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Approximation sequences and derived equivalences occur frequently in the research
of mutation of tilting objects in representation theory, algebraic geometry and
noncommutative geometry. In this paper, we introduce symmetric approximation
sequences in additive categories and weakly n-angulated categories which include
(higher) Auslander-Reiten sequences (triangles) and mutation sequences in algebra
and geometry, and show that such sequences always give rise to derived equivalences
between the quotient rings of endomorphism rings of objects in the sequences
modulo some ghost and coghost ideals.
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1. Introduction

Derived categories and derived equivalences were first introduced by Grothendieck
and Verdier in early 1960s. Derived equivalences between rings preserve many sig-
nificant invariants such as Hochschild (co)homology, cyclic homology, centre and
K-theory, and so on. In general, it is very hard to tell whether two given rings
are derived equivalent or not, and it is also very difficult to describe the derived
equivalence class of a given ring. One idea is to study derived equivalences ‘locally’,
that is, to establish some elementary derived equivalences between certain nicely
related rings, and hope that most derived equivalent rings can reach each other by
a sequence of such elementary derived equivalences. Mutation of objects in cate-
gories provide many rings of such kind, where approximations play a central role.
The mutation procedure reads as follows: let T := M ⊕ Y be an object in an abelian
or a triangulated category, and let

X
g→M ′ f→ Y

be a short exact sequence or a triangle such that f is a right add(M)-approximation.
The object T ′ := M ⊕X is called the right mutation of T at M . Dually, one has
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left mutations. In many cases, the morphism g is also a left add(M)-approximation,
and the objects T and T ′ are left and right mutations of each other at the direct
summand M . The endomorphism rings End(T ) and End(T ′) are then related by
this mutation procedure. This occurs in many aspects: mutations of exceptional
sequences in the coherent sheaf category of varieties [21], mutations of tilting mod-
ules [10], mutations of cluster tilting objects [5], mutations of silting objects [1],
and mutations of modifying modules [15] in the study of the NCCR conjecture
([22, Conjecture 4.6]). Auslander-Reiten sequences over artin algebras can also be
viewed as mutation sequences.

One can ask whether the rings End(T ) and End(T ′) are always derived equivalent
or not. For an Auslander-Reiten sequence 0 → X →M → Y → 0 over an artin
algebra, the endomorphism algebras End(M ⊕X) and End(M ⊕ Y ) are derived
equivalent [12]. Mutation of tilting modules and modifying modules also provide
examples where End(T ) and End(T ′) are derived equivalent. However, this is not
always true. For instance, the endomorphism rings of cluster tilting objects related
by mutation are not always derived equivalent. Also, in general, Auslander-Reiten
triangles do not give rise to derived equivalences. In [14], for certain triangles,
it was proved that the quotient algebras of End(T ) and End(T ′) modulo some
particularly defined ideals are still derived equivalent. It remains unclear why these
ideals naturally occur.

The aim of this paper is to find the general statement behind this phenomenon.
In the mutation procedure, the symmetric (left and right) approximation property
plays a central role. We shall introduce the notion of symmetric approximation
sequence (definition 3.1), which can be viewed as a higher mutation sequence and
covers all the known mutation sequences and triangles.

Another main ingredient of our results are ghost and coghost ideals. Let C be
an additive category, and let D ⊂ C be a full subcategory of C. The D-ghost ideal,
denoted by ghD, is the ideal of C consisting of all morphisms f in C with C(D, f) = 0
for all D ∈ D. Dually, the D-coghost ideal, denoted by coghD is the ideal of C
consisting of morphisms f in C such that C(f,D) = 0 for all D ∈ D. If D = add(M)
for some objectM ∈ C, then we simply write ghM (respectively, coghM ) for ghadd(M)

(respectively, coghadd(M)).
Our main result can be described as the following theorem.

Theorem 1.1 (=theorem 3.2). Let C be an additive category and let M ∈ C be an
object. Suppose that

X
f0−→M1

f1−→ · · · fn−1−→ Mn
fn−→ Y

is a symmetric add(M)-approximation sequence (see definition 3.1 below). Then
the quotient rings

EndC(M ⊕X)
coghM (M ⊕X)

and
EndC(M ⊕ Y )
ghM (M ⊕ Y )

are derived equivalent.
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Let us explain the generality of theorem 1.1. The notion of symmetric approxi-
mation sequences covers several notions in the literature:

• Auslander-Reiten sequences ([4, Chapter 5]) and mutation sequences of tilt-
ing modules over artin algebras ([9, §§ 1 and 2]), and modifying modules over
certain commutative rings (see [15, § 6]).

• D-split sequences in additive categories (see [12, definition 3.1]).

• Mutation triangles of exceptional sequences ([21]), cluster tilting objects ([5])
and silting objects ([1]) in triangulated categories.

• Higher Auslander-Reiten sequences over finite dimensional algebras and
Auslander-Reiten n-angles in Krull-Schmidt n-angulated categories (n � 3),
under the condition that the starting term does not occur as a direct summand
of middle terms. Note that, by the proof of [12, proposition 3.15], the starting
term of a higher Auslander-Reiten sequence appears as a direct summand of
some middle term if and only if so does the ending term, in this case the endo-
morphism rings in theorem 1.2 are Morita equivalent. A similar proof applies
to the case of Auslander-Reiten n-angles.

As a consequence, theorem 1.1 can be used to give a unified proof of several known
results:

• [12, theorem 1.1 and proposition 3.15], where the sequences are D-split
sequences and higher Auslander-Reiten sequences respectively;

• [19, theorem 5.3], using mutation triangles of cluster tilting objects. In [19,
theorem 5.3], the BB-tilting modules are defined if and only if the ghost and
coghost ideals of the endomorphism algebras in theorem 1.1 are zero (cf. [19,
theorem 4.2]);

• [15, theorem 6.8] via mutation sequences of modifying modules.

Let us remark that the ghost ideal and the coghost ideal occurring in theorem 1.1
are zero when f0 is monic and fn is epic. In this case, one gets a derived equivalence
between the endomorphism rings. One can also apply theorem 1.1 to get derived
equivalences from Auslander-Reiten n-angles (This was discussed in [12, proposition
5.1] for the special case n = 3).

Next, we show that the ideals occurring in theorem 1.1 can be chosen to be some
smaller ideals when the category C has a weak n-angulated structure which we shall
define below.

As a generalization of triangulated categories, Geiss et al [7] introduced n-
angulated categories, which occur widely in cluster tilting theory and are closely
related to algebraic geometry and string theory. An n-angulated category is an
additive category C together with an automorphism Σ and a class of n-angles
satisfying four axioms (F1), (F2), (F3) and (F4) (see [7] for details). The weak
n-angulated structure we define in this paper can be obtained by dropping the
axiom (F4) (the pushout axiom) and the condition (F1)(c) which says that every
morphism in C can be extended to an n-angle. An additive category C with this weak
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n-angulated structure will be called a weakly n-angulated category (see definition
4.1 below). Roughly speaking, the relationship between a weakly n-angulated cat-
egory and an n-angulated category is like that between an additive category and
an abelian category. In a weakly n-angulated category, we do not have the pushout
axiom (Octahedral axiom when n = 3) and we do not require every morphism to be
embedded into an n-angle. In an additive category, in general, pushouts/pullbacks
do not exist, and a morphism does not necessarily have a kernel or cokernel.

Let C be an additive category, and let D be an additive subcategory of C. We
denote by FD the ideal of C consisting of morphisms factorizing through an object
in D. The intersection ghD ∩ FD is called the ideal of factorizable D-ghosts of C,
denoted by FghD. Similarly, the intersection coghD ∩ FD is called the ideal of fac-
torizable D-coghosts of C, denoted by FcoghD. It turns out that the ideals defined
in [14] are actually factorizable ghost and coghost ideals. So the following theorem
generalizes [14, theorem 3.1], and shows that it fits into our general framework.

Theorem 1.2 (=theorem 4.3). Let (C,Σ,�) be a weakly n-angulated category (see
definition 4.1 below), and let M be an object in C. Suppose that

X
f−→M1 −→ · · · −→Mn−2

g−→ Y
η−→ ΣX

is an n-angle in C with Mi ∈ add(M) for 1 � i � n− 2 such that f and g are left
and right add(M)-approximations, respectively. Then the quotient rings

EndC(M ⊕X)
FcoghM (M ⊕X)

and
EndC(M ⊕ Y )
FghM (M ⊕ Y )

are derived equivalent.

Let us remark that, in theorem 1.2, the sequence X f→M1 → · · · →Mn−2
g→ Y

is also a symmetric add(M)-approximation sequence, and thus theorem 1.1 applies.
This paper is organized as follows. In § 2, we make some preparations, including

the Φ-orbit construction, ghosts and coghosts. Sections 3 and 4 are devoted to
proving theorem 1.1 and theorem 1.2, respectively. Some examples will be given in
the final section.

2. Preliminary results

In this section, we shall recall basic definitions and facts which are needed in our
proofs.

