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Abstract

The paper presents a numerical simulation of the propagation characteristics of symmetric
E-type andH-type waves in microwave circular shielded waveguide with radially inhomogeneous
dielectric filling. Using the modified Galerkin method, the calculation of a circular two-layer
shielded waveguide was carried out, as a result of which the distribution of the electromagnetic
field of the waveguide with linear and parabolic distribution of permeability was determined.
The results obtained using themodifiedGalerkinmethodwere comparedwith the results obtained
using the classical partial domain method, which agree well enough.

Introduction

Circular non-uniformly filled waveguides, possessing a number of unique features (anomalous
dispersion, complex waves, complex resonance [1–7]), are widely used [8–12] in the construc-
tion of microwave devices such as attenuators, delay lines, bandpass filters, resonators for radio
spectroscopes, etc. Calculation and optimization of the parameters of such devices require the
development of numerical and analytical methods for studying waveguides with arbitrary
dielectric filling. The possibility of calculating the characteristics of waveguides with filling
described by arbitrary analytical functions makes it possible to pose problems of parametric
synthesis aimed at the implementation of devices with given characteristics. In addition, algo-
rithms for calculating inhomogeneously filled circular waveguides can be used to study gradi-
ent optical fibers [13–21]. This paper proposes a method for calculating the characteristics of
wave propagation of a circular shielded waveguide with a radially inhomogeneous dielectric
filling, based on a modified Galerkin method as a variant of the spectral method.

Formulation of the problem

To calculate an inhomogeneously filled circular shielded waveguide, it is proposed to use a
modified Galerkin method [22, 23], which is a variant of the general spectral method.

Let us consider the problem of the propagation of symmetric E and H-waves in a circular
shielded waveguide with partial dielectric filling, the value of the dielectric constant of which
arbitrarily depends on the radial coordinates ε(r, z, w) = ε(r) (Fig. 1). The value of the mag-
netic permeability is assumed to be constant.

From Maxwell’s equations we get:

rotrotE = k201(r, w)E. (1)

Using the following expressions
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we write equation (1) for the field components in a cylindrical
coordinate system:
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We represent the wave fields of the guiding structure in the
form of expansions in terms of eigenfunctions of the Dirichlet
and Neumann boundary value problems for a uniformly filled cir-
cular waveguide. The connection between the components of the
electric field, in accordance with the spectral method, is estab-
lished through the coefficients of the series of expansions substi-
tuted in (1).

Symmetrical H-waves

In the absence of the angular dependence of the field, we assume
∂/∂w = 0, Er = 0, Ez = 0. In this case, equation (1) will be reduced
to a single equation for the w component of the electric field
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−iβz we obtain an equation for

the transverse coordinate function
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ε− relative dielectric constant.

Assuming the dependence of the field on the longitudinal
coordinate and time, we obtain equations for the components
of the electric field:
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The solution to equation (2a) will be sought [23] in the form:

Ew(r) =
∑N
n=0

bnJ1(anr), (3)

where J1(αnr) is the Bessel function of the 1st order, the coeffi-
cients αn are determined taking into account the boundary condi-
tion Ew(r = R) from equation J1(αnR) = 0.

Substituting (3) into (2), we obtain
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Multiplying both sides of equation (4) by rJ1(αqr) and integrat-
ing within r∈ [0;R], we obtain the equation

(a2
q + b2)Qqbq =

∑N
n=0

bnk
2
0
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0
1(r)rJ1(anr)J1(aqr)dr. (5)

Here we used the orthogonality condition for the Bessel
functions:

∫R
0
rJ1(anr)J1(aqr)dr = Qq, q = n

0, q = n
,

{

where Qq = 0.5R2J20 (anR), which takes place, since in this case
the Bessel functions are a solution to the homogeneous boundary
value problem on the Bessel equation.

Equation (5) can be represented in matrix form:

M · b = T · b, (6)

Fig. 1. The distribution function of the dielectric constant in the cross-section of the
waveguide.
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where

Mq,n = (a2
q + b2)Qq, q = n,

0, q = n,

{

Tq,n = k20

∫R
0
1(r)rJ1(anr)J1(aqr)dr.

