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Abstract

Branching processes in random environments have been widely studied and applied
to population growth systems to model the spread of epidemics, infectious diseases,
cancerous tumor growth, and social network traffic. However, Ebola virus, tuberculosis
infections, and avian flu grow or change at rates that vary with time—at peak rates
during pandemic time periods, while at low rates when near extinction. The branching
processes in generalized autoregressive conditional environments we propose provide
a novel approach to branching processes that allows for such time-varying random
environments and instances of peak growth and near extinction-type rates. Offspring
distributions we consider to illustrate the model include the generalized Poisson,
binomial, and negative binomial integer-valued GARCH models. We establish conditions
on the environmental process that guarantee stationarity and ergodicity of the mean
offspring number and environmental processes and provide equations from which their
variances, autocorrelation, and cross-correlation functions can be deduced. Furthermore,
we present results on fundamental questions of importance to these processes—the
survival-extinction dichotomy, growth behavior, necessary and sufficient conditions for
noncertain extinction, characterization of the phase transition between the subcritical and
supercritical regimes, and survival behavior in each phase and at criticality.
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1. Introduction

Branching processes in random environments have been extensively studied and applied
to population growth systems to model the spread of epidemics, infectious diseases, cancer-
ous cell or tumor growth, and social network traffic. However, Ebola viruses, tuberculosis
infections, avian flu, and diseases that can turn resistant to treatment and become chronic
illnesses notoriously spread, grow, or change at rates that vary with time—at peak rates during
pandemic time periods, while at low rates when near extinction or in remission—behaviors that
the known branching processes in random environments cannot accommodate. The branching
process (BP) with dynamic random environments that is proposed here (defined in Section 2),
called a branching process in generalized autoregressive conditional environments (GARCE
BP), provides a novel and simple approach to branching processes that allows for such time-
varying random environments and instances of peak growth and near extinction-type rates,
as observed in filovirus outbreaks and a number of biomedical and other applications where
branching processes have been applied directly or indirectly as an embedded process. The latter
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scenario is exemplified by branching random walks, contact processes, and voter models
within the interacting particle systems family [14]. It should be evident that in situations
such as propagation of data and information, paper citations, and social media and network
traffic, where these processes have been or can be applied, data or network transmission rates
may spike at times and dwindle at others. Since the proposed branching processes reside
at the interface to time series, inferential and predictive time series techniques are readily
available and implementable, which is not the case for the known branching processes in
random environments. The GARCE BP can also accommodate recently studied epigenetic and
starvation health inheritance models [17], [20], where strikingly the inheritance process not
only depends on the current random environment but also on the environment that existed one,
two, or three generations in the past, without DNA involvement.

At the time of this writing, the largest Ebola outbreak ever takes its dramatic course in
Guinea, Liberia, and Sierra Leone. Ebola is one of the world’s most deadly diseases that can
kill the majority of those infected within days. The outbreak has been traced back to its first
suspected case, a two-year old child who died on December 6, 2013, after being sick for four
days, in Guéckédou, a Meliandou village. So did the child’s sister, mother, grandmother, and
the village midwife after hospitalization shortly after. A couple of months later, it became
evident that the number of infected cases and deaths were increasing exponentially after the
disease span out of control earlier. In Figure 1 we display cumulative and approximately weekly
numbers of infections (suspected, probable, and confirmed cases) and deaths attributed to the
virus during March 24, 2014 through October 14, 2014 overall and by region. The plots use
approximately weekly data drawn from the website www.cdc.gov of the Centers for Disease
Control and Prevention (accessed at multiple times during 2014). After drastic interventions, in
November of 2014 the number of Ebola infections and death cases began to slow and the death
rate, calculated as the ratio of (total number of deaths) divided by (total number of infections) at
a given time, had decreased to approximately 0.36 from an initial rate close to 0.7 during March
through July of the same year. Later in October after the cutoff date of October 14, 2014,
the data reported exhibited apparent inaccuracies as the cumulative total of infection cases
decreased between weeks for a couple of weeks. It is obvious from the graphs of the Ebola
cases over time that the infection and death rates at a given time depend on preceding values
of the transmission rate and death rate, respectively. Furthermore, it is evident that the Ebola
disease had been spreading at a rate in the supercritical regime but would have to settle down
in the subcritical or critical phase for the contagion to be contained, as we will see in the sequel
from the study of the model at hand. The infection rates are also impacted by external factors
such as the proportion of people who are immune to the virus, virus mutations, treatments such
as blood transfusions from survivors, and control measures like border closing, management of
the outbreak, risk aversion, incidences of noncontrolled existing Ebola cases, and precautions
taken by those who care for the infected and health personnel.

In Figures 2 and 3 we display two simulations of a Poisson GARCE BP, which may serve
as a model for the weekly number of Ebola infected cases and deaths during an outbreak,
along with its average offspring number, Poisson rate, logarithm of the Poisson rate over time,
and sample autocorrelation functions of the population size and average offspring number.
Thus, two possible trajectories are shown for the weekly number of Ebola infected cases.
The model parameters were fixed so that the model is near the critical value between certain
extinction and noncertain extinction. In this branching process model that evolves in a random
environment, the intensity parameter of the distribution of the environmental sequence depends
on past values of the parameter and offspring numbers or observed cases. In Theorem 10
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Figure 1: Cumulative and weekly numbers of Ebola infections and deaths by week from March 24, 2014
through October 14, 2014 overall and by region (Guinea, Liberia, and Sierra Leone).

we will establish that, when in the supercritical regime, conditional on survival, the spread of
the disease grows exponentially indefinitely, whereas in the subcritical and critical regimes,
the spread is halted with probability 1 for almost all random environments and the infection
becomes extinct rather rapidly. As the example trajectories illustrate, the branching process can
evolve in the supercritical phase for some time, switch between the supercritical and subcritical
phases, and eventually transition to the subcritical phase to become extinct.

While here the focus is on introducing and motivating the GARCE BP model and studying
its properties, Ebola outbreak data analyses prior to and after the substantial intervention are
presented and discussed in [11]. The latter research explores the aspects of detecting and
estimating an intervention effect in the GARCE branching processes. During an outbreak, a
timely assessment as to whether an intervention has a sufficient impact to stabilize and eventually
end it is equally important as early detection and accurate prediction of the magnitude of the
outbreak several months before chaos and disarray take over. The GARCE branching processes
proposed by the author in early 2014, when applied to the weekly Ebola virus data, were able
to adequately address both of these problems in a timely fashion during the 2014 outbreak in
West Africa.

The GARCE BP finds applications, as well, in the context of epigenetic inheritance and
starvation health inheritance. The former example might play a role in health problems such

https://doi.org/10.1017/apr.2016.71 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.71


1214 I. HUETER

Population size in Poisson GARCE BP
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Figure 2: Simulated realization of a Poisson GARCE(1, 1)BP withα0 = 0.31, α1 = 0.4, β1 = 0.3,K =
3, and α0/(1 −α1 −β1) = 1.033 along with its average offspring number, Poisson rate, and logarithm of

the Poisson rate over time.

as obesity and diabetes and more generally, the evolution of species. Conceivably, the health
of someone’s children may thus be affected by what his/her great-grandmother was exposed
to during pregnancy. Recent findings [20] in animals indicate that pollutants, stress, diet,
and other environmental factors can cause persistent changes in the mix of epigenetic marks
in chromosomes. The induced epigenetic modifications that cause disease and reproductive
problems are acquired, without any change in the DNA sequence, and passed on to later
generations along with any resulting health risks. The second inheritance example where
present changes in the environmental sequence are thought to be inherited through at least three
consecutive generations is the starvation model described in [17]. According to human famines
and animal studies, starvation can affect the health of descendants and offer an explanation on
how such acquired traits might be transmitted from one generation to the next. If modeled by
a GARCE BP, such inheritance would play out differently depending on whether the process
is supercritical or (sub)critical.

