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In this paper we introduce the concept of Kleisli strength for monads in an arbitrary

symmetric monoidal category. This generalises the notion of commutative monad and gives

us new examples, even in the cartesian-closed category of sets. We exploit the presence of

Kleisli strength to derive methods for generating distributive laws. We also introduce linear

equations to extend the results to certain quotient monads. Mechanisms are described for

finding strengths that produce a large collection of new distributive laws, and consequently

monad compositions, including the composition of monadic data types such as lists, trees,

exceptions and state.

1. Introduction

A common construction in programming is to compose two data types, such as in

constructing a list of records. Data types come equipped with certain operations and

algebraic rules governing these operations. A simple but important question to ask is

whether these operations continue to exist, and if the corresponding algebraic rules are

preserved, when the data types are composed. In this paper we address this question by

restricting our attention to a particular widely used group of data types, namely those

that are monadic. In this case, the critical issue for the existence of such compositions is

the presence of a distributive law.

Beck (1969) showed how monad compositions arise from distributive laws. While many

papers about distributive laws have appeared since, including Adamek and Lawvere (2001),

Koslowski (2005) and Marmolejo et al. (2002), less attention has been paid to general

techniques for producing examples of these laws. In Manes and Mulry (2007), the current

authors began a program of deriving such techniques in which critical use was made of

the notion of a commutative monad. The methods described there could only be partially

applied to some of the best-known data type constructor monads such as those for

binary trees, lists, exceptions, and state, since all of these are non-commutative. There are

few existing results showing that such well-known monads can compose in the sense of

preserving their monadic structure, even though the corresponding data types are routinely

composed in programming environments. For instance, it is currently not known if the

list data constructor can compose with itself as a monad, a striking observation since it is

common practice to work with lists of lists. The attempt to construct a composition of lists

in King and Wadler (1993) failed: see Manes and Mulry (2007, Example 5.19). Weaker
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notions of composition can also be considered (see, for example, Luth and Ghani (2002),

which is discussed in Manes and Mulry (2007, Remark 2.4.4)), but such notions are not

addressed in this paper.

This paper attacks another aspect of the general problem of monad data type

composition by introducing and utilising the notion of Kleisli strength for monads

in an arbitrary symmetric monoidal category. We then derive a new set of schema for

generating distributive laws that only require this weaker notion. In particular, some

of the unsatisfactory issues described above are addressed. Now, all the aforementioned

data type constructor monads, namely the list, binary tree, exception and state monad

constructors, come equipped with Kleisli strengths, and in some cases more than one,

leading in turn to multiple distributive laws. While the case of a distributive law for

lists over itself is not resolved, a variety of examples of the composition of non-

empty lists can be derived, as well as distributive laws on more complex data type

constructors.

The remainder of this section reviews a few of the basic definitions and constructions

related to monads, algebras and distributive laws, but also presents some new definitions.

The paper assumes the reader is familiar with the general notions of category theory

(Mac Lane 1971), and also depends heavily on Manes and Mulry (2007).

In Section 2 we define the notion of Kleisli strength and provide a number of examples,

as well as methods, for generating Kleisli strength. As the examples illustrate, this notion

is of independent interest and generalises the prior notion of a commutative monad. The

notion of coherent Kleisli strength is also introduced, while its connection to monadic

signatures with linear equations is addressed later in the paper. This section also provides

a brief introduction to classical commutative monads and Kock strength, and contrasts

these concepts with that of general Kleisli strength.

Section 3 discusses the free monad Σ@ generated by a signature Σ and establishes a

result on the existence of distributive laws of the form Σ@K → KΣ@ where K is a monad

with Kleisli strength. Examples of new Kleisli strengths and consequent distributive laws

for some specific signatures are also presented.

Section 4 uses coherent Kleisli strength in connection with monadic linear signatures

to generate new distributive laws. The main theorem stresses universal algebra with linear

equations (which have the same non-repeating set of variables on both sides); though

only linear terms can be interpreted for algebras in a symmetric monoidal category, this

restriction is required to produce our results even in the category of sets.

Let C, D be categories with functor F : C → D. let H = (H, μ, η) be a monad in C and

K = (K, ν, ρ) be a monad in D. We write CH for the category of H-algebras with forgetful

functor UH : CH → C and write CH for the Kleisli category of H with canonical functor

ιH : C → CH, ιH(X
f

−−→ Y ) = X
f

−−→ Y
ηY−−→ HY . An algebra lift

C D�
F

CH DK�F�

�
UH

�
UK
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is classified by a natural transformation σ : KF → FH satisfying

F KF�ρF
KKF� νF

FHH�
Fμ

FH
�

σ
�
Kσ

KFH

�
σH

�
�

�
�

�
�

�
��

Fη

(F�A) (F�B)

The correspondences between F� and σ are given by

F�(A, ξ) = (FA, KFA
σ
A−−→ FHA

Fξ−−→ FA) (1)

and, if F�(HA, μA) = (FHA, KFHA
γA−−→ FHA),

σA = KFA
KFη

A−−−−→ KFHA
γA−−→ FHA . (2)

A Kleisli lift

C D�
F

CH DK
�F

�
ιH

�
ιK

is classified by a natural transformation λ : FH → KF satisfying

F FH�Fη
FHH� Fμ

KKF�
νF

KF
�

λ
�
λH

KFH

�
Kλ

�
�

�
�

�
�

�
��

ρF

(FC) (FD)

The correspondences between F and λ are given by

FA = FA, F(A
α−→ HB) = FA

Fα−−−−→ FHB
λB−−−−→ KFB (3)

and

λA = F(idHA) . (4)

The transformations above are referred to as lifting transformations. When C and D

coincide, a monad map σ : K → H is a natural transformation σ : K → H satisfying
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id K�ρ
KK� ν

HH�
μH

�

σ

�

σσ

�
�

�
�

�
�

�
��

η

(MM A) (MM B)

A monad map is exactly a lifting transformation for both an algebra lift and a Kleisli

lift of the identity functor of C. The relationship between the algebra lift and the monad

map σ is given by

id�(A, ξ) = (A, KA
σA−−→ HA

ξ−−→ A) (5)

and, if id�(HA, μA) = (HA, KHA
γA−→ HA), we have

σA = KA
Kη

A−−−−→ KHA
γA−−→ HA , (6)

so σA is the unique K-homomorphic extension of ηA.

While algebra and Kleisli lifts are generally defined for different categories C, D as

above, it is often useful to restrict attention to the case where both categories agree,

as was the case for monad maps as well as in the following important definition. For

monads H,K on category C, a distributive law of H over K is a natural transformation

λ : HK → KH that classifies both an algebra lift and a Kleisli lift, that is, the following

diagrams commute.

H HK�Hρ
HKK� Hν

KKH�
νH

KH
�

λ
�
λK

KHK

�
Kλ

�
�

�
�

�
�

�
��

ρH

(DL A) (DL B) (Kleisli lift H)

K HK�ηK
HHK� μK

KHH�
Kμ

KH
�

λ
�
Hλ

HKH

�
λH

�
�

�
�

�
�

�
��

Kη

(DL C) (DL D) (Algebra lift K�)

The next few results are from Beck (1969).

Theorem 1.1. If λ : HK → KH is a distributive law of H over K, then

K ◦λ H = (KH, (νμ)(KλH), ρη) (7)
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is a monad in C whose algebras are isomorphic to the category of all (A, ξ, θ) with (A, ξ)

a K-algebra and (A, θ) an H-algebra such that the following composite law holds:

HKA KHA�λA

A�
θ

HA
�

Hξ
�
Kθ

KA

�
ξ

(CL)

Here, the morphisms f : (A, ξ, θ) → (A′, ξ′, θ′) are simultaneous H- and K- homomorph-

isms. The K ◦λ H-structure map corresponding to (A, ξ, θ) is ξ(Kθ), but if (A, γ) is a

K ◦λ H-algebra, the corresponding composite structure (A, ξ, θ) is given by ξ = γ(KηA),

θ = γ(ρHA). The passage λ �→ K ◦λ H is a bijection from the class of distributive laws of

H over K to the class of natural transformations m : KHKH → KH , with (KH,m, ρη) a

monad for which ρH , Kη are monad maps and m(KηρH) = idKH . The inverse bijection

is given by

λ = HK
ρHKη

−−−−−−−→ KHKH
m−−−−→ KH . (8)

Theorem 1.2. If λ : HK → KH is a distributive law, not only does K lift to K� : CH →
CH, but, additionally, for each H-algebra (A, θ),

ρA : (A, θ) −→ K�(A, θ)

νA : K�K�(A, θ) −→ K�(A, θ)

are H-homomorphisms, so the entire monad K lifts to a monad K� in CH. The passage

from distributive laws λ to lifted monads (K�, ρ, ν) in CH is bijective. The algebras over

the lifted monad are exactly the composite algebras of K ◦λ H, but now with forgetful

functor CK◦λH → CK.

Since (Kθ)λA is the structure map of K�(A, θ), the composite law simply asserts that

K�(A, θ)
ξ−→ (A, θ) is an H-homomorphism. (9)

The category of sets and total functions will be denoted Set.

Example 1.3. The list monad L = (L, μ, η) in Set is important in this paper. It is defined

as follows:

LA = A∗ (the set of all lists of elements of A)

ηA(x) = [x]

α#[x1, , . . . xn] = α(x1)++ · · · ++α(xn) (++ = concatenation).

The algebras of the list monad are monoids. L+ = (L+, μ, η) is the submonad of non-empty

lists whose algebras are semigroups.

The motivating example for the term ‘distributive law’ is K the monad for abelian

groups, L the list monad (whose algebras are monoids) and λ : LK → KL the distributive
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law that converts a product of sums to a sum of products. The composite algebras are

rings. Because it is common terminology that products distribute over sums, the monad

L for products should distribute over the monad K for sums, that is, λ should be a

distributive law of L over K. Note that in Manes and Mulry (2007, Definition 2.20), we

mistakenly said ‘K over H’ rather than ‘H over K’ – we thank a referee for calling this to

our attention, and the terminology has been corrected in this paper.

