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Abstract

We prove a necessary and sufficient condition for isogenous elliptic curves based on the algebraic
dependence of p-adic elliptic functions. As a consequence, we give a short proof of the p-adic analogue
of Schneider’s theorem on the linear independence of p-adic elliptic logarithms of algebraic points on two
nonisogenous elliptic curves defined over the field of algebraic numbers.
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1. Introduction

Let K ⊂ C be a subfield of the field of complex numbers. Let E be an elliptic curve
defined over K (that is, an abelian variety of dimension one defined over K). We can
characterise E by the Weierstrass form

Y2Z − 4X3 + g2XZ2 + g3Z3 = 0

with g2, g3 ∈ K, called the invariants of E, such that g3
2 − 27g2

3 � 0. There is a unique
lattice Λ in C, that is, a discrete subgroup of C which contains an R-basis for C,
satisfying

g2 = 60
∑
ω∈Λ\{0}

ω−4, g3 = 140
∑
ω∈Λ\{0}

ω−6,

and a unique function ℘ which is meromorphic on C and analytic on C \ Λ such that

℘′2 = 4℘3 − g2℘ − g3.

Furthermore, the function ℘ is (doubly) periodic on Λ, that is, ℘(z + ω) = ℘(z) for all
ω ∈ Λ. We call ℘ the Weierstrass elliptic function associated with the elliptic curve E.

Let E∗ be another elliptic curve defined over K. We say that E and E∗ are isogenous
over K if there is a nonconstant morphism from E to E∗ defined over K which maps
the point at infinity of E to that of E∗. It is known that E and E∗ are isogenous over the
field of algebraic numbers Q if and only if ℘ and ℘∗ are algebraically dependent over
Q, where ℘∗ is the Weierstrass elliptic function associated with E∗. Indeed, if there
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is an isogeny φ : E → E∗ defined over Q, then it induces an analytic homomorphism
of complex Lie groups E(C) and E∗(C), which is still denoted by φ. Furthermore, the
diagram

E(C)
φ �� E∗(C)

Lie(E(C))

expE(C)

��

dφ �� Lie(E∗(C))

expE∗(C)

��

commutes, where expE(C) and expE∗(C) are the exponential maps of E and E∗,
respectively (see [11, Section 1]). There exist natural bases ∂E and ∂∗E for the Lie
algebras of E and E∗, respectively, such that expE(C)(z∂E) = [℘(z) : ℘′(z) : 1] and
expE∗(C)(z∂

∗
E) = [℘∗(z) : ℘∗′(z) : 1] (see [1, Section 6]). Since the isogeny φ is defined

over Q, it follows that ℘∗ can be expressed as a rational function with coefficients in
Q with respect to ℘. This means that ℘ and ℘∗ are algebraically dependent over Q.
Conversely, if ℘ and ℘∗ are algebraically dependent over Q, then it follows from [7,
Ch. 15] that mΛ ⊂ Λ∗ for some positive integer m, where Λ∗ is the lattice of periods
of ℘∗. In particular, this gives an isogeny from E(C) to E∗(C) (defined over C) which
maps [℘(z) : ℘′(z) : 1] to [℘∗(mz) : ℘∗′(mz) : 1]. But using the fact that ℘∗(mz) is a
rational function with coefficients in Q in terms of ℘∗(z) together with the algebraic
dependence of ℘(z) and ℘∗(z), we see that the set of complex numbers λ such that ℘(λ)
and ℘∗(mλ) are both in Q is infinite. This allows us to deduce that ℘∗(mz) is a rational
function with coefficients in Q in terms of ℘(z), and from this we are able to conclude
that E and E∗ are isogenous over Q.

The main purpose of this paper is to prove such a result in the p-adic setting.
To present this result, we recall the Lutz–Weil p-adic elliptic functions which can
be seen as the p-adic analogue of the Weierstrass elliptic functions. Let Cp denote
the completion of Qp with respect to the p-adic absolute value | · |p, as usual. We
also denote by B(rp) the set of all p-adic numbers x in Cp such that |x|p < rp with
rp := p−1/(p−1). Now, let E be an elliptic curve defined over Cp, that is, the invariants
g2 and g3 in the Weierstrass form of E are in Cp. One can show that the differential
equation

y′(z) =
(
1 − g2

4
y4(z) − g3

4
y6(z)
)1/2

, y(0) = 0

admits the solutions ϕ(z) and −ϕ(z) which are analytic on the disk

Dp := {z ∈ Cp : |1/4|p max{|g2|1/4p , |g3|1/6p }z ∈ B(rp)}.