2.1. Conventions

Let C be an additive category. For two objects X,Y in C, we denote by C(X,Y )
the set of morphisms from X to Y . The endomorphism ring C(X,X) of an object X
is denoted by EndC(X). We write addC(X) for the full subcategory of C consisting
of all direct summands of finite direct sums of copies of X. If there is no confusion,
we just write add(X) for addC(X). For two morphisms f : X → Y and g : Y → Z
in C, we write fg for their composite. But for two functors F : C → D and G :
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D → E between categories, we write GF for their composite instead of FG. For a
morphism f : X −→ Y and an object Z in C the natural morphism C(Z,X) −→
C(Z, Y ) sending g to gf is denoted by C(Z, f), and the morphism C(Y,Z) −→
C(X,Z) sending h to fh is denoted by C(f, Z). Suppose that D is a full subcategory
of C. The notion C(D, f) = 0 means that C(D, f) = 0 for all objectsD ∈ D. Similarly
C(f,D) = 0 means that C(f,D) = 0 for all objects D ∈ D.

All categories in this paper are additive categories, and all functors are additive
functors. Let η : F → G be a natural transformation between two functors from C to
D. For an objectX ∈ C, we denote by ηX the morphism from F (X) toG(X) induced
by η. For functors H : A → C and L : D −→ E , we have a natural transformation
LηH : LFH −→ LGH induced by η.

Let C be a category. A functor F from C to itself is called an endo-functor of C.
If there is another endo-functor G of C such that FG = GF = idC , where idC is the
identity functor on C, then F is called an automorphism of C. A endo-functor F is
called an auto-equivalence provided that there is another endo-functor G of C such
that both FG and GF are naturally isomorphic to idC .

2.2. Complexes and derived equivalences

Let C be an additive category. A complex X• over C is a sequence of morphisms

· · · → Xi−1
di−1
X→ Xi d

i
X→ Xi+1

di+1
X→ · · · between objects in C such that diXd

i+1
X = 0

for all i ∈ Z. The category of complexes over C with morphisms being chain
maps is denoted by C (C). The homotopy category of complexes over C is
denoted by K (C). If C is an abelian category, then the derived category of
complexes over C is denoted by D(C). We write C b(C), K b(C) and Db(C), respec-
tively, for the full subcategories of C (C), K (C) and D(C) consisting of bounded
complexes.

It is well known that the categories K (C) and D(C) are triangulated categories
with K b(C) and Db(C) being their full triangulated subcategories, respectively. For
basic results on triangulated categories, we refer to Happel’s book [8]. However, the
shift functor in a triangulated category is written as Σ in this paper.

For two complexes X• and Y • over C, we write Hom•
C(X•, Y •) for the total

complex of the double complex with the (i, j)-term C(X−j , Y i).
Let Λ be a ring with identity. The category of left Λ-modules, denoted by Λ-Mod,

is an abelian category. The full subcategory of Λ-Mod consisting of finitely generated
projective Λ-modules is denoted by Λ-proj. Following [20], two rings Λ and Γ are
said to be derived equivalent provided that the derived categories Db(Λ-Mod) and
Db(Γ-Mod) of bounded complexes are equivalent as triangulated categories. Due to
the work of Rickard [20] (see also [16]), two rings Λ and Γ are derived equivalent if
and only if there is a bounded complex T • of finitely generated projective Λ-modules
satisfying the following two conditions,

(a) T • is self-orthogonal, that is, K b(Λ-proj)(T •,ΣiT •) = 0 for all i �= 0;

(b) add(T •) generates K b(Λ-proj) as a triangulated category,
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such that EndK b(Λ-proj)(T
•) is isomorphic to Γ as rings. A complex T • in

K b(Λ-proj) satisfying the above two conditions is called a tilting complex over Λ.

2.3. Admissible sets and Φ-orbit categories

Let us recall from [13] and [14] the definition of admissible subsets. A subset Φ
of Z containing 0 is called an admissible subset provided that the following property
holds:

If i+ j + k ∈ Φ for three elements i, j, k in Φ, then i+ j ∈ Φ if and only if
j + k ∈ Φ.
Typical examples of admissible subsets of Z include nZ and {0, 1, . . . , n}. Sup-
pose that Φ is an admissible subset of Z. Then −Φ := {−i | i ∈ Φ}, Φ�0 := {i ∈
Φ | i � 0} and Φ�0 := {i ∈ Φ | i � 0} are all admissible. Let m be an integer. The
set mΦ := {mi | i ∈ Φ} is admissible. Moreover, if m � 3, then the set Φm := {im |
i ∈ Φ} is admissible. Nevertheless, not all subsets of Z containing zero are admis-
sible. For instance, the set {0, 1, 2, 4} is not admissible. One can refer to [13, § 3.1]
for more details.

Now let T be an additive category, and let F be an endo-functor of T . If F is
not an equivalence, we set F i = 0 for all i < 0. If F is an equivalence, we fix a
quasi-inverse F−1 of F , and set F i := (F−1)−i for i < 0. The functor F 0 is defined
to be the identity functor on T . Let Φ be an admissible subset of Z. We can define a
category T F,Φ as follows. The objects in T F,Φ are the same as T , and the morphism
space T F,Φ(X,Y ) for two objects X,Y is defined to be⊕

i∈Φ

T (X,F iY ).

In [14], for each pair of integers u and v, a natural transformation χ(u, v) from
FuF v to Fu+v is defined, and it is proved that the composition

T (X,FuY ) × T (Y, F vZ) −→ T (X,Fu+vZ),

sending (fu, gv) to fu ∗ gv := fuF
u(gv)χ(u, v)Z , is associative. We refer to [14,

§ 2.3] for the details of the natural transformations χ(u, v) : FuF v −→ Fu+v. As
a result, for morphisms f = (fi)i∈Φ ∈ T F,Φ(X,Y ) and g = (gi)i∈Φ ∈ T F,Φ(Y,Z),
the composition

(f, g) 	→ fg :=

⎛
⎜⎝ ∑

u,v∈Φ
u+v=i

fu ∗ gv

⎞
⎟⎠
i∈Φ

is associative. Thus T F,Φ is indeed an additive category, and is called the Φ-orbit
category of T under the functor F .

For each X,Y ∈ T , the morphism space T F,Φ(X,Y ) =
⊕

i∈Φ T (X,F iY ) is Φ-
graded. Every morphism α ∈ T (X,F iY ) can be viewed as a homogeneous morphism
in T F,Φ(X,Y ) of degree i.

Suppose that F is an auto-equivalence of T . If both i and −i are in the admissible
subset Φ, thenX and F iX are isomorphic in the Φ-orbit category T F,Φ. Specifically,
let f := χ(−i, i)−1

X : X −→ F−i(F iX) and g := 1F iX : F iX −→ F iX. Considering
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f as a homogeneous morphism in T F,Φ of degree −i, and g as a homogeneous
morphism in T F,Φ of degree i, we have f ∗ g = 1X and g ∗ f = 1F iX . Here g ∗ f =
1F iX follows from the property:

F j(χ(k, l))χ(j, k + l) = χ(j, k)F lχ(j + k, l)

for all integers j, k and l (see [14, § 2.3]) by taking j = i, k = −i and l = i.

2.4. Approximations and cohomological approximations

Now we recall some definitions from [3].
Let C be a category, and let D be a full subcategory of C, and X an object in

C. A morphism f : D −→ X in C is called a right D-approximation of X if D ∈ D
and the induced map C(D′, f) : C(D′,D) −→ C(D′,X) is surjective for all D′ ∈ D.
Dually, there is the notion of a left D-approximation.

Cohomological approximations were introduced in [14]. Let T be an additive
category, and let F be a functor from T to itself. Suppose that Φ is a non-empty
subset of Z, and that D is a full additive subcategory of T . A morphism f : X →
DX in T with DX ∈ D is called a left (D, F,Φ)-approximation if every morphism
X → F iD, where D ∈ D and i ∈ Φ, factorizes through f . In the case that Φ is
an admissible subset, we have the Φ-orbit category T F,Φ, and that f is a left
(D, F,Φ)-approximation is equivalent to saying that T F,Φ(DX ,D) → T F,Φ(X,D)
is surjective for all D ∈ D, i.e., the morphism f , as a homogeneous morphism of
degree zero, is a left D-approximation in the Φ-orbit category T F,Φ.

In [14], a right (D, F,Φ)-approximation is defined to be a morphism g : DY → Y
in T with DY ∈ D such that every morphism from F iD to Y with i ∈ Φ and
D ∈ D factorizes through g. Unfortunately, this does not fit the Φ-orbit cate-
gory well: g is NOT a right D-approximation in the Φ-orbit category T F,Φ in
general. However, when F is an auto-equivalence with a quasi-inverse F−1, a
right (D, F,−Φ)-approximation is still a right D-approximation in T F,Φ. Here we
re-define a right (D, F,Φ)-approximation as follows.

A morphism g : DY → Y in T with DY ∈ D is called a right (D, F,Φ)-
approximation if every morphism from D to F iY with i ∈ Φ and D ∈ D factorizes
through F ig.
Suppose that Φ is an admissible subset of Z. Then, a morphism g : DY → Y in T
is a right (T , F,Φ)-approximation if and only if g, as a homogenous morphism in
degree zero, is a right D-approximation in the Φ-orbit category T F,Φ, no matter
whether F is an equivalence or not.

