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The influence of ethanol on the rennet-induced coagulation of milk was studied to investigate
potential synergistic effects of these two mechanisms of destabilisation on the casein micelles.
Addition of 5% (v/v) ethanol reduced the rennet coagulation time (RCT) of milk, whereas
higher levels of ethanol (10–20%, v/v) progressively increased RCT. The temperature at which
milk was coagulable by rennet decreased with increasing ethanol content of the milk. The
primary stage of rennet coagulation, i.e., the enzymatic hydrolysis of k-casein, was progressively
slowed with increasing ethanol content (5–20%, v/v), possibly due to ethanol-induced confor-
mational changes in the enzyme molecule. The secondary stage of rennet coagulation, i.e., the
aggregation of k-casein-depleted micelles, was enhanced in the presence of 5–15% ethanol,
the effect being largest at 5% ethanol. Enhanced aggregation of micelles is probably due to
an ethanol-induced decrease in inter-micellar steric repulsion. These results indicate an inter-
relationship between the effects of ethanol and chymosin on the casein micelles in milk, which
may have interesting implications for properties of dairy products.
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Caseins, which amount for ca. 80% of the proteins in
milk, exist as large colloidal aggregates known as casein
micelles. It is universally accepted that a diffuse layer
of flexible hydrophilic polypeptide chains, principally
the C-terminal region of k-casein, sterically stabilises the
casein micelles. This so-called ‘hairy layer’ presents a
virtually-impregnable barrier against aggregation, unless
removed or neutralised (Walstra, 1979, 1990; Holt, 1992;
Holt & Horne, 1996). Consequently, any process or
environmental factor which eliminates the stabilising
effect of k-casein markedly reduces the colloidal stability
of casein micelles. General aspects of the colloidal stab-
ility and properties of casein micelles have been re-
viewed comprehensively by Holt (1992), Rollema (1992),
Dalgleish (1998), Creamer et al. (1998) and De Kruif &
Holt (2003).

Enzymatic hydrolysis of k-casein, addition of ethanol,
exposure to a high temperature (>120 8C) or acidification
are the principal factors that affect the colloidal stability
of casein micelles. Enzymatic hydrolysis of k-casein
reduces the steric stabilisation of the micelles, as well as

inter-micellar electrostatic repulsion, resulting in the
coagulation of milk (see Fox et al. 1996). Exposure to a
high temperature causes, amongst other changes, the
dissociation of k-casein from the micelle surface (see
O’Connell & Fox, 2003), while acidification reduces
protein charge and hydration (see Lucey & Singh, 2003).
Addition of ethanol reduces the dielectric constant of
milk, which causes the collapse of the protruding C-
terminal region of k-casein, with a concomitant reduction
in micellar stability (see Horne, 2003). The effects of
enzymatic hydrolysis of k-casein, addition of ethanol,
heat treatment or acidification on the colloidal stability of
casein micelles have been reviewed by Hyslop (2003),
Horne (2003), O’Connell & Fox (2003) or Lucey & Singh
(2003), respectively. Also, the interrelationship between
some of these factors which reduce the colloidal stability
of casein micelles has been investigated, as summarised
in Table 1. The influence of ethanol on the stability of
casein micelles to rennet-induced coagulation has not
yet been investigated, but may offer novel means for
altering the properties of rennet-induced milk gels. The
results of experiments on the influence of ethanol on the
rennet-induced coagulation of milk are reported in this
communication.*For correspondence; e-mail : a.kelly@ucc.ie
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Materials and Methods

Milk preparation

Low-heat skim milk powder (NILAC; NIZO food research,
Ede, The Netherlands) was reconstituted at 11.25% (w/v)
in distilled water; sodium azide (0.2 g/l) was added to
prevent microbial growth. Reconstituted skim milk was
mixed with distilled water and ethanol to yield 9.00%
(w/v) milk solids and 0–20% (v/v) ethanol. The sample
containing 0% ethanol will be referred to as control milk
hereafter.

Determination of the rennet coagulation time of milk

The rennet coagulation time (RCT) of milk, adjusted to
pH 6.6, was determined as described by O’Connell et al.
(1998).

