any later instant.

Joint elasticity can be also modeled using the ground
contact model. Assuming a Cartesian spring-dumper model
of joint compliance,37 the composition of the elastic and
dumping effects of the three joints of a leg at the instant that
the foot contacts the ground can be considered an equivalent
spring-dumper system at the foot. Therefore, the addition of
the equivalent elastic and dumping constants to the ground
contact model reflects the additional effect of joint elasticity
during walking.

Once the simulation features are defined, the different
stability margins for walking machines can be analyzed and
compared during simulation. The next section describes this
analysis and shows some simulation results.

4. A COMPARATIVE STUDY OF STABILITY
MARGINS
The goal of this comparative study is to produce a
qualitative classification of stability margins to determine
which is most suitable for each given application. The
stability margins that have been selected for the analysis are
SSM, NESM, DSM, TSM, FASM and EMC. They have
been computed while the robot was walking using a two-
phase discontinuous gait in the following six different
terrain and dynamic situations:

CASE 1: Horizontal, even terrain in the absence of
dynamics.

CASE 2: Uneven terrain in the absence of dynamics.

CASE 3: Horizontal, even terrain when inertial and elastic
effects arise.

CASE 4: Uneven terrain when inertial and elastic effects
arise.

CASE 5: Horizontal, even terrain when inertial, elastic and
manipulation dynamics arise.

CASE 6: Uneven terrain when inertial, elastic and manip-
ulation dynamics arise.

The above six case studies represent different situations that
a robot can find in real applications.

Figures 6 and 7 show one half of the gait cycle for cases
1 and 2, respectively. The gait phases corresponding to the
swing of the rear and front legs precede the body support
phase. From both figures it can be observed that the SSM,
DSM, TSM and EMC coincide. The margins also coincide
for different heights of the c.o.m. (dotted line). It is relevant
that in the first case study (see Figure 6), when the terrain is
horizontal and even, these four margins do not vary with
c.o.m. height. This is a drawback of all four criteria because,
obviously, the increase of the c.o.m. height has a destabiliz-
ing effect. However, in the second case study, for uneven
terrain (see Figure 7), all six margins consider c.o.m. height.
The vertical dashed line inside the body-support-phase
interval points to the instant when the SSM is maximum; on
horizontal terrain this instant is one half of the support-
phase interval. For both case studies that instant coincides
for all margins.

The NESM and FASM are the only margins that reflect
the effect of body height increase on horizontal and even
terrain. Thus, they are the only margins that give a
successful stability measurement.

On an inclined surface (see Figure 7), the NESM and
FASM differ from the others in their instant of maximum
stability. The NESM reaches maximum after the SSM,
DSM, TSM and EMC (which coincide). Also the maximum
FASM occurs even later than the maximum NESM. The
main question at this point seems to be: Which of the
margins is the best? The NESM is defined as the
measurement of impact energy that the system can absorb
during the tumble. Thus, when the c.o.m. is placed at the
maximum NESM point, the possibility of tumbling down-
hill is equal to uphill (see also, reference 20). Therefore, the
NESM is the optimum margin.

Figure 8(a) shows the difference between the instants of
maximum NESM and SSM as a function of the terrain
inclination angle, while Figure 8(b) shows the difference
between the instants of maximum FASM and NESM.
Figure 8(a) shows that the instant of maximum SSM always
precedes the instant of maximum NESM for different
positive and negative terrain inclinations. Furthermore, the
instant of maximum FASM always follows the instant of
maximum NESM, as shown in Figure 8(b) for different
terrain inclinations. Therefore, the instants of maximum
SSM and FASM only coincide with the instant of optimum
stability when the terrain is horizontal and even. If there is
a slope in the terrain, the SSM and FASM will never be
optimal.

Figures 9 and 10 show one half of the gait cycle for cases
3 and 4, respectively, which correspond to the existence of
inertial effects when the robot is walking over horizontal
and inclined terrain, respectively. Elastic effects due to joint
elasticity and ground contact effects are introduced as well.