Another large area of research where the integer-valued generalized autoregressive condi-
tional heteroscedastic (INGARCH) models upon which the GARCE branching processes are
built are of vital importance consists of clinical trials in drug development with categorical
endpoints measured over time. Traditionally, in randomized, controlled trials (RCTs), patients
are treated homogeneously and patients’ responses are analyzed under the assumption of
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Population size for Poisson GARCE BP
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Figure 3: Simulated realization of a Poisson GARCE(1, 1)BP withα0 = 0.31, α1 = 0.4, β1 = 0.3,K =
3, and α0/(1 − α1 − β1) = 1.033 along with its average offspring number over time and the sample

autocorrelation functions (ACFs) of the population size and average offspring number.

homogeneity within each treatment group. In personalized medicine but also in double-
blind RCTs, more flexible statistical models are required where each patient has her or his
own response trajectory over time, the response at a given time point depends on her or his
response at preceding time points and intrinsic response rate that evolves over time. Examples
of disease areas in drug development that exhibit categorical clinical endpoints are low-back
or other pain, osteoarthritis, inflammatory skin disease, and diabetic foot ulcers that can lead
to severe complications and occurs in 15% of all patients with diabetes. The endpoints range
from improvement or change on a physician’s or patient’s global assessment of pain, pain
intensity, or quality of life (e.g. 11-point numerical pain rating scale, 5-point scale, etc.) to
the achievement of a clinical response such as reaching a prespecified least level of change or
percent change from baseline of wound area at a given week. Of interest might be whether
a patient responds to treatment, experiences a relapse, and returns to pretreatment levels after
discontinuing therapy. The simulation of a binomial INGARCH model in Figure 4 illustrates
a possible scenario of a RCT with categorical endpoint, measured weekly over 30 weeks, with
20 patients randomized in a 1:1 ratio to an active treatment arm and a placebo arm. The top two
and bottom left graphs show the individual response curves over time for the active, control,
and combined groups, whereas the bottom right plot separately displays the mean response
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Figure 4: Simulated randomized clinical trial with categorical endpoint on a 10-point scale, measured
weekly over 30 weeks, with 20 patients randomized in a 1:1 ratio to an active treatment arm and placebo
arm. Ten realizations per group were sampled from a binomial INGARCH(1, 1) model with m = 9 and
α0 = 1.91, α1 = 0.4, β1 = 0.3 (active group) and α0 = 1.61, α1 = 0.4, β1 = 0.3 (control group). The

means of the stationary models are 6.37 and 5.37.

over time for the active and control groups. The models were chosen so that the resulting group
means of the stationary models are equal to 6.37 and 5.37, respectively, which may model an
effective treatment. While the individual curves can have large variability and whether a patient
improves sensitively depends on the chosen assessment time point, the mean response of the
active group tends to be superior to the one of the control group at most times. Yet there is some
probability that the mean control response exceeds the mean active response, as seen in Figure
4 towards the end of the treatment period. When this happens, there is an increased chance for
this scenario to occur for a few consecutive time points in view of the autoregressive structure
of the model.

We mention that another research direction, which is pursued by the author in a separate
paper, is to model the spatial spread of the infection over time in a related model, called GARCE
branching random walk.

The rest of the paper is structured as follows. In Section 2 we introduce the GARCE branching
processes and discuss examples with Poisson, generalized Poisson, negative-binomial, and
binomial INGARCH offspring distributions. For these, in Sections 3, 4, and 5, we present
conditions on the environmental process that guarantee strict or weak stationarity of the mean
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offspring number and environmental processes. Furthermore, we provide recurrence relations
from which the variances, autocorrelation, and cross-correlation functions of these processes
can be derived. Additionally in Section 3, we establish ergodicity of the joint mean offspring
number and environmental process in the case of a generalized Poisson GARCE BP, discuss
asymptotic properties of the maximum likelihood estimator for the model parameter vector,
and briefly mention an approach to forecast future values of the branching process. Section 6
is devoted to fundamental questions of importance to the GARCE branching processes. It
contains the main results on the survival–extinction dichotomy (Proposition 1), necessary and
sufficient conditions for noncertain extinction, the extinction–explosion dichotomy (Theorem
11), characterizing conditions for subcriticality and supercriticality (Lemma 1), and the survival
behavior in these two phases and at the phase transition (classification in Theorem 10). Finally,
in Section 7 we examine limit theorems for the normalized GARCE BP including necessary
and sufficient conditions for a nondegenerate limit and its properties in the supercritical case,
paralleling the celebrated results of Athreya and Karlin [2] in 1971 and Kesten and Stigum [12]
in 1966, and the extended Kesten–Stigum condition for the GARCE BP (Theorems 12–15).

2. GARCE branching processes

Consider a branching process {Zt }t≥0 for the population sizeZt at time t to be a sequence of
nonnegative integer-valued random variables with initial population size Z0 > 0 and with each
of the Zt members reproducing offspring according to a common offspring distribution with
parameter λt and associated probability generating function (PGF) ϕλt (s). In the model that has
been referred to as the Smith–Wilkinson model in the literature (e.g. described in [3, p. 249]), at
each time t = 0, 1, 2, . . . , the function ϕλt (s) is assumed to be chosen independently at random
from a collection of PGFs with a specified time-homogeneous distribution. Our interest will be
in a branching process with dynamic random environments, that is, a branching process with
random environments (BPRE) where the distribution from which the random ϕλt (s) is sampled
evolves dynamically at any time and the dynamics of one of its distributional parameters is
governed by a recurrence relation. As related in Section 1 above, we stress that the branching
processes with dynamic random environments examined here are distinctively different from the
BPRE that have been vigorously investigated in the literature starting with the work in [21]–[23]
and [28] in 1968–1971 and [1] and [2] in 1971.

To set the stage, some more notation is needed. Let (�,F ,P) be a probability space and M
designate the collection of probability distributions on the nonnegative integers{

{pi}∞i=0,
∑
i≥0

ipi < ∞, 0 ≤ p0 + p1 < 1

}
.

Let {λt (ω)}t≥0 be a sequence of mappings from (�,F ,P) into (M,B), where B is the Borel
σ -algebra in M generated by the usual topology. For any such mappingλ = λ(ω) = {λt (ω)}t≥0
from � to M, define the PGF

ϕλ(s) =
∞∑
i=0

pi(λ)s
i, |s| ≤ 1, (1)

where {pi(λ)}i≥0 is the probability distribution associated with λ. Moreover, let σ(D) be the
sub-σ -algebra of F generated by a given collectionD of random variables (RVs) on (�,F ,P).
Furthermore, let {Yt (ω)}t≥0 be a sequence of nonnegative real-valued RVs defined on (�,F ,P)

https://doi.org/10.1017/apr.2016.71 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.71


1218 I. HUETER

and define the σ -algebras

Ft (λ) = σ(λ0, λ1, . . . , λt ), F (λ) = σ(λ),

Ft,z,y(λ) = σ(λ0, λ1, . . . , λt , Z0, Z1, . . . , Zt , Y0, Y1, . . . , Yt ). (2)

Definition 1. A branching process {Zt }t≥0 in generalized autoregressive conditional environ-
ments {λt }t≥0 of order p and q or GARCE(p, q) BP is a process {Zt }t≥0 with environmental
process {λt }t≥0 that satisfies the recurrence relations

E(sZt+1 | Ft,z,y) = [ϕλt+1(s)]Zt almost surely (a.s.), (3a)

λt+1 = α0 +
p∑
i=1

αiYt+1−i +
q∑
j=1

βjλt+1−j (3b)

with Yt+1−i = (1/K)
∑K
k=1Xt+1−i,k (for the role of {Yt }, see Remark 1(iii) below), where

the random (t + 1)th generation offspring numbers Xt+1,k in the sum Zt+1 = ∑Zt
k=1Xt+1,k

are conditionally independent for t ≥ 1, given Ft,z,y = Ft,z,y(λ), identically distributed, and
specified by their common PGF ϕλt+1(s) (ϕλ(s) depends on (λ0, λ1, . . . , λt+1) only through
λt+1). Here, K is a fixed, suitably chosen, small positive integer, α0 > 0, αp, βq > 0, αi ≥ 0,
βj ≥ 0 for i = 1, 2, . . . , p − 1, j = 1, 2, . . . , q − 1, p ≥ 1 and q ≥ 0, and when Zt < K ,
use similarly defined imaginary offspring numbers for Xt+1,k for each Zt < k ≤ K to define
Yt+1. Additionally, {Zt }t≥0 is required to satisfy the property that for any set of integers
1 ≤ t1 < t2 < · · · < tk and |si | ≤ 1 for i = 1, 2, . . . , k,

E(s
Zt1
1 · · · sZtkk | F (λ), Z0 = m) = [E(sZt11 · · · sZtkk | F (λ), Z0 = 1)]m a.s. (4)

Thus, conditional on the environments, the distribution of {Zt }t≥1 with Z0 = m is almost
surely identical to the law of the sum ofm independent processes that are distributed as {Zt }t≥1
with Z0 = 1. Assume the starting values λt = λ0 for some real constant λ0 > 0, Yt = 0 for
all t ≤ 0, and Y1 = Z1. Other suitable starting values for {λt } are also possible. Observe that
Zt+1 is the sum of Zt independent RVs Xt+1,1, Xt+1,2, . . . , Xt+1,Zt , conditional on the past
Ft,z,y , and the nonnegative RVsXt+1,k are the (t+1)th generation offspring numbers of theZt
particles of generation t . Furthermore, note that the mean offspring number Yt+1 per parent
among the first K parents in generation t satisfies the conditional environmental equation or
GARCE equation λt+1 = α0 +∑p

i=1 αiYt+1−i + ∑q
j=1 βjλt+1−j in (3b). The existence proof

of a process {Zt }t≥0 that obeys the postulated defining relations is routine and rests on the Harris
construction [8]. A key observation that substantially simplifies the structure of this branching
process with dynamic random environments is that, conditionally on the environmental process
{λt }t≥0, the process {Zt }t≥0 is Markovian and has independent lines of descent. A few other
comments are in order.