For studies on cold renneting, a mixture of milk and
rennet (10 ml ml–1 milk of a 1:20 aqueous dilution of
Maxiren 180, DSM Food Specialties, Delft, The Nether-
lands) was incubated at 4 8C for 0–240 min; periodically,
samples were transferred to a water bath at 30 8C and the
time for visible coagulation determined.

Rheolgical properties of rennet-induced gelation of milk

Dynamic oscillatory analysis of rennet-induced coagu-
lation of milk was performed using a Carri-Med Model
CSL2 100 controlled-stress rheometer (TA Instruments,
Leatherhead, UK) using Carri-Med software (Version 5.3).
The system was fitted with a concentric cylindrical probe,
incorporating a recessed acrylic rotor (outer diameter,
23.05 mm; recess, 4.00 mm; cylinder immersed to a depth
of 30.00 mm), held in a cylindrical cup (inner diameter,
25.00 mm). Maxiren 180 (75 ml of an aqueous 1:10
dilution) was added to 11 ml milk, which had been
tempered at 30 8C for 15 min prior to analysis, and the
mixture placed immediately in the measurement cup at
30±0.2 8C. To prevent dehydration, a thin layer of liquid
paraffin was poured on top of the samples. The storage
modulus, Gk, of the sample was recorded continuously at
a low amplitude shear strain (0.01 Pa), at a frequency of
1 Hz, over 90 min at 30 8C.

Diffusing wave spectroscopy

Milk was tempered at 30 8C, rennet was added (10 ml ml–1

of a 1:20 aqueous mixture of Maxiren 180) and the

rennet-induced coagulation at 30 8C was followed by
diffusing wave spectroscopy (DWS), as described by
Vasbinder et al. (2003). The value of the relaxation time
t1/2, i.e., the time at which the auto-correlation curve had
decayed to 50% of its plateau level, reflects the restriction
of mobility of the particles in solution. In DWS, a relax-
ation time is, as in classical dynamic light scattering,
directly related to a particle diffusivity and therefore to
particle size and interaction via the generalized Stokes-
Einstein relation. During the initial stages of flocculation,
the relaxation time is therefore a direct measure of particle
growth (i.e., size). To eliminate the influence of back-
ground viscosity, the relaxation time was normalised ac-
cording to t1/2, normalised (t)=t1/2 (t)/t1/2 (0), where t1/2 (0) is
the relaxation time at t=0 min. The lag-time of the rennet-
induced coagulation of milk, i.e., the time required for
sufficient enzymatic hydrolysis of k-casein to occur
to initiate micellar aggregation, was taken as the time at
which t1/2, normalized>1.0. The relative aggregation constant
of renneted casein micelles was calculated according to
von Smoluchowski (1917) kinetics ; application of such
kinetics to rennet-induced aggregation of casein micelles
yields a linear relationship between incubation time and
the molecular weight of the aggregates (Payens et al.
1977; Dalgleish et al. 1981). The slope of this function
represents the rate constant. Since the relaxation time is
directly related to particle size, a relative aggregation
constant can be derived from the slope of the linear region
of a plot of (t1/2)3 versus incubation time.

Influence of ethanol on the proteolytic activity
of chymosin

Size exclusion high-performance liquid chromatography
(SE-HPLC) was used to study the hydrolysis of k-casein
by chymosin. Aliquots of milk (2 ml) were incubated
with Maxiren (10 ml ml–1 of a 1:20 aqueous solution) at
31 8C and, after 0, 15, 30, 60 or 90 min, portions were
removed and mixed with 4 ml 12% (w/v) trichloroacetic
acid (TCA) to inactivate chymosin and precipitate the
caseins and whey proteins. The filtrates, containing
glycomacropeptide (GMP) derived from the enzymatic
hydrolysis of k-casein, were analysed by SE-HPLC, as
described by Van Hooydonk & Olieman (1982).

