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We define the notion of smooth supercritical compositional structures. Two well-known

examples are compositions and graphs of given genus. The ‘parts’ of a graph are the

subgraphs that are maximal trees. We show that large part sizes have asymptotically

geometric distributions. This leads to asymptotically independent Poisson variables for

numbers of various large parts. In many cases this leads to asymptotic formulas for the

probability of being gap-free and for the expected values of the largest part sizes, number

of distinct parts and number of parts of multiplicity k.
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1. Introduction

Many combinatorial structures are composed of supports and parts (or components).

For example, graphs are composed of a set of connected components, permutations

are composed of a set of cycles, compositions are composed of a sequence of integers,

functional digraphs are composed of a sequence of rooted trees. We study part sizes

in structures produced by the sequence construction S(P (x)) when the composition is

supercritical and satisfies some smoothness conditions (see Definitions 1.3 and 1.4 below

for a precise meaning).

Convention 1.1 (sets of integers). The natural numbers are denoted by N. Subsets of N

or N ∪ {0} are denoted by letters such as I , J and K .
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Convention 1.2 (generating functions and power series). Power series are denoted by

capital letters and the coefficients by the corresponding lower-case letters appropriately

subscripted. If a power series is thought of as a generating function, a bar is placed over

the letter indicating the coefficients. Thus

F(x) =
∑
n�0

fnx
n =

∑
n�0

f̄nx
n for an ordinary generating function, and

F(x) =
∑
n�0

fnx
n =

∑
n�0

f̄nx
n/n! for an exponential generating function.

In either case, ρ(F) is its radius of convergence and [xn]F(x) = fn, the coefficient of xn.

The set of combinatorial structures associated with a generating function is denoted by

the corresponding script letter, e.g., A with A(x) and P with P (x).

Definition 1.3 (compositional families). A compositional family consists of a support or

core generating function S(x) and a part or component generating function P (x) with

p0 = 0. The generating function for the family is A(x) = S(P (x)). All of these generating

functions are either ordinary or exponential.

We note that the relation A(x) = S(P (x)) indicates that each structure in the family A is

constructed using a support from S and a sequence of parts from P . Such a construction

is usually referred to as the ‘sequence construction’. If we think of the power of x in the

generating functions as keeping track of ‘size’, then the size of a structure is the sum of

the sizes of its parts.

Definition 1.4 (smooth supercritical). Let A be a family of compositional structures with

part generating function P (x) and support generating function S(x). Let A(x) = S(P (x))

and gn,k = [xn]S (k)(P (x)). We call A smooth supercritical if the following conditions hold.

(a) It is supercritical, that is, there is a 0 < r < ρ(P ) such that ρ(S) = P (r).

(b) There is a constant δ > 0 such that an/an+t → rt uniformly for |t| � nδ .

(c) For each fixed positive integer k, gn,k/gn+1,k ∼ r.

Note that r = ρ(S (k)(P (x))) for any fixed non-negative integer k. Also, since gn,0 = an,

(c) follows from (b) when k = 0.

Verification of (b) and (c) may be difficult. Theorem 1.12 establishes them using rather

weak information about the coefficients of S(x).

Example 1.5 (some smooth supercritical families). For compositions where the parts must

lie in some set P ,

S(x) =
1

1 − x
and P (x) =

∑
p∈P

xp.

For all sets P , this is supercritical. Smoothness holds if gcd(i − j | pipj �= 0) = 1. In

Section 2 we consider more general supports. For example, if the parts form a square

array, S(x) =
∑

xk
2
.
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Runs in words on an alphabet can be studied via S(P (x)), where S(x) is the generating

function for words without runs and P (x) = x/(1 − x) is the generating function for a

run. Placing a run in a word is done by replicating the letter at which it is placed. We

study runs in Example 3.2.

A smooth graph is a graph where every vertex has degree at least two. We can then

replace each vertex by a rooted tree to obtain all graphs In this case, ρ(S) = 0 and so

is outside our considerations. However, we are able to discuss graphs of a given genus.

One might expect that ‘functional digraphs’ and rooted maps could also be discussed;

however, there are difficulties. Graphs are discussed in Section 3.

The ‘exponential formula’ for labelled structures in terms of components, states that

A(x) = eP (x), where P (x) counts parts and S(x) = ex is the exponential generating function

for sets. This is usually referred to as the ‘set construction’, and is never supercritical since

ρ(ex) = ∞.

Gourdon [17] studied the distribution of the largest component size in a general

compositional structure when the generating functions are of ‘algebraic–logarithmic’ type.

Unlike the present paper, he considers the subcritical and critical cases as well as the

supercritical case. We obtain additional results about the components for a much broader

class of supercritical structures; however, our results for the largest part are less precise

than Gourdon’s for algebraic–logarithmic generating functions. Theorems 1.6, 1.10 and

1.11 below contain results for smooth supercritical families of compositional structures

under increasingly restrictive conditions on P . These are of a probabilistic nature and so

only involve relative numbers. All except Theorem 1.6(a) implicitly assume ρ(P ) < ∞.

In contrast, Theorem 1.13 provides asymptotics for the number of structures based on

assumptions about sk , the number of supports. As mentioned earlier, Theorem 1.12 proves

smoothness under relatively weak assumptions on the sk .

Theorem 1.6 (geometric and Poisson behaviour). Let S(x), P (x) and A(x) = S(P (x)) be

the generating functions for a smooth supercritical compositional family.

(a) Let Q be a non-empty subset of P . Select a structure of size n uniformly at random and

let XQ(n) be the number of parts in the structure that are in Q. Then

E(XQ(n)) ∼ nQ(r)/(rP ′(r)) and Var(XQ(n)) = o(n2).

Furthermore, the distribution of XQ(n) depends only on Q(x), that is, the number of

parts of various sizes in Q. In particular, if Xk keeps track of a single part of size k,

then E(Xk(n)) ∼ nrk−1/P ′(r). Furthermore, XP keeps track of the total number of parts

in the structure and

lim
n→∞

E(Xk(n))

E(XP (n))
=

rk

P (r)
,

a geometric-like behaviour in k.

(b) Let f(x), β and the infinite set J ⊆ N be such that f′(x) = o(1) as x → ∞ and pj ∼
ef(j)β−j as j → ∞ through J . Let ζj be the number of parts of size j in a random
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structure of size n. Let α = β/r and define σ(n) implicitly by

σ(n) =
ln(n/rP ′(r)) + f(σ(n))

ln α
or equivalently by ασ(n)e−f(σ(n)) =

n

rP ′(r)
. (1.1)

Then there is a function ω(n) → ∞ such that the random variables

{ζj : σ(n) − ω(n) � j � n; j ∈ J}

are asymptotically independent Poisson random variables with means μj = ασ(n)−j , where

convergence is in total variation distance.

Remark 1.7. Here is an interpretation of the somewhat mysterious σ(n). We illegally

treat asymptotics as exact and σ(n) as an integer in J . Since there are pj possible parts of

size j, the expected number of parts of size j is pjE(Xj(n)), which equals μj for a Poisson

distribution. Replace E(Xj(n)) with the asymptotic estimate in (a) and replace pj with its

asymptotic estimate in (b). We find that μj = 1 when j = σ(n).

Remark 1.8. If J is very sparse, the behaviour in (b) may be trivial for most n. However,

in combinatorial situations one often has pj ∼ C(ln j)ajbρ(P )−j for some C, a and b and

j ∈ N. In that case,

σ(n) =
ln(n/rP ′(r)) + a ln(ln(ln n)) + b ln(ln n)

ln α
+ o(1),

where α = ρ(P )/r and we may ignore the o(1) in σ(n).

Definition 1.9 (gap-free and I(P)). Let I(P) = {k | pk �= 0}. A structure is said to be

gap-free if, whenever it has a part of size k, it has a part of size j for all j ∈ I(P) less

than k.

One may choose to ignore whether or not parts of sizes less than some fixed k0 are

present in the definition of gap-free. By Lemma 5.5 below, this does not affect our

asymptotic results.

Theorem 1.10 (rough estimates). Let S(x), P (x) and A(x) = S(P (x)) be the generating

functions for a smooth supercritical compositional family with ρ(P ) < ∞. Suppose there is

an f(x) such that f′(x) = o(1) as x → ∞ and pn ∼ ef(n)ρ(P )−n as n → ∞ through I(P).

Define α = ρ(P )/r and define σ(n) by (1.1). Let the random variable Mn be the maximum

part size in a random structure of size n.

(a) If ωi(n) are any functions such that ωi(n) → ∞ and σ(n) − ω1(n) ∈ I(P), then

Pr
(
σ(n) − ω1(n) � Mn � σ(n) + ω2(n)

)
→ 1.

(b) The probability that a random structure of size n is gap-free is bounded away from zero

as n → ∞.

When N \ I(P) is finite, we can obtain more accurate results. We state these next along

with some additional results.
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Theorem 1.11 (largest part, distinct parts, gaps, etc.). Let S(x), P (x) and A(x) = S(P (x))

be the generating functions for a smooth supercritical compositional family with ρ(P ) < ∞.

