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ABSTRACT

We prove equality of the various rational p-adic period morphisms for smooth, not
necessarily proper, schemes. We start with showing that the K-theoretical uniqueness
criterion we had found earlier for proper smooth schemes extends to proper finite simpli-
cial schemes in the good reduction case and to cohomology with compact support in the
semistable reduction case. It yields the equality of the period morphisms for cohomology
with compact support defined using the syntomic, almost étale, and motivic construc-
tions. We continue with showing that the h-cohomology period morphism agrees with
the syntomic and almost étale period morphisms whenever the latter morphisms are
defined (and up to a change of Hyodo—Kato cohomology). We do it by lifting the syn-
tomic and almost étale period morphisms to the h-site of varieties over a field, where
their equality with the h-cohomology period morphism can be checked directly using
the Beilinson Poincaré lemma and the case of dimension 0. This also shows that the
syntomic and almost étale period morphisms have a natural extension to the Voevodsky
triangulated category of motives and enjoy many useful properties (since so does the
h-cohomology period morphism).
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1. Introduction

Recall that rational p-adic period morphisms' make it possible to describe the p-adic étale
cohomology of algebraic varieties over local fields of mixed characteristic in terms of differential
forms. This is advantageous since the latter can often be computed. There are by now four main
different approaches to the construction of these period morphisms:

— syntomic: Fontaine and Messing [FM87], Hyodo and Kato [HK94|, Kato [Kat94a], Tsuji
[Tsu99a], Yamashita [Yam11], Colmez and Niziot [CN17];

almost étale: Faltings [Fal89, Fal02], Scholze [Schl13], Li and Pan [LP19], Diao et al
[DLLZ19], Tan and Tong [TT19], Bhatt, Morrow and Scholze [BMS18, BMS19], Cesnavicius
and Koshikawa [CK19];

— motivic: Niziot [Niz98, Niz08];

— h-cohomology: Beilinson [Beil2, Beil3], Bhatt [Bhal2].

Each of these approaches has its advantages and it is important to be able to compare the
resulting period morphisms in the case one needs to pass from one to another. Since all the
above period morphisms are normalized using Chern classes we expect them to be equal.

The two theorems below are examples of the results we obtain in the paper. Let Ok be a
complete discrete valuation ring with fraction field K of characteristic 0 and with perfect residue
field k£ of positive characteristic p. Let m be a uniformizer of Og. Let O be the ring of Witt
vectors of k with fraction field F'. Let X be a proper scheme over O with semistable reduction
and of pure relative dimension d. Let i : D < X be the horizontal divisor and set U = X \ D.
Equip X with the log-structure induced by D and the special fiber. Denote by (’)% the scheme
Spec(OF) with the log-structure given by (N — Ok, 1 — 0).

The first theorem is a generalization of the K-theoretical uniqueness criterion for p-adic
period isomorphisms from [Niz09] as well as its applications.

THEOREM 1.1. (i) There exists a unique natural p-adic period isomorphism
o« HY (Ug, Qp) ® By = Hi (X) ®p By, i >0,
where Hig (X) = H!.(Xo/O%)q is the Hyodo—Kato cohomology, such that:

(a) «y is Bgi-linear, Galois equivariant, and compatible with Frobenius;
(b) «, extended to Bqgr via the Hyodo-Kato morphism pr : Hj (X) — Hig(Xk) and the
morphism v : Bgy — Bgr, induces a filtered isomorphism

ot Hi (Ug, Qp) ® Bar = Hig o(Xk) ®k Bagr;
(¢) «; is compatible with the étale and syntomic higher Chern classes from p-adic K-theory.

(ii) The syntomic, almost étale, and motivic semistable period morphisms for cohomology
with compact support are equal.

! We also discuss in this paper integral p-adic period morphisms in the context of Fontaine-Lafaille theory and
the motivic approach to comparison theorems; see §3.1.1.
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The second theorem takes a different approach to comparing p-adic period morphisms. It uses
h-topology, the Beilinson (filtered) Poincaré lemma [Beil3], and the computations from [NN16]
to formulate a simple uniqueness criterion using the fundamental exact sequence of p-adic Hodge
theory and hence, basically, the case of dimension 0.

THEOREM 1.2. The syntomic, Faltings almost étale, and h-cohomology period morphisms lift
to the Voevodsky category of motives over K. They are equal. In particular, they are compatible
with (mixed) products.

Remark 1.3. The above theorems do not cover the p-adic period morphisms of Bhatt, Morrow
and Scholze [BMS18, BMS19] and Cesnavicius and Koshikawa [CK19] (which fall into the ‘almost
étale’ category) but these morphisms are already known (at least the ones from [BMS18, CK19])
to be the same as the syntomic period morphisms.

(i) It is likely that one can use the K-theory criterion from Theorem 1.1 to show this fact.
Some compatibilities with Chern classes were already checked in [CDN19]. The h-topology
method of comparing period morphisms from Theorem 1.2 cannot be applied directly in this
case because the period morphism of Bhatt, Morrow and Scholze, as of now, is not allowing
horizontal divisors.

(ii) However, the compatibility of the period morphism from [BMS18, CK19] with the other
period morphisms has been already checked in the forthcoming thesis of Sally Gilles (at ENS
Lyon) by a more direct method. This involves the period morphism defined in [CN17]: Gilles
lifted the local definition of this morphism to the geometric setting, globalized it together with
its comparison with the Fontaine-Messing period morphism, and then directly compared the
resulting morphism with the period morphism from [CKIQ] (which is a reasonable approach
since both morphisms are defined using very similar complexes).

Remark 1.4. Recently, there has been considerable interest in generalizing Faltings’ original
approach to p-adic comparison theorems. This started with the work of Scholze [Sch13] on the
de Rham comparison theorem for proper smooth rigid varieties and nontrivial coefficients that
extended Faltings’ proof of the algebraic de Rham comparison theorem using Scholze’s powerful
almost purity theorem and his proof of the finiteness of p-adic étale cohomology. Recall that
Faltings’ proof of the de Rham comparison theorem used the Faltings site, the Faltings Poincaré
lemma, and a basic comparison theorem and worked for all smooth algebraic varieties and triv-
ial coefficients. This was extended to nontrivial coefficients in the thesis of T'suzuki, which was,
unfortunately, never published.

More work followed: Li and Pan [LP19] extended Scholze’s de Rham comparison for trivial
coefficients to the open case (with a nice compactification), Diao et al. [DLLZ19] added a treat-
ment of nontrivial coefficients; from another angle, Tan and Tong [TT19] extended Scholze’s
proof to the case of good reduction (over an unramified base) proving the crystalline conjecture
in this setting.

When specialized to algebraic varieties all these constructions of p-adic period morphisms are
modifications of the original construction of Faltings (recall that Faltings’ construction works for
any smooth variety), the main one being a replacement of the Faltings site with the pro-étale site
(see the discussion in [LP19, § 3]). Their equality with Faltings period morphisms is conceptually
clear but, with all the modifications involved, the detailed proof of this fact is best left for the
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time when it is really needed (and then it can be checked in a direct, if tedious, way, or, in some
cases, using our K-theory approach).

1.1 Proof of Theorem 1.1

To prove Theorem 1.1, we start with showing that the K-theoretical uniqueness criterion we
had found for proper smooth schemes in [Niz09] extends to finite simplicial schemes in the good
reduction case and to cohomology with compact support in the semistable reduction case. Using
it we show the equality of the period morphisms for cohomology with compact support defined by
the syntomic and almost étale methods. Along the way we extend our definition of the motivic
period morphisms from [Niz98, Niz08] to the above-mentioned setting. By construction, this
period morphism satisfies the K-theoretical uniqueness criterion and hence it is equal to the
syntomic and almost étale period morphisms.

To present the proof of Theorem 1.1 in more detail, recall the definition of the motivic
period morphisms in the simpler case of good reduction (see also the survey [Niz06b]). Let X be
a smooth proper scheme over Ok . Using the Suslin comparison theorem between p-adic motivic
cohomology and p-adic étale cohomology [Sus00], we lift étale cohomology classes of X7 to
p-adic motivic cohomology classes via the étale regulator (here we use A-graded pieces of p-adic
K-theory as a substitute for p-adic motivic cohomology), then we lift those to the integral model
Xo, and, finally, we project them via the syntomic regulator to the syntomic cohomology of
X o that maps canonically to the absolute crystalline cohomology of Xo._.

This extends rather easily to simplicial schemes: there is no problem in defining the p-adic
regulators and the fact that the étale regulator and the localization map from the integral model
to the generic fiber are isomorphisms can be reduced to the case of schemes using the filtration
of simplicial schemes by skeletons.

We have shown in [Niz09] that the construction of the motivic period morphisms for proper
smooth schemes implies a simple K-theoretical uniqueness criterion for period morphisms. This
can be extended now to proper smooth finite simplicial schemes: two period morphisms are equal
if and only if the induced period morphisms from étale to syntomic cohomology are equal and
this is true if and only if the latter agree on the values of étale regulators from p-adic K-theory.
This, in turn, would follow if the period morphisms were compatible with the étale and syntomic
regulators from p-adic K-theory. For motivic period morphisms this compatibility follows from
the definition; for the syntomic and almost étale period morphisms of Tsuji [Tsu99a] and Faltings
[Fal02], respectively, this can be checked on the level of the universal Chern classes and this was
done in [Niz09].

1.2 Proof of Theorem 1.2

To prove Theorem 1.2, we take a different approach to comparing p-adic period morphisms:
we compare them with the A-cohomology period morphism. First, we note that it is enough
to compare the induced morphisms, after a change of Hyodo—Kato cohomology, from syntomic
cohomology to étale cohomology (we call them syntomic period morphisms). Then we take the
syntomic period morphism (in the derived category) and sheafify it in the h-topology of X4 This
is possible because Beilinson has shown [Beil2] that de Jong augmentations allow us to exhibit
a basis of h-topology that consists of proper (strictly) semistable schemes over Q. We obtain
a map between the h-sheafification of syntomic cohomology and the h-sheafification of étale
cohomology. Now, for 7 > 0, the étale cohomology of the Tate twist Z/p"(r)" := (p®a!)~1Z/p™(r),
for r=(p—1)a+b,a,b € Z,0 <b<p—1, h-sheafifies to the constant sheaf Z/p"(r)’. Using
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the Beilinson filtered Poincaré lemma [Beil3], we see that the syntomic cohomology of the rth
twist sheafifies to the kernel of the surjective map of constant sheaves Fg Acr:Acr, ¢, being
the divided Frobenius ¢/p" and Fjy A the Frobenius-divisible filtration. By the fundamental
exact sequence this is Z/p"(r)" and the syntomic period morphism, by functoriality, is the map
that sends t{"} := t(#*=1/p)® to 1. But, as was shown in [NN16], this is the same map as the
one induced by the h-cohomology period morphism. The argument for the almost étale period
morphism is analogous.

The last claim of the theorem was proved for the Beilinson period isomorphism in [DN18]
and hence it is true for the other period maps as well.

Conventions 1.5. We assume all the schemes (outside of some obvious exceptions) to be locally
noetherian. We work in the category of fine log-schemes. For a scheme X over Z,, we will denote
by X, its reduction modulo p™.

2. Preliminaries

We collect in this section basic cohomological computations, the study of the localization map in
K-theory, and the study of the étale cycle class map. All of this is done in the context of coho-
mology with compact support and generalizes the computations done for the usual cohomology
in [Niz98, Niz08].

Let Ok be a complete discrete valuation ring with fraction field K of characteristic 0 and
with perfect residue field k of characteristic p. Let W (k) = Op be the ring of Witt vectors of k
with fraction field F. Let K be an algebraic closure of K and let C be its p-adic completion. Set
Gk = Gal(K/K) and let o be the absolute Frobenius on W (k). For an Og-scheme X, let Xo
denote the special fiber of X. We will denote by Ok, O, and (’)(IJ( the scheme Spec(Og) with
the trivial, canonical (i.e., associated to the closed point), and (N — Og, 1+ 0) log-structure
respectively. We will freely use the notation from [Niz16].

2.1 Cohomological identities
We briefly review here certain facts involving syntomic and crystalline cohomologies that we will
need.

2.1.1 Rings of periods. We start with reviewing basic facts concerning the rings of peri-
ods. Consider the ring R = liLnOf/ pO+, where the maps in the projective system are the pth
power maps. With addition and multiplication defined coordinate-wise, R is a ring of char-
acteristic p. Take its ring of Witt vectors W(R). Then A, is the p-adic completion of the
divided power envelope Dg¢(W(R)) of the ideal (W (R) in W (R). Here ¢ = [p’] — p and, for
x € R, [z] = [x,0,0,...] € W(R) is its Teichmiiller representative.

(1) The rings B¢y and Bgr. The ring A, is a topological W (k)-module having the following
properties:

(i) W(k) is embedded as a subring of A, and ¢ extends naturally to a Frobenius ¢ on A
(ii) A is equipped with a decreasing separated filtration F™A.;, where F"A., is the closure
of the nth divided power of the PD ideal of D¢(W(S)); for n < p, ¢(F"Aer) C p™ A

(ili) Gi acts on Agy; the action is W (k)-semilinear, continuous, commutes with ¢, and preserves
the filtration;
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(iv) there exists an element t € F' A, such that ¢(t) = pt and Gk acts on t via the cyclotomic
character: if we fix € € R, a sequence of nontrivial p-roots of unity, then ¢ = log([e]).

The rings B, and B, are defined as the rings A [p~!] and A [p~!, 7], respectively, with the
induced topology, filtration, Frobenius, and the Galois action. For us, in this paper, it will be
essential that the ring A, can be thought of as a cohomology of an ‘arithmetic point’, namely
that

Acrn >~ He, (Spec(ijn)) )

where, for a scheme Y over W (k), we set
RLe(Yy) = R (Yo /Wi (k)), HAL(Y) := HA%(Y/W(k)) := H* holim, RTe(Y;).

The canonical morphism A, — (9?/ p" is surjective. Let J.;, denote its kernel. Let

B, = lim (Q@lim Ac, /), Ban = Bllt ]
T n

The ring B:{R has a discrete valuation given by powers of t. Its quotient field is Bqr. We will

denote by F"BCTR the filtration induced on B:{R by powers of t.

(2) The rings By and B.. Let us now recall the definition of the ring By [Fon94]. Set
B, := B [u], ¢(u) = pu, and Nu = —1. Let 7 be a uniformizer of O (which we will fix in the
rest of the paper). Let ¢ = ¢ : BY; < BJ; denote the embedding u + u, = log([x’]/m). We use
it to induce the Galois action on B, from the one on B(‘fR. Let Bgt = Ber[ur].

We will need the following crystalline interpretation of the ring BY, (see [Kat94a, Tsu99a]).
Let Rr, denote the PD envelope of the ring W, (k)[z] with respect to the closed immersion
W, (k)[x] — Ok, x — , equipped with the log-structure associated to N — Ry, 1 — z. Set
R, = @Rmn. Let

n

A = lim HY

— Ccr
n

(Spec(O%,)/Rem), BE = Af[1/p].

The ring ﬁ; has a natural action of G, Frobenius ¢, and a monodromy operator N. Kato
showed [Kat94a, 3.7] that the ring B, is canonically (and compatibly with all the structures)
isomorphic to the subring of elements of ﬁ; annihilated by a power of the monodromy operator
N. The map ¢ : B, — B:{R extends naturally to a map ¢ : ﬁ;@ — B:{R.