Chymosin activity was assayed directly using the syn-
thetic heptapeptide (Pro-Thr-Glu-Phe-[NO2-Phe]-Arg-Leu;
Bachem Feinchemikalien AG, Switzerland), as described
by Hurley et al. (1999). The substrate solution (1 mg ml–1;

Table 1. Overview of studies reporting interrelationship between factors that destabilise casein micelles in milk

Heat Rennet Acid Ethanol

Heat stability — Fox & Hearn, 1978 Rose, 1961 Mohammed & Fox, 1986
Rennetability Morrissey, 1969 — Van Hooydonk et al. 1986 Not studied
Acid gelation Roefs, 1984 Roefs et al. 1990 — Horne & Parker, 1980
Ethanol stability Horne & Parker, 1981 De Kruif, 1999 Horne & Parker, 1980 —
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30 ml) was mixed with 200 ml 100 mM-sodium formate
buffer, pH 3.2, containing 0, 7.5, 15 or 30% (v/v) ethanol
and 0.5 g sodium azide/l. To initiate the reaction, 70 ml
of a buffered solution of Maxiren 180 (500 ml l – 1 in 0.01
M-sodium acetate buffer, pH 5.5) was added and the
mixture incubated at 37 8C for 4 h; the reaction was ter-
minated by heating samples at 70 8C for 10 min. Samples
were centrifuged at 16 000 g for 10 min and analysed by
RP-HPLC, as described by Hurley et al. (1999).

Results

Influence of ethanol on rennet-induced coagulation
of milk

The RCT of milk containing 5% ethanol was lower than
that of control milk, whereas that of milk containing
10% ethanol was similar to that of control milk; the RCT
of milk containing 15 or 20% ethanol was y2 or y3
times higher, respectively, than that of control milk
(Fig. 1). Similar effects of ethanol were observed on the
RCT of serum protein-free milk (results not shown).

On cold renneting, which allows the primary stage
of rennet-induced coagulation to proceed without the
subsequent gelation of para-casein micelles, the RCT of
control milk (i.e., the time of subsequent incubation at
30 8C required to induce visible coagulation) decreased
with incubation time to y12 min after 240 min at 4 8C;
RCT decreased more rapidly with incubation time in
milk containing 5, 10 or 20% ethanol than in control milk
and reached a considerably lower value after 240 min
at 4 8C (data not shown). The RCT of cold-renneted milk
was also determined at temperatures in the range
4–20 8C. Coagulation of control milk was not observed at
a temperature <20 8C, but milk containing 5% ethanol
coagulated at 15 8C, albeit slowly. Milk containing 10 or

20% ethanol coagulated at a temperature as low as 4 8C
(data not shown). In separate experiments, milk was
renneted at 4 8C for 140 min, followed by addition of
ethanol to a final concentration of 0–20% and deter-
mination of the RCT at 30 8C. Control milk coagulated
after 11 min at 30 8C but samples containing 5, 10 or
20% ethanol coagulated after 150, 25 or 10 sec, respect-
ively (data not shown).

Influence of ethanol on the proteolytic activity
of chymosin

The rate of rennet-induced production of GMP was highest
in control milk and lowest in milk containing 20%
ethanol (Fig. 2). After incubation at 31 8C for 90 min,
little difference in the amount of GMP was observed
between control milk and milk containing 5 or 10%
ethanol, but the level of GMP was considerably lower in
milk containing 20% ethanol (Fig. 2). Urea-PAGE analysis
showed that the extent of chymosin-induced hydro-
lysis of as1- and b-caseins in sodium caseinate was also
reduced with increasing ethanol content (0–20%; data not
shown).

The amount of the tripeptide, [NO2-Phe]-Arg-Leu,
produced from the heptapeptide substrate Pro-Thr-Glu-
Phe-[NO2-Phe]-Arg-Leu by chymosin was inversely pro-
portional to the ethanol content of the reaction mixture;
the amount of tripeptide produced in a reaction mixture
containing 20% ethanol was y10 times lower than that in
an ethanol-free mixture (Fig. 3).

Influence of ethanol on the rennet-induced formation
of a milk coagulum

Little difference was observed between the elastic modu-
lus, Gk, of control milk and milk containing 10% ethanol
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Fig. 1. Influence of ethanol concentration on the rennet coagu-
lation time of milk. Values are means of data from triplicate
experiments on individual milk samples, with the standard
deviation indicated by vertical error bars.
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Fig. 2. Influence of renneting time at 30 8C on the level of
glycomacropeptide (GMP) produced in milk containing 0 (-$-),
5 (-#-), 10 (-h-) or 20 (-d-) % (v/v) ethanol. Values are means
of data from triplicate experiments on individual milk samples,
with the standard deviation indicated by vertical error bars.
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throughout renneting (Fig. 4). In milk containing 5%
ethanol, the rate of increase in Gk and the final value of
Gk after 90 min was considerably higher than that in
control milk, whereas no increase in Gk was observed in
milk containing 20% ethanol throughout renneting for
90 min (Fig. 4).