Remark 1. (i) The GARCE BP is a BPRE whose environmental and mean offspring number
processes exhibit autoregressive serial dependence structure. Both latter processes display
nonlinear behavior and allow for clustering of extreme values, even while being stationary.

(ii) In this paper the principal interest lies in the long-run properties of the GARCE BP {Zt } and
environmental process {λt }. These do not depend on the starting values of the processes {λt }
and {Yt }. Various choices for the latter are reasonable and sensible. For example, set λ0 equal
to 1, 2, or μ, say, where μ = E(λt ) for a stationary process {λt }, and Y1 = Z1, Y2 = Z2/Z1,
Y3 = Z3/Z2, say, and for t ≥ 4, use Yt as defined in (3b).
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(iii) The sequence of variables {Yt }t≥0, which captures some of the past values of the offspring
numbers {Xt,k}t≥0 for k ≥ 1 (K from each of the p previous generations), are incorporated in
the GARCE equation in order to inject randomness to the environmental process {λt+1}. Thus,
the environment, which provides the intrinsic parameter of the branching process, is updated
with information about the most recent offspring numbers. We will see that for the Ebola virus
example, the intrinsic parameter is the infection rate. An alternative definition to {Yt }t≥0 that
comes to mind is {Zt+1/Zt }t≥0. Yet various issues would arise when incorporating it while
defining the GARCE BP. For instance, as Zt → ∞ as t → ∞, the strong law of large numbers
implies that Zt+1/Zt → λt+1 a.s. and, thus, the environmental process becomes nonrandom,
whereas when Zt → 0 as t → ∞, the environmental process {λt+1} does not enjoy certain
desirable properties such as second-order stationarity.

From the definitions we derive the conditional mean and variance of Yt and Zt as

E(Yt | Ft−1,z,y) = E(Xt,1 | Ft−1,z,y),

var(Yt | Ft−1,z,y) = 1

K
var(Xt,1 | Ft−1,z,y),

E(Zt | Ft−1,z,y) = Zt−1E(Xt,1 | Ft−1,z,y),

var(Zt | Ft−1,z,y) = Zt−1 var(Xt,1 | Ft−1,z,y).

(5)

When examining the features and behavior of the GARCE BP {Zt }, the focus will be on the
Poisson, generalized Poisson (GP), negative binomial (NB), and binomial INGARCH models
as its offspring distribution associated with (1). In each case, the environment λt is defined so
that it represents the expected offspring number at time t .

Example 1. (Poisson INGARCH offspring distribution.) For fixed t ≥ 1 and each 1 ≤ k ≤ Zt ,

Xt+1,k | Ft,z,y ∼ P (λt+1) is conditionally independent from Xt+1,j for 1 ≤ j �= k ≤
Zt , where P (λt+1) denotes the Poisson distribution with parameter λt+1, which satisfies the
GARCE equation in (3b). Heinen [9] in 2003 and Ferland et al. [7] in 2006 proposed the
Poisson INGARCH(p, q) model for time series of counts to reflect nonlinear behavior and
clustering of outliers in count data and a continuous and stationary accompanying intensity
process. This and related models met with considerable interest (see [29]–[31] and the extensive
references therein). These models applied to interacting particles and growth models such as
the branching processes with random environments may have vast potential for future research
developments if the rapid evolution of the GARCH-type models offer any indication. After
Engle [6] and Bollerslev [4] initiated these models, they have become overwhelmingly popular
in econometrics and finance.

Write Xt := Xt,1 for ease of notation. Thanks to the Poisson moments and (5), the
unconditional means and variances of the mean offspring number, number of offspring, and
GARCE branching processes Yt , Xt−1, and Zt have the expressions

E(Yt ) = E(Xt ) = E(λt ), E(Zt ) = E(Zt−1λt ),

var(Yt ) = 1

K
var(Xt )

= E[var(Yt | Ft−1,z,y)] + var[E(Yt | Ft−1,z,y)]
= 1

K
E(λt )+ var(λt ),

var(Zt ) = E(Zt−1λt )+ var(Zt−1λt ).
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Example 2. (GP INGARCH offspring distribution.) For fixed t ≥ 1 and each 1 ≤ k ≤ Zt ,

Xt+1,k | Ft,z,y ∼ GP (λ∗
t+1, κ) is conditionally independent from Xt+1,j for 1 ≤ j �= k ≤

Zt , where GP (λ∗
t+1, κ) denotes the generalized Poisson distribution with parameters κ with

max(−1,−λ∗
t+1/4) < κ < 1 and λ∗

t+1 given by λ∗
t+1/(1 − κ) = λt+1 for λt+1 being governed

by (3b). This model referred to as GP INGARCH(p, q) that was studied in [30] in 2012 allows
for overdispersion or underdispersion of the conditional process {Xt }, depending on whether
κ > 0 or κ < 0 (over-dispersion (under-dispersion) when the variability is larger (smaller)
than the mean). Borrowing the expressions for the conditional mean and variance of a GP
INGARCH RV from [30], we collect, in view of (5),

E(Yt | Ft−1,z,y) = λ∗
t

1 − κ
= λt , var(Yt | Ft−1,z,y) = λ∗

t

K(1 − κ)3
= φ2

K
λt ,

where φ = 1/(1 − κ). Consequently, again thanks to (5), the expressions for the uncondi-
tional means E(Yt ), E(Xt ), and E(Zt ) are identical to those stated in Example 1 for Poisson
INGARCH offspring, whereas the variances of Yt , Xt , and Zt are

var(Yt ) = 1

K
var(Xt ) = φ2

K
E(λt )+ var(λt ),

var(Zt ) = φ2
E(Zt−1λt )+ var(Zt−1λt ).

(6)

Example 3. (NB INGARCH offspring distribution.) For fixed t ≥ 1 and each 1 ≤ k ≤ Zt ,
Xt+1,k | Ft,z,y ∼ N B(r, pt+1) is conditionally independent fromXt+1,j for 1 ≤ j �= k ≤ Zt ,
where N B(r, pt+1) denotes the negative binomial distribution with parameters r for some
positive integer r and pt+1 ∈ (0, 1) given by r(1 − pt+1)/pt+1 = λt+1 for λt+1 obeying
the GARCE equation in (3b). This model is called NB INGARCH(p, q), and referred to as
geometric INGARCH(p, q) if r = 1, was investigated in [29] in 2011 for the purpose of
allowing for over-dispersion (i.e. variability is larger than mean) in integer-valued time series
and potential extreme observations. We assume that the conditional probability distribution of
Xt+1,k , given Ft,z,y has the form

P(Xt+1,k = y | Ft,z,y) =
(
y + r − 1

r − 1

)
prt+1(1 − pt+1)

y, y = 0, 1, . . . ,

pt+1 = 1

1 + λt+1
, qt+1 = 1 − pt+1 = λt+1

1 + λt+1
.