2.5. Ghosts and factorizable ghosts

Let C be an additive category. By an ideal I of C we mean additive subgroups
I(A,B) ⊆ C(A,B) for all A and B in C, such that the composite αβ of morphisms
α, β ∈ C belongs to I provided either α or β is in I. We denote I(A,A) simply by
I(A). The quotient category C/I of C modulo an ideal I has the same objects as C
and has morphism space (C/I)(A,B) := C(A,B)/I(A,B) for two objects A and B.
The quotient category C/I is also an additive category, and the projection functor
C → C/I is full and dense [2, p. 421].
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Let D be a full additive subcategory of C, a morphism f in C is called a D-ghost
provided that C(D, f) = 0. All D-ghosts in C form an ideal of C, called the ideal of
D-ghosts and denoted by ghD. Dually, a morphism g in C is called a D-coghost if
C(g,D) = 0, and the ideal consisting of all D-coghosts is denoted by coghD.

Let FD be the ideal of morphisms in C factorizing through an object in D. The
intersection ghD ∩ FD is called the ideal of factorizable D-ghosts of C, denoted
by FghD. Similarly, the intersection coghD ∩ FD is called the ideal of factorizable
D-coghosts of C, denoted by FcoghD.

Lemma 2.1. Keeping the notations above, we have the following:

(1) If A ∈ C admits a right D-approximation fA : DA → A, then

ghD(A,B) = {g ∈ C(A,B) | fAg = 0}.

(2) If B ∈ C admits a left D-approximation fB : B → DB, then

coghD(A,B) = {g ∈ C(A,B) | gfB = 0}.

(3) If A ∈ D, then ghD(A,B) = 0 and coghD(A,B) = FcoghD(A,B).

(4) If B ∈ D, then coghD(A,B) = 0 and ghD(A,B) = FghD(A,B).

Proof. (1). Let g : A→ B be in ghD(A,B). Then C(D, g) = 0, and particularly
C(DA, g) = 0. Consequently fAg = 0. Conversely, let g be in C(A,B) such that
fAg = 0. It follows that

0 = C(D′, fAg) = C(D′, fA) · C(D′, g)

for all D′ ∈ D. Moreover, since fA is a right D-approximation, the morphism
C(D′, fA) is surjective. Hence C(D′, g) = 0 for all D′ ∈ D, that is, g ∈ ghD(A,B).

The proof of (2) is dual to that of (1).
(3). Suppose that A ∈ D. The identity map 1A : A→ A is a right D-

approximation. It follows from (1) that ghD(A,B) = 0. Clearly, all the morphisms
in C(A,B) factorize through the object A, which is in D. This implies that
FcoghD(A,B) = coghD(A,B). Similarly, we can prove (4). �

3. Symmetric approximation sequences and derived equivalences

In this section, we introduce symmetric approximation sequences in additive cat-
egories and show that such a sequence always gives rise to a derived equivalence
between the quotient rings of certain endomorphism rings modulo ghosts or coghosts
(theorem 3.2). Examples of symmetric approximation sequences range from D-split
sequences and D-split triangles to mutation triangles in cluster tilting theory, and
to higher Auslander-Reiten sequences and higher Auslander-Reiten triangles.
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Let C be an additive category, and let D be a full additive subcategory of C.
A right D-approximation sequence in C is a sequence

Dm −→ Dm−1 −→ · · · −→ D0 → Y

with Di ∈ D for all i = 0, . . . ,m such that applying C(D,−) to the sequence results
in an exact sequence

C(D,Dm) −→ C(D,Dm−1) −→ · · · −→ C(D,D0) → C(D,Y ) −→ 0

for all D ∈ D. One can define left D-approximation sequences dually. Recall that a
pseudo-kernel of a morphism u : X → Y is a morphism v : Z → X such that

C(C,Z)
C(C,v)−→ C(C,X)

C(C,u)−→ C(C, Y )

is exact for all C ∈ C. The pseudo-cokernel is defined dually.

Definition 3.1. Let C be an additive category and let D be a full additive
subcategory of C. A sequence

X
f0−→ D1

f1−→ · · · fn−1−→ Dn
fn−→ Y (†)

in C is called a symmetric D-approximation sequence if the following three
conditions are satisfied.

(1) The sequence D1
f1−→ · · · fn−1−→ Dn

fn−→ Y is a right D-approximation sequence;

(2) The sequence X f0−→ D1
f1−→ · · · fn−1−→ Dn is a left D-approximation sequence;

(3) The morphism f0 is a pseudo-kernel of f1, and fn is a pseudo-cokernel of
fn−1.

In definition 3.1, if we replace the condition (3) with the following condition

(3′) The morphism f0 is a kernel of f1, and fn is a cokernel of fn−1,

then the sequence (†) is called a higher D-split sequence. Comparing with the
definition of D-split sequence [12, definition 3.1], a D-split sequence is precisely a
sequence (†) with n = 1 satisfying the conditions (1), (2) and (3′) above.

The main result in this section is the following theorem.

Theorem 3.2. Let C be an additive category and let M ∈ C be an object. Suppose
that

X
f0−→M1

f1−→ · · · fn−1−→ Mn
fn−→ Y

is a symmetric add(M)-approximation sequence. Then the quotient rings

EndC(M ⊕X)
coghM (M ⊕X)

and
EndC(M ⊕ Y )
ghM (M ⊕ Y )

are derived equivalent.
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The following lemma and its corollary will be useful in the proof of theorem 3.2.

Lemma 3.3. Let C be an additive category, and let M be an object in C. Suppose
that P •:

0 −→ P 0 d0−→ P 1 −→ · · · −→ Pn−1 d
n−1

−→ Pn −→ 0

is a complex over C such that P i ∈ add(M) for all i > 0, and that the following two
conditions are satisfied:

(1) Hi(Hom•
C(M,P •)) = 0 for all i �= 0, n;

(2) Hi(Hom•
C(P •,M)) = 0 for all i �= −n.

Then P • is self-orthogonal as a complex both in K b(C/coghM ) and in
K b(C/FcoghM ).

Proof. For simplicity, we denote by C the category C/coghM , and denote by C the
category C/FcoghM .

If n = 0, then the problem is trivial. Now we assume that n > 0.
It follows from our assumption (2) thatH0(Hom•

C(P •,M)) = 0, and consequently
the map C(d0,M) : C(P 1,M) → C(P 0,M) is surjective. Thus, the morphism d0 is
a left add(M)-approximation. By lemma 2.1 (2), one has coghM (M,P 0) = {f ∈
C(M,P 0) | fd0 = 0} = Ker C(M,d0). Moreover, it follows from lemma 2.1 (3) that
coghM (M,P 0) = FcoghM (M,P 0). Hence the canonical functors C → C → C induce
isomorphisms

C(M,P 0)/Ker C(M,d0) −→ C(M,P 0) −→ C(M,P 0).

Note that for each i > 0, by lemma 2.1 (4), we have coghM (M,P i) = 0 =
FcoghM (M,P i) since P i ∈ add(M). Thus, for each i > 0, the canonical functors
C → C → C also induce isomorphisms

C(M,P i) −→ C(M,P i) −→ C(M,P i).

In this way, we see that the complexes Hom•
C(M,P •) and Hom•

C
(M,P •) are both

isomorphic to the complex

0 −→ C(M,P 0)/Ker C(M,d0) −→ C(M,P 1) −→ · · · −→ C(M,Pn) −→ 0.

By assumption (1), the above complex has zero homology for all degrees not equal
to n. Hence

Hi(Hom•
C(M,P •)) = 0 = Hi(Hom•

C
(M,P •))

for all i �= n. By lemma 2.1 (4), we have coghM (P i,M) = 0 for all i, and
therefore FcoghM (P i,M) = 0 for all i. Hence the complexes Hom•

C(P •,M),
Hom•

C
(P •,M) and Hom•

C(P •,M) are all isomorphic. Hence Hi(Hom•
C(P •,M)) =

0 = Hi(Hom•
C
(P •,M)) for all i �= −n by assumption (2). The lemma then follows

from the dual version of the result [11, lemma 2.1]. �
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Corollary 3.4. Let C be an additive category and let M be an object in C. Suppose
that

X
f0−→M1 −→ · · · −→Mn

fn−→ Y

is a symmetric add(M)-approximation sequence in C. Then the complex

0 −→ X
f0−→M1 −→ · · · −→Mn −→ 0

is self-orthogonal as a complex both in K b(C/coghM ) and in K b(C/FcoghM ).

Proof. It follows from definition 3.1 (2) that the sequence

0 → X →M1 → · · · →Mn → 0

is indeed a complex. We put X in degree zero and denote this complex by P •. By
the conditions (1) and (3) of definition 3.1, applying C(M,−) to P • results in an
exact sequence

C(M,X) −→ C(M,M1) −→ · · · −→ C(M,Mn).

This implies that P • satisfies lemma 3.3(1). Since X →M1 → · · · →Mn is a left
add(M)-approximation sequence by definition, the complex P • satisfies lemma 3.3
(2), and the corollary then follows. �

Proof of theorem 3.2. Note that the quotient rings in the theorem are precisely the
endomorphism rings of M ⊕X and M ⊕ Y in C/coghM and C/ghM respectively.

By the definition of symmetric approximation sequences, the sequence

X −→M1 −→ · · · [fn−1,0]−→ Mn ⊕M

[
fn 0
0 1

]
−→ Y ⊕M

is again a symmetric add(M)-approximation sequence. Let T • be the complex

0 −→ X −→M1 −→ · · · −→Mn ⊕M −→ 0

with X in degree zero. Then it follows from corollary 3.4 that T • is self-orthogonal
in K b(C/coghM ). Note that, for an additive category A and an object U in A,
there is a fully faithful functor (see, for example, [18, proposition 2.3])

A(U,−) : add(U) −→ EndA(U)-proj,

which further induces a fully faithful triangle functor

Hom•
A(U,−) : K b(add(U)) −→ K b(EndA(U)-proj).

