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On uniqueness of p-adic period morphisms, II

Wies�lawa Nizio�l

Abstract

We prove equality of the various rational p-adic period morphisms for smooth, not
necessarily proper, schemes. We start with showing that the K-theoretical uniqueness
criterion we had found earlier for proper smooth schemes extends to proper finite simpli-
cial schemes in the good reduction case and to cohomology with compact support in the
semistable reduction case. It yields the equality of the period morphisms for cohomology
with compact support defined using the syntomic, almost étale, and motivic construc-
tions. We continue with showing that the h-cohomology period morphism agrees with
the syntomic and almost étale period morphisms whenever the latter morphisms are
defined (and up to a change of Hyodo–Kato cohomology). We do it by lifting the syn-
tomic and almost étale period morphisms to the h-site of varieties over a field, where
their equality with the h-cohomology period morphism can be checked directly using
the Beilinson Poincaré lemma and the case of dimension 0. This also shows that the
syntomic and almost étale period morphisms have a natural extension to the Voevodsky
triangulated category of motives and enjoy many useful properties (since so does the
h-cohomology period morphism).
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1. Introduction

Recall that rational p-adic period morphisms1 make it possible to describe the p-adic étale
cohomology of algebraic varieties over local fields of mixed characteristic in terms of differential
forms. This is advantageous since the latter can often be computed. There are by now four main
different approaches to the construction of these period morphisms:

– syntomic: Fontaine and Messing [FM87], Hyodo and Kato [HK94], Kato [Kat94a], Tsuji
[Tsu99a], Yamashita [Yam11], Colmez and Nizio�l [CN17];

– almost étale: Faltings [Fal89, Fal02], Scholze [Sch13], Li and Pan [LP19], Diao et al.
[DLLZ19], Tan and Tong [TT19], Bhatt, Morrow and Scholze [BMS18, BMS19], Česnavičius
and Koshikawa [ČK19];

– motivic: Nizio�l [Niz98, Niz08];
– h-cohomology: Beilinson [Bei12, Bei13], Bhatt [Bha12].

Each of these approaches has its advantages and it is important to be able to compare the
resulting period morphisms in the case one needs to pass from one to another. Since all the
above period morphisms are normalized using Chern classes we expect them to be equal.

The two theorems below are examples of the results we obtain in the paper. Let OK be a
complete discrete valuation ring with fraction field K of characteristic 0 and with perfect residue
field k of positive characteristic p. Let π be a uniformizer of OK . Let OF be the ring of Witt
vectors of k with fraction field F . Let X be a proper scheme over OK with semistable reduction
and of pure relative dimension d. Let i : D ↪→ X be the horizontal divisor and set U = X \D.
Equip X with the log-structure induced by D and the special fiber. Denote by O0

F the scheme
Spec(OF ) with the log-structure given by (N→ OK , 1 �→ 0).

The first theorem is a generalization of the K-theoretical uniqueness criterion for p-adic
period isomorphisms from [Niz09] as well as its applications.

Theorem 1.1. (i) There exists a unique natural p-adic period isomorphism

αi : H i
ét,c(UK ,Qp)⊗Bst

∼→ H i
HK(X)⊗F Bst, i ≥ 0,

where H i
HK(X) = H i

cr(X0/O0
F )Q is the Hyodo–Kato cohomology, such that:

(a) αi is Bst-linear, Galois equivariant, and compatible with Frobenius;

(b) αi, extended to BdR via the Hyodo–Kato morphism ρπ : H i
HK(X)→ H i

dR(XK) and the

morphism ιπ : Bst → BdR, induces a filtered isomorphism

αdR
i : H i

ét,c(UK ,Qp)⊗BdR
∼→ H i

dR,c(XK)⊗K BdR;

(c) αi is compatible with the étale and syntomic higher Chern classes from p-adic K-theory.

(ii) The syntomic, almost étale, and motivic semistable period morphisms for cohomology

with compact support are equal.