2.1.2 Syntomic cohomology. We will recall briefly the definition of syntomic cohomology.
For a log-scheme X, we denote by Xy, the small log-syntomic site of X. For a log-scheme X
log-syntomic over Spec(W (k)), define

O (X) = HY(X,, Ox,),  JVIX) = HY(X,,, TE),

where Oy, is the structure sheaf of the absolute log-crystalline site (i.e., over Wy, (k)), Jx, =
Ker(OXn/Wn(k) — Ox,, ), and \7)[2 is its rth divided power of Jx,,. Set ‘7)[;1 = Oy, if r < 0. There
is a canonical, compatible with Frobenius, and functorial isomorphism

H* (Xogn, T = Ho (X, TE).
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It is easy to see that cb(jn[r]) C p"O¢ for 0 < r < p— 1. This fails in general and we modify ‘77@:
T = e e Tl | 0lw) € 7 OT 30"
for some s > r. This definition is independent of s. We can define the divided Frobenius
br = “o/y7 T = OF

Set
Sp(r) == Cone(],ﬁ’"> 1= O [—1].

We will write S,,(r) for the syntomic sheaves on Xm,syn, m > n, as well as on Xgy,. We will also
need the ‘undivided’ version of syntomic complexes of sheaves:

Sl (r) = Cone(j,[f] P¢ O [-1].

The natural map S),(r) — S, (r) induced by the maps p” : ‘77?] — jnr> and Id : O — O has
kernel and cokernel killed by p". We will also write S,(r), S, (r) for Re S, (r), Re S, (r),
respectively, where € : X, 5y — X, ¢t is the canonical projection to the étale site.

The p-adic syntomic cohomology of X is defined as

RI¢ (X, S(r)) := holim,, RT¢(X,S,(r)), RIg(X,S'(r)) := holim,, RT¢ (X, S),(r)).

2.1.3 Cohomology with compact support. Let X be a finite and saturated log-smooth log-
scheme over Oj; (respectively over Ok). Since X is log-regular it is normal and the maximal
open subset U = Xi; C X, where the log-structure M is trivial, is dense in X. We have Mx =
Ox N j«Oy;, where j : U — X is the open immersion. By [Niz06a, Theorem 5.10], there exists a
log-blow-up of X that has Zariski log-structure and is (classically) regular.

Assume that X itself has these properties. Then U is a complement of a divisor with simple
normal crossings that is a union Dy U D (respectively D) of the reduced special fiber and the
horizontal part D. The scheme X has generalized semistable reduction, i.e., Zariski locally on X,
there exists an étale morphism over O

X — Spec(Ok|T1, ..., Tul /(TP - T — 2)[U, ..., Un, Vi, ..., Vi])

for some integers u > 1 (respectively u = 0), m,t > 0,n; > 0. The divisor D is the inverse image
of Uy ---Up = 0. In particular, all the closed strata of D are log-smooth over O[X{ and regular
(respectively smooth over Of). If all n; = 1, we say that X has semistable reduction.

Take X as above with semistable reduction. Recall the following definitions. The p-adic étale
cohomology of X4 with compact support.?

RFét,c(va QP) = Rrét(Xf7 EK'Q]))
The de Rham cohomology of Xk with compact support [Tsu99b, Definition 3.2]

RIgRr,(Xk) = RI' (XK, Zp %, ),

2 If X is proper this is, of course, isomorphic to RTes,(Use, Qp).
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where Zp,. C jK*Ol*JK N Ox is the ideal of Ox, corresponding to Dg. We filter it by
F'RLar,o(Xk) = RT(Xk,Ip, 0% ), rEZ.
The crystalline cohomology of Xy over W (k)? with compact support [Tsu99b, Definition 5.4]
Rl cr o(Xo/W (k)?) = Rler(Xo/W (), Kp,),

where Kp, is an ideal sheaf induced by the sheaf Zp, [Tsu99b, Lemma 5.3]. The crystalline
cohomology RI'¢; .(X) is defined in a similar way. We filter it by setting F"RI¢ (X) =
RIe: (X, Kp,J )[g ]), r € Z. This allows us to define the syntomic cohomology with compact support
Rl gyn (X, Sp(r)) and Rlgyn (X, S, (1)).

The above cohomologies with compact support are special cases of cohomologies of finite
simplicial schemes. Define C(X, D) := cofiber(D, % X), where D, is the Cech nerve of the
map [[; D;i — D, D; being an irreducible component of D. The log-structure on the schemes
in C'(X, D) is trivial if X is over Ok and induced from the special fiber if X is over Oj.

LEMMA 2.1. Let RI'(X) denote one of the cohomologies mentioned above. We have a natural
(filtered) quasi-isomorphism

RI.(X) ~ RI(C(X, D)).

It is compatible with products.?

Proof. The étale and de Rham cases follow immediately from the following exact sequences
(reZ):

0= JrkQp = Qpxg = i1:Qpp1 — 2:Qpp2 — -,

>r >r . >r . >r (22)
0—Ip 0%, — %, — 11*95}( — ’LQ*QB% —

Here D™ .= ﬁm is the direct sum of the intersections of m irreducible components of D. We

note that C(X, D)z ~ C(X4, D) even if (X, D) is not geometrically irreducible.

The crystalline case over W (k) follows from a mixed characteristic analog of the second
sequence. And the case over W (k) reduces to this sequence as well. Indeed, if O = W (k), this
is clear. In general, locally, we have an embedding into such a situation. Because, by assumption,
this embedding is regular, the above-mentioned sequence remains exact after tensoring with the
divided power envelope and computes cohomology with compact support.

For the syntomic case, it suffices to check that the above crystalline quasi-isomorphism
preserves filtrations. But this follows easily from the fact that the associated grading of the
filtration on the divided power envelope is free over Ox.

Concerning compatibility with products, the étale, the de Rham, and the crystalline cases
are immediate from the expressions (2.2). In the syntomic case, compatibility follows from the
fact that syntomic cohomology is defined as a mapping fiber of (filtered) crystalline coho-
mology and the syntomic product is the mapping fiber product induced from the crystalline
product. O

3 The product on the cohomology of a simplicial scheme is defined as the holim-product induced by the cosimplicial
degree-wise products.
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2.1.4 Fontaine-Lafaille theory. The main reference for this section is [FL82]. Assume first
that Oxg = W (k). For the integral crystalline theory (Fontaine-Laffaille theory), we will need
the following abelian categories:

(i) MFpig(Ok): an object is given by a p-torsion Og-module M and a family of p-torsion O-
modules F?M together with O-linear maps F*M — F'~'M, F'M — M, and o-semilinear
maps ¢; : F'M — M satisfying certain compatibility conditions;

(i) MF(Ok): the full subcategory of MFyi(Ok) with objects: finite Og-modules M such
that F*M = 0 for i >> 0, the maps F*(M) — M are injective and >_ Im ¢; = M;

(iii) MFa (O ): the full subcategory of objects M of MF(Ok) such that F*M = M and
F*HIM = 0.

Consider the category MF,(Ok) with b —a < p —2. There exists an exact and fully

faithful functor
L(M) = ker(FO(M ® A {—b}(—b)) 25 M @ Aer(—b)),

where {—b} and (—b) are the MF and Tate twists®, respectively, from MF, ;;(Ok) to finite
Z,,-Galois representations. Its essential image is called the category of crystalline representations
of weight between a and b. This category is closed under taking tensor products and duals
(assuming that we stay in the admissible range of the filtration).

The following proposition generalizes [FM87, 2.7], Faltings [Fal89, 4.1], and [Niz09, Lemma
2.3] from schemes to finite simplicial schemes.

PropPOSITION 2.3. Let X be a smooth and proper m-truncated simplicial scheme over O =
W (k) whose components have dimension smaller than d. Then, ford < p — 2 or fori < p — 2, the
filtered Frobenius module H! (X,,) lies in MFio,q/(Ok) or MFg3(Ok), respectively. Moreover,
then the natural morphism

Un  Hyy (X0, Sn(r)) = L(He(Xp){—r}) =~ FTHe (Xop )~
is an isomorphism forp —2 > r > d or for 0 < i <r < p — 2, respectively.
Here
He(Xp) =~ HélR(Xn/OK,n) = H' (X, QB(n/OKm)
and the maps
O = “o/p" : FPHL(Xp) — He(Xn),
where ¢ denotes the crystalline Frobenius. The Hodge filtration is

FFH!(Xp) ~ Im(H' (X, Q5F J0re) = H (X, %% j0,,.))

since the Hodge—de Rham spectral sequence of X,, degenerates: by devissage, we can reduce to
n =1 and then it follows from the results of Deligne and Illusie [DI87, Corollary 3.7].

Proof. The proof of [FM87, 2.7] for schemes goes through for truncated simplicial schemes,
proving the first claim of the proposition. For the second claim, we argue by induction on m > 0
such that X ~ sk, X. The case of m = 0 is treated in [FM87, 2.7]. Assume that our proposition

Y For M € MF, we set FIM{i} := FI""M, ¢pnr(iy,; = p' b j—i-
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is true for m — 1. To show it for m, consider the homotopy cofiber sequence
skim-1 X0 — skm Xo — skp Xo?/ skin—1 X0

and apply the maps v, to it. We get the following map of sequences.

Hi(sky 1 X) — HLNX!) —— HE (skyy X) — HE L (skyyo1 X) — HL (X))

syn syn syn syn syn m

] v t] v | v 0] t| v

L(H{ (skm-1 X)) = L(HE H(X],)) = L(HE (skn X)) = L(HE (skno1 X)) — L(HL(X],))

m

Here we set Hy,(Y) = Hg (Yo, Sn(r)), L(H;(Y)) = L(H5(Yn){—7}). We also put

syn
HX(X],,*) = Hi(Xm,*) NkersiN---Nkersy, 4, «=syn,cr,

where each s; : X,,_1 — X, is a degeneracy map. The top sequence is exact. So is the bottom:
it is clearly exact before applying L and it stays exact because the relevant categories MF are
closed under taking subobjects and the functor L is exact.

By the inductive hypothesis, we have the isomorphisms shown. It follows that the map

Un : H (skpn XO?"S”(T)) — L(HG (skm Xn){-71})

is an isomorphism as well. Since H} (skm X0, Sn(r)) = Hf (X0, Su(r)) and H (skm Xp) =
H? (X,), we are done. O

The above proposition can be applied to cohomology with compact support.

COROLLARY 2.4. Let X be a smooth and proper scheme over O = W (k) with a divisor D that
has relative simple normal crossings and all the closed strata smooth over O . Equip X with the
log-structure coming from D. Then, if the relative dimension d of X is < p — 2 orifi < p — 2, the
filtered Frobenius module H (X,,) lies in MFio 4(Ox) or MFjy;1(Ok), respectively. Moreover,
then the natural morphism

Yn : Hiy(Xog, Su(r)) = L(HE o(Xa){—1}) = FTHE o(Xn)? ™!

cr,c cr,c

is an isomorphism forp — 2 > r > d or for 0 < i <r < p — 2, respectively.
Proof. By Lemma 2.1, we have a canonical isomorphism

cr,c

Our corollary follows now from Proposition 2.3. U

2.1.5 More cohomological identities. Let Ok be general and let X be an Og-scheme. Recall
that, if X is smooth and proper, Kato and Messing [KM92] have constructed the following
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isomorphisms:
hee : Hy(Xo)q @ BE = Hi(Xog)q  [KM92,1.2],

Hip (Xk) ® B, ~ lim (lim ng(Xo,,n,on/J,LN}))Q [KM92, 1.4],

har : F"(Hig (Xk) @ Bl) = lim (@ H(Xop /TN 1)) o
n

N
We will need also to know the following lemma [Niz98, Lemma 2.2].

LEMMA 2.5. The following two compositions of maps are equal:

Q & lim Hly(Xog, S4(r)) — lim (Q @ lim Hi(Xoyn J["l/ﬂN])) L (i (X) @ Bl

N
— Hjp(Xk) @ Big,
Q@ lim Hj, (Xoy, 5,(r) — Q® lim H (Xo, )=

A
n

he!
—S HL(Xo) ®@w B, 2 Hin(Xk) ® By,

where & is induced by the Berthelot-Ogus isomorphism [BOS83, 2.2] H{(Xo) ®w ) K ~

Let X be any fine log-scheme which is log-smooth and proper over Oy with saturated log-
structure on the generic fiber. We will need the crystalline interpretation of Bl ®x Hip(Xk)
from [Kat94a] (see also [Tsu99a, 4.7]):

BSILR KK HéR(XK) = @Hér(XOf/Oﬁ,O/J[s})Q [Tsu99a, 4.7.6],

s

Fr(BJg @K Hig(Xk)) = lim H. (Xo /0%, U /T q  [Tsu99a, 4.7.13).
>r

(2.6)

v

Finally, let us recall briefly the Hyodo—Kato isomorphism. We define the Hyodo—Kato
cohomology as

Hip (X) == H(Xo/W (k)°)q

If the special fiber of X is of Cartier type, Kato defined [Kat94a, 4.2 and 4.5] canonical morphisms
(that however depend on the choice of )

. he /S : -0 ~ ] =
Hi(Xog)q =5 (B @p Hic(X))V ™" & (B @p Higgg (X)), (2.7)

It can be checked (see [T'su99a, 4.5.6 and 4.5.7]) that these morphisms are compatible with Galois
action and the Frobenius. Moreover, Hyodo and Kato [HK94, 5.1] have constructed a canonical
K-isomorphism

w o K @p Hi(X) = Hig(Xg). (2.8)
Hence, the composition
prhr - Hy(Xo)q — BE @F Hig(Xk)

is functorial in X and compatible with Galois action.
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It is easy to check that all the above extends to finite simplicial (log-)schemes X.

(i) The map he, actually lifts in a functorial way to a statement in the co-derived category®
and hence extends to simplicial schemes. Similarly for the morphisms in (2.7).

(ii) Similarly for the Hyodo—Kato isomorphism (2.8), though here finiteness of the simplicial
scheme is an important assumption one needs to make to control the denominators (for
details, see [Tsu98, 6.3] and [Kis02, 2.8]).

(iii) Similarly for the map hggr, the maps in Lemma 2.5, and the maps in (2.6), where in addition
one needs to use that the Hodge-de Rham spectral sequence for X degenerates (which, by
passing to the complex numbers, follows from the classical Hodge theory; see [Del74, 7.2.8]).

2.1.6 A key isomorphism. Let X be a proper semistable scheme over Og. The following
lemma will be crucial in the comparison of period morphisms.

LEMMA 2.9. Let r > i. There exists a natural isomorphism
H(Xo,S'(r)q = (Hi(X) @p By) V== N F"(Hjr (Xk) @K Bar)-

Proof. This is well known; see [NN16, Corollary 3.23] and [CN17, Proposition 5.22]. We will
sketch here the construction of the map for future reference; see [NN16, Corollary 3.23] for details.
Consider the following sequence of maps of homotopy limits; they are all quasi-isomorphisms.
Homotopy limits are taken in the oco-derived category.

he : Rla(Xop, 8'(r)q = [RTa(Xo )57 — Rla(Xo,)a/F']
— — T P
= [RPe(Xog/Re)q " —= Rla(Xog /O )Q/F']

~ . Dt
= [(RPa(X/Rr) %, BHN="9="" —— (RLar(Xk) ®% Big)/F"]

. ~ _ o pr @t
< [(RPuk (X) @f BE)N=00= (RTar(Xk) ®F Bg)/F']
~ _ oy Pr@tL
< [(RI'pk(X) @% BH)N=00=P" —— (RT4r(Xk) @% BlR)/F'] -
(2.10)
Here the eigenspaces are taken in the derived sense and we used the brackets [—] to denote a

mapping fiber. The first two maps and the last map are the canonical maps. We wrote p, for
the projection x — 7. The second map is induced by the distinguished triangle

RI:(Xo,) — Rler(Xo/Rr) % RUer(Xo/Re).