Thus, we get a full triangle embedding

Hom•
C/coghM

(M ⊕X,−) :K b(addC/coghM
(M ⊕X)) −→

K b(EndC/coghM
(M ⊕X)-proj),

and we see that T̃ • := Hom•
C/coghM

(M ⊕X,T •) is self-orthogonal in K b(EndC/coghM

(M ⊕X)-proj). Moreover, add(T̃ •) clearly generates K b(EndC/coghM
(M ⊕
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X)-proj) as a triangulated category. Hence T̃ • is a tilting complex over
EndC/coghM

(M ⊕X) with the endomorphism ring isomorphic to EndK b(C/coghM )

(T •).
By [20, theorem 6.4], it remains to prove that EndK b(C/coghM )(T •) and

EndC/ghM
(Y ⊕M) are isomorphic. Instead of giving a ring isomorphism directly,

we prove that there is a surjective ring homomorphism from EndCb(C)(T •) to each
of the rings, and show that these two ring homomorphisms have the same kernel.

We denote the differentials of T • by di and denote by d̃n the map Mn ⊕M
[ fn

1
]

→
Y ⊕M .

Firstly, we show that there is a surjective ring homomorphism

θ : EndCb(C)(T
•) −→ EndC/ghM

(Y ⊕M).

For each chain map g• : T • −→ T • in C b(C), since d̃n is a pseudo-cokernel of
dn−1, there is a morphism g ∈ EndC(Y ⊕M) such that the following diagram is
commutative

X
d0 ��

g0

��

M1

d1 ��

g1

��

· · · dn−1

�� Mn ⊕M
d̃n ��

gn

��

Y ⊕M

g (♣)

���
�
�

X
d0 �� M1

d1 �� · · · dn−1

�� Mn ⊕M
d̃n �� Y ⊕M.

Moreover, if g′ is another morphism in EndC(Y ⊕M) such that d̃ng′ = gnd̃n, then
d̃n(g − g′) = 0. By definition d̃n is a right add(M)-approximation of Y ⊕M . Thus,
by lemma 2.1 (1), the morphism g − g′ belongs to ghM (Y ⊕M). We denote by
ḡ the corresponding morphism of g in C/ghM . Defining θ(g•) := ḡ gives rise to a
ring homomorphism θ from EndCb(C)(T •) to EndC/ghM

(Y ⊕M). We claim that
θ is surjective. Actually, for each g ∈ EndC(Y ⊕M), it follows from definition
3.1(1) that there are morphisms gi : T i → T i, i = 1, . . . , n such that gnd̃n = d̃ng
and gkdk = dkgk+1 for all k = 1, . . . , n− 1. Since d0 is a pseudo-kernel of d1 by
definition, we get a morphism g0 : X → X such that g0d0 = d0g1. Thus we get a
chain map g• in EndCb(C)(T •) such that θ(g•) = ḡ.

Secondly, we claim that there is a surjective ring homomorphism

ϕ : EndCb(C)(T
•) −→ EndK b(C/coghM )(T

•).

Actually, we can define ϕ to be the composite of the ring homomorphism

EndCb(C)(T
•) −→ EndCb(C/coghM )(T

•),

induced by the canonical functor C → C/coghM , and the canonical surjective ring
homomorphism

EndCb(C/coghM )(T
•) −→ EndK b(C/coghM )(T

•).

Let gi : T i → T i, i = 0, 1, . . . , n be morphisms in C such that g• is a chain map in
C b(C/coghM ). Then gidi − digi+1 : T i → T i+1 is in coghM for all i = 0, 1, . . . , n−
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1. Since T i ∈ add(M) for all i > 0 and by lemma 2.1 (4), we get gidi − digi+1 = 0
for all i = 0, 1, . . . , n− 1. Hence g• is a chain map in C b(C), and the canonical
map from EndCb(C)(T •) to EndCb(C/coghM )(T •) is surjective. Consequently, ϕ is a
surjective ring homomorphism.

Finally, we show that θ and ϕ have the same kernel, which would result in an
isomorphism between EndK b(C/coghM )(T •) and EndC/ghM

(Y ⊕M). By definition, a
chain map g• : T • −→ T • is in Kerϕ if and only if there exist hi : T i → T i−1, i =
1, . . . , n in C such that gn − hndn−1, g0 − d0h1 and gi − hidi−1 − dihi+1 are all in
coghM for i = 1, . . . , n− 1. Using the fact that T i ∈ add(M) for all i > 0 and that
d0 is a left add(M)-approximation of X, one can show, by lemma 2.1, that this
is equivalent to saying that gn − hndn−1 = 0, (g0 − d0h1)d0 = 0 and gi = hidi−1 +
dihi+1 for all i = 1, . . . , n− 1. Now suppose that g• is in Kerϕ, and let g : Y ⊕M →
Y ⊕M in C be the map induced by the commutative diagram (♣) above, that is,
θ(g•) = ḡ. Then d̃ng = gnd̃n = hndn−1d̃n = 0, and consequently g ∈ ghM by lemma
2.1 (1), and ḡ = 0. Hence Kerϕ ⊆ Ker θ. Conversely, suppose that g• is a chain map
in EndCb(C)(T •) such that θ(g•) = ḡ = 0. Then gnd̃n = d̃ng = 0 by lemma 2.1(1).
By definition 3.1 (1) and (3), one can inductively construct morphisms hi : T i −→
T i−1 for i from n down to 1 such that gn = hndn−1 and gi = hidi−1 + dihi+1 for all
i = n− 1, . . . , 1. Finally, (g0 − d0h1)d0 = g0d0 − d0h1d0 = d0g1 − d0(g1 − d1h2) =
0. Hence g• is in Kerϕ, and consequently Ker θ ⊆ Kerϕ.

Altogether, we have shown that θ and ϕ are surjective ring homomorphisms with
the same kernel. Hence EndC/ghM

(Y ⊕M) and EndK b(C/coghM )(T •) are isomorphic,
and the theorem is proved. �

Corollary 3.5. Let C be an additive category, and let M be an object in C. Suppose
that

X
f0−→M1 −→ · · · −→Mn

fn−→ Y

is a higher add(M)-split sequence. Then EndC(M ⊕X) and EndC(M ⊕ Y ) are
derived equivalent.

Proof. This is an immediate consequence of theorem 3.2. Note that the ghost and
coghost ideals vanish in this case since f0 is monic and fn is epic. �

Let A be a finite dimensional algebra, and let P be a projective A-module with
νAP ∼= P , where νA is the Nakayama functor DHomA(−, A). Suppose that Y is an
A-module admitting an add(P )-presentation, namely, there is an exact sequence
P1

f1→ P0
f0→ Y → 0 in A-mod with Pi ∈ add(P ) for i = 0, 1. Let P2 → Ker f1 be

a right add(P )-approximation of Ker f1, we get a sequence P2
f2→ P1

f1→ P0
f0→ Y .

Continuing this process by taking a right add(P )-approximation Pi → Ker fi−1 for
2 � i � n, we get a sequence

(‡) X
fn+1−→ Pn

fn−→ Pn−1 −→ · · · −→ P1
f1−→ P0

f0−→ Y,

where fn+1 is the kernel of fn.

Corollary 3.6. In the above sequence (‡), the algebras EndA(P ⊕X) and
EndA(P ⊕ Y ) are derived equivalent.
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Proof. By definition, the sequence Pn
fn→ · · · → P0

f0→ Y is a right add(P )-
approximation sequence. The assumption P ∼= νAP , together with the natural
isomorphism DHomA(P,−) ∼= HomA(−, νAP ), implies that X

fn+1→ Pn
fn→ · · · f1→ P0

is a left add(P )-approximation sequence. Together with the fact that f0 is a cok-
ernel of f1 and fn+1 is a kernel of fn, we see that the sequence (‡) is a higher
add(P )-split sequence. The corollary then follows from corollary 3.5. �

Corollary 3.6 provides an easy construction of derived equivalences, as illustrated
by the following example.

Example. Let A be the Nakayama algebra given by the quiver

• α1 2�� •

β

��
•

δ

��

•
γ 34

��

with relations αβγδα = βγδαβ = γδαβγ = δαβγδ = 0. We denote by Pi the inde-
composable projective A-module corresponding to the vertex i. Then νAPi ∼= Pi
for all 1 � i � 4. Let P = P1 ⊕ P3, and let Y be the module 1

2 , which admits an
add(P )-presentation P3 → P1 → Y → 0. Using the method in corollary 3.6, we can
construct a sequence

X
f5−→ P1

f4−→ P1
f3−→ P3

f2−→ P3
f1−→ P1

f0−→ Y,

where fi is a right add(P )-approximation of Ker fi−1 for i = 2, 3, 4, andX =
2
3
4
1

is the

kernel of f4. Note that both HomA(X,P3) and HomA(X,P1) are one-dimensional
vector spaces and the induced maps HomA(X, f2) and HomA(X, f1) are both zero.
Hence the sequence

HomA(X,P3)
HomA(X,f2)−→ HomA(X,P3)

HomA(X,f1)−→ HomA(X,P1)

cannot be exact at the middle term. This shows that the condition (2) of [12,
lemma 3.4] fails for this sequence. However, by corollary 3.6, we can deduce that
EndA(P1 ⊕ P3 ⊕ Y ) and EndA(P1 ⊕ P3 ⊕X) are derived equivalent.