1 We also discuss in this paper integral p-adic period morphisms in the context of Fontaine–Lafaille theory and
the motivic approach to comparison theorems; see § 3.1.1.
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On uniqueness of p-adic period morphisms

The second theorem takes a different approach to comparing p-adic period morphisms. It uses
h-topology, the Beilinson (filtered) Poincaré lemma [Bei13], and the computations from [NN16]
to formulate a simple uniqueness criterion using the fundamental exact sequence of p-adic Hodge
theory and hence, basically, the case of dimension 0.

Theorem 1.2. The syntomic, Faltings almost étale, and h-cohomology period morphisms lift

to the Voevodsky category of motives over K. They are equal. In particular, they are compatible

with (mixed) products.

Remark 1.3. The above theorems do not cover the p-adic period morphisms of Bhatt, Morrow
and Scholze [BMS18, BMS19] and Česnavičius and Koshikawa [ČK19] (which fall into the ‘almost
étale’ category) but these morphisms are already known (at least the ones from [BMS18, ČK19])
to be the same as the syntomic period morphisms.

(i) It is likely that one can use the K-theory criterion from Theorem 1.1 to show this fact.
Some compatibilities with Chern classes were already checked in [CDN19]. The h-topology
method of comparing period morphisms from Theorem 1.2 cannot be applied directly in this
case because the period morphism of Bhatt, Morrow and Scholze, as of now, is not allowing
horizontal divisors.

(ii) However, the compatibility of the period morphism from [BMS18, ČK19] with the other
period morphisms has been already checked in the forthcoming thesis of Sally Gilles (at ENS
Lyon) by a more direct method. This involves the period morphism defined in [CN17]: Gilles
lifted the local definition of this morphism to the geometric setting, globalized it together with
its comparison with the Fontaine–Messing period morphism, and then directly compared the
resulting morphism with the period morphism from [ČK19] (which is a reasonable approach
since both morphisms are defined using very similar complexes).

Remark 1.4. Recently, there has been considerable interest in generalizing Faltings’ original
approach to p-adic comparison theorems. This started with the work of Scholze [Sch13] on the
de Rham comparison theorem for proper smooth rigid varieties and nontrivial coefficients that
extended Faltings’ proof of the algebraic de Rham comparison theorem using Scholze’s powerful
almost purity theorem and his proof of the finiteness of p-adic étale cohomology. Recall that
Faltings’ proof of the de Rham comparison theorem used the Faltings site, the Faltings Poincaré
lemma, and a basic comparison theorem and worked for all smooth algebraic varieties and triv-
ial coefficients. This was extended to nontrivial coefficients in the thesis of Tsuzuki, which was,
unfortunately, never published.

More work followed: Li and Pan [LP19] extended Scholze’s de Rham comparison for trivial
coefficients to the open case (with a nice compactification), Diao et al. [DLLZ19] added a treat-
ment of nontrivial coefficients; from another angle, Tan and Tong [TT19] extended Scholze’s
proof to the case of good reduction (over an unramified base) proving the crystalline conjecture
in this setting.

When specialized to algebraic varieties all these constructions of p-adic period morphisms are
modifications of the original construction of Faltings (recall that Faltings’ construction works for
any smooth variety), the main one being a replacement of the Faltings site with the pro-étale site
(see the discussion in [LP19, § 3]). Their equality with Faltings period morphisms is conceptually
clear but, with all the modifications involved, the detailed proof of this fact is best left for the
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time when it is really needed (and then it can be checked in a direct, if tedious, way, or, in some
cases, using our K-theory approach).

1.1 Proof of Theorem 1.1
To prove Theorem 1.1, we start with showing that the K-theoretical uniqueness criterion we
had found for proper smooth schemes in [Niz09] extends to finite simplicial schemes in the good
reduction case and to cohomology with compact support in the semistable reduction case. Using
it we show the equality of the period morphisms for cohomology with compact support defined by
the syntomic and almost étale methods. Along the way we extend our definition of the motivic
period morphisms from [Niz98, Niz08] to the above-mentioned setting. By construction, this
period morphism satisfies the K-theoretical uniqueness criterion and hence it is equal to the
syntomic and almost étale period morphisms.