The third map is induced by the Kiinneth map; we also used here the quasi-isomorphism (2.6).
The fourth map is induced by the section ¢ : RI'uk (X) — RI'e:(X/Rx)q of the projection z — 0
(recall that pr = prix). O

® A good source of the quasi-isomorphisms of this type is [Beil3] as well as [NN16].
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2.2 Localization map
For (finite simplicial) schemes X over Ok that are smooth or log-smooth and regular, the
localization map

Jjr Ki(XO?, Z/n) = Ki(X%,Z/n), >0,

where j : X7z < X0 is the natural open immersion, is easy to understand as the two following
lemmas show. Here K;(—,Z/n) is the K-theory with coefficients Z/n (see [Niz16, §4.1.1]).

LEMMA 2.11. Let X be a finite smooth simplicial O -scheme. For any integer n, the localization
morphism

j* KZ(XO?,Z/W,) HKZ(X?,Z/TL), ’LZO,

is an isomorphism.

Proof. Recall that we have proved in [Niz98, Lemma 3.1] that this lemma is true if X is a single
smooth scheme over Og. By the same method, we get the other hypercohomology spectral
sequences, namely, the weight spectral sequences [Tho85, 5.13 and 5.48]

Est = H(m — m(K (X)), Z/n)) = H Y (X, K;Z/n), t—s>3.

Here K is the presheaf Z x Z.BGL, where BGL(U) = injlim,, BGL,(U). Since the natural
inclusion j : Xz — X induces a localization map on the corresponding spectral sequences
compatible with the localization maps on individual schemes, we get isomorphisms on the terms
of the spectral sequences that induce an isomorphism on the abutments, as wanted. ]

Let X be a finite and saturated Zariski log-smooth log-scheme over O (respectively over Ok)
that is classically regular. The maximal open subset U = X, C X where the log-structure Mx
is trivial is dense in X and we have My = Ox N1, Of;, where [ : U < X is the open immersion.
The subset U is a complement of a divisor with simple normal crossings that is a union Dy U D
(respectively D) of the reduced special fiber and the horizontal part D.

Let K be a finite extension of K and let Ok, be its ring of integers. The log-scheme Xo, is
in general singular but it can be desingularized by a log-blow-up, i.e., there exists a log-blow-up
f:Y— X@Kl that does not modify the regular locus and such that Y is a (classically) regular
Zariski log-scheme. Below we will only consider log-blow-ups of X@K1 that are vertical, i.e., we
blow up only closed strata involving the vertical divisor Do,0y, - More precisely, let F/(X) be the
fan of X [Kat94b, 10] (recall that X is assumed to be Zariski and regular). It is a fan over the
fan F'(Oj) = Spec(N), m: F(X) — Spec(N). Let Fy(X) be the vertical fan of F'(X), i.e., the
maximal open subfan of F((X) containing the closed fiber 7=!(s), where s = {n > 1|n € N} is
the closed point of Spec(IN) [Sai04, proof of Lemma 2.5]. We have a natural map F(X) — Fy(X).

The log-scheme Xo, has the fan F(Xo, )= Fe(X) = F(X) Xgpec(n) Spec(Ne), where e
denotes the ramification index of Ok, /Ok. We have the natural map F(Xo,, ) — Foe(X).
From now on we consider only log-blow-ups ¥ — Xo,. induced from regular subdivisions of the
vertical fan Fj.(X). In the local picture above, we consider only log-blow-ups of X@Kl induced
from log-blow-ups of the vertical part X, %Kl . Notice that the scheme Y has generalized semistable
reduction as well and the horizontal divisor Dy is the preimage of Doy, -

Let Xo_ denote the projective system of such pairs (f:Y — Y0K170K1) (that we will
sometimes just call Y') and Do_ denote the induced projective system (Dy CY, f,Ok,) for
(f:Y — Xog,» Ok,) € Xo,.. We will show that we can pass from the K-theory with compact
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support of the generic fiber X7 to the K-theory with compact support of the regular model
Xo. that we define as

K (Xog, Doy, Z/p") = ,iny K;(C(Y,Dy),Z/p").
K

LEMMA 2.12. Let j : Xz < Xo. be the natural open immersion. Then the restriction
j* KJC(XO?7,DO?7Z/pn) lK;(X?7D?7 Z/pn)v J>d+1,
is an isomorphism and the induced map on the y-graded pieces
j*: FYJFEKS (Xo Do, Z/p") — F./FIKS (X, D, Z/p"),  j>d+1,
has kernel and cokernel annihilated by M (2d,i+ 1,2j) and M(2d,1,2j), respectively. Here
F!Kj(—,Z/p") is a y-filtration (see [Niz16, §4.1.4]).

Remark 2.13. The integers M (k,m,n) are defined by the following procedure [Sou82, 3.4]. Let [
be a positive integer, and let w; be the greatest common divisor of the set of integers k™ (k! — 1)
as k runs over the positive integers and N is large enough with respect to [. Let M (k) be the
product of the wy for 21 < k. Set M(k,m,n) = [lo,,<or<pyorr1 M(20). An odd prime p divides
M(d,i,7) if and only if p < (5 + 2d + 3)/2, and divides M (1) if and only if p < (1/2) + 1.

Proof. 1t suffices to argue on finite levels. So, we may simply assume that we have a regu-
lar scheme X over Ok with a divisor D that has relative simple normal crossings and whose
irreducible components are all regular. We need to show the above lemma just for the pair
(X, D).

For the first statement of the lemma, consider the following commutative diagram with the
horizontal sequences exact.

—> K;1(D.,Z/p") — K$(X,D,Z/p") —— K;(X,Z/p") — K;(D.,Z/p") —>

E E | |

— Kj+1(5K.,Z/p”) — K§(Xk, Dk, 2Z/p") — K;(Xk,Z/p") > Kj(ﬁK.,Z/P") —
It shows that it suffices to prove that the restriction map
g5 Kj(ﬁ., Z/p")—>Kj(l~)K., Z/p"), j>d+1,

is an isomorphism. To see that, write D = UET D; as a union of irreducible components D;
and argue by induction on m. Recall that we have proved in [Niz08, Lemma 3.5] that the above
lemma, is true if m = 1. Assume now that the above isomorphism holds for m — 1. To prove it
for m, consider the restriction map of the following long exact sequences.

— Kji1(Dy.. Z/p") — K;(D.,Z/p") — K;(Y,Z/p")® K;(D.,Z/p") —> K;(Dy.,Z/p") —

2lj* J/j* zlj* le*

> Kj11(Dy ke, Z/p") > K;(Dko,Z/p") > K;(Yi,Z/p")® K;(D.,2/p") > K;(Dy o, Z/p")
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Here we wrote Y = Dy, D' = Ui’zn D;, and Dy = D' NY. By the inductive hypothesis, we have
the isomorphisms shown. It follows that we have the isomorphism

]*K](ﬁnz/pn):)Kj(ﬁKnZ/pn)7 j>d+17

as wanted.
Hence, the first statement of the lemma is true. It implies that, for 7 > d + 1, the top map
in the following commutative diagram is an isomorphism.

~ A
Fy /S KS(X, D, 2/p") —= Fy/F7 KS(Xk, D, Z/p")

l l

*

. . J . .
Fy/FyUKS(X, D, Z2/p") —— Fy/Fy7 KS(Xk, D, Z/p")

Here FV; refers to a modified -filtration (see [Niz16, § 4.1.4] for details). Since, by [Niz16, Lemma
4.4], M(2d,1, 2j)F§KJ‘-’(XK, Dg,Z/p™) C ﬁéK;(XK,DK, Z/p"), we get the second statement of
our lemma. O

2.3 Etale Chern classes
The following proposition shows that we can invert étale Chern classes modulo some constants.

PROPOSITION 2.14. Let Y be a smooth finite simplicial scheme over K such that Y ~ sk,, Y.
Set d = maxs<y, dimYs. Let p” > 5, j > max{2d,2}, j > 3 for d =0 and p = 2, and 2i — j > 0.
There exists an integer D(d, m,i,j) depending only on d, m, i, and j such that the kernel and
cokernel of the Chern class map

K0 207) 0,270
are annihilated by D(d, m,1,j). Any prime p > d+ m + j + 1 does not divide D(d, m,1, j).

Remark 2.15. This proposition is a K-theory version of the following theorem of Suslin [Sus00,
GeilO].

THEOREM 2.16 Suslin. For Y a smooth scheme of dimension d over K, the change of topology
map
Hy, (Y, Z/p"(i)m) — HE (Y. Z/p" () m1)

is an isomorphism for i > d. Here Z/p™(i)p is the complex of motivic sheaves (Bloch higher
Chow complex).

Proof. To prove the proposition, we are going to argue by induction on m. The case of m =0
was treated in [Niz08, Proposition 3.2]. We computed there that

D(d,0,i,5) = (i — )M (d,i, j)M(d,i + 1, 5)M(dyi + 1,2) M (d, 3, 25) M (2d)*",

Assume that m > 1. For the inductive step, we need to filter Y by its skeletons. We work on the
site of schemes smooth over K equipped with the Zariski topology. Take a fibrant replacement
K — K. The pointed simplicial sets Hom(sk; Y, K/) form a tower of fibrations converging to
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Hom(Y, K/) [BK72, X.3.2]. Let F; be the fiber over % of Hom(sk; Y, K/) — Hom(sk;_; Y, K/).
Then, by Bousfield and Kan [BK72, Proposition X.6.3],

F, ~ Hom(sk; Y/sk,_1 Y, K/) ~ Q'N'K/(V;),
where
N'KT(V;) = K/ (Y;) Nkersi N - Nkers;_;
and s; : Y;—1 — Y; is a codegeneracy. In particular, the natural map
Hom(Y, K') 5 Hom(sk,, Y, KY)

is a weak equivalence.
For j > 2 and j + ¢ > 3, using again [BK72, Proposition X.6.3], we get the long exact sequence

KV Z ) — K5k Y, 20" — K (ke V20" — Ky (Y207 — . (217)
Here we set
K (Y, Z/p") = K;(skiY/sky_1Y,Z/p") = Kj1+(Y3,Z/p") Nker s; N - - Nker sj_;.
By functoriality, A-operations act on this exact sequence and this yields a sequence of y-gradings
—or! K (Y], Z/p") 5 arl K(sk, Y, Z/p") > ! K;(sk,y Y, Z/p") 2 ! K1 (Y], Z/p")

that is exact only up to certain universal constants. More precisely, we have the following lemma.
d

LEMMA 2.18. If the element [z] at any level of the long sequence (2.17) is a cocycle, then C|[z]
is a coboundary for the following constant C'

(i) ifdi([x]) = 0 then C = M(2i))M (2(j +t + d — i));
(i) if da([z]) =0 then C = M(2i))M(2(j +t+d —7));
(iii) ifd([z]) = 0 then C' = M(2))M(2(j +t +d + 1 —1)).

Proof. First, note that FJT K, (Y, Z/p™) = 0 since K;j(Y/,Z/p") C K;4+(Ys,Z/p") and
we have [Niz16, Lemma 4.3].

We will prove (i). The other cases can be proved in a similar way. Assume that [z] €
glriY K(sk; Y,Z/p") and look at the sequence

gry K (Y, Z/p") = gr’, Kj(ske Y, Z/p") = gr’, Kj(ske—1 Y, Z/p").

Assume that x € F;'Kj(sth, Z/p") is such that d;(]z]) = 0. That means that on the level of
the long exact sequence (2.17), dy(x) € F;*lKj(skt,l Y,Z/p"). We will need certain projectors
[Sou82, 2.8]. For two natural numbers a # b, denote by Agpk, k > 2, a family of integers such
that wjp_a| = D _p>9 Aabk(k* — kb). Let

Sab =Y Awk(Wx — k), da= [ Garr o= JI  dar a>2

k>2 2<b<a—1 a+1<b<j+m-+d
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Note that, for any z € K;(—,Z/p"), we have ¢,(z) € FYK;(—,Z/p"). Since the kth Adams
operation ¢y acts on grS K;(sk; Y, Z/p") as k¢, we have

M@2(j+t+d—i)z—¢; (z) € FTK;(sk Y, Z/p"),

so M(2(j +t +d —i))[z] = [¢}_;(x)]. Since d1z € FITKj(sk;—1 Y, Z/p") and by [Niz16, Lemma
4.3] the length of the y-filtration is j + ¢ — 1 + d, we compute that di(¢;_,(z)) = ¢}_;(d1z) = 0.
Hence, M(2(j +t+ d —1))[z] = [y] is such that d;(y) =0 and y € F;'Kj(sth, Z/p").

From the long exact sequence (2.17), we then get w € K;+(Y/,Z/p") such that dw = y.
Consider wy = ¢3(w) € F1K;14(Y/,Z/p"). We have

dawn)] = [i(dw)] = ] (ZAibmk(dw)]—kb[dw]))

2<b<i—1 “k>2
= T (3w = 49 ) ] = M2
2<b<i—1 “k>2
Hence, M (2i)M (2(j +t +d — i))[z] is a coboundary, as wanted. O

To proceed, we will need the following two lemmas.

LEMMA 2.19. For a d-dimensional scheme Y smooth over K, we have
M(d,i+ 1,2]‘)]\4(d,z’,2j)grfy K;(Y,Z/p") =0, 2i—j<O.

Proof. This is the K-theory version of the mod-p™ Beilinson—-Soulé conjecture. Recall that we
know its motivic version to be true. That is, H;;;](Y, Z/p™) =0 for 2i — 7 < 0 [AkhO7]. So, we
just need to translate this statement into K-theory. Recall that Levine [Lev04] has constructed
a Zariski Atiyah—Hirzebruch spectral sequence from motivic cohomology to K-theory:

Ey? = H3, (Y, Z/p"(q/2)m) = Ko—o(Y, Z/p").

Here the differential d, : E9 — EST 77! Denote by F';; the filtration on K-theory groups
defined by this spectral sequence. Levine showed [Lev04, 13.11] that

M(d,i,2§)Fag K; (Y, Z/p") C FiK;(Y,Z/p") C FauK;(Y,Z/p").
By the above, the kernel of the map
FIF K (Y, 2/p") — Fag /Fi K;(Y,Z/p")

is annihilated by M (d, i + 1,2j) and the cokernel by M(d, i,2j). By [Niz16, (4.4)], the same holds
for the map

FiJFYK (Y, Z/p") — FL/FF KL (Y, Z/p").
Since FYy;/Fiti K;(Y, Z/p") is a subquotient of Egifj’% = H;;;J (Y,Z/p"(i)rr), we are done. [

LEMMA 2.20. (i) For i,j as in Proposition 2.14, the kernel and cokernel of the Chern class map

&l et K(Yo, Z/p") — H (Y, 2 /0" (1)),
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where Hgf_j (Y, Z/p"(i)) = Hézti_j (Yo, Z/p™(i)) Nker s N ---Nkers; are annihilated by a

m—1’
constant T'(d, m,1,j). Any prime p > d + j + 1 does not divide T'(d, m, 1, j).
(ii) For 2i — j < 0, we have

i+ D) (j+d)M(d, i+ 1,25)M(d,i,25) grg K;(Y,),Z/p") =0.

Proof. Let us start with the first statement. For the kernel, take z € F;'K (Y., Z/p") such that

E,Let](x) = 0. Then D(d,0,i,j)x € FIt' K;(Yy, Z/p") N K;(Yy,, Z/p"). Set y = D(d,0,i,j)z. We
have

7 (y) = (=1)%ly mod F,$+2Kj(Ym, Z/p")NK;(Y,),, Z/p").
Since, by [Niz16, Lemma 4.3], F,{HZHKJ-(YW Z/p™) = 0, by the inductive argument, we get
i+ 1) (G +d)D(d, 0,4, §)x € FST K (Y, Z/p").

So, the kernel is annihilated by 4!(i +1)!--- (j + d)!D(d, 0,4, 7).