4. Symmetric approximation sequences in weakly n-angulated
categories

Theorem 3.2 tells us that symmetric approximations sequences in arbitrary additive
categories give rise to derived equivalences between quotient rings of endomorphism
rings modulo ghost ideals and coghost ideals. In this section, we will see that, if the
category C in theorem 3.2 has some ‘weak’ n-angulated structure and the symmetric
approximation sequence is an n-angle in C, then the ideals can be chosen to be ideals
of factorizable ghosts and coghosts, respectively.
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The notion of n-angulated category is given in [7] as a generalization of triangu-
lated categories (in this case n = 3). Typical examples of n-angulated categories
include certain (n− 2)-cluster tilting subcategories in a triangulated category,
which appear in recent cluster tilting theory. The ‘weak’ n-angulated structure
we need in this section is obtained from the definition of n-angulated categories [7]
by dropping some axioms.

Definition 4.1. Let n � 3 be an integer. A weakly n-angulated category is an addi-
tive category C together with an automorphism Σ of C, and a class � of sequences
of morphisms in C

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ ΣX1,

called n-angles, satisfying the following axioms:

(F1’) For each X ∈ C, the sequence X 1X−→ X −→ 0 −→ · · · −→ 0 −→ ΣX belongs
to �. The class � is closed under taking direct sums and direct summands.

(F2) A sequence X1
f1→ X2

f2→ · · · fn−1→ Xn
fn→ ΣX1 of morphisms in C is in � if and

only if so is X2
f2→ · · · fn−1→ Xn

fn→ ΣX1
(−1)nΣf1−→ ΣX2.

(F3) For each commutative diagram

X1

f1 ��

h1

��

X2

f2 ��

h2

��

X3

f3 ��

h3

��

· · ·
fn−1

�� Xn

hn

��

fn �� ΣX1

Σh1

��
Y1

g1 �� Y2

g2 �� Y3

g3 �� · · ·
gn−1

�� Yn
gn �� ΣY1

with rows in �, there exists maps hi : Xi −→ Yi for 3 � i � n making the
diagram commute. In other words, any such diagram can be completed to a
morphism of n-angles.

The axioms in definition 4.1 are obtained from the axioms (F1), (F2), (F3) and
(F4) in the definition of n-angulated categories in [7] by dropping the pushout axiom
(F4) and by dropping the condition (F1)(c) (each morphism can be embedded into
an n-angle) to obtain (F1′).

Remark.

(a) The relationship between weakly n-angulated categories and n-angulated
categories is like the relationship between additive categories and abelian
categories. In an abelian category, pullbacks and pushouts always exist, and
every morphism has a kernel and a cokernel, while additive categories do not
have these properties in general. Correspondingly, an n-angulated category
has a pushout axiom (F4), and every morphism can be embedded into an
n-angle. However, a weakly n-angulated category does not necessarily have
these properties.
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(b) Just like additive categories, the axioms of definition 4.1 can be easily sat-
isfied by many full subcategories of n-angulated categories. Suppose that
(C,Σ,�) is a weakly n-angulated category, and that C′ is a full additive
subcategory of C such that ΣC′ = C′. Denote by �′ the class of n-angles
in � with all terms in C′. Then it is easy to see that (C′,Σ,�′) is again a
weakly n-angulated category. Namely, every full additive subcategory of an
n-angulated category closed under Σ and Σ−1 is weakly n-angulated.

An additive covariant functor H from a weakly n-angulated category (C,Σ,�)
to Z-Mod is called cohomological, if whenever

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ ΣX1

is an n-angle, the long sequence

· · · −→ H(ΣiX1)
H(Σif1)−→ H(ΣiX2)

H(Σif2)−→ · · · H(Σifn−1)−→ H(ΣiXn)

H(Σifn)−→ H(Σi+1X1) −→ · · ·

is exact. Dually we have contravariant cohomological functors.

Lemma 4.2. Let (C,Σ,�) be a weakly n-angulated category, and let

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ ΣX1

be an n-angle in C. Then we have the following:

(1) fifi+1 = 0 for all i = 1, 2, · · · , n− 1;

(2) C(X,−) and C(−,X) are cohomological for all X ∈ C;

(3) Suppose that 2 � m < n. Each commutative diagram

X1

f1 ��

h1

��

X2

f2 ��

h2

��

· · ·
fm−1

�� Xm

fm ��

hm

��

Xm+1

fm+1
��

hm+1

��

· · ·
fn−1

�� Xn

hn

��

fn �� ΣX1

Σh1

��
Y1

g1 �� Y2

g2 �� · · ·
gm−1

�� Ym
gm �� Ym+1

gm+1
�� · · ·

gn−1
�� Yn

gn �� ΣY1

with rows in � can be completed in C to a morphism of n-angles.

Proof. The proofs of (1) and (2) are similar to that of [8, proposition 1.2] for
triangulated categories.

(3). By (F3), there exist morphisms h′i : Xi → Yi, 3 � i � n such that h2g2 =
f2h

′
3, h′ngn = fnΣh1 and h′igi = fih

′
i+1 for all 3 � i � n− 1. By (2), we can

inductively construct morphisms si : Xi → Yi−1 for i from 4 to m+ 1 such that
h3 − h′3 = f3s4 and hi − h′i = sigi−1 + fisi+1 for all 4 � i � m. Now define hm+1 :=
h′m+1 + sm+1gm and hi := h′i for all m+ 1 < i � n. It is easy to check that the
sequence of morphisms h1, . . . , hn is a morphism of n-angles. �
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Theorem 4.3. Let (C,Σ,�) be a weakly n-angulated category (n � 3), and let M
be an object in C. Suppose that

X
f−→M1 −→ · · · −→Mn−2

g−→ Y
η−→ ΣX

is an n-angle in C with Mi ∈ add(M) for all 1 � i � n− 2 such that f and g are
left and right add(M)-approximations, respectively. Then the quotient rings

EndC(M ⊕X)
FcoghM (M ⊕X)

and
EndC(M ⊕ Y )
FghM (M ⊕ Y )

are derived equivalent.

Proof. The proof is similar to that of theorem 3.2. By definition 4.1, the sequence

X
f−→M1 −→ · · · −→Mn−2 ⊕M

g̃−→ Y ⊕M
η̃−→ ΣX,

where g̃ = [ g 0
0 1 ] and η̃ := [ η0 ], is still an n-angle. Moreover, the morphism g̃ is still a

right add(M)-approximation. Thus, by our assumptions together with lemma 4.2,
it is easy to check that

X
f−→M1 −→ · · · −→Mn−2 ⊕M

g̃−→ Y ⊕M

is a symmetric add(M)-approximation sequence.
We denote by T • the complex

0 −→ X
f−→M1 −→ · · · −→Mn−2 ⊕M −→ 0

with X in degree zero. Then by corollary 3.4, the complex T • is self-orthogonal
in K b(C/FcoghM ). As we have done similarly in the proof of theorem 3.2, it
is easy to prove that T̃ • := Hom•

C/FcoghM
(M ⊕X,T •) is a tilting complex over

EndC/FcoghM
(M ⊕X). It remains to show that the endomorphism ring of T̃ •, which

is isomorphic to EndK b(C/FcoghM )(T •), is isomorphic to EndC/FghM
(Y ⊕M).

Firstly, for each chain map u• in EndCb(C)(T •), by lemma 4.2 (3), there is a
morphism u ∈ EndC(Y ⊕M) such that the diagram

T 0
d0T ��

u0

��

T 1 ��
d1T ��

u1

��

· · ·
dn−3
T �� Tn−2

un−2

��

g̃
�� Y ⊕M

η̃
��

u

���
�
� ΣT 0

Σu0 (�)

��
T 0

d0T �� T 1
d1T �� · · ·

dn−3
T �� Tn−2

g̃
�� Y ⊕M

η̃
�� ΣT 0

is commutative. If u′ is another morphism in EndC(Y ⊕M) making the above
diagram commutative, then g̃(u− u′) = 0 = (u− u′)η̃. Since g̃ is a right add(M)-
approximation by our assumption, the morphism (u− u′) belongs to ghM (Y ⊕M)
by lemma 2.1 (1). It follows from (u− u′)η̃ = 0 that u− u′ factorizes through Tn−2,
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which is in add(M). Hence u− u′ is in FghM (Y ⊕M). Denote by ū the morphism
in C/FghM corresponding to u. Thus, we get a map

θ : EndCb(C)(T
•) −→ EndC/FghM

(Y ⊕M)

sending u• to ū, which is clearly a ring homomorphism. For each u ∈ EndC(Y ⊕M),
since g̃ is a right add(M)-approximation, there is un−2 : Tn−2 −→ Tn−2 such that
g̃u = un−2g̃. Thus, by the axioms (F2) and (F3) in definition 4.1, we get morphisms
ui : T i −→ T i, i = 0, . . . , n− 3, making the above diagram (�) commutative. This
shows that θ is a surjective ring homomorphism.