Employing the expressions for the conditional moments of a NB INGARCH RV from [29] in
conjunction with (5), we obtain the conditional mean and variance of Yt ,

E(Yt | Ft−1,z,y) = E(Xt | Ft−1,z,y) = λt , var(Yt | Ft−1,z,y) = λt

K

(
1 + λt

r

)
,

where λt = r(1 − pt )/pt . The expressions for the unconditional means and variances of Yt ,
Xt , and Zt are

E(Yt ) = E(Xt ) = E(λt ), E(Zt ) = E(Zt−1λt ),

var(Yt ) = 1

K
var(Xt ) = E

[
λt

K

(
1 + λt

r

)]
+ var(λt ),

var(Zt ) = E

[
Zt−1

λt

K

(
1 + λt

r

)]
+ var(Zt−1λt ). (7)
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Example 4. (Binomial INGARCH offspring distribution.) For fixed t ≥ 1 and each 1 ≤ k ≤
Zt , Xt+1,k | Ft,z,y ∼ B(m, pt+1) is conditionally independent from Xt+1,j for 1 ≤ j �= k ≤
Zt , where B(m, pt+1) denotes the binomial distribution with parameters m for some positive
integer m and pt+1 ∈ (0, 1) given by mpt+1 = λt+1 for λt+1 being governed by (3b). In view
of the requirement that mpt+1 ∈ (0,m), it is necessary that

∑p
i=1 αi + ∑q

j=1 βj < 1. When
studying the binomial GARCE (BIN GARCE) BP, the only interesting case is m ≥ 2, since
the m = 1 case leads to almost sure extinction. Evidently, the conditional mean and variance
of Yt are

E(Yt | Ft−1,z,y) = λt = mpt ,

var(Yt | Ft−1,z,y) = 1

K
var(Xt | Ft−1,z,y) = 1

K
mpt(1 − pt ) = 1

K
λt

(
1 − λt

m

)
.

With these expressions in mind, we derive the following expressions for the unconditional
means and variances of Yt , Xt , and Zt :

E(Yt ) = E(Xt ) = E(λt ), E(Zt ) = E(Zt−1λt ),

var(Yt ) = 1

K
var(Xt ) = 1

K
E(λt )

(
1 − E(λt )

m

)
+ var(λt )

(
1 − 1

mK

)
,

var(Zt ) = E

[
Zt−1λt

(
1 − λt

m

)]
+ var(Zt−1λt )

(also see Theorem 8). In the next three sections we will investigate some of the key properties
of these models.

3. GP GARCE BP

In this section we provide conditions for the existence and strict stationarity of the mean off-
spring number process {Yt }t∈Z and environmental process {λt }t∈Z and ergodicity of the process
{(Yt , λt )}t∈N for the GP GARCE(p, q) BP {Zt }t∈Z. We also examine the autocorrelation and
cross-correlation structure of the processes {Yt }t∈Z and {λt }t∈Z and present recurrence relations
they satisfy and expressions for their first- and second-order moments. It suffices to examine
the GP GARCE BP, since the Poisson GARCE BP is the special case κ = 0. The first result
features a sufficient condition that assures the existence of a unique stationary process {Yt }t∈Z.

Theorem 1. If
∑p
i=1 αi +∑q

j=1 βj < 1 for the GP GARCE(p, q) BP {Zt }t≥0, then there
exists a unique strictly stationary mean offspring number process {Yt }t∈Z that satisfies the
GARCE equation (3b) prior to the random extinction event ZT = 0 (if any). Furthermore, the
first two moments of {Yt }t∈Z are finite and their expressions are given by

E(Yt ) = E(λt ) = μ := α0

1 − ∑p
i=1 αi − ∑q

j=1 βj
, var(Yt ) = var(λt )+ μφ2

K
.

Proof. Adopting the techniques relied on in [7] and the proof of [30, Theorem 1], we will
prove the statements of the theorem. Define the polynomials D(B) = 1 − β1B − β2B

2 −
· · · − βqB

q andG(B) = α1B + α2B
2 + · · · + αpB

p, where B denotes the backshift operator.
Denote

λt = D−1(B)(α0 +G(B)Yt ) = α0D
−1(1)+H(B)Yt ,
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whereH(B) = D−1(B)G(B) = ∑∞
j=1 ψjB

j . DefineK independent copiesX(n)t,k for t, n ∈ Z,
and 1 ≤ k ≤ K of the random variableX(n)t as constructed and defined in [30, Equation (3.2)].
Thus, for fixed t and n, the X(n)t,k for 1 ≤ k ≤ K are independent and identically distributed
RVs. It was argued in [30] that the expectation and variance of each X(n)t,k are well defined and
E(X

(n)
t,1 ) does not depend on t . Write μn = E(X

(n)
t,1 ). As in [30], note that μk = 0 if k < 0.

In addition,

μn = ψ0 +
∞∑
j=1

ψjμn−j = α0D
−1(1)+H(B)μn,

lim
n→∞μn = α0D

−1(1)

1 − ∑∞
j=1 ψj

= α0

D(1)−G(1)
= α0

1 − ∑p
i=1 αi − ∑q

j=1 βj
(8)

if this limit exists. The reasoning in the proof of [30, Theorem 1] establishes that, for each
1 ≤ k ≤ K , the sequence {X(n)t,k }n∈Z has an almost sure limit Xt,k for each t , that, for each n,
the process {X(n)t,k }t∈Z is a strictly stationary process, and, thus, {Xt,k}t∈Z is strictly stationary.
The same reasoning applies to Y (n)t = (1/K)

∑K
k=1X

(n)
t−1,k , since Y (n)t is the average of a fixed

number of RVs X(n)t−1,k . Hence, we conclude that the sequence {Y (n)t }n∈Z has an almost sure
limit Yt for each t , the process {Y (n)t }t∈Z is a strictly stationary process for each n, and, thus,
{Yt }t∈Z is a strictly stationary process.

Furthermore, it was shown in [30] that E(X2
t ) ≤ C for some positive finite constant C,

which implies that the first two moments of Xt are finite. Consequently, E(Y 2
t ) ≤ C/K < ∞.

It follows that the first two moments of Yt are finite. Invoking arguments in parallel to those in
[7, Proposition 5 and Section 2.6] (see also [30]) leads to the conclusion that, for each k ≥ 1,
the Xt,k | Ft−1,z,y ∼ GP (λ∗

t , κ), and the processes {Yt } and {λt } follow the GARCE equation
in (3b) with λ∗

t /(1 − κ) = λt .
Finally, if

∑p
i=1 αi + ∑q

j=1 βj < 1 then it is evident from (6) and (8) that the unconditional
mean of Yt is given by

E(Yt ) = E(Xt ) = E(λt ) = μ = lim
n→∞μn,

where an expression for limn→∞ μn is stated on the right-hand side of (8), and the unconditional
variance of Yt is as claimed, as well. This completes the proof. �

We point out that GARCE(1, 1) branching processes with α1 + β1 = 1, so called IGARCE
branching processes, are nonstationary. For stationary processes {Yt }t∈Z and {λt }t∈Z, denote
their respective autocovariance function (ACVF) {γY (k) = cov(Yt+k, Yt )}k≥0 and {γλ(k) =
cov(λt+k, λt )}k≥0 and their cross-covariance function (CVF) {γYλ(k) = cov(Yt+k, λt )}k≥0.
The following theorem provides a set of equations from which the variances, autocorrelation
functions, and cross-correlation function of {Yt } and {λt } can be deduced.

Theorem 2. Assume that the GP GARCE(p, q) BP {Zt }t≥0 satisfies (3b) with
∑p
i=1αi +∑q

j=1βj < 1, and, thus, the process {Yt }t∈Z is stationary. Then the ACVFs {γY (k)}k≥0 and
{γλ(k)}k≥0 obey the linear equations

γY (k) =
p∑
i=1

αiγY (|k − i|)+
min(k−1,q)∑

j=1

βjγY (k − j)+
q∑
j=k

βjγλ(j − k) for k ≥ 1,

γλ(k) =
min(k,p)∑
i=1

αiγλ(k − i)+
p∑

i=k+1

αiγY (i − k)+
q∑
j=1

βjγλ(|k − j |) k ≥ 0,
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and the cross-CVF {γYλ(k)}k≥0 is given by

γYλ(k) =
{
γλ(k) for k ≥ 0,

γY (k) for k < 0.

Proof. These assertions were proved in [27, Theorem 1], where here the processes {Yt } and
{λt } replace the processes {Xt } and {Mt }, respectively, in [27]. �
Example 5. Consider the GP GARCE(1, 1) BP with α1 + β1 < 1 with stationary mean
offspring number process {Yt }. Arguments that parallel those in [27] lead to the following
expressions for the variances and ACFs of Yt and λt :

var(Yt ) = μφ2

K

1 − β1(2α1 + β1)

1 − (α1 + β1)2
, var(λt ) = μφ2

K

α2
1

1 − (α1 + β1)2
for t ≥ 0,

ρY (k) = (α1 + β1)
k−1α1

1 − β1(α1 + β1)

1 − β1(2α1 + β1)
for k ≥ 1,

ρλ(k) = (α1 + β1)
k for k ≥ 0.