Suppose ν = |N \ I(P)| is finite, and pn ∼ ef(n)ρ(P )−n, where f(x) satisfies f′(x) = o(1) as

x → ∞.

Let α = ρ(P )/r, let log denote logarithm to the base α, and let σ(n) be given by (1.1). Let

γ
.
= 0.577216 be Euler’s constant, and let

Pk(x) = log e
∑
��=0

Γ(k + 2iπ� log e) exp(−2i�πx), (1.2)

a periodic function of x with period 1.

(a) Let the random variable Mn be the size of the maximum part in a random structure

of size n. For any function ωa(n) such that ωa(n) → ∞ as n → ∞, |Mn − σ(n)| < ωa(n)

a.a.s. Furthermore,

E(Mn) = σ(n) + γ log e − log(α − 1) +
1

2
+ P0

(
σ(n) + 1 − log(α − 1)

)
+ o(1).

(b) Let the random variable Dn be the number of distinct part sizes in a random structure

of size n. For any function ωb(n) such that ωb(n) → ∞ as n → ∞, |Dn − σ(n)| < ωb(n)

a.a.s. Furthermore,

E(Dn) + ν = σ(n) + γ log e − 1

2
+ P0(σ(n)) + o(1).

(c) Let qn(k) be the probability that a random structure of size n is gap-free and has largest

part k. There is a function ωc(n) → ∞ as n → ∞ such that

qn(k) ∼ exp

(
−ασ(n)−k

α − 1

) ∏
j�k

(
1 − exp

(
−ασ(n)−j

))
(1.3)

uniformly for |k − σ(n)| < ωc(n). Furthermore, for any constant B, the minimum of qn(k)

over |k − σ(n)| < B is bounded away from zero.

(d) Let qn be the probability that a random structure of size n is gap-free. Then qn is

asymptotic to the sum of the right-hand side of (1.3), where the sum may be restricted

to |k − σ(n)| < ωd(n) for any ωd(n) → ∞ as n → ∞. Furthermore, qn ∼ bm, where

m =

⌊
ασ(n)+1

α − 1

⌋

and

bm =

⎧⎪⎪⎨
⎪⎪⎩

1 if m = 0,

m−1∑
k=0

bk

(
m

k

)
(1/α)k(1 − 1/α)m−k if m > 0.

(1.4)

(e) Let gn(k) be the probability that a random structure of size n has exactly k parts of

maximum size. Then, for each fixed k > 0,

gn(k) ∼ (α − 1)k

k!αk
Pk

(
σ(n) + 1 − log(α − 1)

)
+

(α − 1)k log e

kαk
as n → ∞.
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(f) Let Dn(k) be the number of distinct part sizes that appear exactly k times in a random

structure of size n. Then, for fixed k > 0,

E(Dn(k)) =
Pk(σ(n))

k!
+

log e

k
+ o(1) as n → ∞.

Let mn(k) be the probability that a randomly chosen part size in a random structure of

size n has multiplicity k. For fixed k, mn(k) ∼ E(Dn(k))/ log n.

We recall that Γ(a + iy) goes to zero exponentially fast as y → ±∞. Thus the sum (1.2)

is dominated by the terms with small �. Furthermore, for 1 < α < 2 the amplitude of the

oscillation of P0(x) is less than 10−6 [18].

Theorem 1.12 (smooth supercriticality). Let P (x) and S(x) be the part generating function

and support generating function, respectively, of a family A of compositional structures. Let

s = ρ(S). If the following conditions hold, then A is smooth supercritical.

(a) There is a 0 < r < ρ(P ) � ∞ such that ρ(S) = P (r).

(b) gcd{i − j | pipj �= 0} = 1.

(c) There is an ε > 0 and an infinite set K = {k1 < k2 < · · · } ⊆ N such that

(i) ki+1 − ki = O(k1−ε
i ),

(ii) sk � exp(O(k1−ε))s−k for all k,

(iii) sk � exp(−O(k1−ε))s−k for k ∈ K .

Theorem 1.13 (number of structures). We make the same assumptions as Theorem 1.12

and also assume that there is a function G(x) such that the following hold.

(a) G′(x) = o(G(x)/x) as x → ∞.

(b)
∑

k�x skρ(S)k = (x + o(
√
x))G(x) as x → ∞.

Then an ∼ μr−nG(μn), where μ = P (r)/rP ′(r).

The rest of the paper is organized as follows. Section 2 discusses multi-dimensional

compositions. Section 3 gives applications to some other families of compositional

structures. Section 4 briefly discusses some open questions. Section 5 states some lemmas

which are used to prove the theorems. The remaining sections contain the various proofs.

2. Multi-dimensional compositions

While higher-dimensional partitions have been extensively studied, higher-dimensional

compositions have not been. One reason is that the choice of support for basic higher-

dimensional partitions is clear: a Ferrers diagram of a partition one dimension lower.

Furthermore, monotonicity requirements, which are restrictions between nearby parts, lead

to interesting problems.

Ordinary compositions with fairly general local inter-part restrictions have been

studied [5, 6], but we are aware of only the following two extensions to higher-dimensional

supports.
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Matrix compositions. Various authors have studied ‘matrix compositions’ (see, e.g., [21,

22]). These have d × m rectangular supports, where d is fixed. Zero parts are allowed but

all zero columns are forbidden. Because of this restriction on zeros, they do not fit the

present paper. As pointed out in Example 7 of [5], rectangular compositions with fixed

d and local restrictions can be converted to ordinary compositions with local restrictions

by reading an array B top to bottom, left to right:

b1,1, b2,1, . . . , bd,1, b1,2, . . . , bd,m.

The methods of [5] and [6] can be extended to allow zero parts as in matrix compositions.

Convex polyominoes. We plan to consider compositions with convex polyomino support

and rather general local restrictions in a future paper [9].

If compositions have no inter-part restrictions and we want to study the parts, then

A(x) = S(P (x)). We claim this is supercritical whenever S is infinite. Note first that

P is simply the allowed part sizes and so I(P) = P and P (x) =
∑

p∈P xp. Second,

since ρ(P ) = ∞ when P is finite and ρ(P ) = 1 otherwise, P (x) is unbounded as x →
ρ(P ) and so the family of structures is supercritical whenever S(x) is not a polyno-

mial. As the next example shows, rather general supports lead to smooth supercritical

compositions.

Example 2.1 (a variety of supports). Since we usually have no direct knowledge of the

behaviour of S(P (x)) but know a lot about S(x), we apply Theorem 1.12. As a result, we

make the following assumptions:

(a) S(x) is not polynomial, i.e., S is infinite,

(b) gcd(i − j | pipj �= 0) = 1.

Since (a) implies Theorem 1.12(a) and (b) is a restatement of Theorem 1.12(b), it suffices

to find a set K for Theorem 1.12(c). Since pk = 1 for all k ∈ P , Theorems 1.6, 1.10 and

1.11 will apply provided that P behaves as required in those theorems.

While the motivation for choosing a particular set of supports may be geometric (such

as hypercubes), only the values of sk matter. Here are a few examples of supports.

Partitions. Suppose sk is the number of partitions of k in one or more dimensions and,

possibly, with restrictions on parts. Often log sk = Θ(kb) for some 0 < b < 1, and so we

can take K = N, s = 1 and 1 − ε = b in Theorem 1.12(c). (See [10] for d-dimensional

partitions with d > 2.)

Compositions. It was shown in [5] that for many locally restricted compositions sk ∼ Ar−k

for some A > 0 and 0 < r < 1. Thus we let K = N, s = r and ε = 1.

Hypercubes. For d-dimensional hypercubes, sk = 1 if k is a dth power and sk = 0 otherwise.

In this case, we let K be the set of dth powers, s = 1 and ε = 1/d.

Hyper-rectangles. For d-dimensional hyper-rectangles, sk is the number of ways to write

k as an ordered product of d factors. Thus 1 � sk � kd−1, and so we can take K = N,

s = 1 and ε > 0 any value less than 1. For (d + f)-dimensional hyper-rectangles with f
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dimensions fixed, let ϕ be the product of the fixed dimensions. Then 1 � sϕk � kd−1, and

we proceed as before but with K = ϕN.

Polyominoes. The rather complicated generating function for convex polyominoes was

found by Klarner and Rivest [19]. It was shown in [3] that its only singularity on its circle

of convergence is a simple pole. Hence Theorem 1.12 applies. Convex polyomino supports

for locally restricted compositions will be studied in [9]. Information about some other

types of polyominoes can be found in [11].

Smooth supercritical structures. Lemma 5.6 below shows that such structures of size k can

be used as supports for compositions. If we apply this to structures built from supports

S1 and parts P1, the new support generating function is S2(x) = S1(P1(x)). If P2 is the

new set of parts, A(x) = S2(P2(x)) = S1(P1(P2(x))). When Pi are sets of integers, the result

corresponds to placing a list of integers at each point in S1 and counting structures by

the sum over all lists. The lengths of the lists must lie in P1 and the elements of the lists

must lie in P2.

In many cases, Theorem 1.13 provides asymptotics for an. The cases of rectangular

support and hypercube support require some work.