Example 1.4. The power set monad P = (P , μ, η) in Set is defined by

PX = {A : A ⊂ X}, ηX(x) = {x}, μ(A) =
⋃

A .

The algebras are complete sup-semilattices (which are the same objects as complete

lattices, but the morphisms are required only to preserve suprema). P0 = (P0, μ, η) is the

submonad of P with P0X = {A : A ⊂ X, A finite}. The P0-algebras are sup-semilattices.

Example 1.5. Let M be a monoid with unit e. This induces a monad (T , μ, η) in Set with

TX = M ×X, ηX x = (e, x) and μX(m, n, x) = (mn, x). The algebras of this monad are the

left M-sets with equivariant maps. For example, M might be a monoid of ‘certificates’, or

a semilattice of reliability values whose unit 1 represents ‘guaranteed reliability’, or simple

strings on an alphabet. We will refer to this as the M-set monad.

Example 1.6. Let Exc be a non-empty set of ‘exceptions’. The resulting exceptions monad

in Set is (M,μ, η) with MX = X+Exc, η the first coproduct injection and μX : X+Exc+

Exc → X + Exc mapping x to itself and e from either copy of Exc to e. The algebras are

sets equipped with an Exc-indexed family of constants, and the morphisms preserve these

constants, that is, f(e) = e.

Example 1.7. The binary tree monad V = (V , μ, η) in Set is defined as follows. VX consists

of binary trees whose values (from X) are located in its leaves. We use E to denote an

empty tree, Lx to denote a trivial tree (that is, a leaf) with value x and N(v1, v2) to denote

a tree consisting of left and right subtrees v1 and v2, respectively. We have η(x) = Lx,

while μE = E, μ(Lt) = t and μ(N(t1, t2)) = N(μ(t1), μ(t2)) for t ∈ VX, t1, t2 ∈ VVX.

The algebras are sets equipped with an identity and a binary operation, with morphisms

preserving both. V+ = (V+, μ, η) denotes the submonad of non-empty binary trees.

2. Kleisli strength

2.1. Definitions and examples

For many of the general results that follow we will work in the setting of a symmetric

monoidal category V with tensor ⊗ and tensor unit I . An important special case, which

will occur often, is when ⊗ = × is cartesian product and I is a terminal object. In this

case we say that V is a cartesian category, noting that no further assumptions are made

about finite limits.
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Definition 2.1. Recall (Eilenberg and Kelly 1966, pages 473–474) that a monoidal functor

V → V is (F,Γ, ι), with F : V → V a functor, ι : I → FI a morphism and ΓAB :

FA⊗ FB → F(A⊗ B) a natural transformation, satisfying the axioms:

I ⊗ FA FA�l
FA

FI ⊗ FA F(I ⊗ A)�
Γ
IA

�

ι⊗ 1

�

F(l−1
A

)(MF1)

FA⊗ I FA�r
FA

FA⊗ FI F(A⊗ I)�
Γ
AI

�

1 ⊗ ι

�

F(r−1
A

)(MF2)

FA⊗ FB ⊗ FC F(A⊗ B) ⊗ FC�Γ
AB

⊗ 1

FA⊗ F(B ⊗ C) F(A⊗ B ⊗ C)�
Γ
A,B⊗C

�

1 ⊗ Γ
BC

�

Γ
A⊗B,C(MF3)

We will often suppress the associativity isomorphisms αABC : (A⊗B)⊗C → A⊗(B⊗C),

the unitary isomorphisms lA : I ⊗ A → A and rA : A ⊗ I → A, and the symmetry

isomorphisms cAB : A ⊗ B → B ⊗ A unless they help make the exposition clearer. For

example, ∼=: FA → F(I ⊗ A) with F a functor is understood to be F lA.

We shall use the abbreviation ⊗n x for x ⊗ · · · ⊗ x (n times), where x can be either an

object or a map. When x is an object and n = 0, we have ⊗n x = I . In general, ⊗1 x = x.

We also use the same symbol for the n-fold tensor functor, so ⊗n(V1, . . . , Vn) = V1⊗· · ·⊗Vn.
In this section, we fix a monad K = (K, ν, ρ) on V, noting that when V is a symmetric

monoidal category, K is not required to be a monoidal functor.

For n � 0, consider the cartesian power category Vn with objects (V1, . . . , Vn) and

morphisms (f1, . . . , fn) : (V1, . . . , Vn) → (W1, . . . ,Wn). K induces a monad K(n) on Vn

through

K (n)(V1, . . . , Vn) = (KV1, . . . , KVn)

ρ
(V1 ,...,Vn )

= (ρ
V1
, . . . , ρ

Vn
)

ν
(V1 ,...,Vn )

= (ν
V1
, . . . , ν

Vn
) .

We denote the resulting Kleisli category of K(n) simply as Vn
K.

The next definition generalises Mulry (1994, Example 2.3).

Definition 2.2. A Kleisli strength on K of order n � 0 is a natural transformation Γn
V1 ,···,Vn

:

KV1 ⊗ · · · ⊗ KVn → K(V1 ⊗ · · · ⊗ Vn) that classifies a Kleisli lift ⊗n : Vn
K → VK of the

n-fold tensor functor ⊗n : Vn → V. Thus Γn is a natural transformation satisfying (Γn A)

and (Γn B) as shown in the following diagram (note that V - subscripts are dropped to

improve readability):
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V1 ⊗ · · · ⊗ Vn KV1 ⊗ · · · ⊗KVn�ρ⊗ · · · ⊗ ρ
KKV1 ⊗ · · · ⊗KKVn�ν ⊗ · · · ⊗ ν

KK(V1 ⊗ · · · ⊗ Vn)�
ν

K(V1 ⊗ · · · ⊗ Vn)
�

Γn
�
ΓnK

K(KV1 ⊗ · · · ⊗KVn)

�
KΓn

�
�

�
�

�
�

�
��

ρ

(Γn A) (Γn B)

We will now clarify the definition in the special cases n = 0, 1. For n = 0, the empty

tensor product is I , so (Γ0 A) stipulates that Γ0 : I → KI coincides with ρI . In that case,

(Γ0 B) holds. Hence, there is always a unique Kleisli strengh of order 0, namely ρI , whose

Kleisli lift ⊗0 : 1 → VK is the object I . For n = 1, Γ1
V : KV → KV must satisfy

V KV�ρV
KKV� νV

KKV�
νV

KV
�

Γ1
V

�
Γ1
KV

KKV

�
KΓ1

V

�
�

�
�

�
�

�
��

ρV

So a Kleisli strength of order 1 is the same thing as a monad map K → K since the above

diagrams are just (MMA) and (MMB). As such, there is always at least one Kleisli

strength of order 1, namely Γ1
V = idKV . Notice that if Γ1

KV = idKKV , the diagrams state

that Γ1
V is the unique homomorphic extension of ρV , which forces Γ1

V = idKV as well.

Example 2.3. Let K = L be the list monad of Example 1.3. Then the reverse transformation

rev : L → L is a Kleisli strength of order 1 on L.

The reason that (Γ1 B) commutes is that to reverse a list such as [a, b, c, d, e] one can

divide it into blocks, for example, [[a, b, c], [d, e]] and first reverse the blocks [[d, e], [a, b, c]],

then reverse the contents of each block [[e, d], [c, b, a]] and, finally, flatten the result to get

the reverse [e, d, c, b, a] of the original list. Since idL is also a Kleisli strength, as pointed

out above, this example demonstrates that Kleisli strengths are not unique.

Example 2.4. Let K = P0 be the finite power set monad of Example 1.4. Then

Γn(A1, . . . , An) = A1 × · · · × An is a Kleisli strength of order n � 0, where Ai ∈ P0Vi
for 1 � i � n.

Example 2.5. Let M be the exceptions monad of Example 1.6, with Exc any non-empty

set. If a ∈ Exc, then for each n � 0 the monad admits a Kleisli strength Γn, where

Γn(x1, . . . , xn) = (x1, . . . , xn), if all of the xi are in X, and equals a otherwise. It is trivial

to check that this is a Kleisli strength of order n and that if a �= b where b ∈ Exc, then

the new Γn generated by b differs from the one generated by a. Thus for any cardinal κ,

there exists a monad K with at least κ different Kleisli strengths.

Example 2.6. Much as in the previous example, let K be the ‘add a bottom’or lifting

monad, that is, the monad defined on Dom, the category of Scott domains and (total)
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continuous maps (Scott 1970), KA = A⊥. Then Γn is a Kleisli strength of order n (n � 1)

where Γn(x1 . . . xn) = (x1 . . . xn) if all of the xi are in X, and equals ⊥ otherwise.

The last strength provides a simple approach to showing that cartesian products in

Dom induce them in pDom, the category of (possibly) bottomless domains and partial

continuous maps. Partial maps f : A ⇀ B and g : A ⇀ C pDom induce total maps

f∗ : A → B⊥ and g∗ : A → C⊥ in Dom. The partial map A ⇀ (B × C) then corresponds

to the total map Γ2(f∗, g∗) where (f∗, g∗) : A → B⊥ ×C⊥ is the unique total map in Dom

(Mulry 1998).

Example 2.7. Let V = (V , μ, η) be the binary trees monad of Example 1.7. Then V has

a Kleisli strength of order 1, ref : V → V , denoting reflection. Using the notation of

Example 1.7, we define ref by

ref (E) = E

ref (La) = La

ref (N(t1, t2)) = N(ref (t2), ref (t1)) .

The reader is left to check that ref is a Kleisli strength. We further note that there is a

monad map list : V → L that converts a binary tree into a list of values (read left to

right) so that ref extends rev in the sense that list(ref ) = rev(list). This is a special case

of more general constructions detailed in Examples 2.22 and 3.5.