Secondly, similar to the proof of theorem 3.2, one can prove that there is a
surjective ring homomorphism

ϕ : EndCb(C)(T
•) −→ EndK b(C/FcoghM )(T

•),

which is the composite of the ring homomorphism

EndCb(C)(T
•) → EndCb(C/FcoghM )(T

•)

induced by the canonical functor C → C/FcoghM and the canonical surjective ring
homomorphism

EndCb(C/FcoghM )(T
•) −→ EndK b(C/FcoghM )(T

•).

We have to show that θ and ϕ have the same kernel. A chain map u• is in Kerϕ
if and only if there exist hi : T i → T i−1, i = 1, . . . , n− 2 in C such that u0 − d0

Th
1,

ui − hidi−1
T − diTh

i+1, i = 1, . . . , n− 3, and un−2 − hn−2dn−3
T are all in FcoghM .

Using the fact that T i ∈ add(M) for all i > 0, one can see, by lemma 2.1, that
this is equivalent to saying that un−2 − hn−2dn−3

T = 0, ui = hidi−1
T + diTh

i+1 for
i = 1, . . . , n− 3, and u0 − d0

Th
1 ∈ FcoghM (T 0).

Let u• be in Kerϕ, and suppose that u ∈ EndC(Y ⊕M) fits the commutative
diagram (�) above. Then θ(u•) = ū. We have un−2 = hn−2dn−3

T , and conse-
quently g̃u = un−2g̃ = hn−2dn−3

T g̃, which is zero by lemma 4.2 (1). It follows
from lemma 2.1 (1) that u ∈ ghM (Y ⊕M). The fact u• ∈ Kerϕ also implies
that u0 − d0

Th
1 ∈ FcoghM (T 0). In particular, the morphism u0 − d0

Th
1 factorizes

through an object in add(M). Assume that u0 − d0
Th

1 = ab for some a ∈ C(T 0,M ′)
and b ∈ C(M ′, T 0) with M ′ ∈ add(M). Since d0

T is a left add(M)-approximation,
we see that a factorizes through d0

T , and hence u0 − d0
Th

1 factorizes through d0
T .

Consequently, the morphism u0 also factorizes through d0
T , say, u0 = d0

Tα. Thus
η̃(Σu0) = η̃(Σd0

T )(Σα), which must be zero by the axiom (F2) in definition 4.1
and lemma 4.2 (1). Hence uη̃ = η̃(Σu0) = 0, and consequently u factorizes through
Tn−2 ∈ add(M) by lemma 4.2 (2). Altogether, we have shown that u belongs to
FghM (Y ⊕M). It follows that ū = 0 and u• ∈ Ker θ. Hence Kerϕ ⊆ Ker θ.

Conversely, suppose that u• ∈ Ker θ and u ∈ EndC(Y ⊕M) fits the commuta-
tive diagram (�). Then θ(u•) = ū = 0, that is, u ∈ FghM (Y ⊕M). Since g̃ is a
right add(M)-approximation, by lemma 2.1 (1), we have g̃u = 0. Thus un−2g̃ = 0.
By lemma 4.2 (2), there is a morphism hn−2 : Tn−2 → Tn−3 such that un−2 =
hn−2dn−3

T . Now (un−3 − dn−3
T hn−2)dn−3

T = un−3dn−3
T − dn−3

T un−2 = 0. If n � 4,
then, by lemma 4.2 (2), there is a morphism hn−3 : Tn−3 → Tn−4 such that
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un−3 − dn−3
T hn−2 = hn−3dn−4

T . Moreover, (un−4 − dn−4
T hn−3)dn−4

T = dn−4
T un−3 −

dn−4
T hn−3dn−4

T = dn−4
T dn−3

T hn−2 = 0. Repeating this process, we get hi : T i →
T i−1, i = 1, . . . , n− 2 such that un−2 = hn−2dn−3

T , ui = hidi−1
T + diTh

i+1 for i =
1, . . . , n− 3, and (u0 − d0

Th
1)d0

T = 0. Since d0
T is a left add(M)-approximation, we

deduce from lemma 2.1 (2) that u0 − d0
Th

1 ∈ coghM (T 0). Since u factorizes through
an object in add(M) and g̃ is a right add(M)-approximation, it is easy to see that
u factorizes through g̃, and thus η̃(Σu0) = uη̃ = 0. By lemma 4.2 (2) and axiom
(F2) in definition 4.1, the morphism Σu0 factorizes through Σd0

T , or equivalently,
u0 factorizes through d0

T . Hence u0 − d0
Th

1 factorizes through an object in add(M),
and consequently belongs to FcoghM (T 0). Thus we have shown that u• ∈ Kerϕ,
and Ker θ ⊆ Kerϕ.

Thus θ and ϕ have the same kernel, and the rings EndK b(C/FcoghM )(T •) and
EndC/FghM

(Y ⊕M) are isomorphic, and the theorem then follows. �

We devoted the remainder of this section to the main application of theorem 4.3,
namely, to recover the results [14, theorem 3.1] and [6, theorem 1.1] where Φ-orbit
categories and certain auto-functors are involved.

Let (T ,Σ,�) and (T ′,Σ′,�′) be weakly n-angulated categories. An additive func-
tor F from T to T ′ is called an n-angle functor if there is a natural isomorphism
ψ : Σ′F → FΣ and

F (X1)
F (f1)−→ F (X2)

F (f2)−→ · · · F (fn−1)−→ F (Xn)
F (fn)ψ−1

X1−→ Σ′F (X1)

is in �′ whenever

X1
f1−→ X2

f2−→ · · · fn−1−→ Xn
fn−→ ΣX1

is in �.
Now let (T ,Σ,�) be a weakly n-angulated category, and let F be an n-angle

functor from T to itself. Suppose that Φ is an admissible subset of Z, and T F,Φ is
the Φ-orbit category of T . Then one may ask whether the Φ-orbit category is again
naturally weakly n-angulated. The answer is yes, as we shall prove in the following.

We fix a natural isomorphism ψ(1) : ΣF −→ FΣ, and set ψ(0) := idΣ : Σ → Σ.
For each positive integer u, we define ψ(u) : ΣFu −→ FuΣ to be the composite

ΣFu
ψ(1)Fu−1

−→ FΣFu−1 Fψ(1)Fu−2

−→ F 2ΣFn−2 −→ · · · F
u−1ψ(1)−→ FuΣ.

If F is not an equivalence, then, for each negative integer u, we set Fu = 0 and
define ψ(u) : ΣFu −→ FuΣ to be zero. If F is an equivalence, and F−1 is a quasi-
inverse of F , then (F, F−1) is an adjoint pair. Let ε : idT −→ F−1F be the unit
and let η : FF−1 −→ idT be the counit. We define ψ(−1) to be the composite

ΣF−1 εΣF
−1

−→ F−1FΣF−1 F
−1ψ(1)−1F−1

−→ F−1ΣFF−1 F
−1Ση−→ F−1Σ,

and define ψ(u), for each integer u < 0, to be the composite

ΣFu
ψ(−1)Fu+1

−→ F−1ΣFu+1 F
−1ψ(−1)Fu+2

−→ F−2ΣFu+2 −→ · · · −→ FuΣ.

With these natural transformations in hand, we can define an automorphism ΣΦ

of T F,Φ as follows. ΣΦX is just ΣX for each object X. For each homogeneous
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morphism fu : X −→ FuY in T F,Φ(X,Y ) of degree u, we define ΣΦ(fu) to be the
composite

ΣX
Σfu−→ ΣFuY

ψ(u)Y−→ FuΣY

which is a homogenous morphism in T F,Φ(ΣX,ΣY ) of degree u. One can check
that ΣΦ is indeed an automorphism of the Φ-orbit category T F,Φ. Let �Φ be the
closure class of � in T F,Φ under taking direct summands. Note that the existence
of non-homogenous maps means that there may be direct summands of � in T F,Φ

which are not direct summands of � in T and thus, to satisfy Axiom (F1′) of
definition 4.1, we must take �Φ to be the closure class of � in T F,Φ under taking
direct summands.

Proposition 4.4. Keeping the notations above, the Φ-orbit category T F,Φ, together
with ΣΦ and �Φ, is a weakly n-angulated category.