These may be verified in several straightforward algebra steps by invoking Theorem 2 for
various choices of k. A convenient order to do so consists of deriving the expressions for ρλ(k),
γλ(0), γY (0), and ρY (k). The arguments are omitted here in view of space considerations.

Remark 2. Observe that the mean offspring number process {Yt } of the GP GARCE(p, q)
BP can be represented as an ARMA(m, q) process with m = max(p, q) and an innovation
sequence {Ut = Yt − λt }t that is a martingale sequence and is white noise (uncorrelated RVs)
with var(Ut ) = var(Yt ): we obtain Yt = α0 + ∑m

i=1(αi + βi)Yt−i + Ut − ∑q
j=1 βjUt−j .

However, there are some restrictions in treating the process {Yt } as an ARMA model and
applying techniques that are employed for ARMA, since {Yt } does not take continuous values
but is a discrete-valued process.

We continue to examine {Zt } in the special case when q = 0.

Corollary 1. Assume that the process {Yt }t∈Z for the GP GARCE(p) BP be second-order
stationary. Then the ACVF {γY (k)}k≥0 satisfies the equations given by

γY (k) =
p∑
i=1

αiγY (|k − i|), k ≥ 1.

Proof. These statements are an immediate consequence of [27, Theorem 1]. Note that the
same equations were stated in [27, Corollary 1] and [30, Corollary 1]. �
Example 6. Consider the GP GARCE(1) BP with α1 < 1, a special case of Example 5 with
p = 1 and q = 0. The first two cumulants of Yt are κ1 = μ = α0/(1−α1) and κ2 = var(Yt ) =
φ2α0/(K(1 − α1)(1 − α2

1)).

In the sequel, we will be concerned with the GP GARCE(1, 1) BP that is governed by

λ∗
t+1

1 − κ
= λt+1 = α0 + α1Yt + β1λt . (9)

In Sections 6 and 7 we will study the survival behavior of the GARCE BP and properties
of a normalized process under the assumption of stationarity and ergodicity of the bivariate
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process {(Yt , λt )}t . The ergodicity feature also is crucial to the asymptotic theory of the
conditional maximum likelihood estimators in the GARCE BP model (see [29] and [30]),
as we will see in Theorem 4 below. In the next result we show that the processes {Yt }t and
{(Yt , λt )}t for the GP GARCE(1, 1) BP are (geometrically) ergodic if α1 + β1 < 1. For this
purpose, it is convenient to use a two-sided stationary version of each process with time domain
Z in place of N. It exists thanks to Kolmogorov’s extension theorem.

Theorem 3. Suppose that the GP GARCE(1, 1) BP satisfy (9) with α1 + β1 < 1. Then
the process {(Yt , λt )}t∈Z has a unique stationary distribution and the processes {Yt }t∈Z and
{(Yt , λt )}t∈Z are ergodic.

Proof. The arguments of proof run in parallel to those carried out to prove [16, Theorems 2.1
and 3.1] and are omitted here. Some main ideas are as follows. A key ingredient is the
additivity property of the GP distribution, that is, if Xj ∼ GP (λ∗, ·) for each 1 ≤ j ≤ K and
Y = K−1∑K

j=1Xj , it follows that K · Y ∼ GP (Kλ∗, ·). Coupling between two versions of
processes {(Y ′

t , λ
′
t )}t and {(Y ′′

t , λ
′′
t )}t is performed on a suitable common probability space, with

two starting values λ′
1 and λ′′

1 being independently sampled from the stationary distribution.
We can show that {Yt }t∈Z is absolutely regular with coefficient

β(t) = E

[
sup

A∈σ(Yt ,Yt+1,...)

|P(A | σ(. . . , Y−1, Y0))− P(A)|
]

≤ 2μ(α1 + β1)
t−1

1 − β1
for t ≥ 1.

This implies that {Yt }t∈Z is strongly mixing, and, in turn, ergodic. Finally, we can establish that
the random intensities {λt }t∈Z can be represented as measurable functionals of past variables
of {Yt }t∈Z. This suffices to conclude that {(Yt , λt )}t∈Z is ergodic, as well. �

It is noted in [16] that, while {Yt }t∈Z is strongly mixing and ergodic, {(Yt , λt )}t∈Z and
{λt }t∈Z may not be strongly mixing. Furthermore, we remark that for the GP INGARCH(1, 1),
an ergodicity result is stated in [30, Theorem 3].

The next result sheds some light on the estimation of the GARCE BP model parameters,
which is part of the model building that can be used to generate forecasts for future values of
the GARCE BP. We first produce predicted values of the environmental process {λt } that are
obtained from the GARCE recurrence relation in (3b) and then apply bootstrapping techniques
that are commonly relied on in forecasts in GARCH models in order to predict future values
for the processes {Xt,i} and {Zt }. Assume that we have n observations Y1, Y2, . . . , Yn that
were generated from the GP GARCE(1, 1) BP. Recall that φ = 1/(1 − κ). The conditional
likelihood function is given by

n∏
t=2

Kλt [Kλt + (φ − 1)KYt ]KYt−1φ−KYt
(KYt )! exp

{
−Kλt + (φ − 1)KYt

φ

}
.

We present various asymptotic properties of the maximum likelihood estimator (MLE) for the
model parameter vector. For the description of the algorithm and a proof, see [30].

Theorem 4. Suppose that the GP GARCE(1, 1) BP satisfy (9) with α1 + β1 < 1. Denote
θ = (1/(1 − κ), α0, α1, β1)

′ and let θ◦ denote the true value of θ . Under the assumptions
stated in [30, Theorem 5] adapted to the process {Yt }, the MLE θ̂ is unique, consistent, and
asymptotically normal, thus,

√
n (θ̂ − θ◦) d−→ N (0,G−1),
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where G is given in [30], modulo slight modification required for the process {Yt } and ‘
d−→’

denotes convergence in distribution.

We conclude this section with the finding that all moments of {Yt } are finite.

Theorem 5. Suppose that the GP GARCE(1, 1)BP {Zt }t≥0 satisfy (9). Then all of the moments
of Yt are finite if and only if α1 + β1 < 1.

Proof. This can be inferred from [30, Theorem 4] since Yt is the average of a fixed number
of independent and identically distributed RVs that follow the same distribution as Xt . �

4. NB GARCE BP

We continue to illuminate the NB GARCE(p, q) BP and are concerned with conditions for
the weak stationarity of {Yt }t∈Z and {λt }t∈Z. Furthermore, we provide recurrence relations that
theACFs and cross-CVF obey and derive expressions for their first- and second-order moments.

Theorem 6. A necessary condition for the NB GARCE(p, q) BP {Zt }t≥0 to exhibit a weakly
stationary mean offspring number process {Yt }t∈Z and environmental process {λt }t∈Z prior to
the random extinction event ZT = 0 (if any) is that

∑p
i=1 αi + ∑q

j=1 βj < 1. If the process
{Yt }t∈Z is first-order stationary then its mean is given by

E(Yt ) = E(λt ) = μ := α0

1 − ∑p
i=1 αi − ∑q

j=1 βj
.

Furthermore, the variances of {Yt }t∈Z and {λt }t∈Z are related by

var(Yt ) =
(
μ

K

)(
1 + μ

r

)
+ var(λt )

(
1 + 1

rK

)
.

Proof. The proof of the statements relating to the weak stationarity proceeds in parallel to
those for the GP GARCE(p, q)BP in [30, Theorem 1 and Proposition 1], since {Yt }t∈Z satisfies
the same GARCE equation (3b) (also compare to [29, Theorem 1]). Moreover, by virtue of (7),
an elementary exercise leads to the relation

γY (0) = 1

K
E

[
λt

(
1 + λt

r

)]
+ var(λt ) = μ

rK
(r + μ)+

(
1 + 1

rK

)
γλ(0),

which achieves the proof. �
The ACFs and cross-CVF of {Yt } and {λt } satisfy the same relations as those of the GP

GARCE(p, q) BP (Theorem 2) from which the variances and ACFs of {Yt } and {λt } can be
inferred.

Theorem 7. Assume that the NB GARCE(p, q) BP {Zt }t≥0 satisfies
∑p
i=1 αi + ∑q

j=1 βj < 1
and has a mean-stationary process {Yt }t∈Z. The ACVFs {γY (k)}k≥0 and {γλ(k)}k≥0 obey the
linear equations in Theorem 2 and the cross-CVF {γYλ(k)}k is as stated in Theorem 2.

