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31057 Toulouse Cedex, France

2Institut de Mécanique des Fluides de Toulouse, allée C.Soula, 31400 Toulouse, France

(Received 1 May 1998 and in revised form 16 December 1999)

Numerical simulations with a non-hydrostatic anelastic model are carried out to
reproduce hydraulic tank experiments on stratified flow past a two-dimensional
mountain ridge, for a Froude number of 0.6 and a Reynolds number of 200. The
gravity wave thus generated steepens, overturns and breaks. Numerical simulations
and experiments are directly compared showing close agreement. Ground friction is
found to have a major influence. It induces a boundary-layer separation on the lee
slope of the mountain and a low-level trapped lee wave inhibiting the downstream
propagation of the breaking region above. Consequently, the three-dimensional vor-
tices generated within the unstable two-dimensional overturning wave have a toroidal
shape in agreement with experimental observations. Sensitivity to the shape of the
initial three-dimensional perturbation is studied. In the case of harmonic disturbances,
spectral analysis reveals that during the growth phase of the instability, harmonics
are coherently produced by the nonlinear transverse advection term. During the
later phase of quasi-steady turbulence, the vortices have a morphology that does not
depend on the type of the initial perturbation.

1. Introduction
The flow of a stratified fluid over an obstacle generates internal gravity waves.

Their theoretical understanding was initiated by Queney (1936, 1948), who derived
analytical solutions from a linear model. For uniform upstream stratification and
velocity, Long (1954) showed, using a nonlinear model, that the stationary isopycnals,
obtained in the case of a sufficiently strong orographic perturbation, are overturned,
leading to a region of static convective instability. However, Long’s stationary solution
is unstable. Indeed, any physical condition that leads the gravity wave to steepen and
then overturn, eventually produces wave breaking. Orographic wave breaking has
been studied, at the scale of the global flow, with numerical simulations (e.g. Clark
& Peltier 1977, 1984; Scinocca & Peltier 1993, and many others) and laboratory
experiments (e.g. Rottman & Smith 1989; Castro & Snyder 1993; Baines 1995,
chap. 5).

These studies were mainly interested in the influence of the wave breaking on
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surface wind and drag in the atmosphere, and its role in severe downslope wind-
storm events. However, they did not focus on the dynamics within the wave-breaking
region itself. Even when generated over a two-dimensional topography, the gravity-
wave breaking is a three-dimensional process, as first theoretically predicted by
Klaasen & Peltier (1985) and explicitly simulated by Clark & Farley (1984). Strong
internal waves induce intense shear in which three-dimensionalization processes may
arise (Belcher & Hunt 1998) but the two-dimensional overturning of isopycnals in an
initially stably stratified fluid also produces a region of static instability. Therefore,
the three-dimensional instabilities in two-dimensional overturning waves were inves-
tigated more specifically. With a linear pertubation method, Klaasen & Peltier (1985,
1991) characterized the transverse unstable modes developing in a two-dimensional
Kelvin–Helmholtz billow. This theoretical analysis was complemented with labora-
tory experiments by Thorpe (1985) and three-dimensional numerical simulations
by Caulfield & Peltier (1994). Winters & D’Asaro (1994), Andreassen et al. (1994),
Fritts, Isler & Andreassen (1994) and Dörnbrack (1998) numerically studied three-
dimensional gravity-wave breaking induced by trapping the energy near a critical
level in a shear layer. Afanasyev & Peltier (1998) investigated the breaking of an oro-
graphic gravity wave in a background flow with no underlying shear. All these studies
revealed alternating vortices, oriented in the direction of the background flow (with
different morphologies according to the breaking configuration). They all stressed
the importance of buoyancy forces in the growth of the instability. Winters & Riley
(1992) showed two mechanisms of instability, one dominated by shear for streamwise
perturbations, and the other by convection for transverse perturbations. In the case
of breaking near a critical layer, Fritts et al. (1994) note that the vortices are roughly
circular in their early stage and that their horizontal and vertical scales are dictated by
the depth of the convectively unstable region. This class of instabilities is invoked in
scenarii of transition to turbulence within the breaking waves (Klaasen & Peltier 1985;
Isler et al. 1994).

The present numerical study was carried out as a collaboration with an experi-
mental counterpart (Eiff & Bonneton 1998, 2000), where the gravity-wave breaking
is generated in a flow with uniform upstream velocity and stratification. This con-
figuration is the same as in Long’s model (Long 1954), and has been the object of
most theoretical investigations. The physical conditions for our numerical simulations
closely match the laboratory experiments, so that they can be compared directly.
Good agreement via such direct comparisons provides immediate validation of the
numerical model.

In § 2, we will describe the physical problem (§ 2.1), then the numerical set-up
(§ 2.2). In § 3 we study the lee-wave dynamics in the longitudinal (x, z)-plane. Since the
flow is perturbed by a two-dimensional obstacle, this study is first carried out with
two-dimensional numerical simulations (§ 3.1). The simulation results are compared
with the experimental results and orographic lee-wave theory (§ 3.2). In § 4 we focus
on the flow within the breaking region, with the aid of three-dimensional simulations.
In particular, we investigate the instability leading to three-dimensional motions from
the two-dimensional overturning wave. The general evolution of the three-dimensional
motions is presented in § 4.1. The geometry of the vortices at the end of the instability
growth stage is depicted in § 4.2. Diagnostic tools such as autocorrelation functions and
spectral scale analysis enable us to characteristize the vortices (§ 4.3). The instability
is further analysed via experiments on the sensitivity to the type of the initial three-
dimensional perturbation (§ 4.4). We conclude in § 5 with a discussion based on our
numerical results.
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Figure 1. The physical problem.

2. Presentation of the study
2.1. The physical problem

In this paper, we study the fundamental problem of stratified flow over a two-
dimensional mountain ridge (figure 1): the orography has a Gaussian shape of width L
in the x-direction, and infinite extent in the y-direction, defined by h(x, y) = He−(x/L)2

.
The unperturbed flow is stably stratified by a vertical gradient of potential temper-
ature, θ; the Brunt–Väisälä frequency is uniform, given by N = (g/Θ00 dθ0/dz)

1/2 =
10−2 s−1 (where g = 9.81 m s−2, Θ00 = 285 K is a reference temperature), which is
typical of tropospheric stability. Far upstream from the ridge, the vertical velocity
profile is uniform and stationary: u0(x = −∞, y, z) = U0ex, where U0 is set to 10 m s−1

(ex is the unit vector along x).
The system is controlled by the following dimensionless numbers: the Reynolds

number Re = U0H/ν (where ν is the kinematic viscosity of the fluid); the Prandtl
number Pr = ν/κ, where κ is the appropriate diffusion coefficient†; the Froude
number F = U0/NH which specifies the nonlinearity of the wave (nonlinear pertu-
bations of the flow are obtained for a sufficiently high obstacle with respect to the
vertical wavelength of the internal gravity waves 2π U0/N, hence for F . 1); the
longitudinal Froude number FL = U0/NL which is a measure of non-hydrostatic
effects appearing for narrow obstacles (FL is the ratio of 1/N, the time of oscillation

† Molecular diffusion of salt in water (tank experiments), or thermal diffusion (the equivalent
phenomenon for our numerical simulations).
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Figure 2. Experimental device used by Eiff & Bonneton (1998, 2000).

for a fluid parcel under buoyancy restoring forces, to L/U0, the time of flow over the
obstacle at speed U0). See the reviews of Durran (1990) or Baines (1995) for more
details about the theory of orographic internal gravity waves, and Bonneton, Auban
& Perrier (1999) and Laprise & Peltier (1989) for a discussion of the influence of the
Froude numbers.