The disk Dp is called the p-adic domain of E. We put ℘p := ϕ−2 so that

℘′2p = 4℘3
p − g2℘p − g3.
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Then ℘p is called the (Lutz–Weil) p-adic elliptic function associated with the elliptic
curve E (see [6, 10]). Let E∗ be another elliptic curve defined over Cp. Let D∗p be the
p-adic domain of E∗. For each nonzero algebraic number α in Q, denote by Dp,α the
set of all nonzero p-adic numbers z in Dp with αz ∈ D∗p. We also define the function
℘∗p,α on Dp,α by ℘∗p,α(z) = ℘∗p(αz). Now, our main theorem reads as follows.

THEOREM 1.1. Let E and E∗ be elliptic curves defined over Q. Let α be a nonzero
algebraic number in Q. Then E and E∗ are isogenous over Q if and only if ℘p and ℘∗p,α

are algebraically dependent over Q.

The following corollaries can be immediately deduced from the main theorem.

COROLLARY 1.2. Let E and E∗ be elliptic curves defined over Q. The p-adic
elliptic functions ℘p and ℘∗p associated with E and E∗, respectively, are algebraically
dependent over Q if and only if ℘p and ℘∗p,α are algebraically dependent over Q for
any nonzero algebraic number α.

COROLLARY 1.3. Let E and E∗ be elliptic curves defined over Q. The following
statements are equivalent.

(i) The elliptic curves E and E∗ are isogenous over Q.
(ii) The Weierstrass elliptic functions ℘ and ℘∗ associated with E and E∗, respec-

tively, are algebraically dependent over Q.
(iii) The p-adic elliptic functions ℘p and ℘∗p associated with E and E∗, respectively,

are algebraically dependent over Q.

In 1936, Schneider proved that if two elliptic curves E and E∗ are defined over Q
such that their corresponding associated Weierstrass elliptic functions ℘ and ℘∗ are
algebraically independent over Q (equivalently, E and E∗ are not isogenous over Q),
then either ℘(u) or ℘∗(u) is transcendental for any complex number u neither in the
lattice of periods of E nor of E∗ (see [8, 9]). The p-adic analogue of this result was
obtained by Bertrand in 1977. Namely, he proved that if two elliptic curves E and E∗

are defined over Q with their corresponding p-adic elliptic functions ℘p and ℘∗p, and if
there is a nonzero p-adic number u in the p-adic domains of E and E∗ such that ℘p(u)
and ℘∗p(u) are both algebraic, then E and E∗ are isogenous over Q (see [2]). By using
the main theorem and the p-adic analytic subgroup theorem (see Section 2), we are
able to slightly extend Bertrand’s result.

THEOREM 1.4. Let E and E∗ be elliptic curves defined over Q. Let α be a nonzero
algebraic number in Q. If there is a nonzero p-adic number u in Dp,α such that ℘p(u)
and ℘∗p(αu) are both algebraic, then E and E∗ are isogenous over Q.

It is worth noticing that Theorem 1.4 can be deduced from [5, Theorem 2.1].
Nevertheless, the situation in this theorem is much simpler than that in [5, Theorem
2.1] and we give a short proof of Theorem 1.4 in Section 3.
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2. The p-adic analytic subgroup theorem

The analytic subgroup theorem is one of the most significant results in modern
(complex) transcendence theory with many applications. It was formulated and proved
by Wüstholz in the 1980s (see [1, 11]). This theorem has a p-adic analogue that we
will now discuss. Let G be a commutative algebraic group defined over a subfield K
of Cp. Then the set G(Cp) of Cp-points of G is a Lie group over Cp whose Lie algebra
is denoted by Lie(G(Cp)). According to [3, Ch. III, 7.6]), there is a p-adic analytic
homomorphism, the so-called the p-adic logarithm map of G,

logG(Cp) : G(Cp) f → Lie(G(Cp)),

where G(Cp) f is the set of x ∈ G(Cp) for which there exists a strictly increasing
sequence (ni) of integers such that xni tends to the unity element of G(Cp) as i
tends to infinity. If H is another commutative algebraic group defined over K, then
(G × H)(Cp) f = G(Cp) f × H(Cp) f . Furthermore, Lie((G × H)(Cp)) = Lie(G(Cp)) ×
Lie(H(Cp)) and log(G×H)(Cp) is the map (logG(Cp), logH(Cp

).
If G is an abelian variety, one has G(Cp) f = G(Cp) (see [12]). In particular, in the

case when G is an elliptic curve, one can express the p-adic logarithm map of G
explicitly through the p-adic elliptic function associated with G. In more detail, let
E be an elliptic curve defined over K. Denote by ℘p and Dp the p-adic elliptic function
and the p-adic domain of E, as in Section 1. The Lie algebra of E(Cp) is canonically
isomorphic to Cp, and the p-adic exponential map is given by

expE(Cp) : Dp → E(Cp) ⊆ P2(Cp), z �→ (℘p(z) : ℘′p(z) : 1).