Writing equation (6) in the form (M− T ) ⋅ b = 0 and equating
the determinant of matrix (M− T ) to zero, we obtain the disper-
sion equation for symmetric H-waves propagating in a circular
waveguide with an arbitrary dependence of ε on r:

Det(b) = M − T = 0. (7)

Note that the matrix T does not depend on β, therefore, when
solving the dispersion equation (7), it is calculated only once,
which significantly reduces the search time for the roots of the
dispersion equation. Note that, when deriving equations (6) and
(7), no restrictions were imposed on the form of dependence
ε(r), i.e. this method allows one to calculate symmetric H-waves
with a completely arbitrary nature of the change in the dielectric
constant along the transverse coordinate, while ε can also be a
complex quantity, which allows, for example, calculating wave-
guides with a complex absorption distribution in the cross-
section, that is, to solve non-self-adjoint boundary value
problems, in which the identity of the differential operators of
the direct and adjoint boundary value problems is not satisfied.

Symmetrical E-waves

For symmetric E-waves, we put

∂

∂w
= 0, Ew = 0, Hr = Hz = 0.

In this case, equation (1) transforms into a system of two
equations:
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∂2Ẽz
∂r2

+ 1
r
∂Ẽz
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The boundary conditions on an ideally conducting surface for
the tangential and normal components of the electric field

Et s = 0, ∂En
∂n

∣∣∣ ∣∣∣
n
= 0 [18], in this case lead to the equation

Ez|r=R = 0. (9)

The components of the electric field in accordance with the
spectral method will be sought in the form of autonomous

expansions:
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Taking into account the first boundary condition (9), the wave
numbers αn are determined from equation J0(αnR) = 0.

Substituting (10) into (8), we obtain a system of two functional
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Taking into account the equalities
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system (11) can be rewritten as
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Multiplying equation (12a) by rJ1(αqr) = 0, equation (12b) by
rJ0(αqr) = 0 and integrating within r∈ [0;R], we obtain the system
of equations:
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where Qq = (R2/2)J21 (aqR), since in this case the Bessel functions
are a solution to a homogeneous boundary value problem.

The system of equation (13) can be written in matrix form:

T (0,0)T (0,1)

T (1,0)T (1,1)

[ ]
· A

B

[ ]
= 0, (14)

where

T (0,0)
q,m = −aqQqdq,m,

T (0,1)
q,m = k20

∫R
0
r1(r)J1(amr)J1(aqr)dr − b2Qqdq,m,

T (1,0)
q,m = k20

∫R
0
r1(r)J0(anr)J0(aqr)dr − a2

qQqdq,m,

T (1,1)
q,m = −b2aqQqdq,m,

(15)

δq,n−Kronecker symbol.
Equating the determinant of matrix equation (14) to zero, we

obtain a dispersion equation describing the symmetric E-waves of
a circular waveguide with an arbitrary radial dielectric filling.

Numerical implementation of algorithms

Two-layer shielded waveguide. As an example, we use equations
(7) and (14) to calculate the simplest test structure – a circular
waveguide with a homogeneous dielectric rod (i.e. ε(r) = ε =
const, Fig. 2) and compare the results with the exact ones obtained
by the classical method of partial regions.

The calculations were carried out for a waveguide with para-
meters: R = 20mm, a = 10mm, ε = 3, at a frequency of f = 10GHz.

The classical calculation method gives the following results: for
symmetric H-waves βH = 2376891/m, for symmetric E-waves βE =
22755000/m.

The calculation of test structures using the proposed
technique was carried out by substituting the function

1(r) = 3, r ≤ a
1, a ≤ r ≤ R

{
into equations (6) and (14).

The convergence of solutions obtained by the modified
Galerkin method for symmetric E and H-waves is shown in
Table 1 and in Fig. 3.

From Table 1 and Fig. 3 it follows that the convergence of the
modified Galerkin method is monotonic and occurs rather
quickly (already at N = 5 the difference between longitudinal
wave numbers does not exceed 1.5%).

Figure 3 also shows that in the case of symmetric H-waves, con-
vergence occurs faster, which, apparently, is associated with the dif-
ference in the number of equations to be solved (one equation (2) for
symmetric H-waves and two equation (8) for symmetric E-waves).

In Fig. 4, the dotted line shows the dependences of the field
components Hz and Ew on the coordinate r, calculated for the
symmetric H-wave at N = 5.

From the graphs shown in Fig. 4 that the field distributions
calculated by two different methods practically coincide.