The experimental procedure is briefly described here to introduce the conditions for
the numerical simulations; for further details about these experiments and a detailed
discussion of the experimental results, see Eiff & Bonneton (1998, 2000). The obstacle
spans the whole width of the 0.5 × 0.5 × 4 m3 tank. It is towed just above the floor
at constant velocity U 0 in linearly salt-stratified water (figure 2). One must stress two
important points resulting from the experimental procedure which must be taken into
account in our numerical model: the existence of a small gap between the baseplate
of the obstacle and the tank floor, and the quite unusual boundary conditions on
the ground for a meteorological problem. In the obstacle frame, the channel floor is
moving at speed U 0, so that the condition of fluid adherence is u = 0 on the obstacle
surface, but u = U 0 on the ground far from the obstacle.

The dimensionless parameters governing the experimental conditions are Re ∼ 200,
Pr = 675, F = 0.6, FL = 0.24 (i.e. L/H = 2.5). The width of the channel, W/H , is
23.1 and the depth of the stratified water, D/H , about 9. The Froude number, F ,
corresponds to a highly nonlinear situation for which the gravity wave generated by
the obstacle on the lee side gradually steepens and eventually breaks. The longitudinal
Froude number, FL, being smaller than 1, implies a non-hydrostatic regime. Since
Pr � 1, salt (or thermal) diffusion will be negligible with respect to viscous momentum
diffusion.

2.2. Numerical methodology

2.2.1. The numerical model

The Meso-NH atmospheric non-hydrostatic meso-scale simulation system (Lafore
et al. 1997), jointly developed by the Laboratoire d’Aérologie (Toulouse, France) and
the CNRM (Météo-France), enables the simulation of atmospheric motions, ranging
from the synoptic scale (a few thousands of kilometres) to the large turbulent eddy
scale (a few tenths of metres). The model is based on the Lipps & Helmer (1982)
modified anelastic system of equations (in order to filter acoustic waves, which are
not of interest in meteorology). In this study, it is used with Boussinesq’s hypothesis
(Scinocca & Shepherd 1992), in order to take into account the incompressibility of
salted water in the experiments. We also neglect the Earth’s sphericity and rotation
(which are usually taken into account in the complete Meso-NH model).
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Under these hypotheses, the equations are

ρ′ = −ρ0

(
θ′

Θ00

)
, (2.1)

∇ · u = 0, (2.2)

∂

∂t
(ρ0u) + ∇ · (ρ0u⊗ u) + CpΘ00ρ0∇Π ′ + ρ0g

θ −Θ00

Θ00

−Fm = 0, (2.3)

∂

∂t
(ρ0θ) + ∇ · (ρ0θ u)−Ft = 0. (2.4)

The thermodynamical fields have been written as

θ(x, y, z, t) = Θ00 + θ′(x, y, z, t), (2.5)

Π(x, y, z, t) = Π0(z) +Π ′(x, y, z, t). (2.6)

The subscript 0 refers to the background field and the prime to the perturba-

tion. Π =
(
p/p00

)(R/Cp)
is Exner’s function and p00 = 105 Pa the reference pressure.

Θ00 = 285 K is the (constant) reference temperature. The background state is in
hydrostatic equilibrium:

Π0(z) = − gz

CpΘ00

.

Equation (2.1) is the linearized equation of state, (2.2) the continuity equation, (2.3) the
momentum equation and (2.4) the thermodynamic equation. Fm = ∇ · [νρ0∇(u)] and
Ft = ∇ · [(ν/Pr)ρ0∇(θ)

]
represent the influence of momentum and thermal diffusivity,

respectively.
The orography is included by the use of the Gal-Chen & Sommerville (1975)

terrain-following coordinate in the model computation:

z = H
z − h(x)

H − h(x)
.

The model discretization is in the spirit of Clark (1977). The spatial discretization
is based on second-order-accurate centred finite differences on an Arakawa C grid
(Arakawa & Mesinger 1976). The flux form of equations (3) and (4) is preserved by
using at the same time the covariant and contravariant components of the velocity
(Viviand 1974). The temporal discretization is purely explicit, and a weak time filter
(Asselin 1972) is applied to control the rapid oscillations generated by the leapfrog
treatment of the equations. The incompressible form of the continuity equation (2.2)
is a strong constraint which is enforced by solving an elliptic equation for the pressure
at every time step. Its resolution in terrain-following coordinates is based on a ‘flat’
operator (i.e. the operator obtained by removing the orography) inverted by a FFT
algorithm for the horizontal part and a tri-diagonal algorithm for the vertical part.
The ‘flat’ operator is used to precondition the problem with orography, which is solved
with a Richardson’s iterative algorithm. The complete description of the Meso-NH
numerical discretization and schemes can be found in Lafore et al. (1997).

2.2.2. Physical parameters, boundary conditions and grid

A summary of all the numerical simulations considered in this paper is given in table
1. The physical parameters are chosen to be in accordance with the dimensionless
numbers of the hydraulic experiments, given in § 2.1 (i.e. Re = 200, Pr = 675,
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Mountain height H = 1667 m

Mountain width L = 4167 m

Stratification N = 0.01 s−1

Basic velocity U0 = 10 m s−1

Viscosity ν = 82.5 m2 s−1

Boundary conditions:

x = −12L, +20L radiative

z = 9H (top) rigid, free slip

z = h(x) (ground) rigid, viscous layer (sim. 1 to 9), free slip (sim. 1b)

Simulation 1, 1b 2 3 4 5 6, 7, 8 9

Domain along x whole sub(a) sub sub sub sub sub

Domain width, Ly — 4H 4H 32H 32H 4H 23H

B.C. at y = 0, Ly — cyclic cyclic cyclic cyclic cyclic wall

Number of points in x 320 128 256 128 64 128 90

Number of points in y 1 (2-D) 32 64 256 128 32 128

Number of points in z 56

∆x L/10 L/20 L/40 L/20 L/10 L/20 L/14

∆y — L/20 L/40 L/20 L/10 L/20 L/14

∆z 0.25U0/N ' L/17

N∆t 0.03 0.02 0.01 0.02 0.04 0.02 0.02

3-D disturbance — white(b) white white n = 2(c) n = 1, 2, 4(c) none

Table 1. Details of the numerical simulations presented in this paper. (a) sub: only the subdomain
is simulated (with a finer interpolated grid, as shown in figure 3 and explained in § 2.2.2). (b) white:
the flow is perturbed with a three-dimensional white noise. (c) n = .. : the disturbance on θ is
harmonic along the y-direction with wavelength λ = Ly/n.

F = 0.6, FL = 0.24, W/H = 23.1, D/H = 9). However, they are adjusted with the
meteorologically meaningful values of U0 = 10 m s−1 and N = 0.01 s−1, leading to
H = 1667 m but also to an artificially high viscosity of ν = 82.5 m2 s−1.

The transverse width of the simulation domain, Ly , is not necessarily chosen to be
similar to the tank width. In order to simulate the wave breaking over two-dimensional
orography with implied infinite extent, cyclic lateral boundary conditions are used.
There is hence no explicit need to be geometrically similar with the experimental
configuration, and the width chosen is either Ly = 4H or 32H . However, the sidewalls
of the channel are directly taken into account in simulation 9, and in this case the
width of the domain is 23H as in the hydraulic tank, while the lateral boundary
conditions simulate rigid walls with viscous friction.

The height of the simulated domain is equal to the depth of the stratified water
in the channel. The upper boundary condition is modelled with a rigid roof and a
free-slip condition. Hence, the gravity waves in the numerical model are reflected at
the upper boundary in an approximately similar way to the free surface of the tank
experiments. However, the experimental study by Eiff & Bonneton (1998) and some
numerical sensitivity tests have shown that in the breaking-wave case studied here, the
upper boundary condition significantly influences the wave dynamics only at levels
largely above the wave-breaking region.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

80
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099008009


Three-dimensional gravity-wave breaking in a hydraulic tank 73

The boundary conditions at the extremities in x are wave-radiative open. Following
Davies (1976) and Carpenter (1982), the normal velocity u is given by a Sommerfeld
condition, but we add to the radiative equation a Rayleigh term which relaxes the
field towards its large-scale value (subscripted by LS):

∂

∂t
(u− uLS ) = −(u+ c)

∂

∂x
(u− uLS )− u− uLS

τ
.