Example 2.8. For a fixed set A, consider the exponential monad M where MB = BA,

η(b) = λa.b, μ(F) = λa.F(a)(a), that is, M is the A-indexed cartesian power monad of the

identity monad (see Proposition 2.19 below). M has a Kleisli strength of order n where

Γn(f1 . . . fn) = λa.(f1(a) . . . fn(a)).

Condition (ΓnA) is easy to check and left to the reader. Condition (ΓnB) holds because,

for example in the case of n = 2,

(λa.λb.(Fab, Gab))(x)(x) = ((λa.Faa), (λb.Gbb))(x) = (Fxx,Gxx) .

The case of general n is the same.

Example 2.9. Consider the M-set monad KX = M ×X of Example 1.5. Defining Γ2 by

Γ2((m1, x), (m2, y)) = (m1m2, x, y))

does not generally create a Kleisli strength as (Γ B) may fail. If M is a commutative

monoid, however, it satisfies the rule

m1m2m3m4 = m1m3m2m4 ,

in which case Γ forms a Kleisli strength of order 2.

Proposition 2.10. Let Γ2 be a Kleisli strength on K of order 2. Then

Γ3
XY Z = KX ⊗KY ⊗KZ

Γ2⊗1−−−−→ K(X ⊗ Y ) ⊗KZ
Γ2

−−→ K(X ⊗ Y ⊗ Z)

is a Kleisli strength on K of order 3. The same process produces Γ4 from Γ3, Γ5 from Γ4,

and so on, producing a Kleisli strength Γn of order n for all n � 2.
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Proof. We show that Γ3 satisfies the axioms. The same proof works for Γn to Γn+1. For

axiom (Γ3 A),

Γ3
XY Z (ρX ⊗ ρY ⊗ ρZ ) = Γ2

X⊗Y ,Z (Γ2
X,Y ⊗ idKZ ) (ρX ⊗ ρY ⊗ ρZ )

= Γ2
X⊗Y ,Z (ρX⊗Y ⊗ ρZ ) (by (Γ2 A))

= ρX⊗Y⊗Z (by (Γ2 A)) .

For (Γ3 B), we have the following proof. The value

Γ3
XY Z (νX ⊗ νY ⊗ νZ )

= Γ2
X⊗Y ,Z (Γ2

X,Y ⊗ idKZ ) (νX ⊗ νY ⊗ νZ )

= Γ2
X⊗Y ,Z (νX⊗Y ⊗ νZ )(KΓ2

XY ⊗K(idKZ ))(Γ2
KX,KY ⊗ id)

(by (Γ2 B) ⊗ (1 ν = ν1))

= νX⊗Y⊗Z (KΓ2
X⊗Y ,Z ) Γ2

K(X⊗Y ),KZ (KΓ2
XY ⊗K(idKZ ))(Γ2

KX,KY ⊗ id)

(by (Γ2 B))

= νX⊗Y⊗Z (KΓ2
X⊗Y ,Z )K(Γ2

XY ⊗ idKZ ) Γ2
KX⊗KY ,KX (Γ2

KX,KY ⊗ id)

(by the naturality of Γ2) .

= νX⊗Y⊗Z (KΓ3
XY Z )(Γ3

KX,KY ,KZ )

Note that in Example 2.4, Γn arises from Γ2 by the process of the previous proposition

for n � 2.

One can also define a Kleisli strength of order 3 in a similar way using Γ3 = Γ2◦(1⊗Γ2),

and then Γ4 = Γ2 ◦ (1 ⊗ Γ3), and so on, to produce a Kleisli strength Γn of order n for

all n � 2. This construction of Kleisli strength of order n generally differs from the one

above (see Example 2.18), unless Kleisli strength Γ2 is associative, which we define next.

Definition 2.11. A Kleisli strength of order 2 on K is associative if it satisfies axiom (MF 3)

for a monoidal functor.

By the above discussion, we immediately have the following corollary.

Corollary 2.12. Let Γ2 be a Kleisli strength on K of order 2. Then there are two canonical

ways of generating a Kleisli strength of order n for n � 3. When Γ2 is associative, the two

approaches generate the same Kleisli strength of order n � 3.

The following notion will be useful later in the paper.

Definition 2.13. Let K be a monad in V. A coherent family of Kleisli strengths on K is a

family (Γk : k = 1, 2, 3, . . .) with each Γk a Kleisli strength of order k on K, all subject to

Γ1 = id and Γn (Γk1 ⊗ · · · ⊗ Γkn ) = Γk1+···+kn .

Example 2.14. Let Γ2 be an associative Kleisli strength of order 2 on K. Let Γ1 = id and,

for n > 1, let Γn be derived from Γ2 by either method of Corollary 2.12. Then (Γk) is a

coherent family of Kleisli strengths.
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2.2. Generating Kleisli strength

Now we shall show how monad maps can be used to create Kleisli strength. Recall that a

monad map S → T on category V classifies a Kleisli lift id : VS → VT (as is also clear

by regarding a monad map as a Kleisli strength of order 1). We use the following result

from Mulry (1994).

Lemma 2.15. If λ : FH → KF and σ : GK → LG are two Kleisli lifting transformations

of functors F : C → D and G : D → E where monads H,K, L are associated with C, D,

E respectively, then the composite functor GF also has a Kleisli lifting transformation,

namely σF ◦ Gλ.

Proposition 2.16. Let α1, . . . , αn : K → H (n � 1), β : H → K be monad maps. Let Γ be a

Kleisli strength of order n on H. Then

KV1 ⊗ · · · ⊗KVn
×n αi−−−−→ HV1 ⊗ · · · ⊗HVn

Γ−−→ H(V1 ⊗ · · · ⊗HVn)
β

−−→ K(V1 ⊗ · · · ⊗Vn)

is a Kleisli strength of order n on K.

Proof. Let αi classify the Kleisli lift idi : VK → VH, let β classify the Kleisli lift

id : VH → VK and let Γ classify the Kleisli lift ⊗n : Vn
H → VH. Then the composite

Vn
K

⊗nidi−−−−→ Vn
H

⊗n−−−−→ VH
id−−−−→ VK

lifts the n-fold tensor functor Vn → V, and thus classifies a Kleisli strength on K. The

proposition now follows directly from Lemma 2.15.

Corollary 2.17. Let α1, . . . , αn : K → id be monad maps (n � 1). Then

KV1 ⊗ · · · ⊗KVn
α

1,V1
⊗···⊗α

n,Vn−−−−−−−−−→ V1 ⊗ · · · ⊗ Vn
ρ
V1⊗···⊗Vn−−−−−−−−−→ K(V1 ⊗ · · · ⊗ Vn)

is a Kleisli strength on K of order n.

Proof. id : V1 ⊗ · · · ⊗ Vn → V1 ⊗ · · · ⊗ Vn is a Kleisli strength of order n on id and

ρ : id → K is a monad map.

Example 2.18. Let L+ be the non-empty list monad of Example 1.3. Then both fst and

lst : L+ → id, which choose the first and last, respectively, elements of a non-empty list,

are monad maps. These generate four different Kleisli strengths of order 2 on the monad

through Corollary 2.17, two of which, η ◦ (fst × fst) and η ◦ (lst × lst), are associative.

For instance, if we define Γ2 = η ◦ (lst × fst), then

Γ2([a1, a2, a3], [b1, b2, b3]) = [(a3, b1)] .

This Γ2 is not associative as

Γ2(Γ2 × 1)([a1, a2], [b1, b2], [c1, c2]) = [(a2, b1, c1)] ,

while

Γ2(1 × Γ2)([a1, a2], [b1, b2], [c1, c2]) = [(a2, b2, c1)] .
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The next two results give further methods for constructing new Kleisli strengths from

old ones. The proofs are routine diagram chases, which we leave to the reader.

Proposition 2.19. Let V have J-indexed products. Let n � 1, and consider (Kj ,Γj)

(j ∈ J) with Kj = (Kj, νj , ρj) a monad in V and Γj a Kleisli strength of order n

on Kj . Let K = (K, ν, ρ) be the cartesian product monad KA =
∏
KjA, prj ρ = ρj ,

prj ν = KK
prj prj−−−−→ KjKj

νj−−→ Kj . Then ΓA1···An : ×nKAj → K(×nAj) defined by prj Γ =

Γj (×n prj) is a Kleisli strength of order n on K.

Example 2.20. Trivially, the identity monad id has a Kleisli strength of order n defined as

Γn = id : V1 ⊗ · · · ⊗ Vn → V1 ⊗ · · · ⊗ Vn. When C is Set, we may form the product monad

R = id × id, which is exactly the rectangular bands monad of Manes and Mulry (2007,

Example 2.1.7). Here η(x) = (x, x) and μ(a, b, c, d) = (a, d). By Proposition 2.19, R has a

Kleisli strength, which is defined for the case of n = 2 as Γ((a, b), (c, d)) = ((a, c)(b, d)).

Proposition 2.21. Let α : K → H be a monad map and n � 1. Suppose also that we are

given families Γ, Γ′ and commutative squares

⊗nHAi H(⊗nAi)�
Γ
A1 ···An

⊗nKAi K(⊗nAi)�
Γ′
A1 ···An

�

⊗nαAi

�

α⊗nAi

(cf. the category psn(V) in Definition 2.23 below). Then the following hold:

(1) If Γ is a Kleisli strength of order n on H and if α is pointwise monic, then Γ′ (which

is not a priori assumed natural) is a Kleisli strength of order n on K.

(2) If Γ′ is a Kleisli strength of order n on K and if ⊗nαα : ⊗nKK → ⊗nHH is pointwise

epic, then Γ is a Kleisli strength of order n on H.

Example 2.22. Consider the monad map list : V → L and Kleisli strength ref of Example

2.7. Since list is pointwise epic, the previous result provides an easy proof that rev is a

Kleisli strength of order 1 also.