For the cokernel, take = € Hézti_J (Y, ,Z/p™(i)). Then D(d,0,i,j)x = E‘ftj (y) for some element

y of F!K;(Y,Z/p"). We need to show that some multiple of y lies in FLK;(Y,,,, Z/p"). For each
[, 0 <l <m—1, consider the following commutative diagram.

*

. i .
gt K (Y, Z/p") — gv), K;(Yin—1,Z/p")

—=ét —=ét
i Ci,j i Cij
*

S

H2 (Y, Zfp"(3)) —= HZ ™ (Y1, Z/p"(3))

Since s7(x) = 0, we have D(d, 0,4, j)s} (y) € FiT K;(Yy—1,Z/p"). Arguing just like in the proof
of Lemma, 2.18, we find that
M(2(j +d —)D(d, 0,4, j)ly] = ], ¥ € FyK;(Ym, Z/p"), 57 (y) = 0.
Hence, repeating this argument for all [, we get
D(d,0,i, /)" M2 +d—i)" W] =[], v € FJK;(Ym, Z/p") 0 K;(Y;, Z/D").

As above, il(i+1)!---(j+d)!D(d,0,i,5)"M2(j +d—i)"[yl = [v/], v € FLK;(Y,,,Z/p").
Hence, the cokernel is annihilated by 4!(i + 1)!--- (j + d)!D(d, 0,4,7)" " M (2(j + d —4))™. Set

T(d,m,i,j) =dl(i+ 1)!---(j +d)!D(d,0, i,j)m+1M(2(j +d—0)", 2i>j+m.
For the second statement, assume that 2i — j < 0 and take x € FjKj(Yn’l, Z/p"). By Lemma 2.19,
we have M(d,i+1,2j)M(d,i,2j)x € FXT K (Y, Z/p") N K;(Y,,,Z/p"). Arguing as above,
i+ 1) (G + d)!M(d,i+1,25) M (d,i,2))x € FSK (Y, Z/p").
Consider now the homotopy cofiber sequence

sky—1Y — sk, Y — sk, Y/ sk, 1 Y.

By [Nizl6, Remark 5.4], the étale Chern class maps are compatible with it and we get
the following commutative diagram (where we skipped the coefficients Z/p" and Z/p"(i),
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respectively).

) da . d . dy . da )
gty Kjv1(skm—1Y) — gt Kjrm (V) — gt} K;(skm Y) — gr) Kj(skm—1Y) — gr} Kjim-1(Yy)

—=ét —=ét —ét —ét —ét
l/ Cig+1 l/ Cij+m l/ Cij \L Cij \L Cij+m—1

2 (en1 ¥) == HEI(2) == HE (s ¥) == HE (o1 ¥) —= HET74(12)

Here we put H},(Y;,) = H (Ys,) NkersgN--- Nker s

m—1

Let us first look at the kernel of the map Efjt : grfy K;(skp, Y, Z/p") — HéQtZ_] (skp, Y, Z/p"(4)).
Diagram chasing and the inductive hypothesis together with Lemmas 2.18 and 2.20 imply easily
that this kernel is annihilated by

XMQ2G+m+d—a)il(i+ 1) (j+m+d)!
if 2 > j 4+ m; if 2 < j + m, we can drop the first term. Here we used the fact that the numbers
M(d,i+1,27) and M(d,,2j) that appear in Lemma 2.19 divide D(d, 0,1, j).
By a very similar argument, we get that the cokernel of the map €f]t : gr?y K;(sky, Y,Z/p") —
HZ (sky, Y, Z/p"(i)) is annihilated by
T(d,m,i,j +m)T(d,m,i,j +m—1)D(d,m —1,i,5)M(2)
XMQ2G+m+d—1ai)ili+ 1) (G+m—1+d)!

if 20 > 5+ m; if 2 = j +m — 1, we can drop the first term; if 2¢ < j +m — 1, we can drop the
first two terms.
Set

D(dam7laj) :T(dvmalaj_}_m)T(d?m_ 1)2)]+m_ 1)D(d’m_ 1717j+1)
x D(dym — 1,4, 5) M(2i) M(2G + m +d — )il (i + 1)+~ (j +m + d)!

for 2 > j +m; if 20 = j +m — 1, we drop the first term; if 2 < j +m — 1, we drop the first two
terms. Since an odd prime p divides M(() if and only if p < (I/2) + 1 and HY, (sk,, Y) =0 for
t > 2d+m+ 1, we get the last statement of the proposition. ]

3. Comparison theorems for finite simplicial schemes via K-theory

We are now ready to prove comparison theorems for finite simplicial schemes using K-theory.

3.1 Crystalline conjecture for finite simplicial schemes
We start with the crystalline conjecture.

3.1.1 Integral crystalline conjecture. We treat first its integral version. Let X be a smooth
proper finite simplicial scheme over Ok, Ox = W(k). Assume that X ~sk,, X and that
the dimension d < p —2, d = maxs<,, dim X;. We would like to construct functorial Galois-
equivariant morphisms

aap + H (X5, Z/p" (b)) — L(He (Xn){=0}).
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We will be able to do it under certain additional restrictions on the integers a,b, and d. Our
construction is based on the following diagram.

FY/FA Koy_o(Xo,, Z/p™) j; FYJFI Koy o( X3, Z/p"™)
lazfl;bfa lelé),thfa (31)
HE (X0, Sn(D)) HE (X%, Z/p" ()
Here 1 <b<p—1,2b—a >3, p" > 5, and p # 2. The Chern class map
Cooya + FVK (X0, Z/p") — HE X0y, Su(b))
is defined as the limit over finite extensions O /O of the syntomic Chern class maps
FY Koy o Xoy  Z/p") — HE(Xor, . Su(b)):

Due to [Niz16, Lemma 5.3], the Chern class maps ¢,  and ¢, _ factor through ny’*l yielding
the maps in the above diagram. The restriction map

5 EY Y Koy o( X0, Z/p") — FYJFo Koy o( X5, /")
is an isomorphism by Lemma 2.11. By Proposition 2.14, the étale Chern class map
Ciap—a + B/ F T Koy o( X0, Z/p") — HE (X7, Z/p" (b))

is an isomorphism if p > d+m 4+ 2b —a + 1.
Assume now that b > d, 2b —a > 3, and p — 2 > d + m + 2b — a. Define the morphisms

aap © He (X3, Z/p" (b)) — L(Hg (X,){-0})
as the composition agp 1= 9, ¢ 0, ( j*)_l(éibe_ 2) "%, where v, is the natural map
HE (Xog, Sn(b)) = L(HG(Xn){-b}).

Note that, by Proposition 2.3, this map is an isomorphism.
The following theorem generalizes our [Niz98, Theorem 4.1] from schemes to finite simplicial
schemes.

THEOREM 3.2. For any proper smooth finite simplicial scheme X over O = W (k), X ~ sk,, X,
the functorial Galois-equivariant morphism

aab + Hig (X7, Z/p" (b)) = L(HE(Xn){~b})

is an isomorphism if the numbers p,b,d are such that b >2d+3, p—2>2b+d+m for d =
maxgs<,, dim Xj.

Remark 3.3. The original constants that appear in [Niz98] are different than (worse than) the
ones we have quoted here. Also there we have assumed that the scheme X was projective over
Ok. However, one can easily modify the proof of Theorem 4.1 from [Niz98| by replacing the
weak Proposition 4.1 used in [Niz98] with its improved version (Proposition 3.2) from [Niz08] to
get the above theorem for schemes.
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Proof. By Lemma 2.11, Proposition 2.14, and Proposition 2.3, it suffices to show that the
syntomic Chern class map

Copa 815 Kov—a(Xow, Z/p") — HE (X0, (b))

is an isomorphism. Note that for a < 0 this is an isomorphism by Lemma 2.19.

We argue by induction on m > 0 such that X ~ sk,, X. The case of m = 0 is treated by
[Niz98, Theorem 4.1]. Assume that our theorem is true for m — 1. To show it for m, consider the
homotopy cofiber sequence

sky—1 Xoz — sk Xoz — skm Xo?/ skin—1 Xo

and apply the syntomic Chern class maps to it. We get the following map of sequences.

Kgb—a+l(5km*1 X) - Kgb—a+m(X7,7'L) - Ksb—a(Sk’m X) - Kgb—a(Skmfl X) - Kgb—a-&-m—l(X;n)
z l TR z l B i wn z l . : i B i
Ho Yk 1 X,b) —= H™(X/,,b) —= H"(skp X,b) —= H®(skm—1X,b) —= H* ™1(X,  b)

Here we set KI(Y) = g1} Ki(Yo.), H*(Y,*) = H{ (Yo, Sn(*)), and skipped the coefficients
Z/p"™ in K-theory. We also put

Ki (X)) =K Xn) Nkersin---Nkers H*(X] %) = H*(Xpn,*) Nkersi N---Nkers’ _,

m—1>

where each s; : X,,_1 — X, is a degeneracy map. The bottom sequence is exact. By Lemma
2.18, so is the top. By the inductive hypothesis and by the case m = 0 of this theorem plus
Lemmas 2.20 and 2.11, we have the isomorphisms shown. It follows that the syntomic Chern
class map

G pa gr? Kop—o(skm Xo, Z/p") — He (skim Xo., Sn(b))
is an isomorphism as well. Since
Kop—a(skm X0, Z/1") = Kop—a(Xop, Z/p")  and  H (sky Xo,, Su(b)) = Hg (X0, Sn(D)),

we are done. O

Example 3.4. Integral crystalline conjecture for cohomology with compact support. As a corollary
of the above comparison theorem, we obtain a comparison theorem for cohomology with compact
support. Consider a proper smooth scheme X over O = W (k). Let ¢ : D — X, built from m
irreducible components that are smooth over O, be the divisor at infinity of X. Let U = X \ D.
Consider the simplicial scheme C/(X, D) := cofiber(D, % X). We have C(X, D) ~ sk, C(X, D).
Equip X with the log-structure associated to D. Applying the above constructions to C(X, D),
we obtain the basic following diagram

FY /P, (Xog. Doy 2/ —— F/FYKS, (X D 2/0")

—syn —ét
lcb,zbﬂz ZJ/Cb,Qb—a

H{(C(Xo., Do), Sn(D)) HE (C(X%, D), Z/p" (b))
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and the induced period morphism
agy  Hg (C(X5z, D), Z/p" (b)) — HE(C(Xog, Do), Sn(b))-

But, by Lemma 2.1,

H (C(Xg, Dg), Z/p" (b)) ~ HE (Ug, Z/p" (b)),

H&(C(Xog, Dog), Sn(b) ~ Hi (Xor, Sn(b)).
Hence, we obtain a period morphism

gy + He (Uge, Z/p"(0)) — H; (X0, Sn(b))

that composed with the map Hg (Xo,.,Sn(b)) — L(Hg (X,){—b}) yields a Galois-equivariant

ét,c cr,c
map

aap + H (U, Z/p" (b)) — L(He, o(Xn){—}).

We get the following corollary of Theorem 3.2.

COROLLARY 3.5. The Galois-equivariant morphism
gy : Hé (Ug, Z/p" (b)) — L(Hg o(Xn){—0})

is an isomorphism if the numbers p, b, d are such that b > 2d+ 3 and p —2 > 2b+d + m.

3.1.2 Rational crystalline conjecture. We will treat now the rational crystalline conjecture.
Let X be a smooth proper finite simplicial scheme over O, where the ring Ok is possibly
ramified over W (k). Assume that X =~ sk,, X and set d = maxs<,, dim X;. For large b, we will
construct Galois-equivariant functorial period morphisms

Qgp : Hgt(X?7 Qp(b)) — He(Xo) ® B;r‘

Assume that p™ > 5, 2b — a > max{2d,2}, 2b —a >3 for d =0 and p =2, and a > 0. Niziol
[Niz16, Lemma 5.3] and Lemma 2.11 give us the following diagram.

FY P Koy o( X0, Z/p") % FY /M Koy o( X3, Z/p™)
| =
Hg (Xog: S(0)) Hg (X%, Z/p" (b))
Define the morphisms
gy Hg (X, Z/p" (b)) — He(Xogn){—b}
as the composition
aly(x) = wnﬁzgz_a(j*)_lD(d, m, b, 2b — a)(Eifgb_a)_l(D(d, m,b,2b — a)x),

where 1), is the natural projection

n : Hg (Xog, S,(0)) = Hg(Xogn).
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Here (Eg’tzb_a)*l(D(d,m,b, 2b — a)x) is any element in the preimage of D(d,m,b,2b — a)x (by
Proposition 2.14, D(d,m,b,2b — a)x lies in the image of Ef:“%_a). By Proposition 2.14, any
ambiguity in that definition comes from a class of y such that D(d,m,b,2b— a)ly] = [2],
z € F,?JrlKgb,a(X?, Z/p"), and this ambiguity we killed by twisting the definition of o, by
a factor of D(d, m,b,2b — a).

Define the morphism

Qgp - Hgt(va Qp(b)) — He, (Xo) QW (k) B {—b}
as the composition of Q® limay, with the Kato-Messing isomorphism he; ng(X@?)Q ~
n

H&(Xo) @w k) BE and the division by D(d, m,b,2b— a)?.
The following theorem generalizes our [Niz08, Theorem 3.8] from schemes to finite simplicial
schemes.

THEOREM 3.6. Let X be any proper smooth finite simplicial Ok-scheme. Assume that X ~
sk, X and let d = maxs<y, dim X,,,. Then, assuming that b > 2d + 2, the functorial Galois-
equivariant morphism

Qap © H (X?’ Q,(b)) ®q, Ba — Hg (Xo) QW (k) B {0}

is an isomorphism. Moreover, the map oy, preserves the Frobenius, is compatible with products
and Tate twists, and, after extension to Bygr, induces an isomorphism of filtrations.

Proof. We argue by induction on m > 0. The case m = 0 is treated by [Niz08, Theorem 3.8].
Assume that our theorem is true for m — 1. To show it for m, consider the homotopy cofiber
sequence

skp—1 Xo — skp Xo — skm Xo_/skm-1 Xo

and apply the period morphisms o . to it. We get the following map of sequences.

He skt X,0) —= HE™(X},,b) —>= HE (skm X,b) — HE (skm—1 X,b) —= HL ™ (X/,,b)

4 \L Xa+1,b i \L Xa—m,b \L Qab i i Qab i l/ Xa—m+1,b

HE N (skm—1 Xo,b) = HE ™ (Xpn.0,b) = Hé&(skm Xo,b) = Ha(skm-1 Xo,b) = HE ™ .05 D)
Here we put H;, (T,b) = H (1%, Qp(b)) ® Ber, H3(T,0) = Hi(T) @ Ber{—b}. And we defined
HZ (X! ,b) = Hf (X, b) NkersiN---Nkersk 1,
H: (X, 0,0) = H\(Xm0,b) Nkers§N---Nkersy,_q,

m,0

where each s; : X;,,—1 — X, is a degeneracy map. The horizontal sequences are exact by func-
toriality and finiteness of the étale and crystalline cohomologies. By the inductive hypothesis,
we have the isomorphisms shown in the diagram. Hence, the period morphism

b+ He (skin X7 Qp(b)) ®Q, Ber — Hg, (skm Xo) QW (k) B {0}

is an isomorphism. Since HZ (skn, X7z, Qp(b)) = HL (X7, Qp(b)) and HE(skn, Xo) = HL(Xo),
this proves the first claim of the theorem.
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We will now check that the morphism «gp is compatible with products. This follows from
the fact that the morphism he, is compatible with products and from the following lemma. [J

LEMMA 3.7. Let x € H*(X3,Z/p"(b)), v € H(X3%,Z/p"(e)), 2b—a>2, 2e —c>2, and
p" > 5. Set K(b,e) =—(b+e—1)!/((b—1)!(e —1)!). Then (assuming that all the indices are
in the valid range)
K(ba €)D(d, m, bv 2b — a)QD(da m,e, 2e — C)Qag—i-c,b—&—e(“r U y)
= K(b,e)D(d,m,b+e,2b+ 2e — a — c)?a,(z) U a(y).