The large-scale value is set to the reference background state value, U0ex, for the large
domain simulation 1 (see table 1), or to the output value of the coupling large-scale
model for the nested simulations 2 to 9. c is a phase velocity set to 20 m s−1 and τ
is a characteristic time for the relaxation. We choose τ = 4∆t. The other prognostic
variables at the boundaries are either set to their large-scale values for incoming flow,
or extrapolated from the model interior for outgoing flow.

The viscous z = 0 boundary condition is not explicitly expressed through adherence
to the ground, since the first horizontal-velocity level in the simulation grid is located
at z = ∆z/2 (where ∆z is the vertical size of the grid mesh). Rather, it is expressed
with a forced vertical flux of horizontal momentum at z = 0. That flux is calculated
on two assumptions: adherence to the ground and a linear† profile of horizontal
velocity from z = 0 to z = ∆z/2. The expression for the adherence condition depends
on the location (remember that u = 0 at the obstacle surface but u = U0ex far from
the obstacle), as well as the gap, δ ' 0.8 ∆z/2, between the obstacle and the bottom
of the channel. The surface vertical flux of x-momentum, for example, is given by

σxz(z = h(x)) = ρν
u(z = ∆z/2)− 0

∆z/2
for − 1.75L < x < +1.75L,

σxz(z = h(x)) = ρν
u(z = ∆z/2)−U0

∆z/2 + δ
for |x| > 1.75L

(x = 0 corresponds to the mountain crest).
In general, the fluid at the ground will be much more strongly decelerated near the
obstacle than far from it. For example, the ratio of the ground momentum fluxes
near/far from the mountain is about 4 for u(z = ∆z/2) = 2U0. In simulation 9, the
viscous adherence at y = 0 or y = Ly on the sidewalls is taken into account in the
same way. The implementation of the viscous boundary condition has been validated
with a simulation of the analytically solvable problem of a viscous flow along a
infinite plane plate. The mean relative deviation never exceeded 0.02%.

The initialization proceeds as follows. The fluid is initially at rest, in hydrostatic
equilibrium with uniform stability N. It is accelerated by adding a uniform and
stationary pressure gradient oriented towards positive x, so that the fluid velocity far
upstream reaches U0ex after 3.2N−1. Then, that gradient is no longer applied. This
instant is chosen as time origin t = 0.

The model was previously validated for the case of non-breaking orographic
gravity waves by Lafore et al. (1997). Such simulations only require a rather coarse
grid ∆x = ∆y = L/5 in the horizontal (Stein 1992), with a vertical resolution

† According to experimental results for the boundary layer along a smooth wall (Schlichting
1979, chap. XX), the friction regime is purely laminar at the altitude z = ∆z/2 for values of

(u∗ ∆z/2)/ν up to 5 (where u∗ = [νu‖/(∆z/2)]1/2 is the friction velocity and u‖ = u‖(z = ∆z/2) is the
velocity component parallel to the boundary). The friction is both laminar and turbulent for values
between 5 and 70, and purely turbulent (logarithmic profile) above 70. Since u‖ is lower than or of
the order of 2U0, (u∗ ∆z/2)/ν remains lower than 6. The hypothesis of linear velocity profile up to
z = ∆z/2 thus appears to be satisfactory.
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z

xy

Figure 3. Full simulation domain, where iso-θ lines are plotted at t = 15N−1 (θ in K). The dashed
box delimits the nested fine grid subdomain for the three-dimensional simulations (2 to 9).

∆z = 0.25U0/N. In the case of wave breaking, however, the breaking leads to a
turbulent zone where the scales of the flow are smaller than in the wave field. Yet,
due to the small value of the Reynolds number in our simulations (Re = 200), the
conditions for direct numerical simulation can be approached with a reasonably fine
grid. Although Kolmogorov’s theory is strictly valid only for high Reynolds numbers,
it allows us to estimate the size of the smallest eddies, which is of the same order of
magnitude as the dissipation scale: Re can be related to the dissipation scale λd and
the scale of energetic supply λe via Re = (λe/λd)

4/3 (e.g. Landau & Lifschitz 1959).
With Re = 200 and λe = H , the condition for direct simulations, ∆x < λd, requires
∆x < H/50, or equivalently ∆x < L/125.

The simulations presented in this study use ∆x = ∆y = L/10, L/20 or L/40 as
mesh sizes. It implies that the very smallest eddies may be not resolved by the model.
However, since the processes of the breaking dynamics of interest in our study occur
at scales much larger than these eddies, no parametrization of the subgrid dynamics
is used. The validity of such simulations will be discussed in § 4.3.

Along the x-direction, the domain extends 12L upstream of the mountain crest
(x = 0) and 20L downstream. Unlike the two-dimensional simulations 1 and 1b,
which are performed in this full domain, the three-dimensional simulations (2 to 9)
need to be performed in a domain truncated in x with a model-nesting method, in
order to reduce numerical costs. We adopt the following one-way nesting procedure.
While t < 15N−1, the gravity wave is not yet breaking and is therefore sufficiently
captured with a coarse mesh (∆x = ∆y = L/5). At t = 15N−1, a portion of the coarse
model (hereafter the subdomain) is interpolated into a finer grid (with various ratios
depending on the simulation). The interpolated subdomain includes the full height
and width of the large domain, but is limited at x = −2.4L and x = +3.8L (see
figure 3), in order to contain the whole breaking wave at all times. For t > 15N−1,
the output of the coarse model (in the full domain) provides the time-dependent
x-boundary conditions for the fine-mesh model (in the subdomain).

3. The gravity wave field
In this section, the experimental results in the longitudinal (x, z)-vertical plane will

be compared to those of a two-dimensional simulation (simulation 1, see table 1).

3.1. Two-dimensional simulations

In the early stages of evolution, the propagation of the orographic gravity wave
leads to a progressive steepening of the iso-θ contours at altitude ' 2H and ' 3H
downstream from the crest (figure 4). They overturn around t = 20N−1, leading to
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z

xy
(a)  Nt = 20 (b)  Nt = 40

(c)  Nt = 60 (d)  Nt = 160

(e)  Nt = 180 ( f )  Nt = 260

Figure 4. Time evolution of iso-θ (in K) contours. Simulation 1.

a convectively unstable region. The wave breaks during a span of about 20N−1 to
form a mixed region of depth ' 1.6H . The evolution of this breaking zone continues
to be non-stationary. For example, at t = 160N−1 the flow is again laminar, and the
wave starts steepening again and breaks anew around t = 180N−1. The time scale
of this evolution is rather long, of the order of 100N−1. However, these intermittent
phenomena have to be considered cautiously, since they are likely due to the two-
dimensional symmetry of this simulation. This point is discussed in § 5.

The propagation of the gravity waves produces a secondary wave above the primary
breaking wave, steepening between altitudes of about 6H and 7H . This steepening
appears with a slight delay with respect to the primary wave, but the secondary wave
never breaks. The steepening seems to be correlated with the activity of the main
wave (compare, for example, t = 60N−1 vs. t = 160N−1 in figure 4): the larger the
mixed zone of the lower wave, the weaker the steepening of the secondary wave.