For rectangular support, sk is the number of divisors of k. It is known [1, Theorem 3.3]

that

H(x) =
∑
k�x

sk = x ln x + (2γ − 1)x + O(
√
x),

which satisfies the assumption in Theorem 1.13 with G(x) = ln x + 2γ − 1. Therefore

an ∼ μr−n ln n, where P (r) = 1 determines r and μ = 1/rP ′(r). When all part sizes are

allowed, P (x) = x/(1 − x) and so r = 1/2 and μ = 2.

For hypercube support, non-zero sk are too sparse to apply Theorem 1.13. However,

we have the following result.

Theorem 2.2 (number of compositions with hypercube support). Let the supports be the

d-dimensional hypercubes.

(a) If d = 2, P is infinite and gcd(i − j | pipj �= 0) = 1, then

an ∼ μr−n

√
2πσ2n

∞∑
j=−∞

exp

(−2μ(j − {√
μn})2

σ2

)
,

where r = P−1(1), μ = 1/rP ′(r), σ2 = r2P ′′(r)μ3 + μ2 − μ and {x} denotes the fractional

part of x.

(b) If d = 2 and P = N, then

an ∼ 2n√
2πn

∞∑
j=−∞

exp
(
−4(j − {

√
n/2})2

)
.
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(c) If d > 2 and P = N, then

an ∼
(
n − 1

ad − 1

)
+

(
n − 1

(a + 1)d − 1

)
,

where a = max{i | 2id − 1 < n}. One of the two binomial coefficients will usually be

negligible.

3. Other applications

We begin by discussing two of Gourdon’s examples [17]. Then we look at a graph

application where the parts are maximal trees. Since the generating function for the

structures must have non-zero radius of convergence, we must limit the number of

graphs in some manner. We discuss labelled graphs of fixed genus. Another possibility

is functional digraphs, but this situation is critical rather than supercritical. Still another

possibility is rooted maps. Two problems arise. First, P (x) = T 2(x), the square of the tree

generating function, and so no results are obtained about tree sizes directly. Second, the

generating function is

A(x) = S(T 2(x))

(
1 +

4xT ′(x)

T (x)

)
. (3.1)

Although S(T 2(x)) is smooth supercritical, we are faced with an additional factor.

Example 3.1 (threads in rooted plane trees). This is based on Example 7 of [17]. Trees

are unlabelled, rooted and plane. Direct edges toward the root. A thread is a path each

of whose vertices except possibly the starting vertex, has indegree 1. We want to study

the number of vertices in maximal length threads. Thus P (x) = x/(1 − x), the generating

function for non-empty paths. The supports are those trees with no vertices of indegree 1.

By the standard iterative construction of rooted plane trees

S(x) = x
∑
d∈D

S(x)d,

where D consists of the allowed indegrees. Thus 0 ∈ D and 1 /∈ D. It follows that the

dominant singularities of S(x) are branch points at ρ(S)ω where ω is a gcd(D)th root of

unity and w = ρ(S) is given implicitly by∑
d∈D

(d − 1)wd = 0 and then 1/ρ(S) =
∑
d∈D

wd−1.

Furthermore, if an �= 0, then n − 1 is a multiple of gcd(D). Theorem 1.12 applies with

ki = 1 + gcd(D)i. Since r/(1 − r) = ρ(S), we have

r =
ρ(S)

1 + ρ(S)
, P ′(r) = (1 + ρ(S))2,

α =
1 + ρ(S)

ρ(S)
, σ(n) = logα(n) − 1 + 2 logα(α − 1).

(3.2)

As Gourdon notes, in the case of unary–binary trees, ρ(S) = 1/2 and r = 1/3.
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We note that the equations in (3.2) depend only on the fact that P (x) = x/(1 − x).

Example 3.2 (runs in words). This is based on Example 9 of [17]. A run is a repeat of a

single letter in a word on a finite alphabet A. We want to study lengths of runs in words

of length n. The supports are Smirnov words (words without runs) and the parts are runs

on a single fixed letter. A run of length k replaces the letter i ∈ A to which it attached with

the k-long subword i . . . i. If N = |A|, then P (x) = x/(1 − x), A(x) = 1/(1 − Nx) − 1 and

S(x) = Nx/(1 − (N − 1)x). Since A(x) has a simple pole, we have a smooth supercritical

family and our theorems apply. Since (3.2) depends only on ρ(S) and P (x), it applies in

this case as well.

We can restrict the set of words by limiting the letters that can follow a letter i ∈ A to

a subset Ai of A provided that two conditions hold. First, i ∈ Ai for all i ∈ A. Second, for

all i, j ∈ A there is a word of the form · · · i · · · j · · · i · · · . In this case, the 0–1 transition

matrix given by mi,j = 1 if and only if j ∈ Ai is such that Mk has all non-zero entries

for sufficiently large k. Hence M has a unique maximum eigenvalue and so A(x) has one

dominant singularity and that is a simple pole. Thus an ∼ Cr−n and [xn]A(k)(x) ∼ C(nr)kr−n

for some C . We have

A(k)(x) =
∑
i�k

S (i)(P (x))Fi,k(x),

where Fi,k(x) is a polynomial in the various derivatives P (j)(x) = j!(1 − x)−j−1 and

Fk,k(x) = (P ′(x))k . We will show by induction on k that

[xn] S (k)(P (x)) ∼ C(nr(1 − r)2)kr−n, (3.3)

and so the family is smooth supercritical. The case k = 0 is trivial. By the induction

hypothesis and the fact that ρ(P ) > r, it follows that

[xn]A(k)(x) = [xn]
(
S (k)(P (x))(1 − x)−2k

)
+ O(nk−1r−n).

Hence

[xn] S (k)(P (x)) = [xn]
(
A(k)(x)(1 − x)2k

)
+ O(nk−1r−n).

Equation (3.3) follows from Theorem 2 in [4].

Example 3.3 (runs of a particular letter). As in the previous example, we consider runs

in words on an N letter alphabet A; however, now we are interested only in runs of a

particular letter, say �. There are no restrictions on the letters in the words.

Let ϕ /∈ A be a new letter. Let S be all words of the form ϕ�w, where �w is a possibly

empty word on the alphabet A \ {�}. Thus S(x) = x/(1 − (N − 1)x). Let P be the set of

words ϕzk , where k is a non-negative integer. Thus P (x) = x/(1 − x). We attach ϕzk to

a letter i in a word by replacing i with izk . The structures A are then all words of the

form ϕ�w, where �w ∈ A∗ is a possibly empty word in A. In other words [xn+1] S(P (x)) is

the number of words of length n in A∗. Our theorems apply.
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Table 1.

|A| n R E(mn) m̄n M̄n

2 216 400 15.33 15.35 16.35

3 310 100 9.66 9.69 10.72

3 39 100 8.66 8.67 9.75

4 48 100 7.71 7.70 8.71

Here and in the previous example, P (x) = x/(1 − x), and r is given by 1 − (N − 1)P (r) =

0. Thus the results here are the same as those when we consider runs on all letters; however,

the interpretation of word length n and run length k is different.

• In the previous example n was the length of a word �w and k was the length of a run

ik for some i ∈ A.

• In this example, because of ϕ, n − 1 is the length of a word �w and k − 1 is the length

of a run �k−1.

To illustrate the difference we look at Theorem 1.11(b). For the previous example, it tells

us that the expected number of distinct run lengths in a word of length n is

σ(n) + γ log e − 1

2
+ P0(σ(n)) + o(1).

On the other hand, the expected number of distinct run lengths for a particular letter in

a word of length n is

σ(n + 1) + γ log e − 3

2
+ P0(σ(n + 1)) + o(1),

where 1/2 was replaced by 3/2 because the formula in Theorem 1.11(b) was counting

ϕ ∈ P , which corresponds to no run in � and so should not be counted. Since σ(n + 1) =

σ(n) + o(1), we conclude that the expected number of distinct run lengths in all letters and

in a single letter differs by 1 + o(1). A similar result holds for E(Mn). Since we found these

results surprising, we did Monte Carlo runs. The results in Table 1 agree with the theory.

The m̄n and M̄n are the observed average maxima for runs of a single letter and all runs,

respectively. The former was calculated by averaging maximum run lengths over all |A|
letters. The number of Monte Carlo runs is R, and E(mn) is the value in Theorem 1.11(a)

for runs of a single letter.

Example 3.4 (labelled graphs of given genus). Let Γ be a connected graph with loops

and/or multiple edges allowed or not. The graph is embedded in a surface Σ (a closed

2-manifold) if all the components of Σ − Γ are simply connected. An alternative definition

removes the simply connected restriction on components, leading to a larger set of graphs

for a given surface. To obtain a functional equation of the form we have analysed, we insist

that the graph not be a tree. In all cases, forbidding trees does not change asymptotic

results since trees are a vanishingly small fraction of all graphs of a given genus. (If

connectedness of the graph is not required then this is no longer true, and we have not

studied that situation.)
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The asymptotic enumeration of the number of various types of connected labelled

graphs embeddable in a surface (or oriented surface) of genus g has been determined.