Assuming the monads K,H have Kleisli strength ΓK,ΓH , respectively, of the same order

n, one can construct the map ΓKH : (KΓH )ΓK : ⊗nKHAn → KH(⊗nAn). If a distributive

law λ : HK → KH exists, does this make ΓKH a Kleisli strength of order n on the

composite monad KH? In general the answer is no, but when λ preserves pre-strengths,

as in Proposition 2.25 below, the answer is yes.

Definition 2.23. For fixed n � 1, we use psn(V) to denote the category whose objects are

pairs (F,ΓF ) with F : V → V a functor and ΓFV1···Vn : FV1 ⊗ · · · ⊗FVn → F(V1 ⊗ · · · ⊗Vn)

a natural transformation. (Such a ΓF is called a pre-strength on F , which explains the ‘ps’

in psn(V).) A morphism α : (F,ΓF ) → (G,ΓG) is a natural transformation α : F → G such
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that the following square commutes:

F(V1 ⊗ · · · ⊗ Vn) G(V1 ⊗ · · · ⊗ Vn)�
α
V1⊗···⊗Vn

FV1 ⊗ · · · ⊗ FVn GV1 ⊗ · · · ⊗ GVn�
α
V1

⊗ · · · ⊗ α
Vn

�

ΓF
V1 ···Vn

�

ΓG
V1 ···Vn

When α is such a morphism we say α preserves pre-strengths. It is obvious that psn(V) is a

category under vertical composition of natural transformations, but it is also a 2-category

under the horizontal composition of the endofunctor category of V. Specifically, (F,ΓF ),

(G,ΓG) have the composition (GF,ΓGF ) where ΓGFV1⊗···⊗Vn equals

GFV1 ⊗ · · · ⊗ GFVn
ΓGFV1 ···FVn−−−−−−−→ G(FV1 ⊗ · · · ⊗ FVn)

GΓFV1 ···Vn−−−−−−−→ GF(V1 ⊗ · · · ⊗ Vn) .

We leave the reader to show that if α : (F,ΓF ) → (F ′,ΓF
′
) and β : (G,ΓG) → (G′,ΓG

′
)

preserve pre-strengths, then so does βα : (G,ΓG)(F,ΓF ) → (G′,ΓG
′
)(F ′,ΓF

′
). In the special

case where F and G are monads with ΓF and ΓG Kleisli strengths of order n, we say α is

a map of Kleisli strengths.

Example 2.24. The monad map list : V → L of Example 2.7 is a map of Kleisli strengths

where ref and rev are Kleisli strengths of order 1 on V and L, respectively.

Proposition 2.25. Let K = (K, ν, ρ), H = (H, μ, η) be monads in V, and let ΓK be a Kleisli

strength for K and ΓH be a Kleisli strength for H, both of order n � 1. Let λ : HK → KH

be a distributive law of H over K that preserves these strengths. Then (KΓH )ΓK is a

Kleisli strength of order n for the composite monad K ◦λ H.

Proof. To keep the notation compact, we again write the proof for n = 2, noting, as

before, that exactly the same proof works in all cases. We must show that (ΓA, ΓB) hold.

Recall the monad structure of K ◦λ H from (7). For (ΓA),

(KΓHVW ) ΓKHV,HW (ρHV ηV ⊗ ρHW ηW )

= (KΓHVW ) ΓKHV,HW (ρHV ⊗ ρHW )(ηV ⊗ ηW )

= (KΓHVW ) ρHV⊗HW (ηV ⊗ ηW ) (by (ΓA))

= ρH(V⊗W ) Γ
H
VW (ηV ⊗ ηW ) (ρ natural)

= ρH(V⊗W ) ηV⊗W (by (ΓH A))
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The proof for (ΓB) is more tedious, and is given as follows:

(KΓHVW )(ΓKHV,HW )((νμ)V ⊗ (νμ)W )(KλHV ⊗KλHW )

= (KΓHVW )(ΓKHV,HW )(νHV ⊗ νHW )(KKμV ⊗KKμW )(KλHV ⊗KλHW )

(by horizontal composition)

= (KΓHVW ) νHV⊗HW (KΓKHV,HW ) ΓKKHV,KHW (KKμV ⊗KKμW )

(KλHV ⊗KλHW )

(by (ΓK B))

= νH(V⊗W ) (KKΓHVW )(KΓKHV,HW ) ΓKKHV,KHW (KKμV ⊗KKμW )

(KλHV ⊗KλHW )

(since ν is natural)

= νH(V⊗W ) (KKΓHVW )(KK(μV ⊗ μW ))(KΓKHHV,HHW )(ΓKKHHV,KHHW )

(KλHV ⊗KλHW )

(since (KΓK )ΓK is natural)

= νH(V⊗W ) (KKμV⊗W )(KKHΓHVW )(KKΓHHV,HW )(KΓKHHV,HHW )

(ΓKKHHV,KHHW )(KλHV ⊗KλHW )

(by (ΓH B))

= (νμ)V⊗W (KKHΓHVW )(KKΓHHV,HW )(KΓKHHV,HHW )(ΓKKHHV,KHHW )

(KλHV ⊗KλHW )

(by horizontal composition)

= (νμ)V⊗W (KKHΓHVW )(KKΓHHV,HW )(KΓKHHV,HHW )(K(λHV ⊗ λHW ))

ΓKHKHV,HKHW
(since Γk is natural)

= (νμ)V⊗W (KKHΓHVW )(KλHV⊗HW )(KHΓKHV,HW )(KΓHKHV,KHW )

ΓKHKHV,HKHW
(since λ preserves pre-strengths)

= (νμ)V⊗W (KλH(V⊗W ))(KHKΓHVW )(KHΓKHV,HW )(KΓHKHV,KHW )

ΓKHKHV,HKHW
(since λ is natural).

This completes the proof.

Example 2.26. Let P0, H be the finite power set and exceptions ( + 1) monads both

equipped with Kleisli strength of order n as in Examples 2.4 and 2.5. There is a distributive

law λA : PA+ 1 → P (A+ 1) where λ(B) = B for B a subset of A and {∗} for exception ∗
(see Manes and Mulry (2007)). That λ preserves these strengths follows immediately from

the equation B × {∗} = B, so the composite P ( + 1) again has Kleisli strength of order

n. When n = 2, for instance, Γ(A0, B0) = {(a, b)∗|a ∈ A0, b ∈ B0} where (a, b)∗ = ∗ if either

a or b is ∗, and is (a, b) otherwise.

2.3. Homomorphisms on Kleisli strength

In this section we describe a notion of homomorphism relative to Kleisli strengths, which

we will apply in Section 4.
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Definition 2.27. Let (Ai, ξi) be K-algebras, i = 1, . . . , n, and (C, θ) be a K-algebra. Let Γ be

a Kleisli strength on K of order n and let f : A1 ⊗ · · · ⊗An → C be a morphism in V. We

say that f is a Γ-homomorphism if the following square commutes, where f# = θ(Kf) is

the unique K-homomorphic extension of f:

A1 ⊗ · · · ⊗ An C�
f

KA1 ⊗ · · · ⊗KAn K(A1 ⊗ · · · ⊗ An)�ΓA1···An

�

ξ1 ⊗ · · · ⊗ ξn

�

f#(Γ-homo)

Lemma 2.28. If f : (A1, ξ1)⊗· · ·⊗(An, ξn) → (C, θ) is a Γ-homomorphism and g : (C, θ) →
(D, γ) is a K-homomorphism, then gf is a Γ-homomorphism.

Proof. g f (ξ1 ⊗ · · · ⊗ ξn) = g θ (Kf) Γ = γ (Kg) (Kf) Γ = γ K(gf) Γ = (gf)# Γ.

Theorem 2.29. If Γ is a Kleisli strength of order n on K and f : A1 ⊗ · · · ⊗ An → C is a

morphism in V with (C, θ) a K-algebra, then there exists a unique Γ-homomorphism

(KA1, νA1
) ⊗ · · · ⊗ (KAn, νAn )

f̃
−−−−→ (C, θ)

with f̃ (ρA1
⊗ · · · ⊗ ρAn ) = f.

Proof. If ψ is such a Γ-homomorphism then

ψ = ψ (νA1
⊗ · · · ⊗ νAn ) (KρA1

⊗ · · · ⊗KρAn)

= ψ# ΓKA1 ,...,KAn (KρA1
⊗ · · · ⊗KρAn) (Γ-homo)

= ψ#K(ρA1
⊗ · · · ⊗ ρAn) ΓA1···An (Γ is natural)

= θ (Kψ)K(ρA1
⊗ · · · ⊗ ρAn) ΓA1···An

= θ (Kf) ΓA1···An = f# ΓA1···An ,

which proves uniqueness and forces us to define

f̃ = KA1 ⊗ · · · ⊗KAn
ΓA1 ···An−−−−−−−→ K(A1 ⊗ · · · ⊗ An)

f#

−−−−→ C . (10)

Then

f̃ (ρA1
⊗ · · · ⊗ ρAn) = f# ρA1⊗···⊗An (by (Γn A))

= f .

Furthermore, ΓA1···An : (KA1, νA1
) ⊗ · · · ⊗ (KAn, νAn ) → (C, θ) is a Γ-homomorphism since

this is precisely (Γn B). Thus f̃ is a Γ-homomorphism by Lemma 2.28.

It follows that ΓA1···An may be regarded as the unique Γ-homomorphism extending

ρA1⊗···⊗An .

Example 2.30. The reverse monad map on lists rev : L → L of Example 2.3 is a Kleisli

strength of order 1. A rev-homomorphism between monoids is just an antihomomorphism:

f(xy) = (fy)(fx), f(1) = 1.
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Coherent families (Definition 2.13) enjoy the following composition property:

Lemma 2.31. Let K be a monad in V and let (Γk) be a coherent family of Kleisli strengths

on K. Let (Aij , ξij), (Bi, θi), (C, γ) be K-algebras and suppose we are given

Ai1 ⊗ · · · ⊗ Aiki
gi−−→ Bi Γki -homomorphisms

B1 ⊗ · · · ⊗ Bn
f

−−→ C Γn-homomorphism.