In the lowest levels, the fluid is strongly accelerated, up to a maximum velocity
of around 3U0. Further downstream, up to three oscillations of a non-hydrostatic
trapped lee wave are visible near the ground in figure 4. It must be stressed that no
linear trapped lee wave can be generated in the underlying reference flow, since the
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z

xy
(a)  Nt = 20 (b)  Nt = 40

(c)  Nt = 60 (d)  Nt = 80

Figure 5. Time evolution of iso-θ (in K) contours. Simulation 1b.

background stability is uniform with no shear. Actually, the oscillations appear as
soon as the breaking occurs, and are correlated in number and amplitude with the
streamwise extent of the overlaying mixed region created by the wave breaking. For
example, at t = 160N−1, neither a mixed region nor a lee wave are observed, while
at t = 260N−1, both are well developed. Hence the trapped lee wave appears to be
directly related to the nonlinear wave-breaking, by trapping its energy between the
mixed region and the ground. Figure 4 also reveals that the first oscillation consists of
a separation of the laminar boundary layer on the lee slope of the mountain. In order
to study the link between the separation and the trapped lee wave, we performed a
two-dimensional simulation (simulation 1b), which matches simulation 1, except for
using a free-slip condition instead of friction at the ground. The flow field evolution
is shown in figure 5. The geometry of the breaking wave in the longitudinal plane is
considerably modified compared to the case with ground friction. The overturning of
isopycnals occurs earlier and at lower altitude (i.e. for lower values of θ), as revealed
by comparing simulation 1 and 1b at t = 20N−1 (figures 4a and 5a). Indeed, the
absence of friction enhances the downslope acceleration of the flow (with a maximum
velocity of about 3.5U0) as well as the downstream advection of fluid in the bottom
portion of the overturning region. Furthermore, the mixed region resulting from
the wave breaking continuously extends further downstream. Both the mixed region
and the associated lower layer of accelerated fluid propagate at a velocity of about
U0/3. This propagation occurring only under a free-slip condition at the ground is
in agreement with Richard, Mascart & Nickerson (1989). Moreover, no trapped lee
wave can be observed. We conclude that the boundary-layer separation on the lee
slope of the mountain is dynamically controlled, specifically by ground friction. The
presence of the mixed region above enables the trapping of a lee wave, which is
likely to be excited by the boundary-layer separation. In return, the trapped lee wave
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Experiment Simulation 1 Theory

Height of the (unperturbed) critical streamline, Hd 3.2 3.0 3.2

Depth of the blocked layer, b 0.37 0.33 0.40

Height of the mixed layer bottom, Ht 1.8 1.8 ?

Depth of the mixed layer, Dml 1.7 1.6 ?

Horizontal distance of the critical point from the crest, xc 1.5 1.7 ?

Distance of the critical point C from the point O 2.6 2.5 2.8
(see figure 6a), OC

Wavelength of the trapped lee waves, λtlw 4.6 4.7 ∼ 4

Table 2. Quantitative comparison of experimental, numerical and theoretical flow dimensions at
t = 50N−1. All data are expressed in units of H .

greatly influences the evolution and geometry of the mixed region above. It inhibits
the continuous streamwise propagation of the mixed region, which instead consists
of cores of mixed (or slightly stable) fluid above the troughs of the trapped lee wave
(e.g. figures 4c or 4f). This point marks an important difference with the case of wave
breaking studied by Afanasyev & Peltier (1998) who considered a free-slip condition
on the ground.

The two interactions described above (i.e. the interaction of the mixed region with
both the trapped lee waves and the upper secondary wave) are in accord with the
theory (Peltier & Clark 1979, 1983; Clark & Peltier 1984) that the breaking region acts
as a reflector which inhibits the upwards transmission of the energy of the orographic
perturbation and traps it below (at least for the range of scales corresponding to the
trapped lee wave).

It should also be observed that a stagnation region upstream of the mountain is
present at the ground. Its depth, as judged by the first iso-θ contour, is evaluated as
about H/3 (but with a large uncertainty since ∆z ' H/7).

3.2. Comparison with experiments

The experimental results consisting of particle pathline visualizations are compared
to the simulated iso-θ contours (simulation 1). Since thermal diffusion is negligible
(Pr = ν/κ = 675), the flow is adiabatic, hence θ is a Lagrangian invariant and iso-θ
contours are consequently equivalent to streaklines (which are lines which would be
traced out by a neutrally buoyant marker fluid continuously injected into the flow
field at a fixed point in space). Strictly, streaklines and pathlines are identical only
for stationary flows. However, this property remains approximately true for weak
non-stationarity. In the laminar region outside the wave breaking, the flow does not
significantly evolve during the integration time, 5N−1 to 10N−1, of the particle paths.
Hence, the coincidence between pathlines and streaklines is good, and both can also
be considered as streamlines.

For a detailed comparison, we choose to examine the wave field at t = 50N−1,
after the wave has broken. Figures 6(a) and 6(b) show the respective numerical and
experimental results in the vertical (x, z)-plane. Table 2 gives a summary of the deduced
flow dimensions as defined in figure 6(a), as well as theoretical values when available.
Smith (1985) suggests a sketch of the wave-breaking configuration, wherein a critical
streamline divides and encompasses a region of uniform density (the wave-breaking
region). Smith (1989) gives the height Hd of this critical streamline in an hydrostatic
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z

xy

Hd

b

O xc
C ktlw

Dml

Ht
C

re
st

(a)

(b)

Figure 6. Vertical-plane results at t = 50N−1. (a) Iso-θ (in K) contours. Simulation 1.
(b) Pathlines in the hydraulic tank experiment (integration time = 5N−1).

flow as Hd = 3
4
λ + b, where λ = 2πU0/N and b = H − 0.985U0/N ' H − U0/N

is the depth of the blocked layer. The theoretical values of Hd and b in table 2 are
calculated according to these formulae, and the theoretical value for OC is taken as
3
4
λ, following Peltier & Clark (1979) and Smith (1989). It is more difficult to evaluate

the experimental value of b from figure 6(b). Instead, a pseudo-experimental value,
taken as the difference Hd exp − 3

4
λ, is used. A theoretical value for the wavelength of

the trapped lee wave, λtlw , is also difficult to obtain since the trapped lee wave is due
to the nonlinear orographic perturbation of the flow, especially under conditions of
wave breaking, as discussed in § 3.1. The two-layer theory of Scorer (1949) requires
two Brunt–Väisälä frequencies, one for the lower layer (trapped-lee-wave region)
and one for the upper layer (the breaking region). Since the choice of these two
frequencies would be meaningless in our case, we instead choose to estimate λtlw by
an order-of-magnitude analysis. Taking 2πU0/NH , the distance over which an air
parcel is flowing at speed U0 and oscillating vertically at frequency N/2π, we obtain
a value of λtlw ∼ 4H .

The values cited in table 2 suggest a very good overall agreement between the
simulation and the experiment, as well as the theory (when available). The general
agreement is within 10%, well within the uncertainties of evaluation. The good
agreement for the values Hd, xc and OC is not surprising, because these dimensions
are controlled by the wave dynamics, which are well captured even with a coarser grid
(as discussed in § 2.2.2). The agreement for the values of Ht, Dml , and λtlw demonstrates
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z

xy

(a)

(b)

Figure 7. As figure 6 but at t = 100N−1.

that the simulation captures the nonlinear effects of the flow quite satisfactorily. It
should be noted that although Smith’s theory yielding Hd and OC assumes the flow
to be hydrostatic, the results appear to be at least extendable to the non-hydrostatic
case studied here (FL = 0.24).

The temporal evolution of the flow observed in the experiment and the simulation is
also found to be comparable. In both cases, the wave steepens until about t = 20N−1

and the breaking region is well mixed by t = 50N−1. Comparison at later times (for
example at t = 100N−1, figure 7) confirms the presence of a secondary downstream
core of mixing in the trough between the first two oscillations of the trapped lee
wave, as discussed in § 3.1.

4. The dynamics within the wave-breaking region
The overturning wave induced by the two-dimensional topography produces in-

stablity with respect to three-dimensional disturbances, as first predicted by the
theory of Klaasen & Peltier (1985), and numerically simulated by Clark & Farley
(1984). Counter-rotating pairs of vortices oriented in the streamwise direction are
encountered in overturning internal waves in general (Caulfield & Peltier 1994; Fritts
et al. 1994; Dörnbrack 1998; Afanasyev & Peltier 1998). Fritts et al. (1994) note that
both the vertical and transverse scales of the vortices are close to the depth of the
statically unstable layer. The hydraulic experiments by Eiff & Bonneton (2000) show
that three-dimensional vortices emerge in the wave-breaking region. They appear as
counter-rotating vortex pairs in the (x, y)-, (x, z)- and (y, z)-planes, and each vortex
has a diameter of about 1.5H , i.e. approximately equal to the depth of the breaking
layer (see figure 8, for example in the (x, y)-plane). Further observations lead Eiff &
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z

xy

Crest

1.5H

Central
plane

Figure 8. Experimental pathlines (integration time = 10N−1) at t = 50N−1 in the horizontal plane
z = 3H , intersecting the breaking region.