See [8] and [12]. In all cases the number with n vertices satisfies

ān = ann! ∼ Antr−nn!,

where A depends on the surface Σ and type of graph, t depends on the surface, and

r < 1/e depends on the type of graph. We have the exponential generating function

relation A(x) = S(T (x)), where T (x) = P (x) counts rooted labelled trees and S(x) counts

graphs with all vertices of degree at least two that are embeddable in Σ. (A loop contributes

two to the degree of its vertex.)

Since t̄n = nn−1, once we show that Definition 1.4 is satisfied with P = T , it will follow

that Theorems 1.6, 1.10 and 1.11 apply.

It is well known that T (x) = xeT (x), where ρ(T ) = 1/e and T (1/e) = 1. Definitions 1.4(a)

and 1.4(b) follow from the known asymptotics for ān. It follows from T (x) = xeT (x) that

T ′(x) =
eT (x)

1 − T (x)
,

which is analytic and non-zero for |x| < 1/e. Condition (c) follows as in the previous

example.

4. Some open problems

The critical and subcritical cases behave quite differently since, as Gourdon [17] showed

for algebraic–logarithmic functions, the expected value of the largest part is proportional

to n. We do not know to what extent our results can be adapted to these cases. Someone

considering the critical case might want to start with [2].

Even in the supercritical case there are many questions, some of which we now discuss.

If one considers less general S(x) and P (x), it should be possible to obtain more

precise results. For example, the variables XQ(n) in Theorem 1.6(a) should satisfy a

central limit theorem, perhaps through the application of the Quasi-Powers Theorem [15,

Theorem IX.8]. Instead, we opted to look for the most general conditions under which

we could obtain interesting results.

If we restricted S(x) and P (x) further, we might have been able to use analytic tools

and obtain distribution results as in [17, 24].

Almost all our results deal with the situation where ρ(P ) is finite. What can be said

when P (x) is entire? The use of ρ(P ) in formulas appears to cause a problem; however,

(1.1) suggests the following possibility. The right-hand equation in (1.1) can be rewritten

as

1

rσ(n)pσ(n)
=

n

rP ′(r)
, (4.1)

which contains nothing infinite. In his Example 8, Gourdon [17] has exponential generat-

ing functions with S(x) = 1/(1 − x) and P (x) = ex − 1 and, in our notation, observes

that σ(n) ∼ (ln n)/(ln ln n). We show that this agrees with our (4.1). Since r = ln 2,

P ′(r) = 2 and pn = 1/n! ≈ (e/n)n, (4.1) becomes approximately (σ(n)/C)σ(n) = n and so
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ln n ≈ σ(n) ln σ(n), whence σ(n) ≈ ln n/ ln ln n. (Some sort of smoothness is required for pk
so that talking about pσ(n) for non-integral σ(n) is reasonable and so that theorems can

be proved.)

Suppose we are only interested in considering the sizes of a subset of the parts. One

possibility is that we are studying a subset Q of P for which qk is well-behaved. For

example, we might consider graphs by genus but, instead of all trees, be interested only

in those maximal trees which are unary–binary trees. On the other hand, consider runs in

words where we are only interested in runs on a proper subset B of the alphabet. Using

the approach in Example 3.2, pk = 1 for all k and the letter in the run is determined by

the letter it replaces in the support. Hence there is no Q. A way around this was used in

Example 3.3 for keeping track of runs in a particular letter. We are unable to deal with

the case |B| > 1 or with words having restrictions as in Example 3.2.

Of course one can ask about more general forms of the generating function equation.

The maps in (3.1) are a simple case. Perhaps more complicated is the problem of keeping

track of runs in words where we are only interested in those runs whose letters lie in

B ⊂ A.

5. Five lemmas

Although the results and lemmas in this paper are similar to those in [6], the approach

to proving the lemmas is rather different. In the earlier paper, where locally restricted

compositions were studied, infinite matrices were used. This was possible because the

core contained one object of each size, and it was necessary because of local restrictions.

Neither the possibility nor the necessity applies here, so our approach to proving the

lemmas is different.

Lemma 5.1 (concentration and tails). Under the same assumptions as Theorem 1.6(a), the

following are true.

(a) Theorem 1.6(a) is true.

(b) There are constants Cj > 0 depending on what Q contains such that

Pr(XQ(n) < C1n) < C2(1 + C3)
−n for all n.

(c) Let ζk be the number of parts of size k in a random structure of size n and let δ be

given by Definition 1.4(b). There is a constant B and, for any fixed ε > 0, a constant

B(ε) such that, as n → ∞,

Pr(ζk > 0) �

⎧⎨
⎩ Bnrkpk when k � nδ,

B(ε)n(r + ε)kpk for all n and k.

Recall that each structure in A is composed of a support in S and a sequence of parts in

P . Within a sequence we can consider certain parts as marked. They then form a marked

subsequence and the resulting structure is a marked structure with those parts marked.
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Lemma 5.2 (marked structures). Make the same assumptions as in Theorem 1.6(a). Let

C be any positive constant. Let �i(n), 1 � i � k, be k-tuples of positive integers such that

maxi(�i(n)) < (log n)C .

(a) Let Li(n) be a part of size �i(n) and let H(x) be the generating function for marked

structures where the associated marked subsequence is L(n) = (L1(n), . . . , Lk(n)). Then

h̄n ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ān
(n/rP ′(r))krs

k!
in the unlabelled case,

ān
(n/rP ′(r))krs

k!

k∏
i=1

1

�i(n)!
in the labelled case,

as n → ∞, where s = �1(n) + · · · + �k(n). Furthermore, the rate of convergence does not

depend on the specific Li(n) but only on the �i(n).

(b) Let H(x) be the generating function for all marked structures containing k marked parts

such that the ith distinguished part has size �i(n). Then

h̄n ∼ ān

( k∏
i=1

p�i

)
(n/rP ′(r))krs

k!
as n → ∞, where s = �1(n) + · · · + �k(n). (5.1)

The following is Lemma 12 of [16].

Lemma 5.3 (characterization of Poisson). Let (m)k = m(m − 1) · · · (m − k + 1) denote the

falling factorial. Suppose that ζ1, . . . , ζn = ζ1(n), . . . , ζn(n) is a set of non-negative integer

variables on a probability space Λn, n = 1, 2, . . . , and there is a sequence of positive reals

σ(n) and constants α > 1 and 0 < c < 1 such that

(i) σ(n) → ∞ and n − σ(n) → ∞,

(ii) for any fixed positive integers �, m1, . . . , m�, and sequences k1(n) < k2(n) < · · · < k�(n)

with |ki(n) − σ(n)| = O(1), 1 � i � �, we have

E
(
(ζk1(n))m1

(ζk2(n))m2
· · · (ζk�(n))m�

)
∼

�∏
j=1

α(σ(n)−kj (n))mj , (5.2)

(iii) Pr(ζk(n) > 0) = O
(
ck(n)−σ(n)

)
uniformly for all k(n) > σ(n).

Then there exists a function ω(n) → ∞ so that for k = �σ(n) − ω(n)�, the total variation

distance between the distribution of (ζk, ζk+1, . . . , ζn), and that of (Zk, Zk+1, . . . , Zn) tends to

0, where the Zj = Zj(n) are independent Poisson random variables with EZj = ασ(n)−j .

Remark 5.4. We will apply Lemma 5.3 to obtain the Poisson result in Theorem 1.6(b).

This is used together with Mellin transforms and a result of Hitczenko and Knopf-

macher [18] on sequences of geometric i.i.d. random variables, to prove various parts of

Theorem 1.11.

Lemma 5.5 (plentitude of small parts). We assume the hypotheses and notation of The-

orem 1.10. Let j = O(ln n), ζj be the number of occurrences of a part of size j in a random
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structure of size n. Let k be any fixed positive integer. Then

Pr(ζj < k) � B
(
D−n +

(
nrjpj

)−k)
, (5.3)

for some constants B > 0 and D > 1. Furthermore, if ω(n) → ∞, then

Pr

( ∨
j<σ(n)−ω(n)

j∈I(P)

(ζj < k)

)
�

∑
j<σ(n)−ω(n)

j∈I(P)

Pr(ζj < k) = o(1). (5.4)

Lemma 5.6 (inherited smoothness). If an satisfies Definition 1.4(b), then it satisfies The-

orem 1.12(c) with sk = ak , K = N and any ε � δ.

6. Proof of the lemmas

We start with asymptotics for coefficients of various derivatives. Assume that ∅ �= Q ⊆ P .

Let R(x) = P (x) − Q(x) and A(x, t) = S(Q(x)t + R(x)). For fixed k � 0 and � we have

(y)k ∼ (y + �)k as y → ∞. Our goal is to show that

[xn] S (k)(P (x)) ∼
(

n

rP ′(r)

)k

an and [xn]
∂k

∂tk
A(x, t)

∣∣∣∣
t=1

∼
(
nQ(r)

rP ′(r)

)k

an. (6.1)

We have

∂k

∂tk
A(x, t)

∣∣∣∣
t=1

= S (k)(P (x))Q(x)k (6.2)

and

A(k)(x) =

k∑
i=1

S (i)(P (x))Gi,k(x),

where Gi,k is a polynomial in the derivatives of P and Gk,k(x) = (P ′(x))k . Note that

[xn]A(k)(x) ∼ nkan+k ∼ (n/r)kan.