Proof. Use the product formulas from [Niz16, Lemma 5.3] and [Niz16, Remark 5.4]. O
The claim about Tate twists follows from the following computation.

LEMMA 3.8. Let p™ > 5 and b > 2d + 2. We have the following relationship between Tate twists:
(—=b)D(d, m,b,2b — a)*a} 4,1 (Cuz) = (—=b)D(d,m, b+ 1,2b+ 2 — a)* ol ()t

Proof. This follows just as in [Niz08, Lemma 3.6] from Lemma 3.7 and the fact that E‘itQ(Bn) =(p
and @5 (Bn) =t (see [Niz98, Lemma 4.1]). Here 8, € K5(K,Z/p") and f, € Ko(Og, Z/p") are
the Bott elements associated to (,.

Now, to prove the claim about filtrations, first we evoke Lemma 2.5 that yields compatibility
of the period morphism with filtrations and then we note that it suffices to prove the analog of
our claim for the associated grading, i.e., that, for ¢ € Z, the induced map

aa + HE (X7, Qp(b)) @q, C(i)— @ H* 7 (X, Y1) @k Cli+b = j)
JjEZ

is an isomorphism. But this can be proved by an analogous argument to the one we used to
prove the first claim of the theorem. O

Ezxample 3.9 Rational crystalline conjecture for cohomology with compact support. Again, as a
special case consider a smooth proper scheme X over Ok with a divisor D. We assume D to
have relative simple normal crossings and all the irreducible components smooth over O . Let U
denote the complement of D in X and d be the relative dimension of X. Equip X with the log-

structure induced by D. Consider the simplicial scheme C/(X, D) := cofiber(D, — X), where all
the schemes have trivial log-structure. We have C'(X, D) ~ sk,,, C(X, D), where m is the number
of irreducible components of D. Applying the above constructions to C(X, D), we obtain the
following basic diagram.

FYJFYES, (Xog, Dog, B/p") —— FY/FYMKS, (X, D, 2/p")

[ et
Hgt,c(XOf’S;z(b)) Hgmc(va Z/pn(b))

Recall that we have

HE (Xog, 8,(0) = Hg (C(Xog, Dog), S, (D).
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From this, we get a Galois-equivariant map
aap : Hy (Uge, Qb)) — HE, (Xo) @ Ber{—b}
and the following corollary of Theorem 3.6.

COROLLARY 3.10. The Galois-equivariant morphism
Qgp - Hgt,c(UF7 Qy(b)) ® Ber — ng,c(XO) ® Ber{—b}

is an isomorphism for b > 2d + 2. Moreover, the map «g preserves the Frobenius, is compatible
with products and Tate twists, and, after extension to Byr, induces an isomorphism of filtrations.

3.2 Semistable conjecture for cohomology with compact support

We will now prove a comparison theorem for cohomology with compact support in the semistable
case using K-theory. We start with the definition of the period morphism. Let X be a proper
scheme over Ok with (strictly) semistable reduction and of pure relative dimension d. Let 7 :
D — X be the horizontal divisor and set U = X \ D. Equip X with the log-structure induced by
D and the special fiber. Assume that p™ > 5 and b > 2d + 2. We will define a period morphism

ag, : HI (U, Z/p" (b)) — He o(X0gn){ b}

We will use the following diagram.
F’S/F's—HK(Q:a—b(XOf’ D@?, Z/pn) R F*?/F’$+1K§a—b(Xfa D?a Z/pn)

lzzgafb léle;cza—b
Hg (Xog, S, (b)x (D)) H (Ug, Z/p" (b))

where j : Xz < Xo. is the natural open immersion and we set

HS

ét,c

(Xog: Sy(B)x (D)) = lim HA(C(Y, Dy), Sy(b)).

YE?(‘(Qf

Here the log-structure on the schemes Y, Dy is trivial.
Define

iy (2) = u(7*) T edy, M(2d,0+1,2(20 — a))(5*)
x M (2d,b,2(2b — a)) D(d, d, b,2b — a)(e}'y, o)~ (D(d, d,b,2b — a)w),
where v, (7*) "¢ is the composition

a € a ()~ ! a Yo 1ra
HE (Xow, Sp(0)x (D)) = H (Xor, S, (0) —— Hé (Xow, Sp(b) = He o(Xogn){ -},

cr,c

where we set

HY

ét,c

(Xor, Sp(b)) = lim  HE(C(Y, Dy), S, (0)).
YEXO?

Here the log-structure on the schemes defining C(Y, Dy) is induced from the special fiber. The
pullback map

. HY

ét,c

(X0g: 8, (0) = H; (Ko, S, (b))

is an isomorphism by a simplicial (and easy to prove) version of [Niz08, Corollary 2.4].

1939

https://doi.org/10.1112/50010437X20007344 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007344

W. Niziotr

In the definition of o, (), for v € H (U3, Z/p™ (b)), we take (c*g,t%_a)*l(D(d, d,b,2b—a)x) €
F’?/F'S)JrlKgb—a(Xf? D4,Z/p") to be any element in the preimage of D(d,d,b,2b — a)x (this
is possible by Proposition 2.14). By Proposition 2.14, any ambiguity in that definition comes
from a class of y such that D(d,d,b,2b—a)[y| =[z], z € FgHbe_a(X?v D,Z/p"™), and that
we killed by twisting the definition of «, by a factor of D(d,d,b,2b— a). Similarly, for = €
FY/FIKS, (X, D, Z/p™), we take (j*)~*(M(2d,b,2(2b — a))x) to be any element in the
preimage of M (2d,b,2(2b — a))x under j*. This is possible by Lemma 2.12 and by the same
lemma any ambiguity is killed by twisting the definition of o}, by M(2d,b+ 1,2(2b — a)).

Let b > 2d + 2. We can now define the rational period morphism

aay : H (Uge, Qp(b)) — HE (Xo/W (K)") @y (1) Bt {—b}

as the composition of Q ® lim aj}, with the map [Kat94a, 4.2 and 4.5]
n

hr Q ® @ng,c(XOf,n) - ng,c(XO/W(k)O) ®W(k) Bt

and with the division by M (2d,b + 1,2(2b — a))M (2d,b,2(2b — a))D(d, d, b, 2b — a)?.

The morphism g, preserves the Frobenius, the action of Gal(K/K), and the monodromy
operator, and, after extension to Bgg, is compatible with filtrations (use the simplicial analog
of Lemma 4.8.4 from [Tsu99a|, which can be easily shown, as in §2.1.5, by lifting all the maps
functorially to the co-derived category as was done in detail in [Beil3] and [NN16]; see also
[Tsu98, §7]).

We have the following generalization of our [Niz08, Theorem 3.8] (where the divisor at infinity
D is trivial).

THEOREM 3.11. Let X be a proper scheme over Ok with semistable reduction. Let D be the
horizontal divisor, let U = X \ D, and let d be the relative dimension of X. Equip X with the
log-structure induced by D and the special fiber. Then, assuming that b > 2d 4+ 2, the morphism

oo+ Hg (U, Qp(b)) ®q, Bst — HE, o(Xo/W (K)°) @y (1) Bst {~b}

is an isomorphism. The map ag, preserves the Frobenius, the action of Gal(K/K), and the
monodromy operator. It is independent of the choice of w and compatible with products and
Tate twists. Moreover, after extension to Bgg, it induces a filtered isomorphism

aay : Hg (U, Qp(D)) ®q, Bar — Hig (Xk) @k Bar{-0}.

Proof. Consider the finite semistable vertical simplicial log-scheme C' = C'(X, D). The individual
schemes in the simplicial scheme are equipped with the log-structure induced from the special
fiber. We have C'(X, D) ~ sk,,, C(X, D) if D has m irreducible components. We filter C(X, D)
by its skeleta sk; C(X, D) and will show, by induction on i > 0, that the period morphism®

aay : Hg (ski C(X, D), Qp(b)) ©q, Bsy — H(ski C(X, D)o/ W (k)") @) Bt {~b}

1t is easy to see that the definition of our period morphism extends, in a compatible manner, to the skeleta of
C(X,D)
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is an isomorphism. Start with ¢ = 0, where the statement is known. For ¢ > 1, assume that our
theorem is true for ¢ — 1. To show it for i, consider the homotopy cofiber sequences

Skz‘_l C(K Dy) — Ski C(Y, Dy) — Ski C(K Dy)/ Ski_l C(}/, Dy)

and apply the period morphisms o« to it. We get the following map of exact sequences.

Hgt_l(ski_l C,b) — Hgt_Z(CZ’ b) — H (sk; C,b) —= H{ (ski—1 C,b) — Hgt_”l(Cz{,b)

l l Qa+1,b l l/ Xa—i,b \L Qab ¢ l Qab ¢ \L Qa—i+1,b

H& N (ski—1 Co,b) — HE ' (Cfg,b) — H(ski Xo,b) — HE&(sk;—1 Co,b) — Hg™1(C},b)

Here we put Hj (T, *) = H} (T, Qp(b)) ® By, H3(T,b) = H}.(T) @ Bt {—b}. And we defined

H(CLb) = H; (Ci,b) Nker sy N -+ Nkers!_q,
H:.( 2,0, b) = H.(Ci0,b) Nkersgn---Nkers;_q,

where each s; : sk;_1 C' — sk; C' is a degeneracy map. By the inductive hypothesis, we have the
isomorphisms shown in the diagram. Hence, the period morphism

aqp * Hg (ski O, Qp()) ®q, Bst — H,(sk; Co) @w(r) Bst{—b}

~

is an isomorphism. Since HE (sky, C, Qp(b)) = HE (Cx, Qp(b)) and HE(skm Co) = HE(Cy),
this proves the first claim of the theorem.

For the claim about the filtrations, we need to show that 0‘25 (that is, agp extended to Bgg)
induces an isomorphism on filtrations. Passing to the associated grading, one reduces to showing
that the induced Hodge—Tate period map

oy + C® HE (X7, Qp(b)) — Hiyr(Xi,b),

where we set
Hir(Xk,b) =P CO—j) ox H* 7 (X, ),
JEZ
is an isomorphism. But this can be checked exactly as above.

The claim about the uniformizer can be checked as in the proof of [Niz08, Theorem 3.8].
The claims about products and Tate twists can be checked as in the proof of Theorem 3.6 using
analogs of Lemmas 3.7 and 3.8 (where the constants have to be modified accordingly to the
definition of the maps o). O

4. Comparison of period morphisms

This section has two parts. In the first part we formulate a K-theoretical uniqueness criterion
for p-adic period morphisms for cohomology with compact support and, using it, we prove that
the period morphisms defined using the syntomic, almost étale, and motivic methods are equal.
In the second part we use h-topology and the Beilinson (filtered) Poincaré lemma to formulate
a simple uniqueness criterion for p-adic period morphisms. Using it, we show that the p-adic
period morphisms of Faltings, Tsuji (and Yamashita), and Beilinson are the same whenever they
are defined (so, in particular, for open varieties with semistable compactifications). Moreover,

1941

https://doi.org/10.1112/50010437X20007344 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007344

W. Niziotr

they are all compatible with (possibly mixed) products. This all holds up to a change of the
Hyodo—Kato cohomology described in §4.3.2.

4.1 A simple uniqueness criterion
We start with a very simple uniqueness criterion.

4.1.1 The case of schemes. Recall the following formulation of the semistable conjecture of
Fontaine and Jannsen.

CONJECTURE 4.1 Semistable conjecture. Let X be a proper, log-smooth, fine, and saturated
Oj;-log-scheme with Cartier-type reduction. There exists a natural Bg-linear Galois-equivariant
period isomorphism

(673 Hét(XF,tr’ Qp) ®Qp Bst = HIZ{K(X) ®F BSt

that preserves the Frobenius and the monodromy operators and, after extension to Byr, induces
a filtered isomorphism

Q; Hét(XF,tN Qp) ®Qp Bar = HéR(XK) QK Bar.-

This conjecture was proved, possibly under additional assumptions, by Kato [Kat94a], Tsuji
[Tsu99a, Tsu03], Yamashita [Yamll], Faltings [Fal02], Niziol [Niz08], and Beilinson [Beil3].
It was generalized to formal schemes by Colmez and Niziol [CN17] and by Cesnavicius and
Koshikawa [CKIQ] (who generalized the proof of the crystalline conjecture by Bhatt, Morrow
and Scholze [BMS18]) in the case when there is no horizontal divisor.

Let > 0. For a period isomorphism «; as above, we define its twist

Qi Hgt(XKtrv Qp(r)) ®q, Bst — HIZ{K(X) ®F Bst{—r}

as aj, :=t"oue ", Clearly, it is an isomorphism. It follows from Conjecture 4.1 that we can
recover the étale cohomology with the Galois action from the Hyodo—Kato cohomology:

i+ Hy (X7 0, Qp(r) = (Hi (X) @ Bse) V=" 0 F7 (Hig (Xx) @k Bar). (4.2)

For r > i, by Lemma 2.9, the right-hand side is isomorphic to Hgt(X@?, S'(r))q, i-e., there exists
a natural isomorphism

Hi(Xog, S'(r)q = (Hik(X) @F Bee) V=" 0 F'(Hgp(Xk) @k Bar)-

We will denote by
Qi Hét(XKtrv Qy(r)) = Hgt(XOfaS/(r))Q

the induced isomorphism and call it the syntomic period isomorphism.
The following lemma is immediate.

LEMMA 4.3. Let r > i. A period isomorphism «;,, and hence also a period isomorphism o;
satisfying Conjecture 4.1, is uniquely determined by the induced syntomic period isomorphism
QG
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4.1.2 The case of simplicial schemes. The above discussion carries over to finite simplicial
schemes. That is, we assume that we have a period isomorphism ¢; as in Conjecture 4.1 but for a
finite simplicial scheme X with components as in Conjecture 4.1. It then yields an isomorphism
a;r as in (4.2) for i < r. We will need the following analog of Lemma 2.9.

LEMMA 4.4. Let r > i. There exists a natural isomorphism
Hy(Xo,S'(r)q = (Hik(X) @p By) V="' N F"(Hir (Xk) ®k Bar).

Proof. By functoriality of all the maps involved, the proof of Lemma 2.9 yields a quasi-
isomorphism

-~ P L
Rl&t(Xop, S'(r))q = [(RIuk(X) ©F By)V =097 — (RTar(Xk) ®x Bp)/F'] -

We have natural isomorphisms
H'((RTux(X) ©p BH)N="7) = (Hjjk (X) @ BE)V 007,
H'(RTar(Xk) @x BiR)/F") ~ (Hir(Xx) @k Bg)/F".

The first isomorphism holds because Hiy (X)®p BY, is a (¢, N)-module (see [NN16, proof of
Corollary 3.25] for an argument) and the second one because we have a degeneration of the
Hodge—de Rham spectral sequence for X. This yields a natural long exact sequence

. . o Tr® . . 8 .
(Hid (X) @p BH)N=00=" 228 (HI (X k) @k BJR) /[ FT——Hiy (X0, S'(1)q
. — — 'a 7T® .
— (Hik(X) @p BH)N=00=7" 2228 (HiL (X k) @k BJR)/F"

It suffices thus to show that, for i < r, the map 0 in the above exact sequence is zero. Or
that the map

I — =i — T Pr QL -
(Hipd (X) @p Bey) V=007 225N (X ) @k Bar)/F"

is surjective. But this follows from the fact that the pair Higl(X), Hg (Xk) is an admissible
filtered (¢, N)-module such that FTHE{1 (Xx) =0 (see [CN17, Proposition 5.20]). O

As above, we will denote by
di”r : Hét (X?,txﬁ Qp(r)) :> Hgt(X(Q?’ S/(T))Q

the induced isomorphism and call it the syntomic period isomorphism. Again, the following
lemma is immediate.