Aggregation of k-casein-depleted casein micelles in the
presence of ethanol was also studied using diffusing wave
spectroscopy (DWS; Fig. 5). Compared with control milk,
increases in the relaxation time t1/2, which reflects the
extent of restriction of movement of casein micelles, for
milk containing 6, 10 or 15% ethanol were observed
after a longer incubation time (Fig. 5); the lag time, i.e.,
the time before an increase in t1/2 was detected, was
y16, y22, y35 or y51 min for milk containing 0, 6, 10
or 15% (v/v) ethanol; in milk containing 20% ethanol,
no increase in t1/2 was observed throughout the 80 min of
analysis. The rate of increase in t1/2, after the lag time,
was considerably higher in milk containing 6, 10 or 15%
ethanol than in control milk (Fig. 5) ; relative aggregation
constants were, according to von Smoluchowski kinetics,
estimated to be y18, 170, 53 or 32 for milk containing
0, 6, 10 or 15% ethanol.

Discussion

The results presented in this communication suggest a
considerable influence of ethanol on the rennet-induced
coagulation of milk, which has not been reported pre-
viously. As shown in Fig. 1, the RCT of milk was slightly
shorter in the presence of 5% ethanol than in control
milk, but considerably longer in the presence of 15 or

20% ethanol. Since similar results were observed for
whey protein-free milk (data not shown); it is unlikely that
the observed effects were due to ethanol-induced changes
in the whey proteins. It is more likely that the influence
of ethanol on the rennet-induced coagulation of milk is
related to ethanol-induced changes in the colloidal stab-
ility of the casein micelles or activity of chymosin, as
described below.

On addition of ethanol to an aqueous system, e.g.,
milk, the dielectric constant of the system is reduced
(Akerlof, 1932), which induces various changes in the
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Fig. 3. Influence of ethanol concentration on the hydrolysis of
the heptapeptide Pro-Thr-Glu-Phe-[NO2-Phe]-Arg-Leu (-#-) by
chymosin to yield the tripeptide [NO2-Phe]-Arg-Leu (-$-) in
formate buffer (pH 3.2) during incubation at 37 8C for 4 h.
Values are means of data from triplicate experiments on
individual samples, with the standard deviation indicated by
vertical error bars.
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Fig. 4. Influence of incubation time at 30 8C after addition of
rennet on the elastic modulus (Gk) of milk containing 0 (-$-), 5
(-#-), 10 (-h-) or 20 (-d-) %, v/v, ethanol. Values are means of
data from triplicate experiments on individual milk samples.
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Fig. 5. Influence of incubation time with chymosin at 30 8C on
the normalized t1/2, determined using diffusing wave spec-
troscopy (DWS) of milk containing 0 (-$-), 6 (-#-), 10 (-h-),
15 (-d-) or 20 (-&-) % (v/v) ethanol. Values are means of data
from triplicate experiments on individual milk samples.
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casein micelles: (1) the protruding C-terminal region of
k-casein on the micellar surface collapses, which leads
to reduced intermicellar steric repulsion, as well as to a
reduction in the hydrodynamic radius of the micelles
(Horne, 1984; Horne & Davidson, 1986) ; (2) the pKa of
glutamate and aspartate residues is increased, while that
of the basic residues, lysine, arginine and histidine, is
not affected (Jukes & Schmidt, 1934), which leads to a
decrease in the net negative surface charge; (3) the solu-
bility of calcium and phosphate is reduced, leading to
an increased level of calcium and phosphate associated
with the casein micelles (Pierre, 1985). Ethanol-induced
collapse of the k-casein layer, reduction in micellar charge
and precipitation of calcium phosphate are all likely to
reduce micellar stability.