Applying Theorem 2 of [4] with B(x) equal to S (k)(P (x)) and A(x) equal to the various

polynomials in derivatives of P , we have

(n/r)kan ∼
k∑

i=1

Gi,k(r) [xn] S (i)(P (x)).

An easy induction on k shows that [xn] S (k)(P (x)) ∼ (n/r)kan/Gk,k(r) and so the left-hand

side of (6.1) follows. The right-hand equation comes from applying Theorem 2 of [4] to

(6.2) and then using the left-hand equation.

Proof of Lemma 5.1. We begin with (a). Include in A(x) the variable t to keep track of

whatever XQ(n) is counting, and write A(x, t). The expected value of XQ(n) is

μn = [xn]At(x, 1)/an,
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and its second moment about zero is

νn = [xn] (Att(x, 1) + At(x, 1))/an.

It follows from (6.1) that

μn ∼ nQ(r)/rP ′(r) and νn ∼
(
nQ(r)/rP ′(r)

)2 ∼ μ2
n.

Since σ2
n = νn − μ2

n, this proves strong concentration, completing the proof of (a).

We now prove (b). Recall that R(x) = P (x) − Q(x). For each 0 < t � 1, let r(t) be the

radius of convergence of S(Q(x)t + R(x)). Note that r(1) = r < ρ(P ) Since Q(x) and R(x)

have positive derivatives for 0 < x < ρ(P ), there is a t0 < 1 such that Q(x)t + R(x) = ρ(S)

has a strictly decreasing solution x = r(t) < ρ(P ) for all t > t0. Fix some t ∈ (t0, 1) and

choose ε > 0 such that

r(t) − ε

r + ε
> 1.

Then [xn] S(Q(x)t + R(x)) � C2(r(t) − ε)−n for some C2 and all n, and the total number of

structures of size n (divided by n! in the labelled case) is bounded below by C2(r + ε)−n for

n sufficiently large to guarantee an > 0. Thus the fraction of structures with XQ(n) < C1n

is bounded above by

t−C1nC2(r(t) − ε)−n

C2(r + ε)−n
.

It follows that we can choose C1 > 0 sufficiently small that

r + ε

tC1 (r(t) − ε)
< 1.

This proves (b).

We now prove (c). We can overcount structures with a part of size k by inserting such

a part at random in a sequence of parts before putting it into a support set. This leads to

the generating function

∞∑
m=1

smP (x)m−1(mpkx
k) = pkx

kS ′(P (x)).

By (6.1), we have [xn] (xkS ′(P (x))) ∼ nB1an+1−k for some B1 and all n � k. Hence the

probability that a random structure of size n contains a part of size k is bounded above

by

npkB1an−k+1

an
.

The first upper bound in (c) follows from an−k+1/an ∼ rk−1 when k = O(nδ). However,

since an/an+1 ∼ r as n → ∞, we have

an−k+1

an
< B2(ε)(r + ε)k for all n � k � 1,

which gives the general upper bound.
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Proof of Lemma 5.2. We begin with (a) in the unlabelled case. When the k marked

parts are removed from an m-long sequence of parts, it is split into k + 1 subsequences,

some of which may be empty. If the number of parts in these subsequences is m0, . . . , mk ,

then m0 + · · · + mk = m − k, a k + 1 part composition of m − k with empty parts allowed.

There are
(
m
k

)
of these. Thus

H(x) =
∑
m

sm

(
m

k

)
P (x)m−k

k∏
i=1

x�i(n) =
∑
m

sm

(
m

k

)
P (x)m−kxs =

xsS (k)(P (x))

k!
,

where s = �1(n) + · · · + �k(n). By this and (6.1),

[xn]H(x) =
1

k!
[xn−s] S (k)(P (x)) ∼ 1

k!

(
n − s

rP ′(r)

)k

an−s.

Part (a) follows in the unlabelled case from s < k(log n)C and Definition 1.4(b).

The proof of (a) for the labelled case is the same, except that factorials appear. Thus

we obtain

∑
m

sm

(
m

k

)
P (x)m−k

k∏
i=1

x�i(n)

�i(n)!
=

( k∏
i=1

1

�i(n)!

)
xsS (k)(P (x))

k!
,

and the remainder of the proof proceeds as in the unlabelled case since we are dealing

with an and hn, not ān and h̄n.

For (b) we note that since a marked structure includes the marking of the parts, different

parts lead to different marked structures and hence we can simply sum the result in (a)

over the
∏

p̄�i(n) different sequences.

Proof of Lemma 5.5. In the following proof, any reference to a part size k, whether

directly or in an index of summation, implicitly assumes that k ∈ I(P), that is, pk > 0.

Let λ be the smallest k such that pk > 0. Let ān[[statement]] be the number of structures

of size n for which the statement is true. We want to study ān[[ζj < k]]/ān for λ < j <

σ(n) − ω(n). By Lemma 5.1(b) there is a δ > 0 such that ān[[ζλ < δn]]/ān � C1D
−n for

some C1 and D > 1. Given a structure with ζλ � δn and ζj < k, we can convert it into

a structure with ζj � k by replacing k parts of size λ with parts of size j. This is a

many-to-any conversion because there are p̄� parts of size �. There are at least
(
δn
k

)
ways

to select the position in the support. Each position can have any of p̄λ parts, each of

which can be replaced by any of p̄j parts. The result has at most 2k − 1 parts of size j

and we cannot tell which were produced by replacement. Hence each new structure could

have arisen in at most
(
2k−1
k

)
ways. For unlabelled structures, we have(

δn

k

)
ān[[(ζλ � δn) ∧ (ζj < k)]]

pkj

pkλ
�

(
2k − 1

k

)
ān+k(j−λ),

and so

ān[[(ζλ � δn) ∧ (ζj < k)]]/ān �
(
2k−1
k

)
(
δn
k

) pkλ
pkj

an+k(j−λ)

an
. (6.3)
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For labelled structures, using multinomial coefficients to take care of relabelling, we obtain(
δn

k

)
ān[[(ζλ � δn) ∧ (ζj < k)]]

p̄kj
(
n+k(j−λ)
j,··· ,j,n−kλ

)
p̄kλ

(
n

λ,···λ,n−kλ

) �
(

2k − 1

k

)
ān+k(j−λ),

which also gives (6.3).

Since k is fixed and j = O(ln n), an+k(j−λ)/an ∼ r−k(j−λ). Thus

Pr(ζj < k) � Pr(ζλ < δn) +
an+k(j−λ)

an

(
2k−1
k

)
(
δn
k

) (
pλ

pj

)k

< C1D
−n + r−k(j−λ)(1 + o(1))

(
4pλ

(δn − k)pj

)k

� C1D
−n + C2(nr

jpj)
−k.

The inequality in (5.4) is straightforward. The sum of the first term in (5.3) is o(1)

since there are o(n) terms in the sum. We now bound the sum of the second term. Since

pj > C3e
f(j)ρ(P )−j ,

1

nrjpj
<

e−f(j)αj

C3n
.

Since α = ρ(P )/r > 1 and f′(x) = o(1), it follows that, for sufficiently large j, e−f(j)αj is

an increasing function with the ratio of consecutive terms bounded away from 1. At the

upper range of the summation on j,

e−f(j)αj |j=σ(n)−ω(n) = e−f(σ(n)−ω(n))ασ(n)−ω(n)

= α−(1+o(1))ω(n)e−f(σ(n))ασ(n) =
n

rP ′(r)
α−(1+o(1))ω(n),

by the definition of σ. It follows that the sum is o(1).

Proof of Lemma 5.6. Fix k sufficiently large that an > 0 for n � k. We have

an

ak
=

�∏
i=1

ani+1

ani
where

⎧⎪⎪⎨
⎪⎪⎩

n1 = k,

ni+1 − ni = �nδi � for 1 � i < �,

n�+1 = n.

Using Definition 1.4(b), we may replace ani+1
/ani with rni−ni+1 (1 + o(1)) where the o(1) is as

i → ∞. Since (1 + o(1)) = exp(o(1)) and the product contains O(n1−δ) factors, we obtain

an

ak
= rk−n exp(o(n1−δ)) as n → ∞,

which completes the proof.

7. Proof of Theorem 1.6

Since (a) has been proved in Lemma 5.1, we turn to (b).

Since J is infinite, β � ρ(P ) > r and thus α > 1. We will show that the three hypotheses

(i)–(iii) of Lemma 5.3 are satisfied with σ(n) and α as in the theorem and 1/α < c < 1.
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Hypothesis (i) is obvious.

For (ii), let �, m1, . . . , m� be fixed and let k1(n) < k2(n) < · · · < k�(n) be sequences

satisfying ki(n) = σ(n) + O(1) and ki(n) ∈ I(P). The expectation E
∏

(ζki )mi
, when multiplied

by ān, equals the number of structures in which mi parts of size ki have been marked

and linearly ordered, 1 � i � �. Let m =
∑

i mi and let (L1, . . . , Lm) be one of the
(

m
m1 ,...,m�

)
possible linear orders of m1, k1, etc. Given a marked structure counted by Lemma 5.2, the

linear orders may be imposed on the m marked parts in m! ways. Hence,

ān E
∏

(ζki )mi
∼ m!