LEMMA 4.5. Let r > 4. A period isomorphism «;,, and hence also a period isomorphism «;
satisfying Conjecture 4.1 for X, is uniquely determined by the induced syntomic period morphism
QG

4.2 Comparison of period morphisms for cohomology with compact support

We will prove in this section that the comparison morphisms for cohomology with compact
support defined using the syntomic, almost étale, and motivic methods are equal. We will use
for that a motivic uniqueness criterion.
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4.2.1 A K-theoretical uniqueness criterion. We will prove now a uniqueness criterion for
period morphisms that generalizes the one stated in [Niz09]. Let X be a proper scheme over O
with semistable reduction and of pure relative dimension d. Let i : D < X be the horizontal
divisor and set U = X \ D. Equip X with the log-structure induced by D and the special fiber.

PROPOSITION 4.6. Let r > 2d + 2. There exists a unique semistable period morphism
Qi - Hét,c(U?7 Qp(r)) — Hét(XOf7 Sl(r>(D))Q

that makes the diagram from § 3.2 commute.

E,tmn—i are

isomorphisms rationally by Proposition 2.14 and that the restriction map j* is an isomorphism
by Lemma 2.12. O

Proof. Consider the diagram mentioned and use the fact that the étale Chern classes ¢

4.2.2 Comparison of period morphisms for cohomology with compact support. The compar-
ison morphisms of Faltings [Fal89, Fal02] and Tsuji [Tsu99a] extend easily to finite simplicial
schemes. This was done explicitly in [Kis02, Tsu98]. In particular, they extend to cohomology
with compact support. We will show in this section that they are equal to the period morphisms
constructed in §3. We will use for that the uniqueness criterion for period morphisms stated
above. We will do the computations just for cohomology with compact support in the semistable
case. The arguments in other cases are analogous.

THEOREM 4.7. (i) There exists a unique natural p-adic period isomorphism
i+ Hy (U, Qp) ® By = HY, (Xo/W (K)°) @iy Bst
such that:

a) oy is Bst—]inear, Galois e uivariant, and compatible with Frobenius;
q P
b (673 extended to BdR, induces a filtered isomorphism
’ P

af®: Hy (Ug, Qp) ® Bar = Hip o(Xk) ® K Bar;
(¢) «; is compatible with the étale and syntomic higher Chern classes from p-adic K-theory.

(ii) The period morphisms of Faltings, Tsuji, and Niziol are equal.”

Proof. The first claim follows from Proposition 4.6 and Lemma 4.5.
For the second claim, choose r such that r > 2d + 2 and r > i. It suffices to show that the
F T

Faltings, Tsuji, and Niziol period morphisms o] ,., &

N
i and Yy

O‘;'k,r : Hét,c(U?’ QP(T)) @ Bt = ng,c(XO/W(k)O) ®W(k:) BSt{_T}v

and their de Rham analogs are equal. For that, apply the first claim. The needed compatibility
of the period morphism with higher p-adic Chern classes is clear in the case of the map a%
and was proved in [Niz09, Corollaries 4.14 and 5.9] for the other two maps. These corollaries are
stated for proper log-schemes but their proofs carry over to the case of finite simplicial schemes
(with the same properties). O

" By Niziol period morphisms, we mean the morphisms defined in § 3.
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4.3 Comparison of Tsuji and Beilinson period morphisms

We prove in the next two sections that the Beilinson period morphisms [Beil2, Beil3] agree
with the period morphisms of Faltings and Tsuji whenever the latter are defined (and modulo a
change of Hodo—Kato cohomology). Our strategy is to appeal to Lemma 4.3 and then to sheafify
the syntomic morphisms induced by the latter period morphisms in the h-topology on the generic
fiber. We identify the syntomic period morphisms on the sheaf level as certain canonical maps
appearing in the fundamental exact sequence. Since we had shown in [NN16] that the same
maps are used to define the Beilinson syntomic period morphism, it follows that all the period
morphisms are equal. Along the way we obtain useful properties of the Faltings and Tsuji period
morphisms.

We start with comparing the period morphisms of Tsuji and Beilinson.

4.3.1 Tsuji period morphism. We will briefly discuss the period morphism used by Tsuji.
Let X be a log-smooth log-scheme over O. Recall that Fontaine and Messing, and Kato have
defined natural period morphisms on the étale site of Xy [FM87, Tsu98]

ﬂ,,T :Sn(r) — i*RjZ/p™(r), r>0,

where i:Xo— X,j: Xk — X are the natural immersions. Here we set Z/p"(r) :=
(1/(p*a)Zy(r)) @ Z/p™, where a is the largest integer < r/(p —1). Recall that we have the
fundamental exact sequence [Tsu99a, Theorem 1.2.4]

0— Z/p"(r) — J 1_—¢T>Acr,n — 0,

where
I = {x e I, | (@) € P Acones}/p"

for some s > r.
The above period morphisms were used to prove the following comparison theorem.

THEOREM 4.8 (Tsuji [Tsu99a, 3.3.4, Theorem 3.4.4]). (i) Let X be a semistable scheme over
Ox or a finite base change of such a scheme. Then, for any 0 <14 < r, the kernel and cokernel of
the period morphism

B H (Salr)x) — T RULZ/DM() x|

are annihilated by p for an integer N which depends only on p, r, and i. Here i and j are
extensions of i and j to X := Xo__.
(ii) Assume moreover that X is proper. Then, for any 0 < i < r, the induced morphism

Hét(XOfv S(r))q — Hét(XKtr’ Qp(r))
is an isomorphism.

For a proper semistable scheme X over Ok and r > ¢, the modulo p™ and rational semistable
Tsuji period morphisms are defined as
B
1ot Rle(Xog, S, (r) ——RLe (X0, Sn(r)) ——Rle(Xg 1y Z/P" (1)),
B

BY: RTe(Xop, 8'(r)q——RTat (X0, S(r)q——RTat (X 1 Qp(r)) = RTe(Xg ., Qp(r)).
(4.9)
By Theorem 4.8, 3! is a quasi-isomorphism after truncation at T<pe
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The Tsuji period morphism
O‘Er : Hét(XKtr, Qp(r))H(HIi{K(X) QF Bst)N=0,¢=pT

is defined by composing the above morphism with the map h, (and changing By to Bg).

4.3.2 Beilinson comparison theorem. In [Beil3], Beilinson proved the following comparison
theorem.

THEOREM 4.10 Semistable conjecture [Beil3]. Let X be a proper semistable scheme over O
endowed with its canonical log-structure. There exists a natural Bg-linear Galois-equivariant
period isomorphism®

ary + Hy (X o Qp) ®q, Bst = Hifit (X) ®F By

that preserves the Frobenius and the monodromy operators and, after extension to Bgr, induces
a filtered isomorphism

af i Hy (X 0 Qp) ©q, Bar = Hir(Xx) @k Bar.

We added the subscript h (for h-topology) to underscore the different formulation from
Theorem 4.1. Here Hgf;(X ) is the Beilinson-Hyodo-Kato cohomology [Beil3, 1.16.1] and the
base change to the de Rham comparison uses the Beilinson-Hyodo-Kato isomorphism

pP HEUX) ©or K 5 Hig(Xk)

as well as the canonical map ¢, : Bgy — Bgr [NN16, §2.1]. A priori, these Hyodo-Kato-type
constructions are not the same as the original ones (for one thing, they are independent of the
choice of the uniformizer m; in fact, they should be seen, in a sense that can be made precise, as
associated to the canonical choice of p). However, the two constructions are related by a natural
quasi-isomorphism, i.e., there is a natural map s that makes the following diagram commute
[NN16, (31)].

. P .
Hig(X) — Hig(Xk)

e

Bii
Hyg(X)

4.3.3 Beilinson equivalence of topoi. To describe the Beilinson period morphism, we will
need to work with h-topology on the generic fiber. Beilinson has shown that h-topology has a
base consisting of semistable schemes. We will review his result briefly.

For a field K, let Varg denote the category of varieties over K. We will equip it with
h-topology (see [Beil2, 2.3]), i.e., the coarsest topology finer than the Zariski and proper topolo-
gies.” We note that the h-topology is finer than the étale topology. It is generated by the
pretopology whose coverings are finite families of maps {Y; — X} such that Y :=][Y; - X

8 See §4.3.6 for a precise definition.
9 The latter is generated by a pretopology whose coverings are proper surjective maps.
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is a universal topological epimorphism (i.e., a subset of X is Zariski open if and only if its
preimage in Y is open). We denote by Varg p, X, X € Varg, the corresponding h-sites.

Let K be now as in § 2. An arithmetic pair over K is an open embedding j : U < U with dense
image of a K-variety U into a reduced proper flat V-scheme U. A morphism (U,U) — (T, T)
of pairs is a map U — T which sends U to 7. In the case that the pairs represent log-regular
schemes, this is the same as a map of log-schemes. For a pair (U, U), we set Vi := I'(U, Op) and
Ky :=T'(Uk, O). The ring Ky is a product of several finite extensions of K (labeled by the
connected components of U) and, if U is normal, Vi is the product of the corresponding rings
of integers.

A semistable pair over K [Beil2, 2.2] is a pair of schemes (U, U) over (K, V) such that:

(i) U is regular and proper over V;
(ii) U\ U is a divisor with normal crossings on U;
(iii) the closed fiber Uy of U is reduced and its irreducible components are regular.

A closed fiber is taken over the closed points of Vi;. We will think of semistable pairs as
log-schemes equipped with log-structure given by the divisor U \ U. The closed fiber U has the
induced log-structure.

A semistable pair over K [Beil2, 2.2] is a pair of connected schemes (T, T) over (K, V) such
that there exist a semistable pair (U, U) over K and a K-point « : Ky — K such that (T, T) is
isomorphic to the base change (U, UV)' We will denote by 77% the category of semistable pairs
over K.

Let, for just a moment, K be any field of characteristic 0. A geometric pair over K is a pair
(U,U) of varieties over K such that U is proper and U C U is open and dense. We say that
the pair (U,U) is an nc-pair if U is regular and U \ U is a divisor with normal crossings in U;
it is a strict nc-pair if the irreducible components of U \ U are regular. A morphism of pairs
f:(U1,U;) — (U,U) is amap U; — U that sends U; to U. We denote the category of nc-pairs
over K by Pxf.

For the category P3: mentioned above, let v : (U, U) — U denote the forgetful functor. Beilin-
son proved [Beil2, 2.5] that the category (73%,7) forms a base for Varﬁh. This implies that
induces an equivalence of the topoi

7y Shvi(PE) = Shvy,(Varg).

Similarly for the categories Py and Py (and the category Varg).

4.3.4 Definitions of cohomology sheaves. We will now recall briefly the definition of geo-
metric syntomic cohomology, i.e., syntomic cohomology over K, from [NN16], and the related
cohomologies from [Beil3].

(i) Absolute crystalline cohomology. For (U,U) € Pz =0, we have the absolute crystalline
cohomology complexes and their completions

RFcr(U; Ua j[r])n = RFcr(Un,éta Ru*j[r])a
R (U, U, J") := holim, RC.(U, U, J),,,

chr(U,U, j[r])Q = RFcr(U7U7 j[r}) ® QP’
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where u: Uper — Uyt is the natural projection. The complex RI,(U,U) is a perfect Ac,-
complex and

Rl (U,U)n ~ RI(U,U) @4 Ao /p" ~RTo(U,U) @ Z/p".

In general, we have RL(U,U, J"), ~ RI.(U, U, 7" @ Z/p™. Moreover, by [Tsu99a, 1.6.3
and 1.6.4],

Jg] = RFcr(Spec(F), Spec(V)’ j[r])

The absolute crystalline cohomology complexes are filtered E., algebras over A, A, or
A Q. respectively. Moreover, the rational ones are filtered commutative dg algebras.

Let jc[f ] and A, be the h-sheafifications on Vary of the presheaves sending (U, U) € 73% to
Rl (U, U, J [7"]) and RT (U, U), respectively. Let jc[rr]n and A, denote the h-sheafifications of

the mod-p™ versions of the respective presheaves; and let \TC[;]Q and A¢ q be the h-sheafifications
of the rational versions of the same presheaves.

For X € Varg, set RTe(X)) := RT(Xp, Aer). It is a filtered (by RT(X, J&), 7 > 0) Eo
A ;-algebra equipped with the Frobenius action ¢. The Galois group Gi acts on Varg and it
acts on X — RI'¢;(X},) by transport of structure. If X is defined over K, then Gk acts naturally
on R (X3).

(ii) Geometric syntomic cohomology. For r > 0, the mod-p™, completed, and rational syntomic
complexes Rlsyn (U, U, 1)y, Rlsyn(U, U, 1), and RTsyn(U,U,7)q are defined by the formulas

Ry (U, T, ) = [RTe(U, T, T —2 =2 RTe (U, T)a)),
RIgyn (U, U,r) := holim,, RIgyn (U, U,7)n,
Ry (U, T, 7)q = [RTe:(U, T, T q——2RTe:(U, U)q)].

We have RIgyn (U, U, 1)y ~ Rlsyn(U, U, 7) @1 Z/p™. Let S'(r) be the h-sheafification on Varg
of the presheaf sending (U,U) € Pz to RIgyn(U, U,r). Let S/ (r) and 8'(r)q denote the
h-sheafifications of the mod-p™ and the rational versions of the same presheaf, respectively.

For r > 0, set RLsyn(Xp,7)n = RI(X},, S, (7)), RLsyn (X4, 1) := RI'(X}, S'(1)q). We have

RFSYH(Xh’ T)n = [RF(Xh’ jc[;,}n) M RF(Xhu -Acr,n)]a

C

T 1— s
RTgyu (X, 7) = [RT(Xp, T0g) =% RO(Xp, Acrq))-

The direct sum @, -, RTsyn(Xp, ) is a graded Eo, algebra over Z,,.

(iii) de Rham cohomology. Consider the presheaf (U,U) — RIgr(U,U) := RI'(U, QEU,U)) of
filtered dg K-algebras on Py. Let Aqggr be its h-sheafification. It is a sheaf of filtered K-algebras
on Varg. For X € Varg, we have Deligne’s de Rham complex of X equipped with Deligne’s
Hodge filtration: RT'4r(X}3) := RI' (X4, Agr)-

(iv) Beilinson-Hyodo—Kato cohomology. Let AL, be the h-sheafification of the presheaf
of (arithmetic) Beilinson-Hyodo—Kato cohomology (U,U) + RI'E.(U,U)q on P%; this is an
h-sheaf of E,, F-algebras on Varg equipped with a ¢-action and a derivation N such that
N¢ = ppN. For X € Vark, set RT'5(Xp) :== RI(Xy, ABy).

Let AZ, be the h-sheafification of the presheaf (U,U) — RI'E (U, U)q of (geometric) Beilin-
son—Hyodo—-Kato cohomology on 73%. This is an h-sheaf of E,, F™-algebras, where F™ is the
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maximal unramified extension of F, equipped with a ¢-action and locally nilpotent deriva-
tion NV such that N¢ = ppN. For X € Varg, set RI‘EK(Xh) = RF(Xh,AEK). We have the
Beilnson-Hyodo-Kato quasi-isomorphism

B RIE (X)) @pne K 5 RTgr(X3).

(v) Comparison statements. The h-topology definitions of cohomology are often compatible
with the original definitions.

LEMMA 4.11. We have the following comparison statements.

(i) For (U,U) € P¥, L =K, K, the canonical map RI4r(U,U) = Rlr(Uy) is a filtered
quasi-isomorphism [Beil2, 2.4].