Bonneton (2000) to suggest that these vortices, seen as counter-rotative in a given
plane, actually are part of a toroidal structure (in terms of vorticity lines).

In order to study these three-dimensional motions, the two-dimensional symmetry
needs to be broken in the numerical model with a three-dimensional disturbance.
We choose to perturb θ at the level z̄ = 2.3H which crosses the breaking region.
The disturbance ϑ′ which is added to θ will either be a (spatial) white noise, where
all scales are equally excited, or harmonic along the y-direction, as defined by
ϑ′ = ϑ0 sin (2πny/Ly), where n is the wavenumber, ϑ0 = 0.3 K, and Ly = Ny∆y is the
width of the model domain. The disturbance is added at t = 15N−1 to θ in the nested
fine mesh model just before its implementation (see § 2.2.2 for the description of the
nesting procedure).

4.1. General evolution of the three-dimensional motions

Let us define u′3D(x, y, z, t) as the deviation from two-dimensionality for the

velocity vector: u′3D(x, y, z, t) = u(x, y, z, t) − 〈u〉Ly (x, z, t) (where 〈u〉Ly (x, z, t) =

(1/Ly)
∫ Ly

0
u(x, y, z, t) dy is the mean value of u over the width Ly of the domain). A

sample u′3D field (figure 9) shows that the flow is significantly three-dimensional only
within the breaking region and under the first crest of the trapped lee wave, that is
in regions where the stratification is unstable or weak. Outside of these regions, the
dynamics are quasi-two-dimensional and remain very similar to the two-dimensional
simulation.

In order to characterize the three-dimensional instability of the wave breaking
process, we evaluate the contribution of each component of u′3D to the mean kinetic
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z

xy

U0

Figure 9. Iso-θ (in K) contours and u′3D vector field in an (x, z)-plane at t = 55N−1. Simulation 4.

energy of the three-dimensional motions, i.e. 〈u′23D〉, 〈v′23D〉 and 〈w′23D〉. These mean values
are calculated over 1280 points located within the breaking region.

The evolution of 〈u′23D〉 and 〈v′23D〉 (figure 10) reveals three distinct stages. After the
introduction of the disturbance (at t = 15N−1), 〈u′23D〉 and 〈v′23D〉 decay until t ' 20N−1.
For t > 20N−1, 〈u′23D〉 and 〈v′23D〉 grow exponentially such that (〈u′23D〉)1/2, (〈v′23D〉)1/2 ∼
e+Nt/5, and finally reach saturation at t ' 40N−1, with u′3D, v′3D ∼ 2 m s−1. Thereafter,
the flow is sustained in a quasi-steady regime. From an inspection of the flow, it can be
inferred that the three-dimensional instability starts developing as soon as the steepest
iso-θ are vertical, that is as soon as the thermal profile becomes convectively unstable.
Dörnbrack (1998) was led to similar conclusions in the case of a shear-stratified flow
beneath a critical level. He evaluated the growth time to be about 3N−1 (compared to
5N−1 in our case), but noted that the growth time increases with decreasing Reynolds
number, which may explain the slightly slower growth in our simulation. Hereafter,
we will respectively refer to these two stages of the evolution as the growth regime
(20N−1 < t < 40N−1) and the quasi-steady regime (t > 40N−1).

The vertical component 〈w′23D〉 evolves somewhat differently (figure 10). Until t =
25N−1, it strongly dominates, indicating that the three-dimensional perturbation
added on θ essentially induces vertical motions in the early stages. Despite this, 〈w′23D〉
starts growing at t = 20N−1 at the same rate as 〈u′23D〉 and 〈v′23D〉. Between t = 25N−1

and t = 30N−1, however, 〈w′23D〉 slightly decreases to the same amplitude as the other
components. From t = 30N−1, it grows again, but is now of the same order as 〈u′23D〉
and 〈v′23D〉. From then on, the three-dimensional motions do not deviate much from
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Figure 10. Evolution of the three-dimensional dynamics within the breaking region.
(Simulation 4.) Dashed line: (3/2)〈u′23D〉. Dotted-dashed line: (3/2)〈v′23D〉. Dotted line: (3/2)〈w′23D〉.
Solid line: K ′3D .

isotropy, as revealed by the rather good overlap of the curves 3
2
〈u′23D〉, 3

2
〈v′23D〉, 3

2
〈w′23D〉

and K ′3D = 1
2
(〈u′23D〉+ 〈v′23D〉+ 〈w′23D〉) for t > 30N−1.

4.2. Vortex structures generated by the instability

The three-dimensional vortex structures that are present within the breaking wave at
the beginning of the quasi-steady regime are studied with vorticity fields. The vortices
are well shaped by t = 40N−1, corresponding to the local maximum peak of K ′3D in
figure 10.

The streamlines at the very first times of the breaking have an ‘S’ shape in a
longitudinal (x, z)-plane (figure 4, t = 20N−1). This shape is induced by the two-
dimensional overturning of the gravity wave. The two curves of the ‘S’ envelop
regions with opposite y-vorticity, eventually leading to two counter-rotating vortices
in the (x, z)-plane, as observed in both experiment and simulation in the early stage
of the quasi-steady regime (figures 11b and 11c). However, these vortices are not
two-dimensional. That is evident upon examination of the flow in the other planes.
For example, the velocity-vector field in a frontal section (y, z) through the breaking
region (figure 12) reveals counter-rotating vortices with a strong central downflow.
Figure 13, showing a three-dimensional vorticity-modulus iso-surface at t = 45N−1,
suggests that these vortical stuctures have a toroidal geometry, in agreement with
the experimental results of Eiff & Bonneton (2000). This geometry implies that the
vorticity lines are closed in order to form an ‘O’-shape. This can be verified in
figure 14, showing the three components of vorticity in horizontal sections 1 and 2,
indicated in figure 11(a) or 11(b), which intersect the cores of the two (x, z)-vortices
of figure 11(b). The vorticity iso-contours in the upper section 1 (figure 14) show that
the alternating positive and negative concentrations of strong streamwise vorticity
(ωx) are located downstream of both sides of a maximum of transversal vorticity
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1

2

z

xy

(b)

(a)

(c)

Figure 11. Details of the breaking dynamics in an (x, z)-plane. (a) Iso-θ contours at t = 45N−1.
The box delimits the enlarged view shown in (b), and the dashed lines indicate the location of the
frontal (y, z) and horizontal (x, y) sections shown in figures 12 and 14 respectively. (b) u vector
field at t = 45N−1. ((a, b): Simulation 3.) (c) Experimental pathlines (integration time = 10N−1) at
t = 50N−1.

(ωy), implying that vorticity lines are locally in the shape of a ‘U’ (with the open end
oriented downstream). In the lower section 2 (figure 14), the concentrations of ωx are
located upstream from a second but opposite maximum of ωy , implying that vorticity
lines are also in a ‘U’ shape but oriented in the opposite direction than above. Given
the location of opposite concentrations of the vertical vorticity (ωz) in the lower
section (2), one can conclude that the two oppositely oriented ‘U’s actually form an
‘O’ shape, with the plane containing the ‘O’ sloping downwards for increasing x. This
geometry contrasts with the streamwise vortices previously described in various cases
of overturning waves (Fritts et al. 1994; Caulfield & Peltier 1994; Afanasyev & Peltier
1998). In these studies, vortices were depicted as elongated in the streamwise direction,
without mention of possible up- and downstream closure of the vorticity lines. In
our case, this particular vorticity-line closure is linked to the special morphology of
the breaking region due to the presence of the trapped lee wave below. The latter
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z

x y

H

H

Nt = 40 Nt = 45

Figure 12. u vector field in the breaking region. The abscissa and the vertical dimension of this
(y, z)-section are indicated with a vertical dashed line in figure 11(a). Longest arrows stand for
about 0.6U0. Simulation 3.

z

x

y
H

L

Figure 13. Vorticity-modulus iso-surface at t = 45N−1 for the value ||ω|| = 2.8N. The dashed line
indicates the crest of the obstacle. Simulation 3.

tends to prevent the downstream propagation of the breaking wave, and the vorticies
generated by the three-dimensional instability are confined upstream of the first peak
of the trapped lee wave.