( �∏
i=1

pmi

ki

)
ān(n/rP

′(r))mrs

m!
,

where s =
∑

i miki. Dividing both sides by ān and using pj ∼ ef(j)β−j , we have

E
∏

(ζki )mi
∼ exp

( �∑
i=1

mif(ki)

)
(n/rP ′(r))m(r/β)s ∼

(
nef(σ(n))/rP ′(r)

)m
α−s,

where the last result follows from f′(x) = o(1) and ki − σ(n) = O(1). Since s =
∑

kj(n)mj

and σ(n) is given by (1.1), this confirms hypothesis (ii).

To prove that (iii) holds, we consider k(n) < (log n)2 and k(n) � (log n)2 separately.

For k(n) < (ln n)2, apply the first bound in Lemma 5.1(c) to obtain

Pr(ζk(n) > 0) = O
(
nef(k(n))α−k(n)

)
= O

(
ασ(n)−k(n)eo(k(n)−σ(n))

)
= O

(
ck(n)−σ(n)

)
,

for some constant 1/α < c < 1 and the bound implied by the big-oh is uniform. This

establishes (iii) for k(n) < (ln n)2.

For k(n) � (ln n)2 we apply the second bound in Lemma 5.1(c) to obtain

ln(Pr(ζk(n) > 0)) = −(k(n) − σ(n)) ln α + k(n) ln(1 + ε/r)) + o(k(n) − σ(n)) + O(1).

Noting k(n) � (ln n)2, σ(n) = O(ln n), and α > 1, we have, by choosing ε close to 0,

ln(Pr(ζk(n) > 0)) < −δ(k(n) − σ(n))

for some positive constant δ. This completes the proof.

8. Proof of Theorem 1.10

By Theorem 1.6(b), we can estimate the probability of the various events in what follows

using products of probabilities based on independent Poisson variables. It is understood

in what follows that the ranges of various products, sums and event conjunctions are

restricted to elements of I(P). Recall that α > 1.

We begin with (a). Let j be the maximum number in I(P) such that j < σ(n) − ω1(n).

Then

Pr(Mn < σ(n) − ω1(n)) = Pr(Mn < j) � Pr(ζj < 1) = o(1),

the last by (5.3).

Since a smaller ω2(n) leads to a stronger conclusion, we can assume that ω2(n) here is

no larger than the ω(n) in Theorem 1.6(b). With t = σ(n) + ω2(n), Theorem 1.6(b) gives
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us

Pr(Mn < t)) = Pr

( n∧
j=t

{ζj = 0}
)

∼
n∏

j=t

exp(−ασ(n)−j) = exp

(
−

n∑
j=t

ασ(n)−j

)

� exp

(
−ασ(n)−t

1 − α−1

)
(8.1)

= exp

(
−α−ω2(n)

1 − α−1

)
= exp(o(1)) ∼ 1.

This proves the other inequality of (a).

Let k(n) be the largest element of I(P) that is less than σ(n). We prove (b) by showing

that the probability of a gap-free structure of size n with largest part size k(n) is bounded

away from zero. Let ω(n) → ∞. By Lemma 5.5 the fraction of structures not containing

all parts of size less than σ(n) − ω(n) is o(1). Hence it suffices to estimate the probability

of the event

Zn =

( k(n)∧
j=σ(n)−ω(n)

{ζj > 0}
) ∧( n∧

j=σ(n)

{ζj = 0}
)
.

By Theorem 1.6(b), we obtain

Pr(Zn) ∼
( k(n)∏

j=σ(n)−ω(n)

(1 − exp(−ασ(n)−j))

)( n∏
j=σ(n)

exp(−ασ(n)−j)

)
. (8.2)

The second product is the same as the one estimated in (8.1) except that now t = σ(n).

Thus that product is bounded away from zero. For the first product in (8.2) we note that,

for x > 0,

1 − e−x = 1 − 1

ex
> 1 − 1

1 + x
=

1

1 + 1/x
> e−1/x.

Hence the first product has a lower bound

exp

(
−

∑
j�σ(n)

αj−σ(n)

)
> exp

(
−1

1 − α−1

)
,

which is again bounded away from zero. This completes the proof of (b).

9. Proof of Theorem 1.11

Proof of Theorem 1.11(a,b). Whenever ω(n) → ∞, we have a.a.s.

σ(n) + ω(n) > Mn � Dn > σ(n) − ω(n),

where the first inequality follows from Theorem 1.10(a), the second is trivial and the last

follows from (5.4) with k = 1. The a.a.s. claims about |Dn − σ(n)| and |Mn − σ(n)| in (a)

and (b) follow.

We now prove the E(Dn) formula in (b). Let ζj be the number of occurrences of parts

of size j. Let ω(n) be any function that goes to infinity. We assume n is so large that all
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j � �σ(n) − ω(n)� are in I(P). Note that

E(Dn) =

n∑
j=1

Pr(ζj > 0).

We split the sum into a central sum Fc over �σ(n) − ω(n)� � j � �σ(n) + ω(n)�, a sum Fs

over smaller j and a sum F� over larger j. By Theorem 1.6(b), the terms in Fc are

1 − exp(−ασ(n)−j) + o(1)

and so, if ω(n) → ∞ sufficiently slowly,

Fc = o(1) +

�σ(n)+ω(n)�∑
j=�σ(n)−ω(n)�

tj(n), where tj(n) = 1 − exp(−ασ(n)−j).

By (5.4) with k = 1, Fs + ν = �σ(n) − ω(n)� − 1 + o(1). Since the same is true for the sum

of tj(n) over j < �σ(n) − ω(n)�,

Fs + ν = o(1) +
∑

j<�σ(n)−ω(n)�

tj(n).

We now use Lemma 5.1(c) to show that F� = o(1). Since pk ∼ ef(k)ρ(P )−k , there is a C(ε)

such that

Pr(ζj > 0) � C(ε)nef(j)(r/ρ(P ))jF(j) where F(j) =

{
1 if j < nδ,

(1 + ε/r)j otherwise.

Splitting the sum according to these two cases, one easily has that F� = o(1). Putting this

all together,

E(Dn) + ν =
∑
j�0

(
1 − exp(−ασ(n)−j)

)
− 1 + o(1).

Let

h(x) =
∑
j�0

(
1 − exp(−αx−j)

)
.

Then E(Dn) + ν + 1 = h(σ(n)) + o(1). We use the standard Mellin transform. (See [15,

p.765], and also their Example B.5, which treats α = 2.) It follows that

h(x) = x + γ log e +
1

2
+ P0(x) + o(1), (9.1)

where P0(x) is given by (1.2). This proves Theorem 1.11(b).

For the maximum part size Mn, we proceed in a similar manner:

E(Mn) =

n∑
j=1

Pr(Mn � j)

=

�σ(n)−ω(n)�−1∑
j=1

1 +

n∑
j=�σ(n)−ω(n)�

(
1 − Pr(∧i�j{ζj = 0})

)
+ o(1)
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=

�σ(n)−ω(n)�−1∑
j=1

1 +

n∑
j=�σ(n)−ω(n)�

(
1 − exp

(
− 1

α − 1
ασ(n)+1−j

))
+ o(1)

=

n∑
j�0

(
1 − exp

(
− 1

α − 1
ασ(n)+1−j

))
− 1 + o(1)

= h
(
σ(n) + 1 − log(α − 1)

)
− 1 + o(1).

With (9.1), this proves (a).

Proof of Theorem 1.11(c). By Theorem 1.11(b) we can limit k to |k − σ(n)| < ωb(n). By

Theorem 1.6 there is some ω(n) → ∞ such that, uniformly for |k − σ(n)| < ω(n), we have

qn(k) = p(n)

( k∏
j=h(n)

(
1 − exp(−ασ(n)−j)

))( n∏
j=k+1

exp(−ασ(n)−j)

)
+ o(1)

= p(n)

( k∏
j=h(n)

(
1 − exp(−ασ(n)−j)

))
exp

(
−

n∑
j=k+1

ασ(n)−j

)
+ o(1),

where h(n) = �σ(n) − ω(n)� and p(n) is the probability that a random structure of size n

contains all part sizes in I(P) less than h(n). A little calculation shows that we may extend

the final product to include j < h(n). By (5.4) with k = 1, p(n) ∼ 1. This gives (1.3).

A little calculation produces a bound on (1.3) when |k − σ(n)| < B, completing the

proof.

Proof of Theorem 1.11(d). Let Γ = (Γ1,Γ2, . . . ,Γm) be a sequence of i.i.d. geometric

random variables with parameter p = (α − 1)/α. Hitczenko and Knopfmacher [18] showed

that the probability that the sequence Γ is gap-free is given by the bm in our (1.4), and

they established the oscillation of bm when p �= 1/2.

Let ω(m) go to infinity arbitrarily slowly with m. Let M ′
m be the largest Γi.

As was shown in [18] (similar to Theorem 1.11(b,c)), all part sizes less than σ(m) − ω(m)

are asymptotically almost surely present in Γ and |M ′
m − σ(m)| < ω(m). Let

ζ ′
j = |{i : Γi = j}|, λj = m(α − 1)α−j ,

k− = �σ(m) − ω(m)�, k+ = �σ(m) + ω(m)�.