Fig. 5. Ground contact model.
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On horizontal terrain (see Figure 9), all the instants of
maximum stability still coincide. However, the DSM, TSM,
FASM and EMC reflect some oscillation of the margin due
to joint elasticity at leg lift, placement and body support.
Inertial effects during the leg transfer phase and body

support are reflected as well. These dynamic effects are not
reflected by the SSM and NESM, because they are static
stability margins only. Figure 11 shows this difference, by
plotting a comparison between the SSM and the DSM. The
DSM undergoes a decrease in stability due to inertial effects

Fig. 6. Different stability margins in the absence of system dynamics on horizontal terrain (CASE 1). Solid line for a robot height of 320
mm and dotted line for a robot height of 420 mm.

Fig. 7. Different stability margins in the absence of system dynamics on terrain inclined 10° from the horizontal plane (CASE 2). Solid
line for a robot height of 320 mm and dotted line for a robot height of 420 mm.
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at leg lift and body propulsion. Vibrations due to joint
elasticity are also reflected at leg lift, foot placement and
body support.

Therefore, only dynamic stability criteria are valid for
judging stability when inertial and elastic effects are
involved. However, the DSM, TSM and EMC have the same
failing here as on a horizontal terrain: They do not consider
the effect of height changes. Only the FASM is suitable for

case study 3. Nevertheless, if robot height is not presumed
to change, the DSM, TSM and EMC are suitable also.

Figure 10 depicts stability margins for the fourth case
study, when the terrain is inclined and inertial and elastic
effects arise. While the SSM and NESM do not reflect any
reduction of the stability margin due to dynamics (as they
are the same as in Figure 7), the DSM, TSM, FASM and
EMC reflect a decrease in stability. Also their instants of

Fig. 8. Difference between instants of maximum stability for several terrain inclinations. (a) NESM and SSM. (b) FASM and NESM.

Fig. 9. Different stability margins when inertial and elastic effects arise on horizontal terrain (CASE 3).
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maximum stability occur some time earlier than in case
study 2, where there were dynamic effects. Figure 12
explains this fact. It depicts a planar robot and its two
support feet 1 and 2 during the body-support phase. The
c.o.m. moves from position G1 to G4. At G2, the c.o.m. is at
one half of the support phase. At this moment the velocity

of the c.o.m. is maximum, and the acceleration is zero.
Thus, there are no inertial forces, and gravity is the only
resultant force. Some time later, at G3, the body is
decelerating, and the resultant force makes the DSM
maximum. Finally, at G4 the SSM is maximum. Points G3

and G4 only coincide if the resultant force at G4 is vertical

Fig. 10. Different stability margins when inertial and elastic effects arise on terrain inclined 10° from the horizontal plane (CASE 4).

Fig. 11. SSM and DSM during half gait cycle on horizontal terrain when inertial and elastic effects arise.
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(gravity). That only occurs in the case of horizontal terrain,
and then G2, G3 and G4 meet, as in Figure 9.

The maximum stability instant of the FASM occurs later
than that of the DSM, TSM and EMC. However, the
optimum criterion is the one whose maximum stability
instant takes place before the FASM and after the DSM,
TSM and EMC. Therefore, no optimum stability criterion
exists for case study 4.

Figures 13 and 14 show one half of the gait cycle for
cases 5 and 6, respectively, which correspond to the
existence of manipulation effects when the robot walks over
a horizontal and inclined terrain, respectively. Inertial and
elastic effects are considered as well. Both figures show that
manipulation forces opposing motion cause a stability
decrease at the rear leg’s swing phase and an increase at the
front leg’s swing phase. Also, a delay of the maximum
stability instant can be observed in the DSM, TSM, FASM
and EMC. It is obvious from the figure that if the

Fig. 12. Different c.o.m. positions during the body support
phase.