4.3. Autocorrelation and spectral analysis

The typical width of the vortices across the span of the flow can be evaluated by
examining the autocorrelation function of the three-dimensional part of the velocity,
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y

z x
Upper section 1 Lower section 2

xxxx

xyxy

xzxz

Figure 14. ωx, ωy and ωz vorticity iso-contours (in units of 100N) at t = 45N−1 in the horizontal
sections 1 and 2 indicated in figure 11. (Their altitudes and streamwise extent are given with the
horizontal dashed lines in figure 11(a); their width is the same as in the frontal section of figure 12.)
The vorticity structure corresponds to the left-hand torus in figure 13. Simulation 3.

u′3D , as a function of y given t, x and z. Omitting all explicit dependences except on
y, it is defined by

A(δy) =
1

C

∫ Ly

0

u′3D(y) · u′3D(y − δy) dy,

where Ly is the width of the domain and C =
∫ Ly

0
u′23D(y) dy. This autocorrelation

function for the motions within the breaking region is plotted in figure 15 for
t = 40N−1 and t = 50N−1. After a rapid decrease from one to zero, A(δy) oscillates
in a manner characteristic of a quasi-periodic behaviour. Towards the end of the
growth regime, at t = 40N−1, the characteristic wavelength is about 1.2H (figure 15a).
Since the vortices are toroidal, taking the form of counter-rotating pairs in the (y, z)-
plane, the diameter, d, of a single vortex is about half the characteristic wavelength,
i.e. d ∼ 0.6H , corresponding to the size of the vortices shown in a (y, z)-plane in
figure 12 at t = 40N−1. One can verify that this dimension is close to the depth of
the superadiabatic region at t = 40N−1. For later times, the toroidal vortices evolve
towards more complex vortex structures. The autocorelation at t = 50N−1 (figure 15b)
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Figure 15. Autocorrelation function A(δy) of u′3D(y) in the breaking region at (a) t = 40N−1 and
(b) t = 50N−1. (Wide domain Ly = 32H , Simulation 4.)

now has a wavelength of about 2.4H , and does not significantly evolve later. Thus
the typical diameter of single vortices during the quasi-steady regime, d ∼ 1.2H , is
greater than at t = 40N−1. It is slightly smaller than the depth of the mixed region at
t = 50N−1 (see table 2, Dml) but remains of the same order of magnitude. (It should
be remarked that the final quasi-steady mixed region is significantly deeper (∼ 1.2H)
than the earlier superadiabatic region (∼ 0.6H).)

In order to analyse the spectral energy distribution of the three-dimensional mo-
tions, the kinetic energy (K) spectra in the cyclic y-direction are computed considering
the components of u as functions of y. Spectra of u(y), v(y) and w(y) (omitting the
dependences on t, x and z) are computed using fast Fourier transforms (FFT) at five
different locations (xi, zi) within the breaking region for 15N−1 < t < 80N−1. The
final kinetic energy spectra presented in this paper are the mean over the five samples
i in order to reduce statistical errors. In summary, they are defined by

K(n) = 1
2
〈|û(xi, zi)(n)|2〉i,

where û(xi, zi)(n) = FFT [u(xi, zi)(y)], and the wavenumber n = Ly/λ is the number of
periods over the width of the domain.

The spectral distribution that we obtain with a wide domain simulation (Ly = 32H ,
simulation 4) is presented in figure 16. The spectrum at t = 35N−1 reveals that the
fastest growing modes are located at wavelengths between H and 2H . Since one
wavelength λ corresponds to a pair of periodically arranged counter-rotating vortices,
each vortex is of diameter d ∼ λ/2. Thus, the range of scales H < λ < 2H corresponds
to vortices of diameter 0.5H < d < H . These scales still dominate at t = 40N−1, but the
energy maximum migrates towards larger scales until t = 50N−1, as previously noted
in the autocorrelation discussion. Thereafter the most energetic scales remain around
λ = 4H (the bandwidth of these energetic scales is rather large due to spatial and time
averaging, but encompasses the characteristic frequencies of the autocorrelation in
the y-direction). For the scales smaller than 2H , the energy density decays according
to a power law K(n) α np. For the current simulation 4 we can evaluate the exponent
p = −2.4± 0.1.

In the quasi-steady regime, the qualitative shape of the energy spectrum (preva-
lence of scales around λ = 4H and decay at small scales according to a power
law) is observed in all simulations. The sensitivity of the quantitative aspect of the
decay is tested by comparing the spectra obtained with several domain widths and
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Figure 16. Kinetic energy spectrum, K(n), of the three-dimensional motions within the
wave-breaking region at t = 35N−1 and t = 40N−1 (thin curves), and for a temporal mean
over 50N−1 < t < 80N−1 (thick curve). Simulation 4.

resolutions. Taking simulation 4 as the reference simulation, a finer simulation with
an improvement by a factor two in resolution would lead to prohibitive numerical
costs. Therefore, it is necessary to reduce the domain width before increasing the
resolution. However, one must first verify that this reduced simulation gives the same
spectra as the reference one with the same resolution. That was done in simulation
2 with a domain width reduced from 32H to 4H . Figure 17 shows that the slope of
the energetic decay at small scales does not depend on the domain width, i.e. the
influence of scales larger than 4H on smaller scales is weak. The increased resolution
(on the reduced domain) with a fine mesh of ∆x, y = L/40 (twice as fine as in
simulations 2 and 4) is performed in simulation 3. Within the observed fluctuations,
all three spectra (which are shown superimposed in figure 17) overlap for λ > H/2
(or equivalently λ > L/5, i.e. twice the Nyquist scale of the coarse grid). For λ < H/2,
however, there is too much energy in the coarse simulations (2 and 4), since there
is no more transfer of energy towards smaller scales. Consequently, the overall slope
of the energetic decay, evaluated between H/4 < λ < 2H , is stronger with the fine
grid, about p ' −3.5. Thus, the behaviour of the very small scales is sensitive to
the resolution, and a further improvement in resolution would be necessary to estab-
lish the convergence of p. However, the previous test validates the use of the mesh
∆x, y = L/20 to simulate satisfactorily the most energetic processes, i.e. all scales
greater than H/2. The energetic decay is also found to be more rapid than the − 5

3
value of Kolmogorov’s theory, implying a loss of kinetic energy. This could be due
to viscous dissipation, inherent to the low Reynolds number studied, as well as loss
against buoyancy forces, as suggested by Lumley (1964). In the case of nearly inertial
turbulence in a stably stratified flow, Lumley derives a slope of −3.
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Figure 17. Comparison of spectra |v̂(n)|. ——–, Simulation 4 (32H wide domain, L/20 mesh).
◦− ·−◦, Simulation 2 (4H narrow domain, L/20 mesh). +−−+, Simulation 3 (4H narrow domain,
L/40 mesh). Each spectrum is a temporal mean from t = 40N−1 to 50N−1. The wavenumber, n, is
defined with respect to the wide domain: n = 32H/λ.

4.4. Sensitivity to perturbation types

In the previous subsections, the three-dimensional perturbation that was added on θ
consisted of white noise, i.e. all scales in the flow were initially perturbed. We will
now study the growth of the three-dimensional motions and their later evolution for
two other types of three-dimensional perturbations: first, harmonic disturbance, where
only one scale is excited, and second, sidewalls, where friction due to the sidewalls (as
it exists in the experimental flow) is taken into account.