When k− � k � k+,

Pr(ζ ′
j = k) ∼ e−λj λkj /k!

by the standard Poisson approximation for i.i.d. rare random variables. Starting in

the middle of page 26 of [6] it was shown that {ζ ′
j : k− � j � k+} are asymptotically

independent.
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Thus, with k = max{j : ζ ′
j > 0},

bm ∼
k+∑

k=k−

( k+∏
j=k+1

e−λj

)( k∏
j=k−

(1 − e−λj )

)

∼
k+∑

k=k−

exp(−mα−k)

k∏
j=k−

(
1 − exp(−m(α − 1)α−j)

)
. (9.2)

Equation (9.2) is the same as the sum of (1.3) if m = ασ(n)+1/(α − 1). However, (9.2)

was derived under the assumption that m is an integer. We now treat (9.2) as a function

of real variable m, say h(m), and show that h′(m) = o(1) as m → ∞. It then follows that

h(x) ∼ h(�x�) as x → ∞ and we will be done. Call the terms in the sum (9.2) Tk(m). We

have

|T ′
k(m)| <

∣∣∣∣T ′
k(m)

Tk(m)

∣∣∣∣ = |(ln(Tk(m))′| � α−k +

k∑
j=k−

(α − 1)α−j

exp
(
m(α − 1)α−j

)
− 1

< α−k +

k∑
j=k−

(α − 1)α−j

m(α − 1)α−j
� α−k−

+
k − k− + 1

m
<

ω1(m)

m
,

for some ω1(m) → ∞ much slower than m. Since there are only 2ω(m) values for k, we

have h′(m) = o(1).

Proof of Theorem 1.11(e). It follows from Theorem 1.6 that

gn(k) ∼
∑

j>σ(n)−ω(n)

Pr

(
{ζj = k}

∧(∧
i>j

{ζi = 0}
))

.

Setting j = � + �σ(n)� and δ(n) = σ(n) − �σ(n)�,

gn(k) ∼
∞∑

�=−∞

α−k(�−δ(n))

k!

∏
i��

exp(−α−(i−δ(n)))

∼
∞∑

�=−∞

α−k(�−δ(n))

k!
exp

(
−α−(�−1−δ(n))

α − 1

)
.

It follows from Poisson’s summation formula [23] that

gn(k) ∼
∞∑

�=−∞

∫ ∞

−∞

1

k!
exp(−2πi�t)α−k(t−δ(n)) exp

(
−α−(t−1−δ(n)

α − 1

)
dt.

Setting

z =
1

α − 1
α−(t−1−δ(n)),
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we have

gn(k) ∼ log e

k!

(
α − 1

α

)k ∞∑
�=−∞

exp
(
−2πi�(δ(n) − log(α − 1))

) ∫ ∞

0

e−zzk−1+2πi� log edz

∼ log e

k!

(
α − 1

α

)k ∞∑
�=−∞

Γ
(
k + 2πi� log e

)
exp

(
−2πi�(σ(n) − log(α − 1))

)

∼ 1

k!

(
α − 1

α

)k

Pk

(
σ(n) − log(α − 1)

)
+

log e

k

(
α − 1

α

)k

.

This completes the proof of (e).

Proof of Theorem 1.11(f). By (5.4) and Theorem 1.10(a) we may limit our attention to

parts j, for which |j − σ(n)| � ω(n). By Theorem 1.6, the probability that part j appears

with multiplicity k is asymptotically e−μj μkj /k! where μj = ασ(n)−j . Using the Poisson

summation formula as in the proof of (c), the expected number of parts of multiplicity k

is asymptotic to

∑
j

exp(−ασ(n)−j)
αk(σ(n)−j)

k!
∼ 1

k!

∞∑
�=−∞

∫ ∞

−∞
exp

(
−2iπ�t − α−(t−δ(n))

)
α−k(t−δ(n))dt

∼ log e

k!

∞∑
�=−∞

exp
(
−2iπ�σ(n)

)
Γ

(
k + 2iπ� log e

)

∼ Pk(σ(n))

k!
+

log e

k
.

The claim about mn(k) follows from the fact that mn(k) = E(Dn(k)/Dn) and the tight con-

centration of Dn in (c), an argument used by Louchard [20] for unrestricted compositions.

10. Proof of Theorems 1.12 and 1.13

We begin with some asymptotic results common to both proofs.

Given m, k and v define

μ(v) =
vP ′(v)

P (v)
, (10.1)

σ(v)2 =
v dμ(v)

dv
= μ(v) − μ(v)2 +

v2P ′′(v)

P (v)
and t = m − μ(v)k.

We make use of (2.9) in Drmota [13], setting M = 1 and replacing the double sum by

O(r3/2/k), under the assumption that is o(1). Using our notation, (2.9) gives the following

uniform estimate in m and k when v is restricted to a closed subinterval of (0, ρ(P )) and

t = o(k2/3):

[xm]P (x)k =
P (v)k

vm
√

2πσ(v)2k

(
exp

(
−t2

2σ(v)2k

)(
1 + O(t/k + t2/k2)

)
+ O(1/k)

)
. (10.2)

(We note in passing that (2.1) of [13] should be gcd{i − j | yiyj > 0} = 1.)
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We note for later use that σ(v)2 > 0 implies that dμ/dv > 0. Since we had some difficulty

with Drmota’s proof that σ2 > 0, we give another here. It is related to the κ̄2 in his (2.11),

so it suffices to prove that the latter is positive. Since (2.11) can be thought of in terms of

the probability generating function (P (vx)/P (v))n, it suffices to note that P (vx)/P (v) has

non-zero variance because P (x) has at least two non-zero coefficients.

We split the range of summation in
∑

k sk [xn]P (x)k into three regions as follows. With

r as in Definition 1.4, let

λ(v) = 1/μ(v) = P (v)/(vP ′(v)) and k∗ := k∗(n) = λ(r)n. (10.3)

Fix 0 < δ < ε/2 and let C > 0 be arbitrary.

• The central region consists of those k such that |k − k∗| < Cn1−δ .

• The upper tail consists of those k such that k − k∗ � Cn1−δ .

• The lower tail consists of those k such that k∗ − k � Cn1−δ .

Our goal is to show that an is asymptotic to the sum over the central region.

For u in a small neighbourhood of 1, let

v = v(u) = P−1(s/u). (10.4)

We note v(1) = r. Also (10.1) and (10.4) define λ as a function of u. Now

d ln(uλv)

du
=

dλ

du
ln u +

λ

u
+

1

v

dv

du
.

Since

dv

du
= − P (v)

uP ′(v)
= −vλ

u
,

we have

d ln(uλv)

du
=

dλ

du
ln u, (10.5)

and

dλ

du
= −vλ

u

dλ

dv
� B1

for some positive constant B1 and u in a neighbourhood of 1. In the following, the Bi

denote some positive constants.

Bounding the sum in the upper region. Let u0 = 1 + Cn−δ , v0 = v(u0), and λ0 = λ(u0). We

have from (c(ii))∑
k�λ0n

sk [xn]P (x)k � u−λ0n
0 [xn]

∑
k�λ0n

sku
k
0P (x)k

� exp(O(n1−ε))u−λ0n
0 [xn]

∑
k�0

s−kuk0P (x)k

= exp(O(n1−ε))u−λ0n
0 [xn](1 − u0P (x)/s)−1

= exp(O(n1−ε))(uλ0

0 v0)
−n,
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where we used the fact that v0 is the unique singularity of (1 − u0P (x)/s)−1 on its circle

of convergence and it is a simple pole. When u = 1, we have v(1) = r and λ(1) = k∗/n.

Integrating (10.5) from u = 1 to u0, we obtain

ln(uλ0

0 v0) − ln r � B1u(ln u − 1)|u=u0

u=1 = B1

(
(1 + Cn−δ)

(
ln(1 + Cn−δ) − 1

)
+ 1

)
.

Since ln(1 + x) > x − x2/2, we have

ln(uλ0

0 v0) − ln r � B1

(
(1 + Cn−δ)(Cn−δ − C2n−2δ/2 − 1) + 1

)
� B2n

−2δ − O(n−3δ) � B3n
−2δ for sufficiently large n.

It follows that the upper tail is bounded by

exp(O(n1−ε))r−n exp(−B4n
1−2δ) = r−n exp(−B5n

1−2δ). (10.6)

To show that this is negligible, it suffices to find a sufficiently large term in the central

region.

By (c(i,iii)) there is a k within O(n1−ε) of k∗ such that the term is at least

exp(O(k1−ε)) s−k [xn](P (x)k).

Apply (10.2) with m = n and t = 0 to obtain

[xn](P (x)k) � B6P (v)k

vnk1/2
.

Since k − k∗ = O(n1−ε), it follows from (10.3) that v = v(1) + O(k/n − k∗/n) = r + O(n−ε)

and P (v) = s(1 + O(n−ε)). Thus

sk [xn](P (x)k) � exp(O(k1−ε)) s−k B7s
k

rnn1/2
exp(−B8n

1−ε) � r−n exp(−B9n
1−ε).