Then f (g1 ⊗ · · · ⊗ gn) is a Γk1+···+kn -homomorphism.

Proof.

f (⊗ngi) (⊗n ⊗ki ξij) = f (⊗n θi) (⊗n Kgi) (⊗n Γki ) (gi Γ-homomorphism)

= θ (Kf) Γn (⊗n Kgi) (⊗n Γki) (f Γ-homomorphism)

= θ (Kf)K(⊗ngi) Γn (⊗n Γki ) (Γn natural)

= θ (Kf)K(⊗ngi) Γk1+···+kn (Γ coherent).

2.4. Classical commutative monads and Kock strength

In this section we contrast our results to previous work on commutative monads. We

begin with a result that will prove useful in what follows.

Lemma 2.32. Let Γ be a Kleisli strength of order 2 for K. Define natural transformations

lst , rst by

lstAB = KA⊗ B
1⊗ρB−−−−→ KA⊗KB

ΓAB−−−−→ K(A⊗ B)

rstAB = A⊗KB
ρA⊗1

−−−−→ KA⊗KB
ΓAB−−−−→ K(A⊗ B) .

Then

ΓAB = KA⊗KB
lstA,KB−−−−−−−→ K(A⊗KB)

(rstAB )#

−−−−−−−→ K(A⊗ B) . (11)

Similarly, ΓAB = (lstAB)#rstKA,B .

Proof.

(rstAB)# lstA,KB = νA⊗B (KΓAB)K(ρA ⊗ 1KB) ΓA,KB (1A ⊗ ρKB)

= νA⊗B (KΓAB) ΓKA,KB (KρA ⊗ 1KKB)(1A ⊗ ρKB) (Γ natural)

= ΓAB (νA ⊗ νB) (KρA ⊗ 1KKB)(1A ⊗ ρKB) (Γ B)

= ΓAB (νA ⊗ νB)(ρA ⊗ ρB)

= ΓAB (K monad).

Definition 2.33. A Kock strength on K is a Kleisli strength of order 2 on K such that

(K,Γ, ρI ) is a monoidal functor.

In Kock (1970), Anders Kock assumed V to be a symmetric monoidal closed category.

Regarding such a V as a V-category, Kock required K to be a V-functor, and then

required ν and ρ to be V-natural. The V-functor structure transforms under adjointness
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to natural transformations of the form lst , rst as in the proof above. One can then define

lΓ = rst# lst and rΓ = lst# rst . Kock proved (Kock 1970, Theorem 2.13) that (K, lΓ, ρI )

and (K, rΓ, ρI ) are monoidal functors. He then defined K to be commutative if lΓ = rΓ. It

follows that lΓ = Γ = rΓ is a Kleisli strength of order 2 on K.

Our definition of Kock strength is then a natural generalisation of Kock’s commutative

monads to symmetric monoidal categories that are not necessarily closed. It is folklore

that ‘strength is unique in Set’. Here is a more precise statement.

Theorem 2.34. In the cartesian closed category Set, a monad K admits at most one Kock

strength.

Proof. Let Γ be a Kock strength with induced lst , rst as in the proof of Lemma 2.32.

For a ∈ A, b ∈ B, let inb : A → A× B, a �→ (a, b) and let ina : B → A× B, b �→ (a, b). For

ω ∈ KA, b ∈ B, we think of b as a function b : 1 → B. We have

lstAB (ω, b) = ΓAB(id× ρB) (ω, b)

= ΓAB (id× ρB) (id× b)ω

= ΓAB (id×Kb) (1 × ρ1)ω (ρ natural)

= (K inb) ΓA,1 (1 × ρ1)ω (Γ natural)

= (K inb)ω (MF 2).

Similarly, (MF 1) implies rstAB(a, ω) = (K ina)ω. But Lemma 2.32 shows that Γ is

determined by lst and rst .

The monads with Kock strength in Set are precisely the commutative monads charac-

terised by Linton’s Theorem (Linton 1966), which may be paraphrased as follows.

Theorem 2.35. The following conditions on a monad K in Set are equivalent:

1 K has Kock strength.

2 Each function f : X1 × · · · ×Xn → Y has a unique extension KX1 × · · · ×KXn → KY ,

which is a homomorphism in each variable separately.

3 If (X, ξ), (Y , θ) are K-algebras, the set of K-homomorphisms (X, ξ) → (Y , θ) is a

K-subalgebra of the cartesian power (Y , θ)X .

Example 2.36. Let MA = X+Exc be the exceptions monad of Example 1.6 where Exc has

two elements, a and b. While monad M does admit two different Kleisi strengths of order

2 in Example 2.5, it does not admit a Kock strength. By the argument of Theorem 2.34,

lΓ(a, b) = a while rΓ(a, b) = b, so lΓ �= rΓ. Thus there is no Kock strength, so M cannot

be commutative in the sense of Kock.

We note that for Γ to be a Kock strength for a monad in Set, Γ-homomorphisms

coincide with maps that are homomorphic in each variable separately, so condition (2)

of Linton’s theorem can be generalised – this is the content of Theorem 2.29. For Γ a

Kleisli strength of order 2 on a monad K in a symmetric monoidal closed category, for

each K-algebra (Y , θ) and object X the map θ• : K(Y X) → Y X , which corresponds under

adjointness to

K(Y X) ⊗X
1⊗ρX−−−−→ K(Y X) ⊗KX

Γ−−→ K(Y X ⊗X)
K(ev)

−−−−→ KY ,
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makes Y X a K-algebra, as we will show in Manes and Mulry (2008). When Γ is a Kock

strength in Set, we have that θ• is the cartesian power. Even so, the third condition in

Linton’s theorem fails in general for Kleisli strength.

3. Monadic signatures

Definition 3.1. Let Σ = (Σn : n = 0, 1, 2, . . .) be a finitary signature, that is, a sequence of

disjoint sets. A Σ-algebra in V is a pair (X, δ) with X an object in V and δ = (δω : ω ∈ Σn)

where, for ω ∈ Σn, we have δω : ⊗n X → X is a V-morphism. A Σ-homomorphism

f : (X, δ) → (X ′, δ′) is a V-morphism f : X → X ′ such that the following square

commutes for all ω ∈ Σn:

X X ′�
f

⊗n X ⊗n X
′�⊗n f

�

δω

�

δ′
ω

The resulting category of Σ-algebras is written VΣ with underlying functor UΣ : VΣ → V.

We say that Σ is monadic (in V) if UΣ is monadic, that is, there exists a monad

Σ@ = (Σ@, μ, η) and an isomorphism of categories Ψ over V:

VΣ@ VΣ�Ψ

V

�
�

�
�	

UΣ









�

It is well known that all finitary signatures are monadic in Set.

If T : C → C is an endofunctor, a T -algebra is a pair (X, ξ) with ξ : TX → X.

T -algebras form a category CT over C with morphisms f : (X, ξ) → (Y , θ) satisfying

θ (Tf) = f ξ. We say T generates a free monad (T@, γ) if T@ = (T@, ν, ρ) is a monad

and γ : T → T@ is a natural transformation, subject to the universal property that for

every monad H = (H, μ, η) and natural transformation u : T → H there exists a unique

monad map α : T@ → H with αγ = u. It is known (Barr 1970, Proposition 5.2) that if

CT is monadic with CT ∼= CT@

over C, then there exists γ with (T@, γ) the free monad

generated by T .

Now consider a monadic finitary signature Σ with VΣ ∼= VΣ@

with Σ@ = (Σ@, ν, ρ). If

the required coproducts exist, VΣ ∼= VT where TA =
∐

ω∈Σn
⊗nA. In this case, Σ@ would

be the free monad generated by T . This would be a useful tool for constructing strengths

in view of results such as Proposition 2.16 since then monad maps out of Σ@ correspond

to natural transformations out of T , which is a simpler idea. But natural transformations

out of T are just families of natural transformations out of ⊗n id indexed by ω ∈ Σn, and

this construct is fully available without assuming coproducts. This leads to the following

definition and proposition. While one could almost refer to Barr (1970) for the proof of

the proposition, we will give a proof here to set down the specific constructions.
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Definition 3.2. If Σ is a finitary signature, a free monad over Σ is (Σ@, γ) where Σ@ =

(Σ@, ν, ρ) is a monad and γω : ⊗n id → Σ@ is a family of natural transformations indexed

by ω ∈ Σn with the universal property that if H = (H, μ, η) is a monad and uω : ⊗n id → H

is similarly-indexed family of natural transformations, then there exists a unique monad

map α : Σ@ → H with α γω = uω for all ω ∈ Σn.

Proposition 3.3. Let Σ be a monadic finitary signature with isomorphism Φ : VΣ → VΣ@

over V, and Σ@ = (Σ@, ν, ρ). Let τω : ⊗n Σ@A → Σ@A describe Φ−1(Σ@A, νA) and define

γ = (γω : ω ∈ Σn) by

γω,A = ⊗nA
⊗nρA−−−−→ ⊗nΣ

@A
τω−−→ Σ@A .

Then (Σ@, γ) is the free monad generated by Σ.