To present the proof of Theorem 1.1 in more detail, recall the definition of the motivic
period morphisms in the simpler case of good reduction (see also the survey [Niz06b]). Let X be
a smooth proper scheme over OK . Using the Suslin comparison theorem between p-adic motivic
cohomology and p-adic étale cohomology [Sus00], we lift étale cohomology classes of XK to
p-adic motivic cohomology classes via the étale regulator (here we use λ-graded pieces of p-adic
K-theory as a substitute for p-adic motivic cohomology), then we lift those to the integral model
XOK

, and, finally, we project them via the syntomic regulator to the syntomic cohomology of
XOK

that maps canonically to the absolute crystalline cohomology of XOK
.

This extends rather easily to simplicial schemes: there is no problem in defining the p-adic
regulators and the fact that the étale regulator and the localization map from the integral model
to the generic fiber are isomorphisms can be reduced to the case of schemes using the filtration
of simplicial schemes by skeletons.

We have shown in [Niz09] that the construction of the motivic period morphisms for proper
smooth schemes implies a simple K-theoretical uniqueness criterion for period morphisms. This
can be extended now to proper smooth finite simplicial schemes: two period morphisms are equal
if and only if the induced period morphisms from étale to syntomic cohomology are equal and
this is true if and only if the latter agree on the values of étale regulators from p-adic K-theory.
This, in turn, would follow if the period morphisms were compatible with the étale and syntomic
regulators from p-adic K-theory. For motivic period morphisms this compatibility follows from
the definition; for the syntomic and almost étale period morphisms of Tsuji [Tsu99a] and Faltings
[Fal02], respectively, this can be checked on the level of the universal Chern classes and this was
done in [Niz09].

1.2 Proof of Theorem 1.2
To prove Theorem 1.2, we take a different approach to comparing p-adic period morphisms:
we compare them with the h-cohomology period morphism. First, we note that it is enough
to compare the induced morphisms, after a change of Hyodo–Kato cohomology, from syntomic
cohomology to étale cohomology (we call them syntomic period morphisms). Then we take the
syntomic period morphism (in the derived category) and sheafify it in the h-topology of XK . This
is possible because Beilinson has shown [Bei12] that de Jong augmentations allow us to exhibit
a basis of h-topology that consists of proper (strictly) semistable schemes over OK . We obtain
a map between the h-sheafification of syntomic cohomology and the h-sheafification of étale
cohomology. Now, for r ≥ 0, the étale cohomology of the Tate twist Z/pn(r)′ := (paa!)−1Z/pn(r),
for r = (p− 1)a+ b, a, b ∈ Z, 0 ≤ b < p− 1, h-sheafifies to the constant sheaf Z/pn(r)′. Using
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the Beilinson filtered Poincaré lemma [Bei13], we see that the syntomic cohomology of the rth
twist sheafifies to the kernel of the surjective map of constant sheaves F rpAcr

1−φr−−→Acr, φr being
the divided Frobenius φ/pr and F rpAcr the Frobenius-divisible filtration. By the fundamental
exact sequence this is Z/pn(r)′ and the syntomic period morphism, by functoriality, is the map
that sends t{r} := tb(tp−1/p)a to 1. But, as was shown in [NN16], this is the same map as the
one induced by the h-cohomology period morphism. The argument for the almost étale period
morphism is analogous.

The last claim of the theorem was proved for the Beilinson period isomorphism in [DN18]
and hence it is true for the other period maps as well.

Conventions 1.5. We assume all the schemes (outside of some obvious exceptions) to be locally
noetherian. We work in the category of fine log-schemes. For a scheme X over Zp, we will denote
by Xn its reduction modulo pn.

2. Preliminaries

We collect in this section basic cohomological computations, the study of the localization map in
K-theory, and the study of the étale cycle class map. All of this is done in the context of coho-
mology with compact support and generalizes the computations done for the usual cohomology
in [Niz98, Niz08].

Let OK be a complete discrete valuation ring with fraction field K of characteristic 0 and
with perfect residue field k of characteristic p. Let W (k) = OF be the ring of Witt vectors of k
with fraction field F . Let K be an algebraic closure of K and let C be its p-adic completion. Set
GK = Gal(K/K) and let σ be the absolute Frobenius on W (k). For an OK-scheme X, let X0

denote the special fiber of X. We will denote by OK , O×
K , and O0

K the scheme Spec(OK) with
the trivial, canonical (i.e., associated to the closed point), and (N→ OK , 1 �→ 0) log-structure
respectively. We will freely use the notation from [Niz16].