Thus, using the example of a test problem with an exact solu-
tion, a high accuracy, efficiency of the method, and fast conver-
gence of the solution obtained using the modified Galerkin
method are shown.

Calculation of a waveguide with a rod, the dielectric
constant of which changes according to the parabolic law

Based on equation (15), the dispersion characteristics of symmet-
ric E-waves propagating in a circular waveguide with partial

Fig. 2. Circular waveguide with a dielectric rod.

Fig. 3. Convergence in integral characteristics.

Table 1. Calculation by the modified Galerkin method

No
Symmetric E-waves
(βE = 22755000/m)

Symmetric Н-waves
(βH = 2376891/m)

1 2 331 366 2 347 509

2 2 343 096 2 365 369

3 2 323 624 2 372 738

4 2 318 978 2 374 027

5 2 309 273 2 375 506

6 2 307 095 2 375 777

7 2 301 335 2 376 259

8 2 300 207 2 376 347

9 2 296 397 237 655

10 2 295 748 2 376 586

11 229 304 2 376 686

12 2 292 637 2 376 704

13 2 290 613 2 376 758

14 2 290 347 2 376 768

15 2 288 776 2 376 800
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dielectric filling, the permeability of which changes according to
the parabolic law, are described by the equation:

1(r) = 11 − 11 − 12
a2

r2, r ≤ a

1, a ≤ r ≤ R.

{

Substituting this expression in (15) and calculating the inte-
grals (numerically or analytically), we obtain a solution to the dis-
persion problem. Note that for any calculation of the integrals

from (15) is carried out only once, since they do not depend on
either the frequency or the longitudinal wavenumber, and are deter-
mined only by the filling parameters. This is an unconditional
advantage of this method, which makes it possible to significantly
reduce the time for calculating the characteristics of the structure.

The results of calculating the dispersion characteristics of sym-
metric E-waves of a circular waveguide with a parabolic profile of
the dielectric filling are shown in Fig. 5. Figure 6 shows the distri-
bution of the Umov-Poynting vector over the cross-section of the
waveguide, calculated for three modes at frequency f = 14 GHz
(points 1, 2, 3 in Fig. 5).

Calculation of a waveguide with a rod, the dielectric
constant of which varies linearly

Based on equation (7), the structure is calculated in the form of a cir-
cular waveguide with partial dielectric filling, the permeability of
which varies linearly (Fig. 7) within r∈ [0/a]. The calculations were
carried out for a waveguide with parameters R = 20 mm, a = 10
mm, ε(r) = ε1− ((ε1− ε2)/a)r, ε1 = 6, ε2 = 2 frequency f = 10 GHz.

For comparison, the calculation of the same structure was per-
formed with the representation of the linear profile of the dielec-
tric constant in the form of a step approximation (Fig. 7) with the
number of steps equal to 20. The results of the calculation of the
field distribution obtained by solving the dispersion equation (7)
are shown in Fig. 8. The results of calculating the field distribu-
tion, performed according to the proposed technique and using
the partial domain method, coincide with the graphic accuracy.

Conclusions and recommendation

On the basis of the method developed in this work, algorithms
have been developed for calculating the characteristics of symmet-
ric waves of a cylindrical waveguide with an axisymmetric dielec-
tric filling, which has a radial dependence of the dielectric

Fig. 4. Field distribution of the first symmetric H-wave: dot-
ted line – partial domain method, solid line – modified
Galerkin method.

Fig. 5. Dispersion characteristics of symmetric E-waves of a
circular waveguide with a parabolic profile of dielectric
filling.

Fig. 6. Distribution of power flux density symmetric E-waves at frequency f = 14 GHz.

Fig. 7. Dielectric constant function.
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constant The procedure for composing algorithms is a modified
Galerkin method, in which a variational procedure is applied to
functional relations following directly from Maxwell’s equations,
and corresponds to the canons of the spectral method.

On the example of three boundary value problems, the correct-
ness and efficiency of the modified Galerkin method as a variant
of the spectral method are confirmed.

The method is an alternative partial domain method in cases
where the latter requires a multilayer approximation of the dielectric
filling function, and can be extended to all waveguides with coord-
inate screening surfaces that provide complete sets of eigenfunctions
of boundary value problems for comparison waveguides.

Acknowledgements. The authors would like to thank the editor and
anonymous reviewers for constructive, valuable suggestions and comments
on the work.
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