Proof. Since Σ@f : (Σ@A, νA) → (Σ@B, νB) is a Σ-homomorphism, τω , and thus γω , are

natural transformations. Let H = (H, μ, η) be a monad in V and uω,A : ⊗nA → HA be

natural, ω ∈ Σn. This induces an algebra lift id� : VH → VΣ through

(A, ξ) �→ ⊗nA
uω,A−−−−→ HA

ξ−−→ A ,

which maps H-homomorphisms to Σ-homomorphisms since u is natural. The corres-

ponding monad map α : Σ@ → H is defined, as always, as the unique Σ-homomorphic

extension of η. Here, this means that αA is characterised by the equation αA ρA = ηA and

the following diagrams indexed by ω ∈ Σn:

⊗nΣ
@A ⊗n HA�⊗nαA

HA�
αAΣ@A

�

τω
�
uω,HA

HHA

�
μA

(Aω)

We have

αA γω,A = αA τω (⊗nρA)

= μA uω,HA (⊗nαA) (⊗nρA)

= μA uω,HA (⊗nηA)

= μA (HηA) uω,A

= uω,A .

For uniqueness, suppose β : Σ@ → H is a monad map with β γω = uω for all ω ∈ Σn. Such

a β classifies a functor VH → VΣ over V, so let δω,A : ⊗n HA → HA be the resulting

Σ-algebra structure induced by (HA, μA). Then βA is the unique map ψ with ψρA = ηA
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and such that the following family of squares commute:

Σ@A HA�
ψ

⊗nΣ
@A ⊗n HA

�⊗nψ

�

τω,A

�

δω,A(Bω)

We have

uω,A = βA γA

= βA τω,A (⊗ρA)
= δω(⊗nαA) (⊗nαA)

= δω,A (⊗ηA) ,

which leads to

μA uω,HA = μA δω,HA (⊗nηHA)

= μA ηHA δω,A (δ is natural)

= δω,A.

Comparison of (Aω) and (Bω) then shows that βA = ψ = αA.

It is well known that a functor CT → CS over C is characterised by its values on the

full subcategory of free algebras (TX, μX). This is because if (X, ξ) is a T-algebra, then

ξ = coeq(Tξ, μX) is an absolute coequaliser in C. Rather than elaborate this point, we

give the following version of Proposition 3.3, which applies specifically to free monads.

Corollary 3.4. Let Σ be a monadic finitary signature and H be a monad in V. Then there

is a bijection between monad maps Σ@ → H and families of natural transformations

vω : ⊗nH → H indexed by ω ∈ Σn subject to the commutativity of the squares

HH H�
μ

⊗nHH ⊗n H�⊗nμ

�

vωH

�

vω(Cω)

Proof. By Proposition 3.3, we need only show that such a v corresponds bijectively to

families of natural transformations uω : ⊗nid → H . Given u, we define

vω,A = ⊗nHA
uω,HA−−−−→ HHA

μA−−→ HA .

To see that such a v satisfies (Cω), we have

vω (⊗nμ) = μ (uωH) (⊗nμ)

= μ (Hμ) (uω HH)

= μ (μH) (uω HH)

= μ (vωH) .
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Conversely, given vω , define uω = vω(⊗nη). Then:

— If u �→ v �→ û, then

ûω = vω (⊗nη)

= μ (uωH) (⊗nη)

= μ (Hη) uω

= uω .

— If v �→ u �→ v̂, then

v̂ω = μ(uH)

= μ (vωH) (⊗nηH)

= vω (⊗nμ) (⊗nηH) (by (Cω))

= vω .

This completes the proof.

Example 3.5. We can now elaborate on the map list : V → L used in Example 2.7, which

converts a tree into a list. Note that V = Σ@ where Σ0 = {E} and Σ2 = {N}. Consider

the (obviously natural) concatenation map ++ : L × L → L, which satisfies the equation

μ(l1++l2) = μ(l1)++μ(l2). By Corollary 3.4, there is an induced monad map V → L that

coincides with list.

The next theorem shows how the free monad generated by a signature interacts with

Kleisli strengths on another monad to form a distributive law.

Theorem 3.6. Let Σ be a monadic finitary signature in V. Let K = (K, ν, ρ) be a monad

in V equipped with a family of Kleisli strengths (Γω : ω ∈ Σn) with each Γω of order n

if ω ∈ Σn. For X a V-object, let Ψ(Σ@X, μX) = (Σ@X, τX) (where τ and Ψ = Φ−1 are as

in Proposition 3.3) so that (KΣ@X, εX) is a Σ-algebra where

ε
X,ω

= ⊗n KΣ@X
Γω−−→ K(⊗n Σ@X)

Kτ
X,ω−−−−−−−→ KΣ@X .

Let λ : Σ@K → KΣ@ be defined as the unique Σ-homomorphic extension of Kη such

that λ is characterised by the diagrams

KX Σ@KX�η
KX ⊗n Σ@KX� τ

KX,ω

⊗n KΣ@X�
ε
X,ω

KΣ@X
�

λX

�

⊗nλX

�
�

�
�

�
�

��
Kη

X

(λA) (λB)

Then λ is a distributive law of Σ@ over K.

Proof. We first define an algebra lift K� : VΣ → VΣ by K�(X, δ) = (KX, δ�) where

δ� = ⊗nKX
Γω−−→ K(⊗nX)

Kδω−−−−→ KX .
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(Thus the lift of (1) is really Ψ−1K� Ψ.) If f : (X, δ) → (X ′, δ′) is a Σ-homomorphism,

then Kf : (KX, δ�) → (KX ′, δ′�) is also a Σ-homomorphism because

δ′�
ω (⊗nKf) = (Kδ′

ω) ΓωY (⊗nKf)

= (Kδ′ω)(K(⊗nf))Γ
ω
X (Γω is natural)

= (Kf)(Kδ′ω) ΓωX (f is a Σ-homomorphism)

= (Kf) δω .

Thus K� is a well-defined algebra lift. As for any category of algebras over a monad,

the unique Σ@-homomorphism f# : (Σ@X, μX) → (Y , θ) extending f : X → Y is

Σ@X
Σ@f

−−→ Σ@Y
θ−−→ Y . Now, according to (2), K� is classified by the natural

transformation λ = Σ@K
Σ@Kη

−−−−→ Σ@KΣ@ γ
−−→ KΣ@ where γX is the Σ@-structure map

of Ψ−1K�Ψ(Σ@X, μX). But this is precisely the formula of the unique Σ@-homomorphic

extension of Kη. Thus λ is the same map as in (λA, λB) above. By Theorem 1.2,

it remains only to show that for (X, δ) a Σ-algebra, ρX : (X, δ) → (KX, δ�) and

νX : (KKX, (δ�)�) → (KX, δ�) are Σ-homomorphisms. Let ω ∈ Σn. For ρX we have

ρX δω = (Kδω) ρ⊗nX (ρ is natural)

= (Kδω) ΓωX···X (⊗nρX) (by (Γn A))

= δ�ω (⊗nρX) ,

while, for νX , we have

νX (δ�)�ω = νX(KKδω)(KΓωX···X)(ΓωKX···KX)

= (Kδω) ν⊗nX (KΓωX···X)(ΓωKX···KX) (ν is natural)

= (Kδω) ΓωX···X(⊗nνX) (by (Γn B))

= δ�ω(⊗νX) .

This completes the proof.

Example 3.7. Let L be the list monad and α be a cardinal number. Then there exists a

finitary signature Σ such that
⋃
n Σn has cardinal α and with the property that there exist

at least 2α different distributive laws of Σ@ over L.

To see this, let Σ1 be any set of cardinality α and define Σn = � if n �= 1. Then Σ@ is

the monad of Example 1.5 with M the free monoid Σ∗
1 generated by Σ1. Fix a subset

A ⊂ Σ1. For ω ∈ A, let ΓωX : LX → LX be the identity map and, for ω /∈ A, let ΓωX be the

reverse map as in Example 2.3. The reader may easily check that the distributive law λ of

Theorem 3.6 satisfies

A = {ω ∈ Σ1 : λA(ω, [a, b]) = [(ω, a), (ω, b)]} .

Lemma 3.8. Let Σ be a finitary signature and id : V → V be the identity functor. Suppose

also that we are given a family γω : ⊗nid → id of natural transformations indexed by

ω ∈ Σn. Let αA : (Σ@A, τA) → (A, γA) be the unique Σ-homomorphic extension of idA.

Then α : Σ@ → id is a monad map.

Proof. We can apply Corollary 3.4 with H = id, since the diagram (Cω) trivially

commutes.
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Example 3.9. Lemma 3.8 proves to be particularly useful as it provides a method for

constructing distributive laws of the free Σ-monad over itself. If V is cartesian, the ith

projection πi : ×n id → id is natural and so, for ω ∈ Σn, we can choose γω in Lemma 3.8 in

n different ways. Thus we can apply Theorem 3.6 and Proposition 2.17 to produce Kleisli

strengths and distributive laws of Σ@ over itself, for any finitary signature Σ.

For instance, let Σ@ be the free monad in Set associated with signature Σn = {·} and

all other Σi = �. An element t of Σ@A can be viewed as an n-ary tree whose values

(from A) are located in its leaves, thus generalising the non-empty binary tree monad

of Example 1.7. We adopt the same notation in which Lx denotes a trivial tree and

N(v1, . . . vn) denotes a tree with subtrees v1, . . . vn. By Lemma 3.8, for each projection πi we

have a distinct monad map αi : Σ@ → id. By Proposition 2.17, we produce nn different

Kleisli strengths of order n, Γa1 ...an = ρ(αa1
× . . . αan ) : (Σ@A)n → Σ@(An), where each ai

represents a value from 1 to n. We now appeal to Theorem 3.6 to produce a distinct

distributive law of Σ@ over itself, λa1 ,...an : Σ@Σ@ → Σ@Σ@, for each of these strengths.

λa1 ,...an (Lt) = t∗ where t∗ has the same (n-shape) as t but every leaf value La is replaced

by LLa:

λa1 ,...an(N(t1, . . . tn)) = L(N(αa1
λa1 ,...an (t1), . . . , αanλa1 ,...an (tn)) .

This produces distinct distributive laws, as we will show now. Let t denote the tree of

the form

N(L(N(Lb1,1 . . . Lb1,n)), . . . L(N(Lbn,1 . . . Lbn,n))) .