4.4.1. Harmonic disturbance

In simulation 5 (32H wide domain), only one wavelength (n0 = 2, i.e. λ0 = 16H)
was excited to create a harmonic disturbance. The initial three-dimensional cir-
culations induced by the disturbance are counter-rotating circulations of width 8H
(figure 18a), i.e. with an aspect ratio horizontal/vertical much greater than 1.
Nevertheless, this wide stucture evolves into narrower vortices of aspect ratio of
about 1 (figure 18b), as in the previous simulation (simulation 4) which was per-
turbed at all scales. This evolution can be explicitly shown by plotting the auto-
correlation A(δy) at few successive times (figure 19a). In the early stages, the wide
harmonic shape of the three-dimensional dynamics (induced by the disturbance)
is reflected by a sinusoidal autocorrelation with the same period, but during the
breaking, the autocorrelation function evolves toward a shape comparable to sim-
ulation 4 (figure 15), with a characteristic wavelength of the same order (λ ∼ 3H
for simulation 5). This transition from large to small scales is well captured by the
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(b)

H

H 0.9 U0

Figure 18. u′3D vector field in a (y, z)-plane at (a) t = 20N−1 and (b) t = 60N−1. Since the motions
in (a) are very weak, the vector scale is much larger than in (b). Simulation 5.

integral scale,

∆(t) =

∫ δy0

0

A(δy) dδy,

where δy0 is the first zero-crossing value. Figure 19(b) shows that the integral scale
decays rather abruptly around t = 35N−1, then remains steady after t = 40N−1.
Regarding the onset of the growth of the three-dimensional motions as was found
in figure 10 (t = 20N−1) the transition from wide circulations to narrower vortices
is delayed by about 15N−1. In summary, the scales that were found to be the most
energetic in the white noise case (λ ∼ 4H) eventually dominate the flow even in the
case of the harmonic perturbation with a longer wavelength (λ = 16H). However,
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Figure 19. (a) Autocorrelation A(δy) profiles at Nt = 17.5, 27.5, 37.5, 47.5, and 60.
(b) Integral scale ∆(t). Simulation 5.

these scales only dominate after a delay of 15N−1, implying a transfer of energy from
λ = 16H to λ ∼ 3H during this time interval.

A spectral analysis of simulation 5 shows that smaller and smaller scales are
progressively excited by a cascade of energy towards the small scales (figure 20a).
Furthermore, no energy is transferred in wavenumbers that do not belong to the
harmonic series of the fundamental (n0 = 2). Other simulations performed with
harmonic perturbations of different wavelength (simulations 6,7,8) yield the same
result: all the energy is transferred harmonically. This implies that the transfer of
the energy towards small scales results from a process of nonlinear generation of
harmonics. The phase shifts with respect to the ‘fundamental’ wavenumber n0 = 2
(figure 20b) change from random values to coherent ones as soon as the corresponding
harmonics are excited by the nonlinear cascade – as for instance for the wavenumber
n = 12 in figure 20(b). At t = 35N−1, it must be further remarked that the phase
shifts are systematically ±90◦ for the even harmonics (that is n = 2n0, 4n0, 6n0, . . .),
and 0◦ or ±180◦ for the odd ones (that is n = 3n0, 5n0, 7n0, . . .). Therefore, the acting
nonlinear term in the cascade must be advection in the transversal direction y, i.e.
v ∂/∂y, since the product will add the wavenumbers, and the derivative will shift the
phase by ± π/2. This signature of transversal advection suggests that there is no strong
interaction with the longitudinal (x, z)-dynamics during the breaking, implying that
the three-dimensional motions in the transverse (y, z)-plane are rather independent
from the two-dimensional wave dynamics (once the breaking conditions have been
generated by the latter.) In their analytical stability studies of a stratified shear flow,
Deardorff (1965) and Winters & Riley (1992) are led to the similar conclusion that
the unstable dynamics of a spanwise-oriented disturbance is independant from the
streamwise-oriented shear.

The above conclusion was found to be independent of the wavelength of the
perturbations. Moreover, the evolution of the harmonic series for three different
harmonic disturbances n0 = 1, 2, and 4 (with Ly = 4H), given in simulations 6, 7, and
8 respectively (figure 21), shows that the evolution of a given wavenumber depends
only on its rank in the harmonic series, and not on the fundamental wavenumber
n0. Hence the nonlinear coherent cascade process also seems to be independent of
the scale of the perturbation, at least in this range of relatively small scales (since
n0 = 1, 2, 4 corresponds to λ = 4H, 2H, H for Ly = 4H). The spectral energetic peaks
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Figure 20. (a) Spectra |v̂(n)| at three times during the growth regime. (b) Corresponding phase shifts
(even n only) with respect to the ‘fundamental’ wavenumber n0 = 2; a group of five bars stands
for the same wavenumber; each bar of the group stands for one of the five spectra defined in § 4.3.
Simulation 5.

of all harmonic series reach saturation values such that their envelope has the same
shape as the spectrum obtained by white-noise perturbation (figure 16).

4.4.2. Sidewalls

Unlike the first eight simulations, which used lateral cyclic boundary conditions,
simulation 9 takes sidewalls with viscous friction into account, in direct correspon-
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Figure 21. Temporal evolution of the first four harmonics in each of three simulations with harmonic
disturbance, whose perturbation wavenumbers are n0 = 1, solid line (Simulation 6), n0 = 2, dashed
line (Simulation 7), and n0 = 4, dashed-dotted line (Simulation 8).

dance with the tank experiments. Consequently, the existence of a shear layer parallel
to the sidewalls breaks the two-dimensional symmetry of the flow and no additional
three-dimensional perturbation on the θ-field is needed. Sufficiently far from the walls,
their presence does not have a great influence on the longitudinal (x, z) wave field in
the early times of the breaking (figure 22a). Near the walls, the flow must approach
U0ex since the walls are moving with the velocity U0ex in the obstacle frame, and
the flow is accelerated in the longitudinal direction, as seen on figure 22(b). Thus,
the initial three-dimensional motions acting to disturb the flow are strongest near
the walls and the three-dimensional character of the breaking dynamics does not
appear simultaneously across the whole width of the flow, but starts from the sides
and gradually converges towards the central plane (figure 23). Near the centre, even
at t = 55N−1, no three-dimensional motions can be discerned in figure 23(c). In the
vertical central plane however, breaking has already occurred.

At t = 45N−1 (figure 24), the comparison of two longitudinal cross-sections, near
the wall and near the central plane, indicates an important difference between the
vortex patterns. Near the wall (figure 24a), two counter-rotating vortices are vis-
ible, corresponding to the presence of a three-dimensional toroidal vortex (figure
23b). Near the centre (figure 24b), only one vortex is observable. Since there are
no significant three-dimensional motions in the central part of the channel over
a width of about 12H (as one can see in figure 23b), there is actually a single
quasi-two-dimensional vortex spanning transversally – which is expected in a strictly
two-dimensional simulation.

Simulation 9 compares well with the experimental observations (Eiff & Bonneton
2000). Three-dimensional motions are first detected near the sidewalls; at the same
time, a single quasi-two-dimensional roll, spanning transversally in the central part
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z

xy

Figure 23 (a–c)

(a)

(b)

Figure 22. Flow at the beginning of the breaking at t = 30N−1 (iso-θ contours in K and u velocity
vectors; longest arrows stand for about 2.5U0). (a) Central vertical plane, (b) corresponds to the
first grid point near the sidewall. See figure 23(b) for locations of planes (a) and (b). The dashed
line in (a) shows the horizontal sections shown in figure 23. Simulation 9.

of the channel, forms prior the emergence of the toroidal vortices, corresponding
to the temporary observation of the early stage of the unstable two-dimensional
breaking.