(ii) For any (U,U) € P, r =0, the canonical maps

Rler(U, U, 7")q = RT(Un, T )q, BTtk (U, U) = Rl (Uy)
are quasi-isomorphisms (see [Beil3, 2.4] and [NN16, Proposition 3.21]). In particular,
Rlgyn (U, U, r) = Rlgyn(Up, 7).

(iii) For any arithmetic pair (U,U) that is fine, log-smooth over O}, and of Cartier type, the
canonical map

Rk (U,U) & RTHk (Un)

is a quasi-isomorphism [NN16, Proposition 3.18].

4.3.5 Poincaré lemma. We will recall the Poincaré lemma of Beilinson [Beil3] and its
syntomic cohomology version [NN16].

THEOREM 4.12 (Filtered crystalline Poincaré lemma [Beil3, 2.3], [Bhal2, Theorem 10.14]). Let
r > 0. The canonical map Jg]n — jc[:}n is a quasi-isomorphism of h-sheaves on Varz.

Set S/ (r):= Cone(JC[QnMAcr,n)[—l]. There is a natural morphism of complexes 7, :
S!(r) — Z/p"(r) (induced by p" on Jg]n and Id on A, ), whose kernel and cokernel are anni-
hilated by p". The filtered crystalline Poincaré lemma implies easily the following syntomic
Poincaré lemma.

COROLLARY 4.13. There is a unique quasi-isomorphism S’,(r) = S/ (r) of complexes of sheaves
on Var , that is compatible with the crystalline Poincaré lemma.

Proof. We include here the simple proof from [NN16, Corollary 4.5]. Consider the following map
of distinguished triangles.

p"—¢
Sp(r) — g, — Ao
A
| 2 T 2 T
! pr—¢

S’;L (T) > Jc[:]n > Acr,n
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The triangles are distinguished by definition. The vertical continuous arrows are quasi-
isomorphisms by the crystalline Poincaré lemma. They induce the dashed arrow that is clearly
a quasi-isomorphism. O

4.3.6 Beilinson period morphism. We will now recall the definition of the period morphism
of Beilinson [Beil3, 3.1]. Let X € Varg. Recall first the definition of the crystalline period
morphism [Beil3]

D RU (X)) — RI( X4, Zp) O A
Consider the natural map 7, : R['¢;(Xp) — RI'(X}, Aern) and take the composition
Pn - RF(Xét; Zp) ®ép Acr,n = RF<Xét7 Acr,n) = RF(th Acr,n) = RF<Xh7 -Acr,n)-

B

cr,n®

Set B .= oy lm, and ?r := holim,,

cr,n

The Beilinson-Hyodo-Kato period map
Bk : RTRK(Xp) @F B — RIO(X, Qp) @ B,  Bux = Buql,
is obtained by composing the map 3. ,q with the quasi-isomorphism
P - RTfi(Xn) ®fFne BE = Rler(Xa)q-
We have the induced quasi-isomorphism
BHK : RFﬁK(Xh) @%ur Bgy — RI (X, Q) @' By

and we set af = ﬂﬁ%{
The Beilinson—de Rham period map

Bar : RT4r(Xn) ®% Bar — RI'(Xe, Qp) ©" Bar

is obtained from the Beilinson—-Hyodo—Kato period map [k using the Beilinson-Hyodo—Kato
isomorphism pyx : RFEK (Xn) ®fm K = RI4r(X};) and the canonical map tp : Bt — Bgr. We
set af = ﬂd_é.

The induced syntomic period morphism

BB RDyyu(Xp, ) — RO (Xa, Qp(r)), >0,

can be described in the following way. Take the natural map m, : R['(X},S'(r)) — RI'(Xy, S, (1))
and the zigzag

BB RI(Xy, 8! (r) & RI(Xy, S (1) —==RD(Xp, Z/p" (1)) & R (Xe, Z/p"(r)').
Set 4B := (holim,, %) ® Q. Then the map
glli"' = p_T/BBTr : Rrsyn(Xhar) - RF(Xétv Qp(r))v

where 7 := (holim,, 7,) ® Q, is the induced syntomic period morphism. By [NN16, Proposition
4.6], it is an isomorphism after truncation 7<,.
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Remark 4.14. It is worth looking carefully at the composition
™ . B
337 : Rlqyn(Xp, 7)—— (holim, RT(X), S,(r)))q——RT (Xet, Qp(r)).

This composition is a quasi-isomorphism after truncation 7<,. Since, by Corollary 4.13, the
second map is a quasi-isomorphism, it follows that the first map is a quasi-isomorphism after
truncation 7<, as well.

4.3.7 A wvery simple comparison criterion. This is an analog of the criterion in Lemma 4.3
in the context of Beilinson comparison morphisms from Theorem 4.10.

Let X be a semistable scheme over Ok. Let r > 0. For a period isomorphism ay,; as in
Theorem 4.10, we define its twist

Wi Hig (X 1 Qp(r) @, Bt — Hip (X) ®F Bot{—r}
as ap iy =t ay ;e " Clearly, it is an isomorphism. It follows from Theorem 4.10 that we can

recover the étale cohomology with the Galois action from the Beilinson-Hyodo—Kato cohomology:

~

it Hiy (X000 Qp(r)) = (Hgit(X) @p Bot) V=09 0 F"(Hig (Xk) @ Bar).  (4.15)

For r > i, by [NN16, Proposition 3.25 and Corollary 3.26], the right-hand side is isomorphic to

Hszyn(XKh, r), i.e., there exists a natural isomorphism

hhir  Hin (X 0 m) = (HEG(X) ®p Bo) V=00 0 F7(Hig (Xu) @k Bar).  (4.16)

S

We will denote by
Qhiy - Hét(Xf,tra QP(T)) = Hsiyn(XF7tr,har)

the induced isomorphism and call it the syntomic period isomorphism.
The following lemma is immediate.

LEMMA 4.17. Let r > i. A period isomorphism ay, ; », and hence also a period isomorphism oy, ;
satisfying Theorem 4.10, is uniquely determined by the induced syntomic period isomorphism

Qhpir-

Remark 4.18. We also have an analog of Lemma 4.17 for finite simplicial schemes with
components as in that lemma. The proof is analogous to the proof of Lemma 4.4.

4.3.8 Comparison of Tsuji and Beilinson period morphisms. Let X € Varyg. We can
h-sheafify the Tsuji syntomic period morphism by setting, for (U,U) € 77%,

can

Brn : RLa((U, U), 8, (r)) =Rl ((U, 0, 8u(r) - RTe(U. 2/p" ()

from (4.9) to obtain the compatible maps of h-sheaves

B Sp(r) = Z/p"(r)'. (4.19)
Taking cohomology, we get the induced compatible syntomic period morphisms
Brn

BT RI(Xy, 8. (r)—RI(Xp, Z/p"(r)') & RE(Xar, Z/p" (1))
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As in the case of the Beilinson period morphism, they induce a syntomic period morphism
AL, = p "B : ROgyn(Xn,7) — RL&(X, Qp(r)), BT := (holim, }) ® Q. (4.20)

It is a quasi-isomorphism after truncation 7<,: by Remark 4.14, the map 7 is a quasi-isomorphism
after truncation 7<, and, by Corollary 4.13, the map (4.19) is a p"-quasi-isomorphism and hence
the map 47T is a quasi-isomorphism after truncation T<, as well.

THEOREM 4.21. Let r > 0.
(i) Let X € Varg. The Tsuji and Beilinson syntomic period morphisms

Birs By : REsym(Xp,7) = RTet(X, Qp(r))
are equal.
(ii) If X = (U,U) € P58 and is split over'Y Oy, the period isomorphisms
arlaia O[E,i : Hét(va Qp) ®Qp Bst :> Hgfé(X) ®F Bst)
of,0p : Hy (U, Qp) ®q, Bar = Hip(Xk) ®x Bar,
_ 1T

where we set O‘Ei =Ko
b

i » are equal as well.

Proof. For the first claim, by construction of the syntomic period morphisms EET and Eﬁr, it
suffices to show that, for all n > 1, the maps

B+ S(r) & S,(r)—"=Z/p"(r)',

OéT
B = Spr)——Z/p"(r)
are equal. Or that so are the maps
ot Sp(r) = Z/p"(r)',

S (r) 2 S () 2z /pn ().

But this is immediate from the functoriality of 8}, : for (U, U) € P2, the canonical map (U,U) —

T

(Spec K, Spec O%) yields the following commutative diagram.

ety

RT (U, T), S (r)) Rl (U, Z/p"(r)")

i L

RFét((SpeC Fu Spec Of)a S’;L (T)) ;> Rrét(spec Fa Z/pn(T)/)

'] )

Sp(r) Z/p"(r)

For the second claim, let X = (U,U) € P5 be split over Of. By Lemma 4.17, it suffices to show

that, for r > 4, the induced maps &Eﬂ.,r and &Eﬂ.’r from H}, (Uz, Qp(r)) to Hgyn(Uf psT) are equal.

But, by the first claim of this theorem, it suffices to prove the following lemma.

10 Recall that this means that the associated log-scheme over Oy is semistable.
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LEMMA 4.22. (i) The map &3, . is the inverse of the map Bf]ii,r'
(ii) The map aj , . is the inverse of the map B}R - Hsiyn(UFh’ r) — HE (U, Qp(r)) induced
by By -

Proof. The first claim was shown in [NN16, (49)]. The second claim is also basically shown in
[NN16] (which contains a detailed analysis of the Beilinson-Hyodo-Kato map and its interaction
with more classical constructions). However, we could not find there the exact statement we need
here so we provide an argument how the proof can be glued from statements proved already in
[NN16].

Consider the following diagram (all the maps are isomorphisms)

where we set
i g =0,6=p" P Bt pri v
C(Hgi(Ug ), 1) = ker(HEE (U ),) @pne BHN=O0P" =2 (Hig (Ug ) @ Bip)/FT),
i i =0,¢p=p" PrOtr ( yri r
C(Hip(X),7) = ker((Hiig (X) @ BV =00 S (Hip (Xk) @k Bip)/F"),
Hl\(Xz,1) = H'RLgpn (X, 1) == HRT&(Xo_, S'(r)q-

syn

The map h;, is induced by the map h, defined in (2.10). Since, by definition, a;l:r = hir( NET)*l
and the maps B;ﬁwa B;rr are compatible, a diagram chase shows that it suffices to show that the
right square in the diagram commutes.

This diagram can be lifted to the co-derived category, where it takes the following form:

hh,T

C(RFEK(UK}L): ) <— Rlgn(Ug 1)

zlﬁ ZT

C(RI'uk(X),r)

where we set
— — T B®L r
C(RFEK(Uf,h)v r) = [[RFEK(URJJ @ fur BEVOO7P u(RFdR(Uf,h) ®% Bir)/F"],
C(RTuk(X),r) = [RTux(X) @F BEV =007 25 (RDgg (X) @k B )/F7].
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Proceeding now as in the proof of [NN16, Lemma 4.7], we reduce to proving that, possibly
changing the base field K, the following diagram commutes for all X = (U,U) € P55 that are
split over O.

]’LB

C(RTfk(Xo,),7) <~ RTgyn (X7, 7)

llﬁ /
C(RIuk (X),7)

Recall that the map hZ is defined as the following composition:

BE : Rl gpn(X7,7) = [[RTer(Xog)@l?™ ——= (RLar(Xg) % Blg)/F" |

PPy

— [[RMEx(X) @& BLN=09=" —— (RT4r(Xk) ®% BiR)/F" |

=: C(RT'fik(Xo,),7)

~

where we have used the quasi-isomorphism 7, : (R'qr (X )®L BR)/F" = Rl (Xo)Q/F"
and the second quasi-isomorphism in the definition of hZ uses the Belhnson crystalline period
quasi-isomorphism

pe + (RIfk(X) @ BV 5 Rlw(Xog)q
(that is compatible with the action of N and ¢) as well as [NN16, Lemma 3.24] (which shows that

we have the needed commutative diagrams). Recall that the map h, is defined as the following
composition:

hy : RTgyn(Xg, 1) = [[RTer(Xo,)q)*"" o (RTar (X7) ®L Bip)/F']

2 [[RPw(Xop /A0S = (RU4r(Xx) @k Bi)/F"]

~ 7 p7r®L7r
< [RTa(X/Ra)q ©F_, BDlg "™ = (RLar(Xx) ©F Bip)/F"]
PrQlx
m [[RTux (X) @k BEN=00=r" —— (RL4r(Xk) @% Blg)/F"]
r pr@lr

< [[RTuk (X) @f BEV=407" — (RL4r(Xk) ®% Big)/F7]  (4.23)

Here the map 7, is defined as the composition

~

e : Rla(Xo,/Ag)q — Rla(Xo, /O%)q/F" < (RTar(Xg) @5 Bip)/F .

The fact that the second and the third quasi-isomorphisms in the definition of the map h, are
well defined follows from the last commutative diagram in the proof of [CDN20, Proposition
3.48].
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Finally, recall that the map k can be lifted to the oco-derived category as well: we have the
following commutative diagram (see [NN16, (31)]).

RIM'uk (X) o RI4r(XK) (4.24)

I

R i (X)

Using this map  and its analogs, one can write the bottom four homotopy fibers in the definition
of the map h, (and the maps between them) using Beilinson—-Hyodo—Kato cohomology instead
of the original Hyodo—Kato cohomology (this includes a change of p to 7). See the last large
diagram in the proof of [NN16, Lemma 4.7] for how this is done. This diagram also shows that
the obtained result is isomorphic to the map h,B , as wanted. ]

0

4.3.9 Period morphisms for motives, I. Recall that the Beilinson period morphism lifts to
the Voevodsky triangulated category of (homological) motives DMgp, (K, Qp) [DN18, 4.15]. That
is, for any Voevodsky motive M, we have the Hyodo—Kato and de Rham comparison quasi-
isomorphisms

et RLee(M) ®¢, Bsy = Rk (M) ©fnr By,

alfp : RTe(M) ®¢, Bar = RT4r(M) ®% Bag.

They are compatible via the Hyodo-Kato quasi-isomorphism p : RUux (M) @&, K = RI4g (M)
and the map ¢, : B¢t — Bgr. The complexes RI'¢; (M), R['yk (M), and RI'4r (M) are the étale,
Hyodo—Kato, and de Rham realizations of M, respectively. All cohomologies are geometric.
The comparison quasi-isomorphisms are compatible with Galois action, filtrations, monodromy,
and Frobenius (when appropriate). If we apply them to the cohomological Voevodsky motive
M(X)Y = fi(1x) of any variety X over K with structural morphism f, we get back Beilinson
period quasi-isomorphisms from §4.3.6.

Ezample 4.25. An interesting case is obtained by using the (homological) motive with compact
support M¢(X) in DMy (K, Q,) of Voevodsky for any K-variety X, and its dual M°(X)Y =
Hom(M*(X), Qp) which belongs to DM (K, Q) as well. Since, in terms of the six-functors
formalism, M¢(X)Y = fi(1x) [CD15, Proposition 8.10], R[¢ (M¢(X)V) is the étale cohomology
with compact support (as defined by Grothendieck and Deligne).

Similarly for the Hyodo-Kato and de Rham cohomologies. Let X be a scheme over O with
generalized semistable reduction as in §2.1.3. Let D be its divisor at co. Define the Voevodsky
motive M(Xg, Dg) € DMgy (K, Qp) as the cone

M (X, D) := Cone(M(D, j)—2—M(Xk)),

where D, is the Cech nerve of the map [[, D; — D, D; being an irreducible component of D.
Hence, the dual motive M (X, Dk)¥ € DMgm (K, Qp) is

M (X, D)"Y =~ Fiber(M (X )" ———M(D. x)").
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LEMMA 4.26. For U := X \ D, we have
M(Ug)Y ~ M(Xg,Dg)V.
Proof. This easily follows from the localization property:
M¢(Ug)¥ ~ Fiber(M (X k)" ———M(Dg)")
and the Mayer—Vietoris property for closed coverings (a special case of cdh-descent [CD19,

3.3.10]), which yields
M(Dg) ~ M (D, k). g

Hence, by Lemma 2.1, the realization R['«(M°(Uk)V), e = HK, dR, represents the compactly
supported cohomology of Uk.