Then

λa1 ,...an (t) = L(N(Lb1,a1
, . . . Lbn,an )) .

Clearly, if all the ai and bi differ, one derives nn different distributive laws.

Example 3.10. In the previous example, if n = 2, then Σ@ is the V+ of Example 1.7. The

monad maps fst and lst : L+ → id of Example 2.18 can be generalised to the monad V+

where they are denoted left and right : V+ → id, respectively. They are generated by the

natural maps π1 and π2 : id× id → id, respectively. Using the notation of that example,

left (La) = a

left (N(s, t)) = left (s) .

As in Example 3.9, these produce four different strengths of order 2, namely

η(left × left) η(left × right) η(right × left) η(right × right) .

These in turn generate 4 different recursive distributive laws λi,j : V+V+ → V+V+ where

1 � i, j � 2. Now the equations of the previous example become

λi,j(Lt) = t∗ where t∗ has the same shape as t but with every leaf value La replaced by

LLa.

λi,j(N(s, t)) = L(N(αiλi,j(s), αjλi,j(t))) .

For instance, using the above formulas,

λ2,1(L(N(N(La, Lb), Lc))) = N(N(LLa, LLb), LLc) ,
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while

λ2,1(N(LN(La, Lb), N(LLc, LLd))) = LN(Lb,N(Lc, Ld)) .

Example 3.11. In the case n = 1, the monad Σ@ of Example 3.9 will be denoted by O and

satisfies the recursive equation OA = A+OA. Again using the notation L and N, we note

that elements of OA are labelled 1-trees, so an element of OA has the form Nn(La) where

n � 0. We use this to describe the corresponding recursive monad map and distributive

law.

First, note that the Kleisli 1-strength m : O → O is non-trivial (not the identity) and is

defined by

m(La) = La

m(NnLa) = La

Armed with the monad map m, we can now define a recursive distributive law λ : OO →
OO. Note that elements of OOA take the general form NnL(NkLa) where n, k � 0.

λ(L(NkLa)) = NkLLa

λ(NnL(NkLa)) = L(NnLa)

For instance,

λ(LNNLa) = NNLLa ,

while

λL(NNL(N(La))) = L(NN(La)) .

Example 3.12. Let Top be the category of topological spaces and continuous maps. For

spaces X,Y , let X ⊗ Y be the set X × Y with topology of open sets those U ⊂ X × Y

such that, for all x0 ∈ X, y0 ∈ Y , we have {x ∈ X : (x, y0) ∈ U} is open in X and

{y ∈ Y : (x0, y) ∈ U} is open in Y . A function f : X ⊗ Y → Z is continuous if and only

if, with respect to the topologies on X,Y , f is separately continuous. This makes Top a

symmetric monoidal category with unit the one-point space.

As jointly continuous maps are separately continuous, the cartesian product projections

πi : ⊗nid → id are well defined (and clearly natural), so all of the remarks in Example 3.9

apply here as well, even though Top is not a cartesian category under ⊗.

Example 3.13. If Σ is a monadic finitary signature on cartesian V, we have yet another

way of generating a class of Kleisli strengths of order 1 on the free monad Σ@. Since any

projection πi : ×nΣ
@ → Σ@ is natural, so is the n-product of such projections. Composing

with τ as in Proposition 3.3, we have for ω ∈ Σn that

vω = τω ◦ (×nπi) : (×nΣ
@A) → (×nΣ

@A) → (Σ@A)

is again a natural family of maps vω . Furthermore, diagram (Cω) of Corollary 3.4

commutes since

vω(×nμ) = τω(×nπi)(×nμ) = τω(×nμ)(×nπi) = (μ)τω(×nπi) = (μ)(vω) .

Consequently, we have many different monad maps Σ@ → Σ@.
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For instance, the monad map ref of Example 1.7 corresponds to the map τ2(π2 × π1) for

Σ@ = V+. For the case of V+, four different monad maps V+ → V+ are generated. The

immediate question to ask is whether these new monad maps can be applied in the sense

of Proposition 2.16 to the strengths of Example 3.9 to generate yet new strengths. The

answer is no, composing produces exactly the same family of Kleisli strengths as found

in Example 3.9. We leave the reader to check these details.

Example 3.14. The monad K = P0 of Example 2.4 has a Kleisli strength of order n. By

Theorem 3.6, there exists a distributive law λ : Σ@P0 → P0Σ
@ for any monadic finitary

signature Σ. For instance, if Σ@ is V , then λ : VP0A → P0VA is defined by

λE = {E}
λ(LA0) = {La : a ∈ A0}

λ(N(s, t)) = {N(si, tj) : si ∈ λ(s), ti ∈ λ(t)} .

Similarly, for the exponential monad M of Example 2.8, there exists a distributive law

σ : Σ@M → MΣ@ for any monadic finitary signature Σ. Now when Σ@ is V , the

distributive law σ is defined to be

σ(E) = λa.E

σ(Lf) = λa.L(fa)

σ((N(t1, t2)) = λa.(N((σt1)a, (σt2)a)) .

Example 3.15. Let MX = X + Exc be the exceptions monad of Example 1.6 and let

a ∈ Exc, with induced Kleisli strength Γa as in Example 2.5. By Theorem 3.6, this strength

generates a distributive law V (X + Exc) → VX + Exc defined by

λa(E) = E

λa(Lx) = x for all x ∈ Exc

λa(t) = t if no leaf of t is of the form Lx for x ∈ Exc

λa(t) = a otherwise.

It is clear that if a and b are distinct elements of Exc, then λa �= λb , so for any cardinal

α there are α different distributive laws.

4. Linear equations

Let Σ be a finitary signature. Let v = {v1, v2, v2, · · ·} be a fixed countably infinite set of

variables.

Definition 4.1. The set termΣ of Σ-terms is defined recursively by:

— v ⊂ termΣ

— if t1, . . . , tn ∈ termΣ and ω ∈ Σn, then w[t1, . . . , tn] ∈ termΣ.

For t ∈ termΣ, the list var(t) ∈ V ∗ of variables of t is defined recursively by

— var(vi) = [vi]

— var(ω[t1, . . . , tn]) = var(t1)++ · · · ++var(tn) where ++ is list concatenation.

Note that if ω ∈ Ω0, then ω ∈ termΣ and var(ω) = 1 is the empty list.
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Definition 4.2. We say that t ∈ termΣ is a linear term if var(t) is repetition free. The

subset of all linear terms in termΣ will be denoted linΣ. For t ∈ linΣ of length n and A an

object of V, we write |t| = n, and let both At and An denote ⊗nA, so At = A|t|. A linear

Σ-equation is an element (t, u) of linΣ × linΣ such that var(t) = var(u). A linear signature

is a pair (Σ, E) with E a set of linear Σ-equations.

Definition 4.3. Let Σ be a finitary signature and (A, δ) be a Σ-algebra. For each t ∈ linΣ,

the δ-interpretation <t>: At → A of t is defined as follows:

— <vi> = A[vi]
id−−→ A

— <ω[t1, . . . , tn]> = A|t1|+···+|tn| <t1>⊗···⊗<tn>−−−−−−−−−→ An
δω−−−−→ A .

(Note that if ω[t1, · · · , tn] is linear, each ti must be linear also, so the above is well defined.)

If (Σ, E) is a linear signature, a (Σ, E)-algebra is a Σ-algebra (A, δ) for which <t> = <u>

for all (t, u) ∈ E. This makes sense because var(t) = var(u). The full subcategory of VΣ

of all (Σ, E)-algebras will be denoted V(Σ,E). We say that the linear signature (Σ, E) is

monadic if V(Σ,E) → V is monadic.

If V is Set, it is well known that all linear signatures are monadic – use the Birkhoff

variety theorem.

Example 4.4. The usual category of monoids in V is just V(Σ,E) if Σ0 = {1}, Σ2 = {�}
and E consists of the following linear equations (written in the usual way):

(x � y) � z = x � (y � z)

x � 1 = x

1 � x = x .

We now apply the theory of Γ-homomorphisms to linear signatures to obtain the

following crucial lemma. While monads that admit Kleisli strength produce distributive

laws for monads generated by monadic signatures, we need additional conditions to

handle quotient monads. The notion of coherent strength (Definition 2.13) proves to be

critical.

Lemma 4.5. Let (Σ, E) be a linear signature and (A, δ) be a (Σ, E)-algebra. Consider (K,Γ)

where K = (K, ν, ρ) is a monad in V and Γ is a coherent family of Kleisli strengths on

K. For ω ∈ Σn, define

εω = ⊗nKA
Γn−−→ K(⊗nA)

Kδω−−−−→ KA . (12)

Then (KA, ε) is a (Σ, E)-algebra.

Proof. By (10) in the proof of Theorem 2.29, εω is a Γ-homomorphism, indeed the

unique Γ-homomorphism extending ⊗nA
δω−−→ A

ρA−−→ KA. We shall show by induction on

the definition of terms that for each linear term t, the ε-interpretation <<t>> : (KA)t → KA

is the unique Γ-homomorphism extending ρA <t>: At → KA, where the latter <t> is

the δ-interpretation. Note that we use <<t>> to distinguish the ε-interpretation from the

δ-interpretation. <<vi>>= id : A → A is a Γ-homomorphism since Γ1 = id, and this is
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the basis step. For the inductive step, assume <<ti>> : KAti → KA is the Γ-homomorphic

extension of ρA <ti> : Ati → A. Then for ω ∈ Σn, k = |t1| + · · · + |tn|, we have

<<ω[t1, . . . , tn]>> = ⊗kKA
ti

⊗n<<ti>>−−−−−−−→ ⊗kKA
εω−−−−→ KA

is a Γ-homomorphism by Lemma 2.31. To check the required behaviour on generators,

we have

<<ω[t1, . . . , tn]>> ⊗kρA = (Kδω)Γ(⊗n <<ti>> )(⊗kρA)

= (Kδω)Γ(⊗nρA)(⊗n <ti>) (induction hypothesis)

= (Kδω)ρ⊗nA(⊗n <ti>) (ΓA)

= ρA δω (⊗n <ti>) (ρ natural)

= ρA <ω[t1, . . . , tn]> .