2.1 Cohomological identities
We briefly review here certain facts involving syntomic and crystalline cohomologies that we will
need.

2.1.1 Rings of periods. We start with reviewing basic facts concerning the rings of peri-
ods. Consider the ring R = lim←−OK/pOK , where the maps in the projective system are the pth
power maps. With addition and multiplication defined coordinate-wise, R is a ring of char-
acteristic p. Take its ring of Witt vectors W (R). Then Acr is the p-adic completion of the
divided power envelope Dξ(W (R)) of the ideal ξW (R) in W (R). Here ξ = [p�]− p and, for
x ∈ R, [x] = [x, 0, 0, . . .] ∈W (R) is its Teichmüller representative.

(1) The rings Bcr and BdR. The ring Acr is a topological W (k)-module having the following
properties:

(i) W (k) is embedded as a subring of Acr and σ extends naturally to a Frobenius φ on Acr;
(ii) Acr is equipped with a decreasing separated filtration FnAcr, where FnAcr is the closure

of the nth divided power of the PD ideal of Dξ(W (S)); for n < p, φ(FnAcr) ⊂ pnAcr;
(iii) GK acts on Acr; the action is W (k)-semilinear, continuous, commutes with φ, and preserves

the filtration;
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(iv) there exists an element t ∈ F 1Acr such that φ(t) = pt and GK acts on t via the cyclotomic
character: if we fix ε ∈ R, a sequence of nontrivial p-roots of unity, then t = log([ε]).

The rings B+
cr and Bcr are defined as the rings Acr[p−1] and Acr[p−1, t−1], respectively, with the

induced topology, filtration, Frobenius, and the Galois action. For us, in this paper, it will be
essential that the ring Acr can be thought of as a cohomology of an ‘arithmetic point’, namely
that

Acr,n 
 H∗
cr(Spec(OK,n)),

where, for a scheme Y over W (k), we set

RΓcr(Yn) := RΓcr(Yn/Wn(k)), H∗
cr(Y ) := H∗

cr(Y/W (k)) := H∗ holimn RΓcr(Yn).

The canonical morphism Acr,n → OK/pn is surjective. Let Jcr,n denote its kernel. Let

B+
dR = lim←−r

(
Q⊗ lim←−n Acr,n/J

[r]
cr,n

)
, BdR = B+

dR[t−1].

The ring B+
dR has a discrete valuation given by powers of t. Its quotient field is BdR. We will

denote by FnB+
dR the filtration induced on B+

dR by powers of t.
(2) The rings Bst and B̂st. Let us now recall the definition of the ring Bst [Fon94]. Set

B+
st := B+

cr[u], φ(u) = pu, and Nu = −1. Let π be a uniformizer of OK (which we will fix in the
rest of the paper). Let ι = ιπ : B+

st ↪→ B+
dR denote the embedding u �→ uπ = log([π�]/π). We use

it to induce the Galois action on B+
st from the one on B+

dR. Let Bst = Bcr[uπ].
We will need the following crystalline interpretation of the ring B+

st (see [Kat94a, Tsu99a]).
Let Rπ,n denote the PD envelope of the ring Wn(k)[x] with respect to the closed immersion
Wn(k)[x]→ OK,n, x �→ π, equipped with the log-structure associated to N→ Rπ,n, 1 �→ x. Set
Rπ := lim←−n Rπ,n. Let

Â+
st = lim←−n H0

cr(Spec(OK,n)/Rπ,n), B̂+
st := Â+

st[1/p].

The ring B̂+
st has a natural action of GK , Frobenius φ, and a monodromy operator N . Kato

showed [Kat94a, 3.7] that the ring B+
st is canonically (and compatibly with all the structures)

isomorphic to the subring of elements of B̂+
st annihilated by a power of the monodromy operator

N . The map ι : B+
st → B+

dR extends naturally to a map ι : B̂+
st → B+

dR.