Example 7. Consider the special case of a NB GARCE(1, 1) BP with a weakly stationary
mean offspring number process {Yt }t∈Z. Write μ = α0/(1 − α1 − β1). We obtain

var(Yt ) = μ

K

(
1 + μ

r

)
1 − β1(2α1 + β1)

1 − (α1 + β1)2 − α2
1/rK

,

var(λt ) = α2
1μ

K

1 + μ/r

1 − (α1 + β1)2 − α2
1/rK
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for t ≥ 0 and the same expressions for the autocorrelations ρY (k) and ρλ(k) for k ≥ 1 and
k ≥ 0, respectively, as displayed in Example 5 for the GP GARCE(1, 1) BP. The derivations
follow from a series of algebra steps in parallel to those needed in Example 5, in conjunction
with the relation between var(Yt ) and var(λt ) stated in Theorem 6. The details are omitted.

A corollary to Theorem 7 for the NB GARCE(p) BP is as follows.

Corollary 2. Assume that the NB GARCE(p) BP {Zt }t≥0 has a weakly stationary {Yt }t∈Z.
Then the ACVF {γY (k)}k≥0 satisfies the recurrence equations

γY (k) =
p∑
i=1

αiγY (|k − i|), k ≥ 1.

Remark 3. To the best of the author’s knowledge, the existence, strict stationarity, and er-
godicity of the NBGARCH process are open problems (see [29, Section 6]). Therefore, the
same aspects are unresolved questions for the mean offspring number process {Yt }t for the NB
GARCE(p, q) BP.

5. BIN GARCE BP

In this section we examine the stationarity and ACFs and cross-CVF of the processes {Yt }t∈Z

and {λt }t∈Z for the BIN GARCE(p, q) BP {Zt }t≥0.

Theorem 8. A necessary condition for the BIN GARCE(p, q) BP {Zt }t≥0 to exhibit a weakly
stationary mean offspring number process {Yt }t∈Z prior to the random extinction eventZT = 0
(if any) is that

∑p
i=1 αi + ∑q

j=1 βj < 1. Furthermore, the first two moments of {Yt }t∈Z and
{λt }t∈Z can be expressed as

E(Yt ) = E(λt ) = μ := α0

1 − ∑p
i=1 αi − ∑q

j=1 βj
,

var(Yt ) = μ

K

(
1 − μ

m

)
+ var(λt )

(
1 − 1

mK

)
.

Proof. The assertions about the weak stationarity of {Yt }t∈Z are demonstrated by similar
reasoning as for the GP GARCE(p, q) BP, as outlined in the proof of Theorem 1, since {Yt }t∈Z

satisfies the same GARCE equation (3b). A few computational steps in conjunction with
the observation that E(λt ) = mE(pt ) and with the conditional variance formula derive the
relationship between var(Yt ) and var(λt ) as follows:

var(Yt ) = K−1
E[var(Xt−1 | Ft−1,z,y)] + var(λt )

= m

K
[E(pt )− E(p2

t )] + var(λt )

= m

K
E(pt )(1 − E(pt ))+ var(λt )

(
1 − 1

mK

)

= μ

K

(
1 − μ

m

)
+ var(λt )

(
1 − 1

mK

)
.

This completes the proof. �
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The ACFs and cross-CVF of {Yt } and {λt } satisfy the same recurrence relations as those of
the GP GARCE(p, q) BP, stated in Theorem 2, which allows for derivation of their variances,
ACFs, and cross-correlation function. The next corollary has a proof that is identical to the one
of Theorem 2.

Corollary 3. Assume that the BIN GARCE(p, q) BP {Zt }t≥0 satisfies
∑p
i=1αi+

∑q
j=1 βj < 1

and has a mean-stationary process {Yt }t∈Z. Then the ACVFs {γY (k)}k≥0 and {γλ(k)}k≥0 obey
the linear equations given in Theorem 2 and the cross-CVF {γYλ(k)}k is as stated in Theorem 2.

Example 8. Consider the BIN GARCE(1, 1) BP with α1 + β1 < 1 with its mean offspring
number process {Yt } in the stationary regime. We obtain the following expressions for the
variances of Yt and λt :

var(Yt ) = μ

K

(
1 − μ

m

)
1 − β1(2α1 + β1)

1 − (α1 + β1)2 + α2
1/mK

for k ≥ 1,

var(λt ) = μ

K

(
1 − μ

m

)
α2

1

1 − (α1 + β1)2 + α2
1/mK

for k ≥ 0.

These expressions are obtained in the same fashion as those we obtained for the GP GARCE(1,1)
BP in Example 5. While the variance formulae are slightly different because the variances are
related differently and an adapted formula for γY (1) = (α1μ/K)(1 − μ/m)([1 − β1(α1 +
β1)]/[1 − (α1 + β1)

2 + α2
1/mK]) emerges, we observe that the formulae for the ACFs ρY

and ρλ are identical to those for the GP GARCE(1, 1) BP in Example 5.

We remark that in the special case when q = 0, the ACVF {γY (k)}k satisfies the recurrence
relation stated in Corollary 1. In addition, note that the process {Yt } for the BIN GARCE(p, q)
BP has the same ARMA representation as the GP GARCE(p, q), which can be viewed in the
remark following Example 5.

6. Certain and noncertain extinction

In this section we turn to investigate the survival–extinction dichotomy, provide necessary
and sufficient conditions for noncertain extinction of the GARCE BP {Zt }, show that it becomes
extinct or explodes with probability 1, identify conditions for subcriticality and supercriticality,
and study the survival behavior in these two phases and at the phase transition. For the purpose
of developing and applying ideas, we follow the exposition in [1] and overview in [3] on
BPREs. For the remainder of this article, we shall impose the following standing hypothesis,
unless otherwise stated.

Assumption 1. The process {(Yt , λt )}t∈Z for the GARCE(p, q) BP is strictly stationary and
ergodic.

We observe that if the process {λt } is started with its stationary law, the resulting observed
process {Yt } will be stationary. Recollect the notation λ = (λ0, λ1, . . .) = {λt }t≥0 for the
environmental process. Denote the extinction setE and conditional and unconditional extinction
probabilities qk(λ) and qk , when we initially start with k individuals, by

E = {ω : Zt(ω) = 0 for some t}, (10)

qk(λ) = P(E | F (λ), Z0 = k), qk = P(E | Z0 = k),
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where we recall F (λ) from (2). A consequence of the relations in (3a) and (4) is

E(sZt+1 | F (λ), Z0 = k) = [ϕλ1(ϕλ2(· · ·ϕλt+1(s) · · · ))]k.

Obviously,

qk(λ) = q1(λ)
k a.s., qk = E[q1(λ)

k],
which establishes that {qk}k≥1 is a moment sequence. For the sequel, let us write q(λ) = q1(λ).
Since the sequence of events Et = {ω : Zt(ω) = 0} increases to E , we conclude that

q(λ) = lim
t→∞ϕλ1(ϕλ2(· · ·ϕλt (0) · · · )).

An immediate consequence of this equation is the following crucial functional equation:

q(λ) = ϕλ1(q(T λ)) (11)

(see [1] and [22]), where T denotes the back-shift transformation

T λ = T (λ0, λ1, . . .) = (λ1, λ2, . . .).

An observation that was shown in [1, Theorem 6] is that q(λ) is the minimal solution to (11),
and when P(q(λ) < 1) = 1, it is the unique solution. Specifically, if q̃(λ) is any RV that
satisfies q̃(λ) = ϕλ1(q̃(T λ)), then we have P(q(λ) ≤ q̃(λ)) = 1, and when P(q̃(λ) < 1) = 1,
additionally, P(q(λ) = q̃(λ)) = 1 is implied.

Equation (11) together with the basic assumption P(λ1 ∈ M) = 1 imply at once that the
event {q(λ) = 1} is shift invariant, that is, the two events {ω : q(λ) = 1} and {ω : q(T λ) = 1}
coincide with probability 1 (see [1, Proposition 1]). Since the event {q(λ) = 1} is preserved
under T , under the assumption that the shift transformation T is stationary and ergodic, the
zero–one law applies to {q(λ) = 1}, that is, P(q(λ) = 1) = 0 or P(q(λ) = 1) = 1. In other
words, when extinction of the BPRE {Zt }t≥0 happens, it occurs almost surely with respect to
the probability measure of the environmental process.

Proposition 1. Suppose that the GARCE(p, q) BP {Zt }t≥0 satisfies Assumption 1. Then, we
have P(q(λ) = 1) = 0 or P(q(λ) = 1) = 1.