The desired result is now immediate from the uniqueness of Γ-homomorphic extension

(Theorem 2.29).

We can now show that a result similar to Theorem 3.6 applies to monadic finitary linear

signatures.

Theorem 4.6. Let (Σ, E) be a monadic finitary linear signature, so there exists a monad

H in V with V(Σ,E) ∼= VH over V. Let K be a monad in V with coherent family

Γ of Kleisli strengths. Then K�(A, δ) = (KA, ε), with ε defined by (12), is an algebra

lift K� : V(Σ,E) → V(Σ,E) of K whose classifying transformation λ : HK → KH is a

distributive law of H over K.

Proof. If (A, δ) is a (Σ, E)-algebra, (KA, ε) is a (Σ, E)-algebra by Lemma 4.5. To see

that K� is functorial, let f : (A, δ) → (A′, δ′) be a Σ-homomorphism. For ω ∈ Σn, we must

show that the following square commutes:

KA KA′�
Kf

⊗nKA ⊗n KA
′�⊗nKf

�

εω

�

ε′
ω

We have

(Kf)εω = (Kf)(Kδω)(Γn)

= (Kδ′
ω)K(⊗nf)(Γ

n) (since f is a Σ-homomorphism)

= (Kδ′
ω)(Γn)(⊗nKf) (since Γ is natural)

= ε′
ω(⊗nKf) .

To complete the proof, it suffices, by Theorem 1.2, to show that ρA : (A, δ) → K�(A, δ)

and νA : K�K�(A, δ) → K�(A, δ) are Σ-homomorphisms.
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— For the first statement,

εω (⊗nρA) = (Kδω) Γn (⊗nρA)

= (Kδω) ρ⊗nA (ΓA)

= ρA δω (ρ natural)

— For the second statement,

εω (⊗nνA) = (Kδω) Γn (⊗nνA)

= (Kδω) ν
K(⊗nA)

(KΓn) (ΓnK) (ΓB)

= νA (KKδω) (KΓn) (ΓnK) (ν natural)

= νA (Kεω)(ΓnK) ,

as desired.

We now ask whether we can relate the distributive laws of Theorems 3.6 and 4.6. The

next result shows the answer is yes. First we recall a useful definition from Manes and

Mulry (2007).

Definition 4.7. Let

H = (H, μ, η)

H′ = (H ′, μ′, η′)

K = (K, ν, ρ)

K′ = (K ′, ν ′, ρ′)

be monads in C and let λ : HK → KH , λ′ : H ′K ′ → K ′H ′ be distributive laws. A

morphism of distributive laws λ → λ′ is a pair (σ, τ) where σ : H → H′, τ : K → K′ are

monad maps such that the following square commutes:

H ′K ′ K ′H ′�
λ′

HK KH�λ

�

στ

�

τσ

This gives a category of distributive laws with identities (id, id) and composition given by

(σ1, τ1)(σ, τ) = (σ1σ, τ1τ).

Corollary 4.8. Let (Σ, E), H′ = (H ′, μ′, η′), K = (K, ν, ρ) and Γ be the same as in Theorem

4.6. Let λ : Σ@K → KΣ@ be the distributive law of Theorem 3.6 and let λ′ : H′K → KH′ be

the distributive law of Theorem 4.6. Then there exists a canonical monad map ψ : Σ@ → H

such that (ψ, id) : λ → λ′ is a map of distributive laws.

Proof. Using τ′
ω : (⊗nH

′) → H ′ to denote the (Σ, E)-algebra associated to H ′-algebra

(H ′, μ′), we have that τ′ satisfies (Cω) by the definition of τ′(recall that τ denotes the

corresponding Σ-algebra associated with monad Σ@, see Theorem 3.6). By Corollary 3.4,

there is a monad map ψ : Σ@ → H ′, where Σ@ = (Σ@, μ, η), so γ′ψ = α where α(γ′) are

the (Σ@H ′)-algebras respectively associated with K�τ′. Furthermore, by Theorem 4.6, the

distributive law λ′ : H ′K → KH ′ is the one associated with K� and defined by K�(A, δ) =

(KA, (Kδ)Γ) acting on (Σ, E)-algebras, while the distributive law λ : Σ@K → KΣ@ is
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generated by a K� defined in exactly the same way, but now acting on Σ-algebras. Thus

K�ψ is a map of Σ-algebras, and hence of Σ@-algebras, so (Kψ)γ = α(Σ@Kψ) where γ is

the Σ@-algebra associated to K�τ. We have

(Kψ)λ = (Kψ)γ(Σ@Kη) (by definition of λ)

= α(Σ@Kψ)(Σ@Kη)

= α(Σ@Kη′) (by MMA)

= (γ′ψKH ′ )(Σ@Kη′) (by definition of α)

= γ′(H ′Kη′)ψK (by naturality of ψ)

= λ′ψK (by definition of λ′)

so (ψ, id) is a map of distributive laws.

Example 4.9. In Example 3.10, four different Kleisli strengths of order 2 are identified

on the monad V+, each generating a separate distributive law λi,j . Only two, however,

η(left×left) and η(right ×right), are coherent. Applying these two to Theorem 4.6 produces

a family of two distributive laws HV+ → V+H where H is any quotient monad of V+

generated by a set of linear equations E.

For example, if E consists of the single equation (x � y) � z = x � (y � z), then H is

the monad of non-empty lists L+ where the canonical monad map ψ of Corollary 4.8

is exactly the monad map list of Example 3.5, which is now a map of distributive laws

list : λi,i → λ′
i,i for i = 1, 2. The two distributive laws λ′

i,i : L
+V+ → V+L+ are defined by:

λ′
i,i[t] = t∗∗ (where t∗∗ has the same shape as t but all

the leaf values are changed from La to L[a])

λ′
i,i(l1++l2) = L(miλ

′
i,il1++miλ

′
i,il2) .

For instance, λ′
i,i[N(N(La, Lb), Lc), N(Ld,N(Le, Lf))] = L[a, d].

Example 4.10. In the previous example, replacing the monad V+ with its quotient monad

L+ and the corresponding coherent Kleisli strengths with η(fst × fst) and η(lst × lst)

(see Example 2.18), generates two distributive laws λ′
i,i : L+L+ → L+L+, i = 1, 2. Now,

λ′
i,i[[a1 . . . an]] = [[a1], . . . [an]], while λ′

i,i(l1++l2) = [(miλ
′
i,il1++miλ

′
i,il2)] where m1 = fst and

m2 = lst . For example, λ′
1,1([[a], [b, c], [d]]) = [[a, b, d]]. Note that both of these distributive

laws differ from the one described in Koslowski (2005) and Manes and Mulry (2007),

where, for instance, λ′
1,1([[a], [b, c], [d]]) = [[a, b], [c, d]].

Example 4.11. In Example 3.14, distributive laws of the form λ : Σ@P0 → P0Σ
@ were

generated. The Kleisli strength of Example 2.4 is coherent as cartesian product is

associative. Thus, we have distributive laws of the form λ′ : HP0 → P0H for H any

quotient monad of Σ@ generated by a set of linear equations E. For instance, for V and L

as in the previous example, we have a distributive law λ′ : LP0 → P0L of L over P0 defined

by λ′
X([A1, . . . , An]) = {[a1, . . . , an] : ai ∈ Ai}. The canonical monad map list : V → L is

again a map of distributive laws. For instance

(P list)λ(N(A0, B0)) = (P list){N(La, Lb) : a ∈ A0, b ∈ B0}
= {[a, b] : a ∈ A0, b ∈ B0} ,
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which agrees with

λ′(listP )(N(A0, B0)) = λ′[A0, B0] = {[a, b] : a ∈ A0, b ∈ B0} .

Example 4.12. In Example 3.15, two distinct distributive laws, λa, λb : V (X + Exc) →
VX + Exc, associated with Kleisli strengths Γa and Γb on the exceptions monad, were

generated. Both strengths are coherent and, consequently, we immediately have two

distributive laws λ′
a, λ

′
b : L(X + Exc) → (LX) + Exc. For instance, λ′

a is defined by

λ′
a([ ]) = [ ]

λ′
a([x]) = x for any element x of Exc

λ′
a(l) = l if no element of l is in Exc

λa(l) = a otherwise.

It is easy to generalise this to the case of Exc being a non-empty set of exceptions of any

size.

Example 4.13. Manes and Mulry (2007) showed that the state monad (Moggi 1991),

M = (M, ν, ρ) where MA = (A × S)S was not commutative. For the case of Kleisli

strength, the result is different. For instance, there are two Kleisli strengths of order two

on monad M, Γ1 and Γ2. We define Γi : (A× S)S × (B × S)S → (A× B × S)S as follows:

Γ1(t1, t2) = λs.let(a, s1) = t1(s), let(b, s2) = t2(s), in(a, b, s1)

Γ2(t1, t2) = λs.let(a, s1) = t1(s), let(b, s2) = t2(s), in(a, b, s2)

It is a straightforward exercise to show that the Γi are Kleisli strengths. Furthermore,

each is associative and so generates a coherent family by Example 2.14. For example,

both Γ1(Γ1 × 1)(t1, t2, t3) and Γ1(1 × Γ1)(t1, t2, t3) are equal to

λs.let(a, s1) = t1(s), let(b, s2) = t2(s), let(c, s3) = t3(s), in(a, b, c, s1) .

Consequently, Kleisi strength generates two distributive laws:

λi : V ((A× S)S ) → (VA× S)S .

While coherence generates two more:

λ′
i : L((A× S)S ) → (LA× S)S .
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