Comparing this with (10.6) shows that the upper tail is negligible.

Bounding the sum in the lower region. The estimation for the lower region is similar. We

now set u0 = 1 − n−δ and note that∑
k�λ0n

sk [xn]P (x)k � u−λ0n
0 [xn]

∑
k�λ0n

sku
k
0P (x)k

� exp(O(n1−ε)) u−λ0n
0 [xn]

∑
k�0

s−kuk0P (x)k

= exp(O(n1−ε)) u−λ0n
0 [xn](1 − u0P (x)/s)−1

= exp(O(n1−ε)) (uλ0

0 v0)
−n.

Integrating (10.5) from u = u0 to u = 1, we obtain

ln(uλ0

0 v0) − ln r � B3n
−2δ .

The rest follows from exactly the same argument as for the upper range.

Proof of Theorem 1.12. Definition 1.4(a) is just hypothesis (a). Definition 1.4(c) is an

immediate consequence of Theorem 1 of [7]. To prove (b) we first show that the sum for
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an+t can be limited to the same region for t = O(nδ). Then we estimate the ratio of terms

with the same k value in the two central region sums.

Adjusting the an+t sum’s central region. Since n was arbitrary, the above argument shows

that we can restrict the sum for an+t to its central region, which will differ slightly from

the region for an. Since C was arbitrary and t in Definition 1.4(b) is small compared to n,

we can choose a C for an+t so that its central region is included in the region for an. Since

adding additional terms to the central region does not affect the asymptotics, we can use

the same central region for an and an+t.

Ratio of the central sums. It suffices to show that the ratios of all pairs of terms with the

same value of k and sk > 0 approach rt uniformly. Fix 0 < β < min{δ, 1/2} and assume

0 < t � nβ . Since

sk [xn](P (x)k)

sk [xn+t](P (x)k)
=

[xn](P (x)k)

[xn+t](P (x)k)
,

we apply (10.2) with m = n and m = n + t where μ = n/k. Thus, uniformly in the central

region, we have

sk [xn](P (x)k)

sk [xn+t](P (x)k)
=

vt(1 + O(1/k))

exp(−t2/2σ2k)(1 + O(t/k)) + O(1/k)

= vt(1 + O(t2/k)) = vt(1 + o(1)).

As k − μn = O(n1−δ), estimates like those following (10.4) lead to v = r(1 + O(n−δ))

uniformly and so vt = rt
(
1 + O(exp(B10tn

−δ))
)

uniformly, completing the proof.

Proof of Theorem 1.13. Recall that δ < ε/2 and so δ < 1/2. Define

w(n) = n1−δ and H(x) =
∑

1�k�x

skρ
k(S).

Since G′(t) = o(G(t)/t) as t → ∞, we have, for |x| � w(n),

G(μn + x) = G(μn) + o(xG(μn)/n) = G(μn) + o(n−δG(μn)) ∼ G(μn). (10.7)

Thus, for |x| � w(n),

H(μn + x) = (μn + x)G(μn + x) + o(n1/2G(μn)). (10.8)

Instead of (10.2), it is more convenient to use Drmota’s equation (2.11) to estimate

[xn]P (x)k . His ρ is our r, and his μ̄ is our μ. Setting M = 1, using the first part of his

Remark 5 and converting to our notation, his (2.11) becomes

[xn]P (x)k =
kP (r)k

nrn
√

2πσ2n

(
exp

(
−t2

2σ2n

)(
1 +

b1,1t

n
+

b2,3t
3

n2

)
+ O(1/n)

)
(10.9)

where the bi,j are some constants,

μ =
P (r)

rP ′(r)
, t = k − μn and σ2 =

μ3r2P ′′(r)

P (r)
+ μ2 − μ.

https://doi.org/10.1017/S0963548314000315 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000315


Part Sizes of Smooth Supercritical Compositional Structures 713

As shown earlier in this section, it suffices to limit k to the central region when estimating∑
k

sk [xn](P (x)k).

Let Ln = μn − w(n) and Un = μn + w(n). The central region is N ∩ (Ln,Un]. We have

• t/n = o(1) uniformly in the central region,

• t3/n2 = o(1) uniformly for |t| � n3/5,

• exp(−t2/2σ2n)(t3/n2) = o(1/n) uniformly for n3/5 < |t| � w(n).

Thus (10.9) implies

[xn]P (x)k =
kP (r)k

nrn
√

2πσ2n

(
exp

(
−t2

2σ2n

)
(1 + o(1)) + O(1/n)

)

uniformly in the central region, and so

an ∼ μr−n

√
2πσ2n

(
O

(
H(Un) − H(Ln)

n

)

+
∑

Ln<k�Un

skρ(S)k exp

(
−(k − μn)2

2σ2n

)
(1 + o(1))

)
. (10.10)

By (10.7) and (10.8),

H(Un) − H(Ln) = 2w(n)G(μn) + O(n)o(n−δG(μn)) + o(n1/2G(μn)).

Thus O((H(Un) − H(Ln))/n) = o(G(μn)), which we will see is small compared to the rest

of (10.10).

Using Abel’s summation formula [1, Theorem 4.2], we have

∑
Ln<k�Un

skρ(S)k exp

(
−(k − μn)2

2σ2n

)
=

(
H(Un) − H(Ln)

)
exp

(
−w(n)2

2σ2n

)

−
∫ Un

Ln

H(x)
d

dx
exp

(
−(x − μn)2

2σ2n

)
dx.

By (10.7) and (10.8), the first term on the right-hand side is exp(−n1−2δ/2σ2)O(nG(μn)),

which is o(n−cG(μn)) for all c since δ < 1/2. It follows from (10.8) that the error made in

replacing H(x) with xG(x) in the integral is

o(n1/2G(μn))

∫ ∞

−∞

∣∣∣∣ d

dx
exp

(
−x2

2σ2n

)∣∣∣∣dx = o(n1/2G(μn)).

Thus

∑
Ln<k�Un

skρ(S)k exp

(
−(k − μn)2

2σ2n

)

∼ −
∫ Un

Ln

xG(x)
d

dx
s exp

(
−(x − μn)2

2σ2n

)
dx + o(n1/2G(μn)).
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Using integration by parts and (10.7), this becomes

(UnG(Un) − LnG(Ln)) exp

(
−w(n)2

2σ2n

)

−
∫ Un

Ln

(G(x) + xG′(x)) exp

(
− (x − μn)2

2σ2n

)
dx + o(n1/2G(μn))

=

∫ Un

Ln

G(x)(1 + o(1)) exp

(
− (x − μn)2

2σ2n

)
dx + o(n1/2G(μn))

= G(μn)(1 + o(1))

∫ Un

Ln

exp

(
− (x − μn)2

2σ2n

)
dx + o(n1/2G(μn))

∼
√

2πσ2nG(μn).

The theorem follows from this and (10.10).

11. Proof of Theorem 2.2

We use (10.9) to prove (a). Here P (r) = 1. Since there are only about n1/2 supports for

compositions of n and since there is an i2 within O(n1/2) of any value μn, it follows that,

for asymptotic purposes, we can sum (10.9) over those values of k for which |t| < n3/5.

This leads to

an ∼
∑

|i2−μn|<n3/5

μr−n

√
2πσ2n

exp

(
−(μn − i2)2

2σ2n

)
.

Set x =
√
μn, δ = {x}, the fractional part of x, and i = x + j − δ. Then

i2 − μn = (x + j − δ)2 − x2 = 2x(j − δ) + (j − δ)2.

Hence |i2 − μn| < n3/5 implies j = O(n1/10). Thus, uniformly in j over the range of

summation,

−(μn − i2)2

2σ2n
=

−(2x(j − δ))2

2σ2n
+ o(n1/5/n) =

−2μ(j − δ)2

σ2
+ O(n−4/5).

The sum can be extended over all i since the tail contribution is negligible.

Part (b) follows from (a) by noting that P (x) = x/(1 − x) and so, with a little calculation,

r = μ = σ = 1/2.

We now prove (c). We first note

an =
∑
i�1

(
n − 1

id − 1

)
.

Let a = max{i | 2id − 1 < n}. We will show that

∑
i�a

(
n − 1

id − 1

)
∼

(
n − 1

ad − 1

)
and

∑
i>a

(
n − 1

id − 1

)
∼

(
n − 1

(a + 1)d − 1

)
. (11.1)
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For k � (n − 1)/2,(
n−1
k−j

)
(
n−1
k

) =

j−1∏
i=0

k − j + i + 1

n − k + i
=

j−1∏
i=0

(
1 − n − 2k + j − 1

n − k + i

)

< exp

(
−

j−1∑
i=0

n − 2k + j − 1

n − k + i

)
< exp(−j2/n).

Set k = ad − 1 and k − j � (a − 1)d − 1. Since a ≈ (n/2)1/d, the smallest value of j is

approximately dad−1 and so j � Cn(d−1)/d for some C > 0. Thus∑
i<a

(
n − 1

id − 1

)
<

(
n − 1

ad − 1

)
n exp(−Cn2(d−1)/d/n) =

(
n − 1

ad − 1

)
n exp(−Cn1−2/d) = o(1).

A similar argument works for the second sum in (11.1).
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