We continue to summarize necessary and sufficient conditions for P(q(λ) < 1) = 1, a
positive survival probability {λt }-a.s. This scenario is referred to as ‘noncertain extinction’ in
the BPRE literature. Define the random quantities

Vλ = logϕ′
λ1
(1), Uλ = −log(1 − ϕλ1(0)) = −log(1 − p0(λ1)),

Qλ = log

(
1 − q(λ)

1 − q(T λ)

)
, (12)

where p0(·) denotes the probability of 0 offspring. We will refer to the GARCE BP {Zt }
as supercritical, critical, or subcritical depending on whether E(Vλ) > 0, = 0, or < 0,
respectively, where Vλ is defined in (12). In the next lemma we present explicit expressions
for Vλ in the case of the GP, NB, and BIN GARCE BP, and, thus, characterize the phase
transition between the subcritical and supercritical phases of the process.
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Lemma 1. Suppose the processes {Yt }t∈Z and {λt }t∈Z for the GP, NB or BIN GARCE(p, q)
BP {Zt }t≥0 be strictly stationary. Then

E(Vλ) = E[log(λ1)],
and if p1 = p(λ1) denotes the parameter of the negative binomial and binomial distributions,

E(Uλ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−E[log(1 − exp(−λ1))], (13a)

−E[log(1 − pr1)] = −E

[
log

(
1 −

(
r

r + λ1

)r)]
, (13b)

−E[log(1 − (1 − p1)
m)] = −E

[
log

(
1 −

(
1 − λ1

m

)m)]
. (13c)

Proof. (i) We begin with examining the GP GARCE(p, q)BP (13a) in its stationary regime.
The PGF of a generalized Poisson RV with parameters λ and κ is given by ϕλ∗(s) =
exp(λ(z− 1)) for |s| ≤ 1, where z = s exp(κ(z− 1)). A straightforward calculation yields
ϕ′
λ(1) = λ∗/(1 − κ) = λ. Thus, in view of the definition in (12), we have Vλ = log(λ∗

1/(1 −
κ)) = log(λ1). Moreover, observe that ϕλ1(0) = exp(−λ1) and recall the definition ofUλ from
(12). This verifies the first claims about Vλ and Uλ.

(ii) Next, consider the NB GARCE(p, q) BP (13b) in the stationary regime. The PGF of a NB
RV with parameters r and p is given by ϕλ(s) = [p/(1 − (1 − p)s)]r for |s| ≤ 1. A simple
calculation provides ϕ′

λ(1) = r(1 − p)/p = λ. Therefore, Vλ = log(λ1). Additionally,
ϕλ1(0) = pr1 with p1 = r/(r + λ1). This immediately establishes the claims for Vλ and Uλ.

(iii) At last, we turn to the BIN GARCE(p, q) BP (13c) in the stationary regime. The PGF of
a binomial RV with parameters m and p is given by ϕλ(s) = [ps + (1 − p)]m for |s| ≤ 1.
Differentiation yields ϕ′

λ(1) = mp = λ. Therefore, we obtain Vλ = log(λ1). Furthermore,
note that ϕλ1(0) = (1 − p1)

m = (1 − λ1/m)
m. Hence, this verifies the third assertions stated

about Vλ and Uλ and completes the proof. �
Write a+ = max(a, 0) and a− = max(−a, 0). We present sufficient conditions for almost

sure extinction of the GARCE BP.

Theorem 9. Suppose that the GARCE(p, q) BP {Zt }t≥0 satisfies Assumption 1.

(i) If E(V +
λ ) < ∞ then

• E(V +
λ ) ≤ E(V −

λ ) ≤ ∞ implies P(q(λ) = 1) = 1, while

• E(V +
λ ) > E(V −

λ ) and E(Uλ) < ∞ imply P(q(λ) = 1) = 0.

(ii) If E(V +
λ ) = ∞ then E(Uλ) < ∞ implies P(q(λ) = 1) = 0.

Proof. In light of Assumption 1, the claims follow at once from [1, Corollary 1, Section 2,
p. 1507] and [1, Theorem 3]. �
Remark 4. (i) (Necessary condition for noncertain extinction.) We have P(q(λ) < 1) = 1
and E(V +

λ ) > 0 imply E|Vλ| < ∞, E(Vλ) > 0, E|Qλ| < ∞, and E(Qλ) = 0 [1, Theorem 1].
For the necessity of E(Vλ) > 0, see also Theorems 9 and 10(iii) below. Tanny [24] in 1977
provided the weaker condition limt→∞ t−1 log(1 − p0(λt )) = 0 than E|Uλ| < ∞, along with
E(Vλ) > 0, that is necessary but not sufficient, where p0(λ1) denotes the probability of 0
offspring. Note that the condition E|Uλ| < ∞, along with E(Vλ) > 0, is sufficient (presented
in [1, Theorem 1], also a consequence of a later result in [24]).
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(ii) (Sufficient condition for noncertain extinction.) Suppose that E(Uλ) < ∞ and E(V −
λ ) <

E(V +
λ ) ≤ ∞ hold. Then P(q(λ) < 1) = 1 [1, Theorem 3]. However, Tanny [24] pointed out

that E|Uλ| < ∞ is not a necessary condition for P(q(λ) < 1) = 1, while being sufficient, and
gave an example of noncertain extinction where E(Vλ) > 0 and E|Uλ| = ∞.

(iii) (Necessary and sufficient condition for noncertain extinction.) Coffey and Tanny [5,
Theorem 1] in 1983 furnished a necessary and sufficient condition for P(q(λ) < 1) = 1,
together with E(Vλ) < ∞, as follows. There is a function ν(λ) taking values in the positive
integers such that

(i) E[log (
∑ν(λ)−1
k=0 kpk(λ1)+ ν(λ)

∑∞
k=ν(λ) pk(λ1))] > 0,

(ii) limt→∞ t−1 log ν(T tλ) = 0 with probability 1, wherepk(λ1) denotes the probability of k
offspring under the stationary offspring distribution. According to the first statement, the
truncated GARCE BP is supercritical, while the second assertion states that the truncation
points grow more slowly than any exponential sequence.

(iv) (Open cases.) It was noted in [3] that the following cases appear to be open:

(i) E(V +
λ ) = ∞ and E(V −

λ ) = ∞, and

(ii) ∞ ≥ E(V +
λ ) > E(V −

λ ) and E(Uλ) = ∞.

The following classification result sheds light on the survival behaviors of the subcritical,
critical, and supercritical processes. For the subcritical and critical GARCE BP, extinction is
certain almost surely relative to the environment, unless we are in a special degenerate case for
the critical process that is not interesting. Noncertain extinction is only possible in the case of
a supercritical GARCE BP. If the process survives indefinitely, a law of large numbers holds.

Theorem 10. (Classification.) Suppose that the GARCE(p, q) BP {Zt }t≥0 satisfies Assump-
tion 1 and E(Vλ) exist.

(i) If E(Vλ) < 0 then P(q(λ) = 1) = 1.

(ii) If E(Vλ) = 0 then either P(q(λ) = 1) = 1 or P(p1(λ1) = 1) = 1, where p1(λ1)

denotes the probability of one offspring under the stationary offspring distribution. The
event P(p1(λ1) = 1) = 1 implies that P(Zt ≡ 1 for all t | Z0 = 1, F (λ)) = 1 with
probability 1.

(iii) (Law of large numbers.) If E(Vλ) > 0 then limt→∞ t−1 logZt = E(Vλ) almost
everywhere on the event {ω : Zt(ω) → ∞ as t → ∞}.

Proof. These statements are consequences of [24, Theorem 5.5]. �

Hence, noncertain extinction is precluded, unless the GARCE BP {Zt } is supercritical.
In addition, the boundary E(Vλ) = 0 delineates the phase transition between the two phases of
certain extinction and noncertain extinction, where extinction occurs with certainty at the phase
transition. Easy upper and lower bounds on the phase transition between certain extinction and
noncertain extinction can be derived in terms of the first two moments of the environment.