Proof. First, we remark that the canonical functor from T to T F,Φ preserves direct
sums. It follows easily that �Φ and ΣΦ satisfy the axioms (F1′) and (F2) of definition
4.1. Now take a commutative diagram

X1

f1 ��

h1

��

X2

f2 ��

h2

��

X3

f3 �� · · ·
fn−1

�� Xn

fn �� ΣΦX1

ΣΦ(h1)

��
Y1

g1 �� Y2

g2 �� Y3

g3 �� · · ·
gn−1

�� Yn
gn �� ΣΦY1

in T F,Φ with rows in �Φ. Clearly, we can assume that the rows are in �, and all
the morphisms fi are homogeneous morphisms of degree zero for all i = 1, . . . , n.
Let h1 = (h1

u)u∈Φ and h2 = (h2
u)u∈Φ. Then h1

u ∗ g1 = f1 ∗ h2
u for all u ∈ Φ. Thus,

we get a commutative diagram

X1

f1 ��

h1
u

��

X2

f2 ��

h2
u

��

X3

f3 �� · · ·
fn−1

�� Xn
fn �� ΣX1

Σ(h1
u)

��
Fu(Y1)

Fu(g1)
�� Fu(Y2)

Fu(g2)
�� Fu(Y3)

Fu(g3)
�� · · ·

Fu(gn−1)
�� Fu(Yn)

Fu(gn)ψ(u)−1

�� ΣFu(Y1)

in T with rows in �. Thus, in the weakly n-angulated category T , we get a
commutative diagram

X1

f1 ��

h1
u

��

X2

f2 ��

h2
u

��

X3

f3 ��

h3
u

���
�
�

· · ·
fn−1

�� Xn

fn ��

hnu

���
�
�

ΣX1

Σ(h1
u)

��
Fu(Y1)

Fu(g1)
�� Fu(Y2)

Fu(g2)
�� Fu(Y3)

Fu(g3)
�� · · ·

Fu(gn−1)
�� Fu(Yn)

Fu(gn)ψ(u)−1

�� ΣFu(Y1)
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for all u ∈ Φ. Defining hi := (hiu)u∈Φ, we obtain a commutative diagram

X1

f1 ��

h1

��

X2

f2 ��

h2

��

X3

f3 ��

h3

��

· · ·
fn−1

�� Xn

fn ��

hn

��

ΣΦX1

ΣΦ(h1)

��
Y1

g1 �� Y2

g2 �� Y3

g3 �� · · ·
gn−1

�� Yn
gn �� ΣΦY1

in T F,Φ. Thus T F,Φ satisfies the axiom (F3) of definition 4.1. Hence T F,Φ, together
with ΣΦ and �Φ is a weakly n-angulated category. �

Remark. For an n-angulated category T , the Φ-orbit category T F,Φ is not an
n-angulated category in general (see [17, § 3]).

Following the terminology in [14], the endomorphism ring of an object X in the
orbit category T F,Φ, denoted by EF,ΦT (X), is called the Φ-Yoneda algebra of X with
respect to F . Φ-Yoneda algebras were first defined in [13] for the special case F = Σ
under the name ‘Φ-Auslander-Yoneda algebras’.

In [14] and [6], the authors start from an n-angle

X
f−→M1 −→M2 −→ · · · −→Mn−2

g−→ Y
w−→ ΣX

in an n-angulated category T with Mi ∈ add(M) for some M ∈ T . Let F be an n-
angle auto-equivalence of T . The main results [14, theorem 1.1] and [6, theorem 1.1]
state that, for each admissible subset Φ of Z, there is a derived equivalence between
the quotient rings EF,ΦT (M ⊕X)/I and EF,ΦT (M ⊕ Y )/J of the Φ-Yoneda algebras
provided that f and g are, respectively, left and right addT F,Φ(M)-approximations
in the Φ-orbit category T F,Φ and T (M,F iX) = 0 = T (Y, F iM) for all 0 �= i ∈ Φ.
The ideals I and J are defined as follows. Set w̄ := [w0 ] : Y ⊕M → ΣX and w̃ :=
[w, 0] : Y −→ Σ(X ⊕M). Then

I : =
{

(xi) ∈ EF,ΦT (X ⊕M) | xi = 0,∀0 �= i ∈ Φ, x0

factorizes through add(M) and Σ−1(w̃)
}
,

J : =
{

(xi) ∈ EF,ΦT (Y ⊕M) | xi = 0,∀0 �= i ∈ Φ, x0

factorizes through add(M) and w̄
}
.

This looks quite artificially defined. However, we shall see that the ideals I and J are
actually factorizable coghosts and ghosts in the Φ-orbit category, and then one can
use theorem 4.3 and proposition 4.4 to give alternative proofs of the results in [6,14].
Here we consider a more general situation: T is a weakly n-angulated category, and
F is just an n-angle endo-functor of T , not necessarily an auto-equivalence.

Lemma 4.5. Keep the notations above and set D := addT F,Φ(M). We have the
following.

https://doi.org/10.1017/prm.2018.120 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.120


834 Y. Chen and W. Hu

(1) If g is a right D-approximation in T F,Φ, and T (Y, F iM) = 0 for all 0 �= i ∈ Φ,
then J = FghD(Y ⊕M);

(2) If f is a left D-approximation in T F,Φ, and T (M,F iX) = 0 for all 0 �= i ∈ Φ,
then I = FcoghD(X ⊕M).

Proof. (1) Set g̃ = [ g 0
0 1 ] : Mn−2 ⊕M −→ Y ⊕M . By lemma 2.1(3), we have

FghD(M,Y ⊕M) = 0. Now we consider FghD(Y, Y ⊕M). Since g is a right
D-approximation, by lemma 2.1 (1), ghD(Y, Y ⊕M) consists of morphisms
x := (xi) ∈ T F,Φ(Y, Y ⊕M) such that the composite gx in T F,Φ vanishes, or
equivalently g ∗ xi = gxi = 0 in T for all i ∈ Φ. Since g̃ is also a right D-
approximation, a morphism x := (xi) ∈ T F,Φ(Y, Y ⊕M) factorizes through
an object in D if and only if it factorizes through g̃. Thus FghD(Y, Y ⊕M)
consists of precisely those morphisms (xi) ∈ T F,Φ(Y, Y ⊕M) satisfying the
conditions:
(a) gxi = 0 for all i ∈ Φ;

(b) There is some (yi) ∈ T F,Φ(Y,Mn−2 ⊕M) such that yi ∗ g̃ = xi for all
i ∈ Φ.

Note that, by our assumption that T (Y, F iM) = 0 for all 0 �= i ∈ Φ, the mor-
phism yi in condition (b) above is zero for all 0 �= i ∈ Φ, and correspondingly
xi = 0 for all 0 �= i ∈ Φ. Then FghD(Y, Y ⊕M) actually consists of morphisms
(xi) ∈ T F,Φ(Y, Y ⊕M) with xi = 0 for all 0 �= i ∈ Φ such that gx0 = 0 and
x0 = y0g̃ for some y0 : Y →Mn−2 ⊕M in T . This is equivalent to saying that
x0 factorizes through w and add(M) in T . Hence FghD(Y ⊕M,Y ⊕M) = J
and the statement (1) is proved. The proof of (2) is dual.

�

Combining theorem 4.3, proposition 4.4 and lemma 4.5, we get the following
corollary.

Corollary 4.6. Let (T ,Σ,�) be a weakly n-angulated category (n � 3) with an n-
angle endo-functor F , and let M be an object in T . Suppose that Φ is an admissible
subset of Z. Let

X
f−→M1 −→ · · · −→Mn−2

g−→ Y −→ ΣX

be an n-angle in T such that Mi ∈ add(M) for all i = 1, . . . , n− 2, and that f and
g are left and right add(M)-approximations in the Φ-orbit category T F,Φ, respec-
tively. Suppose that T (Y, F iM) = 0 = T (M,F iX) for all 0 �= i ∈ Φ. Then the rings
EF,ΦT (M ⊕X)/I and EF,ΦT (M ⊕ Y )/J are derived equivalent.

This corollary generalizes the results [14, theorem 3.1] and [6, theorem 1.1]: the
functor F here is not necessarily an auto-equivalence, while this is required in both
[14] and [6].

5. Examples

In this section, we give some examples to illustrate our main results.
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Throughout this section, we assume that A is a self-injective artin algebra, and
write, for n ∈ N,

Dn := add

(
n⊕
i=0

Σ−iA

)

in K (A-mod). For simplicity, we will write K for K (A-mod). The i-th cohomology
of a complex C• in K is denoted by Hi(C•). For an A-module X, we denote by
X∗ the right A-module HomA(X,A). Let D be the usual duality, and let νA :=
DHomA(−, A) be the Nakayama functor. When P is a finitely generated projective
A-module, there is a natural isomorphism HomA(P,−) ∼= DHomA(−, νAP ) which
can be obtained by applying D to the isomorphism in [4, p. 41, proposition 4.4(b)].
This further induces an isomorphism K (P •,−) ∼= DK (−, νAP •) for all bounded
complexes P • of finitely generated projective A-modules. This will be frequently
used in this section.

Lemma 5.1. With notation as above, the ideals coghDn and ghDn in K are equal,
and both of them consist of morphisms α• such that Hi(α•) = 0 for all 0 � i � n.

Proof. By definition, a chain map α• : X• −→ Y • lies in ghDn if and only if
K (Σ−iA,α•) = 0, or equivalently K (A,Σiα•) = 0, for all 0 � i � n. This is fur-
ther equivalent to saying that Hi(α•) = 0 for all 0 � i � n, by the isomorphism
K (A,Σi(−)) ∼= Hi.

Since A is self-injective, we have add(A) = add(νAA) and thus Dn =
add(

⊕n
i=0 Σ−iνAA). A chain map α• belongs to coghDn if and only if

K (α•,Σ−iνAA) = 0 for all 0 � i � n. From the isomorphisms

K (−,Σ−iνAA) ∼= K (Σi(−), νAA) ∼= DK (A,Σi(−)) ∼= DHi,

we conclude that α• ∈ coghDn if and only if Hi(α•) = 0 for all 0 � i � n. �

Remark. This lemma implies FcoghDn and FghDn also coincide. Moreover, if M•

is a complex over A-mod with zero homology in all degrees not in {0, 1, . . . , n}, then
coghDn(M•) consists of ghost maps, that is, chain maps α• : M• −→M• such that
Hi(α•) = 0 for all i ∈ Z. We denote by G the ideal of K consisting of ghost maps.
Then coghDn(M•) = ghDn(M•) = G(M•). Let GDn := G ∩ FDn . Then GDn(M•) =
FcoghDn(M•) = FghDn(M•).