Similarly, the Tsuji period morphism also lifts to the Voevodsky triangulated category of
(homological) motives DMy, (K, Q) [DN18, 4.15]. More specifically, for X € Varz, the syntomic
period morphism from (4.20)

B : REsyu(Xp,7) — RTe(X, Qp(r))
extends to a syntomic period morphism
BY: RTgyu(M,r) — RLg (M, Qu(r)), M € DMgn (K, Qp).

It is quasi-isomorphism after truncation 7<,. If we apply it to the cohomological Voevodsky
motive M(U)Y = f.(1x) for any proper semistable scheme X over Ok, and U = Xk \ Dk
with structural morphism f, we get back Fontaine-Messing period quasi-isomorphisms (modulo
identifications of the cohomologies involved and their h-localizations).

For M € DMy (K, Qp), define

T h,r

a, : < RTe (M, Qp(r)) <BTT T<;Rlsyn (M, r)h—Wgr(RFHK(M) R Bat{—1}),
st T<rRTa (M, Qp) — < (RUuK (M) @ Bst),  apgyp =17y €
Here hy,, is the motivic lift of the h-sheafification of the map h, from (4.23). Write
RI¢ (M, Qp(r)) =~ hocolim, 7<,RT'¢ (M, Q,(r))

and set

apg; := hocolim, apy . : RTét (M, Qp) — RTuK (M) ®fur Byt

This makes sense since, by [Tsu99a, Corollary 4.8.8], we have ta} ; = @, e.

To sum up, for any Voevodsky motive M, we have the Hyodo—Kato and de Rham comparison
quasi-isomorphisms
g : RTgt (M) ©G, Bsy = Rk (M) @ By, )
agr : RTe (M) ®¢, Bar = RLar(M) @% Bar

as in the case of Beilinson comparison quasi-isomorphisms. By Theorem 4.21, these comparison
quasi-isomorphisms are the same as the ones of Beilinson. If we apply them to the cohomological
Voevodsky motive M(U)Y = f.(1x) for any proper semistable scheme X over O, and U =

1956

https://doi.org/10.1112/50010437X20007344 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007344

ON UNIQUENESS OF p-ADIC PERIOD MORPHISMS

Xk \ Di with structural morphism f, we get back Tsuji period quasi-isomorphisms after the
identification of the Beilinson—-Hyodo—Kato and the original Hyodo—Kato cohomologies via the
map k : RTB (X) — RTuk(X) from (4.24).

Remark 4.28. In [Tsu03], Tsuji has shown that the Fontaine-Messing period morphism yields
a comparison theorem for U as above. This was done by showing compatibility of the period
morphism with the Gysin sequence and thus reducing to the proper case. The period quasi-
isomorphisms (4.27) imply Tsuji’s result. But we know now of another way: using Banach—Colmez
spaces [Col02] as in [CN17] one can obtain the isomorphism (4.16), which is enough to prove
that the period map is an isomorphism; in this way one avoids using Poincaré duality.

The map x and its properties extend to finite proper simplicial schemes with semistable
reduction and of Cartier type, which implies that the Tsuji comparison theorem for cohomology
with compact support from [Tsu98| agrees with the one of Beilinson (after the identification of
Hyodo—Kato cohomologies). Similarly, since the comparison theorems of Yamashita for cohomol-
ogy with (possibly partial) compact support can also be seen as defined using finite simplicial
schemes (use the arguments of Lemma 2.1) and the Fontaine—Messing period morphisms, they
are the same as those of Tsuji and Beilinson.

Finally, as shown in [DN18, Proposition 4.24], the Beilinson period morphisms are compatible
with (possibly mixed) products. By the same argument, so are the period morphisms (4.27). It
follows that so are the period morphisms of Tsuji and Yamashita (the change of the Hyodo-Kato
cohomology map k is compatible with products: pass through the Hyodo—Kato isomorphisms,
which are compatible with products, to de Rham cohomology).

4.4 Comparison of Faltings and Beilinson period morphisms
We will compare now the Faltings and Beilinson period morphisms.

4.4.1 Faltings period morphism. We will briefly recall the definition of the period morphism
of Faltings.

(i) Faltings site. Faltings’ construction of the period morphism uses an auxiliary topos, a
topos of ‘sheaves of local systems’ (see [Fal89, III] and [Fal02, 3]), that is now known as the
‘Faltings topos’ (a term coined by Abbes and Gros [AG16]). We will briefly describe it.

For a scheme X, let Xy denote the topos defined by the site of finite étale morphisms U — X
with coverings given by surjective maps. For a connected X and a choice of a geometric point
T — X, Xpet is equivalent to the topos of sets with a continuous action of the fundamental group
71(X, ). In particular, for an abelian sheaf F, the étale cohomology H*(Xpg¢t, F) is isomorphic
to the (continuous) group cohomology H*(m(X,T), Fz). Let X be noetherian. Then Xpg; is
equivalent to the topos of étale sheaves that are inductive limits of locally constant sheaves.!!

There is a map of topoi
7 Xy — Xpet
with 7. F given by the restriction of F to finite étale schemes over X and 7*(F) = F for an

ind-locally constant sheaf F.
Recall the following notion.

1 For us, locally constant is a shorthand for locally constant constructible.
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DEFINITION 4.29. A noetherian scheme X is a K(m, 1)-space if for every integer n invertible
on X and any locally constant sheaf £ of Z/n-modules, the natural map £ — Rm,w*(L) is an
isomorphism.

The following analog of a classical result of Artin [AGV73, Exposé XI, 4.4] on the existence
of a base for the Zariski topology consisting of K (7, 1)-spaces was proved by Faltings [Fal88, 2.1]
in the good reduction case and by Achinger [Ach15, Theorem 9.5] in general.

THEOREM 4.30 (Faltings, Achinger). Let X be a log-smooth O -log-scheme such that X is
smooth over K. For every geometric point T of X, Xz xx X, % is a K(m, 1)-space.

Let X be a noetherian Og-scheme. The Faltings topos 5(% ot 18 defined'? by a site which has
for objects pairs (U, V'), where U is an étale X-scheme and V' R X7 is a finite étale morphism;
morphisms are compatible pairs of maps, and coverings are pairs of surjective maps (see [AG16]
for details).

There is a canonical map

p: Xf,ét - X?,ét

from the étale topos of X4 to XF - On the level of sites, this map is given by sending (U, V) to

V. If X is a log-smooth log-scheme over Oy with a smooth generic fiber, it follows (see [Fal02,
III] and [Achl5, Corollary 9.6]) from Theorem 4.30 that, for a locally constant sheaf £ on X,
the natural map

RI(X7 4. L) = R (X7 4, £) (4.31)

is a quasi-isomorphism.
(ii) Faltings period morphism. Let X be a saturated, log-smooth, and proper log-scheme over
Oj. Then, by [Fal02, Corollary 3.1], we have a natural almost quasi-isomorphism

Vrn t RD(X7z 40, Z/p") @ F'Aceyn = RE(Xz o F Acr), 720,

where A, is a relative version of the crystalline period ring (equipped with the log-structure
(N — Acrn, 1 — [7°])). For r > 0, there is a natural morphism

Brn : Rlex(Xn /R, TU) = RT(Xgz 40, F" Ace.n).-
Faltings’ main comparison result is the following theorem.
THEOREM 4.32 (Faltings [Fal02, Corollary 5.4]). The almost morphism
Bn i RUer(Xn/ R n) O, Acrn — RUa(Xy, 72, Z/D") @ Acrn, B = p*vg B0,

has an inverse up to t¢ (that is, composition either way is the multiplication by t%), d = dim X.
It is compatible with Frobenius and filtration.

The map Rr, — A above is induced by = — [Wb]. This is not Galois-equivariant and
hence, for the period morphism & to be compatible with the Galois action, this action has to be

12 We use here the modification of the original definition of Faltings presented by Abbes and Gros in [AG16].
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twisted (using monodromy) on the domain (see [Fal02, p. 259] for details). Passing to the limit
over n and tensoring with Q in the above yields an almost morphism

B RUu(X/Ry) ©f, BY — RTa(X,, 7. Z,) " B
Taking cohomology, we get an isomorphism
Bi: Heo(X/Rr)Q @R, g Bar = Hu (X, 70 Qp) @ Bar.
The Faltings period isomorphism
ocf : Hgt(Xtr,F: Q) @B = Hip(X) ®F Ber

is defined as of = (8F)~1, gF := Bitr, where iy : Hig(X) — HE(X/Ry)q is the Hyodo-Kato
section.

(iii) Faltings syntomic period morphism. Let r > 0. The definition of the map £, , above can
be generalized easily to obtain an almost map

Brn : RUer(X0rn/ R, T = RU (X0, )7 60 F" Acn) € RE(X gz g0, F" Acx.n).

Here we set RI‘((;(@?)? ¢t F" Acrn) == hocolim g RF((;(@K/ Vietr F Acrn), where the limit is
over finite extensions K’/K. In an analogous way we define almost maps'?

Br,n : chr(Xny jm) - RF(XF7ét7 FTAcr,n)a B?‘,n : chr(XOf,ny jm) - R'F(Xfyéw FT-Acr,n)-

All these maps are compatible.
Recall that we have the fundamental exact sequence
=1
0—Z/p"(r)s — F, Acrn Z5F Ay — 0. (4.33)
Here FpT Acr.n, denotes the Frobenius ‘divisible’ filtration and, for a sheaf F on XF > Fs stands for
its restriction to the special fiber, i.e., to the complement of the generic fiber (the site consisting
of objects with trivial special fiber). For X proper and F torsion, the proper base-change theorem
yields that the cohomologies of F and F;s coincide.
Using the map (,, and the above sequence, we obtain a map

Brm : RUat(Xo, Sh(r)) — RTe (X7, Z/p"(r)}).

More precisely, we get a canonical map from Rl'¢(Xo_,S,,(r)) to the )??—cohomology of the
mapping fiber of ¢ —p" : F" Ay — Acrn, Which in turn maps via multiplication by p" on
FrAcp to the )Z'f—cohomology of the mapping fiber of ¢, —1: FjJ Acrn — Acrn. But the last
mapping fiber, by the fundamental exact sequence (4.33), is quasi-isomorphic to Z/p"(r)’.

Hence, the Faltings period isomorphism induces a morphism (a genuine morphism not just
an almost morphism; see [Niz09, §5.1])

r i RO (Xo, Sp(r) — RTe (X, % Z/p"(r)") (4.34)

13 We note that these maps do not depend on the choice of the uniformizer 7.

1959

https://doi.org/10.1112/50010437X20007344 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007344

W. Niziot
as the composition
B’r n ~ i ~
Fn : RFét <Xo?7 S;L(r))—ﬂ;{ret (XKa Z/p ( ) ) — Rrét (va Z/pn (T’)/) - RFét(Xtr,f? Z/pn(r)/)'

The first quasi-isomorphism holds because X is proper. The last quasi-isomorphism holds by
(4.31). Consider now the composition (3 := (holim,, ﬁ,lin)Q)

G Ra(Xo,., S'(r)Q———RTa( Xz, Qp(r)L—RTe (Xz, Qp(r)-

For r > 7, using the diagram (2.10) and the discussion in [Niz09] preceding Theorem 5. 8 it is easy
to check that, on degree-i cohomology, (/; 3F ) is the syntomic period morphism a , induced

F

from the Faltings period morphism a;, via the procedure described in §4.1.

4.4.2 Comparison of Faltings and Beilinson period morphisms. Let X € Varg. We can h-
sheafify the Faltings period morphism by setting, for (U,U) € P2
Brin

rn RLa((U,0), ,(r)===RUe((U,U), Su(r))—", Rl&(U, Z/p"(r)),

where the morphism ﬂg ., 1s the one from (4.34), to obtain the compatible maps of h-sheaves

ﬂf’n :SH(r) — Z/p"(r). (4.35)
Taking cohomology, we get the induced compatible syntomic period morphisms
B+ RE (X, (1) 2 RD (X0 25" (1)) & RY(Xet, Z/p" ().
As in the case of the Beilinson period morphism, they induce a syntomic period morphism

BE = p "B 1 ROgm(Xp,7) — RTe(X, Qp(r)), A" = (holim, ) ® Q.

It is a quasi-isomorphism after truncation 7<,: by Remark 4.14, the map 7 is a quasi-isomorphism
after truncation 7<, and, by Corollary 4.13, the map (4.35) is a p"-quasi-isomorphism and hence
the map 8" is a quasi-isomorphism after truncation 7<, as well.

Since the Faltings syntomic period morphism ﬁ}i » 1s functorial, an argument analogous to
the one we used in the proof of Theorem 4.21 shows that Blljr = BET. We have obtained the first
claim of the following theorem. ’ 7

THEOREM 4.36. Let r > 0.
(i) Let X € Vary. The induced Faltings and Beilinson syntomic period morphisms

Bhps By : REsyn(Xp,7) = RTet(X, Qp(r))
are equal.
ii =(U,U) € and is split over O, the period morphisms
(ii) If X = (U,U) € Py and is spl @ he period ‘ph

F B . )
i ot He (U, Qp

F
Q; O‘ Hét( ?va

are equal as well. Here we set o) , == k1ol

®q, Bst — Hipi(X) ®p By,

)
) ®q, Bar = Hir(Xk) ®k Bar
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Proof. Let X = (U,U) € P be split over Og. By Lemma 4.17, it suffices to show that, for
r >4, the induced maps &} , . and &}, . from H} (Uz, Qp(r)) to Hgyn(U?h, r) are equal. But,
by Lemma 4.22, the map &Ei , is the inverse of the map BEZ - Hence, by the first claim of our

theorem, it suffices to prove the lemma below. O
LEMMA 4.37. The map dgi , is the inverse of the map BEZ -

Proof. Identical to the proof of the second claim of Lemma 4.22 (recall that the main issue there
was a relation between syntomic cohomology and the Hyodo—Kato and Beilinson—Hyodo—Kato
cohomologies). O

4.4.3 Period morphisms for motives, II. The content of §4.3.9 goes through practically ver-
batim for the Faltings period morphism. We obtain that, for any Voevodsky motive M, we have
the Hyodo—Kato and de Rham comparison quasi-isomorphisms

af RFét(M) ®L Qp B 5 RFHK(M) ®%‘nr B,

pst
alig : RTst(M) g, Bar = RLar(M) ®% Bar

as in the case of Beilinson comparison quasi-isomorphisms. By Theorem 4.36, these comparison
quasi-isomorphisms are the same as the ones of Beilinson. If we apply them to the cohomological
Voevodsky motive M(U)Y = f.(1x) for any proper semistable scheme X over Ok, and U =
Xk \ D with structural morphism f, we get back Faltings period quasi-isomorphisms after the
identification of the Beilinson—-Hyodo—Kato and the original Hyodo—Kato cohomologies via the
map & : RIE (X) — Rk (X) from (4.24).

Hence, we recover Theorem 4.7 comparing Faltings and Fontaine-Messing period morphisms
for cohomology with compact support. But we also get:

(i) Faltings and Fontaine-Messing period morphisms are equal for open varieties: because they
are equal to Beilinson period morphisms;

(ii) Faltings period morphisms are compatible with (mixed) products (which recovers [Fal02]):
use the argument for Tsuji products in §4.3.9.
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