This map gives an isomorphism between Dp and expE(Cp)(Dp) ⊆ E(Cp), and the
restriction to expE(Cp)(Dp) of the p-adic logarithmic map logE(Cp) : E(Cp)→ Cp is the
inverse of the p-adic exponential map expE(Cp). In this language, Theorem 1.4 means

that if two elliptic curves E and E∗ are defined and not isogenous over Q, then the
p-adic elliptic logarithms logE(Cp)(ω) and logE(Cp)(ω

∗) are linearly independent over Q
for any algebraic points ω ∈ expE(Cp)(Dp) and ω∗ ∈ expE∗(Cp)(D

∗
p).

We end this section by quoting the following theorem which is called the p-adic
analytic subgroup theorem (see [4]).

THEOREM 2.1. Let G be a commutative algebraic group of positive dimension defined
over Q and let Lie(G) denote the Lie algebra of G. Let V ⊆ Lie(G) be a nontrivial
Q-linear subspace. For any γ ∈ G(Cp) f ∩ G(Q), the set of algebraic points of G
in G(Cp) f , such that 0 � logG(Cp)(γ) ∈ VCp := V ⊗

Q
Cp, there exists an algebraic

subgroup H ⊆ G of positive dimension defined over Q such that the Lie algebra Lie(H)
of H is contained in V and γ ∈ H(Q).

3. Proofs

3.1. Proof of Theorem 1.1. We first prove the necessity of the condition in the
theorem. Assume that there is an isogeny φ : E → E∗ defined over Q. Clearly, the
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graph of φ in E × E∗ provides an algebraic relation between the maps expE(Cp)(z) and

expE∗(Cp)(βz) (with z ∈ Dp,β), where β ∈ Q∗ is the representation of the differential of
φ at zero in a chosen basis of Lie(E(Cp)) and Lie(E∗(Cp)). Notice that Lie(E(Cp)) and
Lie(E∗(Cp)) are Cp-vector spaces (defined over Q) of dimension one. Therefore one
can fix these bases so that β = α. In particular, this shows that the functions ℘p and
℘∗p,α are algebraically dependent over Q.

To prove the sufficiency of the condition, consider the one-parameter subgroup
{(expE(Cp)(z), expE∗(Cp)(αz)) : z ∈ Dp,α} ⊂ E(Cp) × E∗(Cp). By hypothesis, its Zariski
closure H is an algebraic subgroup of E × E∗ of dimension one. One can assume that
H is connected, so H is an elliptic curve contained in E × E∗. This implies that the
projections from H to E and to E∗ are surjections. In particular, E and E∗ are isogenous
since a surjection between elliptic curves is an isogeny. �

3.2. Proof of Theorem 1.4. Put G := E × E∗. Then G is an abelian variety defined
over Q. The Lie algebra Lie(G) = Lie(E) × Lie(E∗) can be identified with Q × Q, and
therefore

Lie(G(Cp)) = Lie(G) ⊗
Q
Cp = Cp × Cp.

One has G(Cp) f = G(Cp) = E(Cp) × E∗(Cp) and the p-adic logarithm map of G is
given by

logG(Cp) = (logE(Cp), logE∗(Cp)).

Let V be the Q-vector space defined by

V = {(x, y) ∈ Q2
: αx − y = 0}.

Then

VCp = V ⊗
Q
Cp = {(x, y) ∈ C2

p : αx − y = 0}.

Consider the point

γ := (expE(Cp)(u), expE∗(Cp)(αu))

= ((℘p(u) : ℘′p(u) : 1), (℘∗p(αu) : ℘∗p
′(αu) : 1)) ∈ G(Cp).

By assumption, ℘p(u) and ℘∗p(αu) are algebraic, and so are ℘′p(u) and ℘∗p
′(αu). It

follows that γ is an algebraic point of G(Cp), that is, γ ∈ G(Q). Moreover,

logG(Cp)(γ) = (logE(Cp)(expE(Cp)(u)), logE∗(Cp)(expE∗(Cp)(αu))) = (u,αu)

is a nonzero point in VCp . Thanks to Theorem 2.1, there is an algebraic subgroup
H of G of positive dimension defined over Q such that the point γ belongs to
H(Q) and the Lie algebra Lie(H) is contained in V . Obviously, the dimension of
H must be one since the dimension of V over Q is one. Therefore, Lie(H) must
be V . In particular, this shows that the set {(expE(Cp)(z), expE∗(Cp)(αz)) : z ∈ Dp,α} is
contained in H(Cp). This, together with the algebraic relations ℘′2p = 4℘3

p − g2℘p − g3
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and ℘∗p
′2 = 4℘∗p

3 − g∗2℘
∗
p − g∗3, gives rise to a nonzero two-variable polynomial P with

coefficients in Q satisfying P(℘p(z),℘∗p(αz)) = 0 for all z ∈ Dp,α. In other words, ℘p

and ℘∗p,α are algebraically dependent over Q. This shows that E and E∗ are isogenous
over Q by Theorem 1.1. �
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