The process of rennet coagulation may be divided into
two discreet, but partially-overlapping, stages (see Hyslop,
2003): the primary stage of rennet coagulation, which
involves the enzymatic hydrolysis of k-casein by chymo-
sin, and the secondary stage, which involves the calcium-
induced aggregation of k-casein-depleted para-casein
micelles, leading ultimately to the formation of a coagu-
lum. The ethanol-induced reduction in the rate of
production of GMP (Fig. 2) suggests that the primary stage
of rennet coagulation is slowed considerably by ethanol.
A similar effect was evident from DWS data (Fig. 5), where
the lag-time increased with increasing concentration of
ethanol. The reduced rate of the primary stage of rennet-
induced coagulation is probably due to an ethanol-
induced reduction in chymosin activity, as indicated by a
reduced degree of hydrolysis of heptapeptide substrate
by chymosin in a given time (Fig. 3). Simon et al. (2001)
showed that the activity of trypsin and a-chymotrypsin is
reduced considerably in the presence of 20% ethanol, and
related this to ethanol-induced conformational changes
in the enzyme molecule; ethanol-induced conformational
changes may also occur in chymosin. The reduced rate
of production of GMP may also be related partially to
the ethanol-induced collapse of the protruding C-terminal
region of the k-casein layer on the micellar surface, which
may restrict its availability for hydrolyis by chymosin.
Thus, it appears clear that ethanol-induced increases in
the RCT of milk (Fig. 1), as well as the increased lag-time
prior to rennet-induced coagulation of milk, are, at least
partially, due to a reduced rate of enzymatic hydrolysis
of k-casein.

Ethanol-induced increases in the rate constant for
micellar aggregation derived from data in Fig. 5 indicate
that ethanol enhances the secondary stage of rennet-
induced coagulation. These observations are supported by
the fact that ethanol reduced the coagulation time of
milk after cold renneting (data not shown). The ethanol-
induced reduction in the level of steric stabilization of
casein micelles promotes their susceptibility to aggregation
(Horne, 1984). Furthermore, the amount of GMP release
from the micelles (Fig. 2) at the time of coagulation (Fig. 1)
clearly indicates that in the presence of ethanol, a lower

level of k-casein hydrolysis is required to induce the
aggregation of the micelles.

The reduction in gel strength (Fig. 4) and aggregation
constant with increasing ethanol content >5% may be re-
lated to the fact that addition of ethanol results in the
precipitation of soluble calcium onto the micelles (Pierre,
1985). A reduction in the level of soluble calcium in milk
reduces the rate of aggregation of para-casein micelles
(Dalgleish, 1983) and thus, at a given time, the strength of
the coagulum formed. Furthermore, from combination
of data shown in Figs. 1 and 2, it is apparent that at a
higher level of ethanol, more intact k-casein is present at
the micellar surface when coagulation commences; a high
level of intact k-casein on the micellar surface may reduce
the strength of the coagulum formed, analogous to effects
for acid-induced coagulation of milk reported by Roefs
et al. (1990) and Lucey et al. (2000).

At low temperatures, b-casein aids in the stabilisation of
the casein micelles, but this effect is absent at a tempera-
ture >20 8C (De Kruif & Roefs, 1996); the steric stabiliz-
ation provided by b-casein is probably sufficient to prevent
rennet-induced coagulation of control milk at a tempera-
ture <20 8C. The addition of ethanol reduces steric stabi-
lization (Horne, 1984; Horne & Davidson, 1986) and
may thus enable rennet-induced coagulation <20 8C. The
progressive reduction in minimum coagulation tempera-
ture with increasing ethanol content (0–20%; data not
shown) is consistent with a progressive reduction in the
hydrodynamic radius of the casein micelles with increas-
ing ethanol content (0–20%; Horne, 1984), suggesting
lower micellar stability.

In conclusion, it is clear that ethanol affects both
the primary (hydrolysis of k-casein) and secondary (aggre-
gation of destabilised micelles and subsequent gel
formation) stages of rennet-induced coagulation of milk.
The magnitude of the effect on each stage, and hence the
net total effect, depends on the concentration of ethanol.
The reduction in the rate of enzymatic hydrolysis of
k-casein was more extensive than was apparent from
ethanol-induced increases in RCT, since the aggregation
of para-casein micelles and the formation of a subsequent
gel are clearly accelerated by the presence of ethanol and a
lower level of k-casein hydrolysis is required for initiation
of coagulation in the presence of ethanol.

The technical assistance of Mr. Fransisco Ferreira (NIZO food
research) with the DWS experiments was greatly appreciated.
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