Table I. Classification of existing stability criteria.

Uneven Inertial Manipulation
terrain effects forces SSM NESM DSM TSM FASM EMC

no no no � * � � * �
no yes no � � � � * �
no yes yes � � � � � �
yes no no � * � � � �
yes yes no � � � � � �
yes yes yes � � � � � �

Fig. 13. Different stability margins when inertial, elastic and manipulation effects arise as a 20-N constant force opposing motion on
horizontal terrain (CASE 5).
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manipulation force is increased the robot could be destabi-
lized during the swing of the rear leg. This will never be
foreseen by the SSM and NESM.

The instant of maximum FASM takes place after the
instant of maximum DSM, TSM and EMC. However, the
optimum criterion should meet the maximum stability
position after the DSM and before the FASM. This is shown
in Figures 15(a) and (b), where the instants of maximum
DSM and FASM are compared with an energy-based
optimum criterion for different terrain inclination angles
and different manipulation forces. As both figures show,
neither the DSM nor the FASM coincide with the optimum
criterion. Thus, no optimum criteria exists for the fifth and
sixth case studies.

Table I summarizes a classification of the stability
margins studied herein. The symbol “�” denotes that the
criterion is “valid”, the symbol “� ” denotes “not valid”, and
the symbol “*” denotes “optimum”. Only the NESM
provides the optimal measurement as static stability margin.
However all of them are valid. As dynamic stability margins
the SSM and NESM are not valid. When inertial effects
arise over horizontal terrain, only the FASM provides the
optimum measurement, yet the rest of the dynamic stability
criteria are valid. When any other dynamic effects are

present, such as manipulation forces and moments, over a
horizontal or uneven terrain, there is no criterion that
provides the optimum margin. Therefore there is no
criterion that can assure the stability of a machine under
those conditions. Another conclusion of the study is that the
DSM, TSM and EMC yield the same measurement for
every situation studied herein.

The last comparison of the selected criteria according to
their computational complexity was obtained by finding the
number of mathematical operations required for simulation.
Table II shows these data, represented as the number of
additions, multiplications, trigonometric operations and
square roots computed in each simulation step, considering
a support polygon of n sides. In this calculation, foot
reaction forces are assumed to be known. As the table
shows, the FASM is the most complex of the compared
margins, while the DSM is the least complex of the dynamic
criteria and the SSM is the least complex of the static
criteria.

5. CONCLUSIONS
Several stability margins have been defined in the course of
research on walking robots, yet none of their definitions
directly suggest anything about their suitability to judge
stability in any real situation, e.g. on a sloped terrain, or in
the presence of manipulation forces and moments or
dynamic effects during leg transfer.

This paper has been devoted to coping with this lack of
qualitative information about existing stability margins. For
this purpose, a comparative study has been run on stability
margins in different static and dynamic situations. This
analysis has been carried out through simulation of a
walking robot using a two-phase discontinuous gait in six

Fig. 14. Different stability rnargins when inertial, elastic and manipulation effects arise as a 20-N constant force opposing motion on
terrain inclined 10° from the horizontal plane (CASE 6).

Table II. Computational complexity of existing stability criteria.

SSM NESM DSM TSM FASM EMC

Additions 17n 33n 44n 86n 109n 67n
Products 13n 23n 39n 90n 117n 70n
Trigonometric – – – – 3n –
Square roots n 2n 2n 3n 6n 2n
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different case studies where various terrain profiles and
dynamic situations have been considered. These case
studies cover all the situations that can occur during real
industrial applications of legged robots.

As a result, a classification of stability criteria has been
proposed showing that no optimum criterion exists for every
situation studied. Also, it has been shown that every
momentum-based stability criterion provides the same
stability margin, and no criterion is ever optimal. The

selected criteria have been also compared in terms of their
computational complexity. This classification enables the
proper stability criterion to be chosen for each real
application.
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