Let T be a triangulated category and let D be a full subcategory of T . Recall from
[14, Subsection 2.4] that a triangle X f−→ D

g−→ Y −→ ΣX in T is called a D-split
triangle provided that f is a left D-approximation and g is a right D-approximation.

Let X• be a bounded complex over A-mod, and let i be an integer. Suppose
that πi : P iX −→ Hi(X•) is a projective cover of the i-th homology of X•. Then
πi can be lifted to a morphism hi : P iX → Ker diX along the canonical epimorphism
Ker diX −→ Hi(X•). Let f i : P iX −→ Xi be the composite of hi and the inclusion
Ker diX ↪→ Xi. Then f idiX = 0, and f i gives rise to a chain map from Σ−iP iX −→
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X•. Define

P •
X :=

∐
i∈Z

Σ−iP iX .

Then we get a chain map f• : P •
X −→ X•. Form a triangle

Y • g•−→ P •
X

f•
−→ X• −→ ΣY • (�)

in K and set D∞ := add{Σ−iA | i ∈ Z}. We claim that (�) is actually a D∞-split
triangle in K . Indeed, P •

X belongs to D∞ since there are only finitely many nonzero
P iX , and for each i ∈ Z, there is a commutative diagram

K (Σ−iA,P •
X)

K (Σ−iA,f•)
��

∼=
��

K (Σ−iA,X•)

∼=
��

P iX
πi �� �� Hi(X•).

Hence K (Σ−iA, f•) is surjective for all i ∈ Z. It follows from the isomorphism
K (Σ−iA,−) ∼= DK (−,Σ−iνAA) that K (f•,Σ−i(νAA)) is injective for all i ∈ Z.
Since A is self-injective, we have add(νAA) = add(AA). Hence K (f•,Σ−iA) is
injective for all i ∈ Z. Using the long exact sequences obtained by applying K (A,−)
and K (−, A) to the triangle (�), we deduce that the sequences

0 −→ K (Σ−iA, Y •) −→ K (Σ−iA,P •
X) −→ K (Σ−iA,X•) −→ 0, (∗)

0 −→ K (X•,Σ−iA) −→ K (P •
X ,Σ

−iA) −→ K (Y •,Σ−iA) −→ 0 (∗∗)
are exact for all i ∈ Z. Particularly, f• is a right D∞-approximation and g• is a left
D∞-approximation.

Note that the exact sequence (∗) is isomorphic to the sequence

0 −→ Hi(Y •) −→ P iX −→ Hi(X•) −→ 0.

This shows that Hi(Y •) = Ω(Hi(X•)). For simplicity, we write Hi
X for Hi(X•).

Now assume that X• is a bounded complex

0 −→ X0 d0−→ X1 d1−→ · · · d
n−1

−→ Xn −→ 0.

Then P iX = 0 for all i �∈ {0, . . . , n}. Thus P •
X lies in Dn, and the triangle (�) is a

Dn-split triangle. By theorem 4.3 and the remark after lemma 5.1, the algebras

EndK /GDn

(
Y • ⊕

n⊕
i=0

Σ−iA

)
and EndK /GDn

(
X• ⊕

n⊕
i=0

Σ−iA

)

are derived equivalent. Similarly, by theorem 3.2 and the remark after lemma 5.1,
the algebras

EndK /G

(
Y • ⊕

n⊕
i=0

Σ−iA

)
and EndK /G

(
X• ⊕

n⊕
i=0

Σ−iA

)
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are also derived equivalent. In the following, we shall see that these algebras have
a very nice form.

Since A is self-injective, the regular module AA is injective and the con-
travariant functor HomA(−, A) is exact. It follows that H−i HomA(C•, A) and
HomA(Hi(C•), A) are naturally isomorphic for all integers i and C• ∈ K , which
is equivalent to saying that K (C•,Σ−iA) ∼= HomA(Hi(C•), A) = (Hi(C•))∗ for
all complexes C• of A-modules and for all integers i. Particularly, one has
K (X•,Σ−iA) ∼= (Hi

X)∗ for all integers i.
With the preparations above, we can write

EndK /G

(
X• ⊕

n⊕
i=0

Σ−iA

)
=

⎛
⎜⎜⎜⎝

EndK (X•)/G(X•) (H0
X)∗ · · · (Hn

X)∗

H0
X A · · · 0
...

...
. . .

...
Hn
X 0 · · · A

⎞
⎟⎟⎟⎠ ,

EndK /G

(
Y • ⊕

n⊕
i=0

Σ−iA

)

=

⎛
⎜⎜⎜⎝

EndK (Y •)/G(Y •) (Ω(H0
X))∗ · · · (Ω(Hn

X))∗

Ω(H0
X) A · · · 0

...
...

. . .
...

Ω(Hn
X) 0 · · · A

⎞
⎟⎟⎟⎠ .

The algebras EndK /GDn (X• ⊕
⊕n

i=0 Σ−iA) and EndK /GDn (Y • ⊕
⊕n

i=0 Σ−iA)
have similar forms: just replacing G with GDn in the above matrices.

In the following, we give a concrete example.

Example. Let k be a field, and let A = k[x]/(xn), n � 2. Suppose that 1 � m �
n− 1 and that X• is the complex

0 −→ A
·xm−→ A −→ 0

with the left A in degree zero. The endomorphism algebra EndK /G(X• ⊕A⊕
Σ−1A) is denoted by Λ(n,m). The construction above gives a D1-split triangle

Y • −→ A⊕ Σ−1A −→ X• −→ ΣY •

in K . An easy calculation shows that Y • is isomorphic in K (A-mod) to the
complex

0 −→ A
·xn−m
−→ A −→ 0.

Then the algebras Λ(n,m) = EndK /G(X• ⊕A⊕ Σ−1A) and EndK /G(Y • ⊕A⊕
Σ−1A) are derived equivalent. Note that EndK /G(Y • ⊕A⊕ Σ−1A) is just Λ(n, n−
m). That is, the algebra Λ(n,m) is derived equivalent to Λ(n, n−m) for all 1 �
m � n− 1.
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To describe Λ(n,m) in terms of quivers with relations, we give some morphisms
in Λ(n,m).

α1 : 0

��

�� A

·x
��

0 �� A

α2 : A

·x
��

�� 0

��
A �� 0

, α3 : A
·xm ��

·x
��

A

·x
��

A
·xm �� A

,

β1 : 0 ��

��

A

id

��
A

·xm �� A

, β2 : A
·xm ��

��

A

·xn−m

��
0 �� A

,

β3 : A
·xm ��

id

��

A

��
A �� 0

, β4 : A ��

·xn−m

��

0

��
A

·xm �� A

.

It is easy to see that the above morphisms generate the Jacobson radical of Λ(n,m).
Case I: 1 < m < n− 1. In this case, the above morphisms are irreducible in
add(X• ⊕A⊕ Σ−1A) and the algebra Λ(n,m) is given by the following quiver
with relations.

•
α1

��

β1 �� •
β21

��
β3 ��

α3

��
•

β42 3

�� α2��

αm3 = β1β3 = β4β2 = 0
αn−m1 = β1β2, α

n−m
2 = β4β3, α

n−m
3 = β3β4 + β2β1

α1β1 = β1α3, α3β2 = β2α1

α3β3 = β3α2, α2β4 = β4α3

αi−n+m
3 β2β1 = 0 (i := max{m,n−m})

Case II: m = n− 1. In this case, the morphisms α1 = β1β2, α2 = β4β3 and α3 =
β3β4 + β2β1 are not irreducible in add(X• ⊕A⊕ Σ−1A) any more. However, the
morphisms βi, i = 1, 2, 3, 4 are still irreducible in add(X• ⊕A⊕ Σ−1A). The algebra
Λ(n, n− 1) is given by the following quiver with relations.

•
β1 �� •
β21

��
β3 �� •
β42 3

��

β1β3 = β4β2 = 0
(β2β1)n−1 = (β3β4)n−1 = 0

Case III: m = 1. In this case, α3 = 0 and the other morphisms above are irre-
ducible in add(X• ⊕A⊕ Σ−1A). The algebra Λ(n, 1) is given by the following
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quiver with relations.

•
α1

��

β1 �� •
β21

��
β3 �� •
β42 3

�� α2��

β1β3 = β4β2 = α1β1 = β2α1 = α2β4 = β3α2 = 0
β2β1 = β3β4 = 0

αn−1
1 = β1β2, α

n−1
2 = β4β3

Let us explain how to get these quivers and relations. For all cases, let Q denote
the quiver and let ρ denote the relations. The obvious map gives an algebra homo-
morphism from kQ to Λ(n,m) which is surjective since the maps given above
generate the Jacobson radical of Λ(n,m). It is straightforward to check the the
morphisms in Λ(n,m) given above do satisfy the relations. This gives rise to a
surjective algebra homomorphism from kQ/〈ρ〉 to Λ(n,m). Finally, one can ver-
ify that kQ/〈ρ〉 and Λ(n,m) have the same Cartan matrix and hence the same
dimension. This forces that kQ/〈ρ〉 and Λ(n,m) are isomorphic algebras.
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