Remark 5. (i) (Upper bound on phase transition.) Observe that, by virtue of the Jensen
inequality, E[log(λ1)] ≤ log[E(λ1)] = logμ for the GARCE(p, q)BP in its stationary regime,
where μ denotes the mean offspring number. Hence, μ < 1 implies that {Zt } is subcritical,
while μ ≤ 1 implies that {Zt } is not supercritical.

https://doi.org/10.1017/apr.2016.71 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.71


GARCE branching processes 1231

(ii) (Lower bound on phase transition.) On the other hand, if we rely on the Taylor expansion of
the function log(x) at x0 = 1, straightforward calculations yield log(λ) ≥ (λ−1)− 1

2 (λ−1)2 =
− 3

2 + 2λ− 1
2λ

2, and, thus,

E[log(λ1)] ≥ − 3
2 + 2E(λ1)− 1

2 E(λ2
1) = Cμ − 1

2 var(λ1)

for some real constant Cμ given as Cμ = − 3
2 + 2μ − μ2/2 for the GARCE(p, q) BP. Thus,

Cμ − var(λ1)/2 > 0 implies that {Zt } is supercritical, whereas Cμ − var(λ1)/2 ≥ 0 implies
that {Zt } is not subcritical. Expressions for μ and var(λ1) can be found in Sections 3–5 for the
models studied.

The well-known result for the Bienaymé–Galton–Watson (BGW) process that it either
explodes or becomes extinct with probability 1 continues to be valid for the GARCE(p, q)
BP. A look at the extinction–explosion dichotomy will conclude this section.

Theorem 11. Suppose that the GARCE(p, q) BP {Zt }t≥0 satisfies Assumption 1. Then either

P(Zt → 0 or Zt → ∞ | F (λ)) = 1,

independently of Z0, or P(Zt ≡ 1 for all t | Z0 = 1, F (λ)) = 1 with probability 1.

Proof. For a proof of this result, see [24, Theorem 5.3]. The same result under the hypothesis
that E(V +

λ ) < ∞ is contained in [1, Corollary 1, Section 3, p. 1515] (see also [1, Theorems 5–
7]). �

7. Limit theorems

At last, we are interested in limit theorems for the normalized GARCE BP and necessary
and sufficient conditions for a nondegenerate limit. We also examine the extended Kesten–
Stigum condition E(Z1 log+ Z1/ϕ

′
λ1
(1)) < ∞ for the GARCE BP {Zt }t≥0 as it relates to

a nondegenerate limit. We begin with providing hypotheses that assure the existence of a
normalizing sequence for {Zt }t≥0 so that the normalized process converges to a limit with
probability 1 that is finite with probability 1 and nonzero away from the extinction set of
{Zt }t≥0. For a supercritical BGW process, Seneta [18] in 1968 demonstrated the existence of a
normalizing sequence {ct }t∈N such that c−1

t Zt converges in distribution to a nonnegative RVW
that is nonzero except on the extinction set of the BGW process. In 1971 Heyde [10] relied on
an exponential martingale to extend this result to almost sure convergence. In 1978 Tanny [25]
proved an analogue of Seneta’s result [18] for BPRE and strengthened an earlier version that
was presented in [19] in 1975, which did not preclude infinite values of W happening with
positive probability and zero values ofW away from the extinction set. The following theorem
is an adaptation of Tanny’s results [25] in 1978 to the GARCE branching processes, whose
proof is in [25, Theorem 1].

Theorem 12. Consider a GARCE(p, q)BP {Zt }t≥0 under Assumption 1 that satisfies E|Vλ| <
∞. Then there exists a sequence of RVs {ct (λ)}t∈Z that only depend on λ with the following
properties:

(i) limt→∞ Zt/ct (λ) = W with probability 1,

(ii) P(W = 0 | F (λ)) = q(λ) a.s.,

(iii) P(W < ∞ | F (λ)) = 1 with probability 1,
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(iv) limt→∞ t−1 log ct (λ) = E(Vλ) with probability 1, and

(v) as t → ∞, the sequence ct+1(λ)/ct (λ) converges in distribution to Vλ.

Note that for all subsequent results, we will focus on the supercritical GARCE BP. We con-
tinue with another limit result. A proof is presented in [25, Theorem 2]. Let {W ◦

t }t∈N denote the
reduced branching process that we obtain by restricting ourselves to the branching subprocess
that consists of the members of the GARCE BP that have infinite descent.

Theorem 13. Suppose that the GARCE(p, q) BP {Zt }t≥0 is supercritical and Assumption 1
hold. Then for almost all λ, we have

P

(
E c, lim

t→∞
W ◦
t

1 − q(T tλ)Zt
= 1

∣∣∣∣ F (λ)

)
= P(E c | F (λ)) = 1 − q(λ),

where E c = {ω : Zt(ω) → ∞ as t → ∞} denotes the complement of the event E stated in (10).

We now specify a normalizing sequence that transforms the normalized GARCE BP into a
martingale sequence. Denote

Wt = Zt

πt
, πt =

t∏
j=1

ϕ′
λj
(1) for t ≥ 1, π0 = Z0 = 1. (14)

The subsequent martingale theorem rests on the one demonstrated in [2, Theorem 1] in 1971,
and follows along the ideas in [12] in 1966.

Theorem 14. Suppose that the GARCE(p, q) BP {Zt }t≥0 with Z0 = 1 is supercritical and
satisfies Assumption 1. Let {Ft,z} denote the filtration stated in (2). Then the process {Wt }t≥0,
defined in (14), is a nonnegative {Ft,z}-martingale and the limit limt→∞Wt = W exists almost
surely. In addition, the condition

E

(
Z1 log(Z1)

ϕ′
λ1
(1)

)
< ∞

implies that

(i) limt→∞ E(exp(−uWt) | F (λ)) ≡ ψ(u, λ) is the unique solution of the functional equa-
tion

ψ(u, λ) = ϕλ1

(
ψ

(
u

ϕ′
λ1
(1)
, T λ

))
a.s.

among those solutions obeying limu↓0 u
−1[1 − ψ(u, λ)] = 1,

(ii) E(W | F (λ)) = 1,

(iii) P(W = 0 | F (λ)) = q(λ) a.s.

The last result surrounds the extended Kesten–Stigum condition [12] for the supercritical
GARCE(p, q) branching processes, which is sufficient but not necessary for W to be nonde-
generate, and provides a necessary and sufficient condition for W to be nondegenerate. The
statements are analogous to those demonstrated in [26] the proofs in [26, Theorems 1, 3, and 4].
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Theorem 15. Suppose that the GARCE(p, q)BP {Zt }t≥0 is supercritical with E|Vλ| < ∞ and
Assumption 1 hold. Let Ft(· | Ft (λ)) denote the cumulative conditional offspring distribution
in the th generation of the GARCE BP, given Ft (λ), where Ft (λ) is as stated in (2). Let {Wt }
be as stated in (14).

(i) (Necessary and sufficient condition for nondegenerate W .) If, for each Q > 0, the
environmental process λ = {λt }t∈N satisfies

∞∑
t=1

1

ϕ′
λ2t
(1)

∫ ∞

etQ
x dF2t (x | Ft (λ)) < ∞ (15)

almost everywhere on

B =
{
λ :

∞∑
t=1

(ϕ′
λt
(1))−1

∫ ∞

etQ
x dFt(x | Ft (λ)) < ∞

}
,

then limt→∞Wt = W exists with probability 1 and W is nondegenerate if and only if

∞∑
t=1

1

ϕ′
λt
(1)

∫ ∞

πt+1

x dFt(x | Ft (λ)) < ∞ (16)

with probability 1, where πt is defined in (14). Furthermore, when W is nondegenerate, then
P(W = 0 | F (λ)) = q(λ) with probability 1 and E(W | F (λ)) = 1 with probability 1.

(ii) (Sufficient condition for nondegenerateW .) If (15) holds then limt→∞Wt = W exists with
probability 1 and the condition

E

(
Z1 log+ Z1

ϕ′
λ1
(1)

)
< ∞ (17)

is a sufficient condition for W to be nondegenerate.

(iii) (Alternate form of a necessary and sufficient condition for nondegenerate W .) Condition
(16) is valid if and only if there exists some real constant δ > 0 such that

∞∑
t=1

1

ϕ′
λt
(1)

∫ ∞

etδ
x dFt(x | Ft (λ)) < ∞ (18)

with probability 1. Additionally, if the condition in (18) holds for some δ > 0, it holds for all
δ > 0.

Remark 6. (i) For BGW processes, the condition in (16) simplifies to the well-known Kesten–
Stigum result [12], which says that E(Z1 log+ Z1) < ∞ is a necessary and sufficient condition
for a nondegenerate W . It was earlier studied in [13] in 1959 and has since been intensively
investigated in the literature (for a later proof among others, see [15]).

(ii) We point out that the extended Kesten–Stigum condition in (17) is unnecessary forW to be
nondegenerate for a stationary and ergodic BPRE. We can see this in [26, Example 3.1, p. 137]
with nondegenerate W , E|Vλ| < ∞, and E(Z1 log+ Z1/ϕ

′
λ1
(1)) = ∞.
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