However, the time needed to obtain significant three-dimensional motions across the
whole width of the channel was observed to be shorter in the tank experiments than
in simulation 9. Therefore, the influence of the walls in the hydraulic experiments may
not be the only three-dimensional forcing from which the instability develops, and it
is likely that the background ‘noise’ present in the tank has an additional influence.
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Figure 24 (a)

(a)

(c)

(b)
L

Crest

y

z x

Wall
Figure 22 (b)

Central
plane

Figures 22 (a) and 22 (b)

Figure 23. u′3D vector field in the horizontal section at z = 2.7H through the breaking re-
gion, indicated by a dashed line in figure 22(a). (a) t = 35N−1, (b) t = 45N−1, (c) t = 55N−1.
Simulation 9.

A simulation, which combines sidewalls with the white noise used for simulations 3
and 4 (with amplitude 0.3 K added to θ), would produce essentially the same results
as those obtained with white noise alone, since the perturbations generated by the
walls at the onset of the breaking (t ∼ 20N−1) would be negligible almost everywhere.
We nevertheless expect a fine adjustment of the initial perturbation amplitude to lead
to the same lifetime of the two-dimensional vortex as in the hydraulic experiments.
We can conclude that the unstable two-dimensional breaking will be observed in the
numerical as well as in the hydraulic experiments until three-dimensional motions
dominate, and therefore the lifetime of the transient two-dimensional phase depends
on the location and the amplitude of the initial perturbations from which the three-
dimensional motions develop.
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L

H

Figure 24. u velocity vectors at t = 45N−1 (longest arrows stand for about 2.7U0). (a) Longitudinal
plane 2.7H from the sidewall. (b) Central vertical plane. See figure 23(b) for locations of planes (a)
and (b). Simulation 9.

5. Discussion
Part of our study concerns a direct comparison between the numerically simulated

flow and the corresponding experimental flow. It was shown that the numerical
atmospheric model Meso-NH can simulate an incompressible viscous stratified flow
with a high degree of realism. The overall characteristics of the flow are captured
with good quantitative agreement. The two-dimensional simulation confirms that the
breaking wave enhances the strength of the low-altitude trapped lee wave at the
expense of the high-altitude steepening wave. This point reinforces the earlier idea
that the mixed region due to the breaking acts as a reflector of energy and traps it in
the lower levels (Peltier & Clark 1979, 1983), at least for this range of wavelengths.
We also established that the trapped lee wave only appears in the presence of ground
friction which induces a separation of the laminar boundary layer on the lee slope
of the mountain. The trapped lee wave considerably influences the breaking region
above, preventing the latter from propagating downstream (as it does under free-slip
conditions at the ground). Instead, the breaking region consists of cores of mixed
fluid located above the troughs of the trapped lee wave.

Three-dimensional simulations were used to investigate the three-dimensional
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nature of the breaking. Before the breaking, the wave dynamics remain two-
dimensional, but the overturning of the iso-θ contours leads to a region of statically
unstable fluid. This two-dimensional configuration becomes unstable with respect to
small three-dimensional disturbances, and the velocity characteristic of the three-
dimensional motions grows exponentially at a rate of about 5N−1. The motions
that develop in the transverse plane during the growth phase of the instability are
organized in the form of counter-rotating pairs of vortices with strong adjacent
up- and downflows. However, they do not correspond to the streamwise elongated
alternating vortices often depicted in the literature on overturning internal waves, but
rather to the toroidal vortices observed in the experiments by Eiff & Bonneton (1998,
2000). This particular geometry is linked to the presence of the trapped lee wave
below, which prevents the streamwise elongation of the vortices. Instead, the vorticity
lines are closed approximately above the first peak of the trapped lee wave. These
vortices have transverse and vertical dimensions of the same order, i.e. a diameter
0.5H < d < 1H , which corresponds to the depth of the superadiabatic layer during
the growth phase of the instability. Fritts et al. (1994) made the same observation for
the transverse geometry of the streamwise elongated vortices, and Klaasen & Peltier
(1985) also found with a linear perturbation method that the most unstable mode
has a transverse wavelength close to the depth of the superadiabatic region.

In the case of white-noise disturbance, spectral analysis of the kinetic energy during
the growth regime showed that the fastest growing modes correspond to the typical
wavelength of the toroidal vortices. However, because of strong nonlinear interaction
between scales, the growth rate of each mode depends on the spectral type of the
initial three-dimensional disturbance. In the case of a harmonic disturbance, there is
a coherent cascade of energy towards the small scales via a generation of harmonics
due to the nonlinear term of transverse advection v ∂/∂y.

The geometry in the (y, z)-plane of the counter-rotating pairs of vortices is typical of
the motions that occur in the early stages of overturning internal waves engendered by
the growth of transverse instabilities. Klaassen & Peltier (1985) and Winters & Riley
(1992) showed the convective nature of such instabilities with linear perturbation
methods. We may provide a complementary argument in favour of that conclusion in
the nonlinear stage of the instability: the transverse advection term v ∂/∂y was shown
to dominate the other nonlinear terms governing the dynamics in the (y, z)-plane. This
indicates that there is no strong coupling, in the early stages of the breaking, between
the transverse and the longitudinal dynamics. Therefore, the transverse motions do
not appear to derive their energy from longitudinal shear, but rather from potential
energy in the convectively unstable region.

After the growth phase, the three-dimensional motions within the breaking region
reach a quasi-steady regime, and the toroidal vortices degenerate towards more
complex motions. Vortices of diameter 1H < d < 2H nevertheless dominate. This size
is comparable to the value d ∼ 1.5H observed in the tank experiments, and is also of
the order of the depth of the mixed region. During the quasi-steady regime, the size
of these vortices does not depend on the type of the initial perturbation.

In our case, no underlying shear is present in our basic state to maintain the
turbulence in the breaking region. A zone of possible shear production of turbulence
(i.e. in terms of the local Richardson number, 0 < Ri < 0.25)† is generated and
maintained by the wave dynamics at the bottom edge of the mixed region. In the

† We use the experimental criterion 0 < Ri < Ric = 0.25, but it strictly stands for high Reynolds
number parallel shear flows. The critical value is probably closer to zero for Re = 200.
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case of orographic wave breaking with no underlying shear studied by Afanasyev
& Peltier (1998), Kelvin–Helmholtz billows develop in this zone, and contribute
in an important way to sustaining the turbulent motions in the entire mixed region.
Evidence of Kelvin–Helmholtz instability was neither observed in the tank experiments
for Re = 200 nor in our simulations. Thus, the question of how the turbulence is
maintained in our case still remains.

Two-dimensional wave breaking appears to be an unrealistic solution of the physical
problem investigated here. The two-dimensional simulation (simulation 1) showed an
intermittent evolution over long time scales for the mixed region that is not consistent
with the experimental results. Andreassen et al. (1994) have already stressed that
two-dimensional simulations of breaking internal waves lead to physically wrong
results. In the early stage of the breaking, a transient quasi-two-dimensional roll is
nevertheless observed in the experiment (Eiff & Bonneton 2000), corresponding to
an unstable two-dimensional solution. However, we have shown that this observation
depends on the location and the amplitude of the three-dimensional perturbation
from which the instability develops.

This numerical study was performed with a low Reynolds number (Re = 200) linked
to the experimental conditions. The follow-up of these parallel experimental and nu-
merical studies will be with more atmospherically realistic Reynolds number values
around 10 000. Experiments in a large channel (1 m× 3 m× 20 m) will enable measure-
ments of turbulence in the breaking region. They will be used to study the structure of
the turbulence generated by the wave breaking, and also to further validate the Meso-
NH model. It will be particularly interesting to test the relevance of various sub-grid
turbulence schemes in such conditions. After validation, numerical simulations at still
higher Reynolds will allow us to study to what extent hydraulic experiments can
reproduce the dynamics of the atmosphere (Re = ∞) past a range of mountains.

This work was financially supported by the CNRS program PATOM. We are
grateful to Philippe Bonneton (University Bordeaux I, France) for helpful discussions.
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