2.1.2 Syntomic cohomology. We will recall briefly the definition of syntomic cohomology.
For a log-scheme X, we denote by Xsyn the small log-syntomic site of X. For a log-scheme X
log-syntomic over Spec(W (k)), define

Ocr
n (X) = H0

cr(Xn,OXn), J [r]
n (X) = H0

cr(Xn,J [r]
Xn

),

where OXn is the structure sheaf of the absolute log-crystalline site (i.e., over Wn(k)), JXn =
Ker(OXn/Wn(k) → OXn), and J [r]

Xn
is its rth divided power of JXn . Set J [r]

Xn
= OXn if r ≤ 0. There

is a canonical, compatible with Frobenius, and functorial isomorphism

H∗(Xsyn,J [r]
n ) 
 H∗

cr(Xn,J [r]
Xn

).
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It is easy to see that φ(J [r]
n ) ⊂ prOcr

n for 0 ≤ r ≤ p− 1. This fails in general and we modify J [r]
n :

J 〈r〉
n := {x ∈ J [r]

n+s | φ(x) ∈ prOcr
n+s}/pn

for some s ≥ r. This definition is independent of s. We can define the divided Frobenius

φr = “φ/pr” : J 〈r〉
n → Ocr

n .

Set

Sn(r) := Cone(J 〈r〉
n

1−φr−→ Ocr
n )[−1].

We will write Sn(r) for the syntomic sheaves on Xm,syn, m ≥ n, as well as on Xsyn. We will also
need the ‘undivided’ version of syntomic complexes of sheaves:

S ′n(r) := Cone(J [r]
n

pr−φ−→ Ocr
n )[−1].

The natural map S ′n(r)→ Sn(r) induced by the maps pr : J [r]
n → J 〈r〉

n and Id : Ocr
n → Ocr

n has
kernel and cokernel killed by pr. We will also write Sn(r), S ′n(r) for Rε∗Sn(r), Rε∗S ′n(r),
respectively, where ε : Xn,syn → Xn,ét is the canonical projection to the étale site.

The p-adic syntomic cohomology of X is defined as

RΓét(X,S(r)) := holimn RΓét(X,Sn(r)), RΓét(X,S ′(r)) := holimn RΓét(X,S ′n(r)).

2.1.3 Cohomology with compact support. Let X be a finite and saturated log-smooth log-
scheme over O×

K (respectively over OK). Since X is log-regular it is normal and the maximal
open subset U = Xtr ⊂ X, where the log-structure MX is trivial, is dense in X. We have MX =
OX ∩ j∗O∗

U , where j : U ↪→ X is the open immersion. By [Niz06a, Theorem 5.10], there exists a
log-blow-up of X that has Zariski log-structure and is (classically) regular.

Assume that X itself has these properties. Then U is a complement of a divisor with simple
normal crossings that is a union D0 ∪D (respectively D) of the reduced special fiber and the
horizontal part D. The scheme X has generalized semistable reduction, i.e., Zariski locally on X,
there exists an étale morphism over OK :

X → Spec(OK [T1, . . . , Tu]/(Tn1
1 · · ·Tnu

u − π)[U1, . . . , Um, V1, . . . , Vt])

for some integers u ≥ 1 (respectively u = 0), m, t ≥ 0, ni > 0. The divisor D is the inverse image
of U1 · · ·Um = 0. In particular, all the closed strata of D are log-smooth over O×

K and regular
(respectively smooth over OK). If all ni = 1, we say that X has semistable reduction.

Take X as above with semistable reduction. Recall the following definitions. The p-adic étale
cohomology of XK with compact support.2

RΓét,c(XK ,Qp) = RΓét(XK , jK!Qp).

The de Rham cohomology of XK with compact support [Tsu99b, Definition 3.2]

RΓdR,c(XK) = RΓ(XK , IDK
Ω•
XK

),

2 If X is proper this is, of course, isomorphic to RΓét,c(UK ,Qp).
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where IDK
⊂ jK∗O∗

UK
∩ OXK

is the ideal of OXK
corresponding to DK . We filter it by

F rRΓdR,c(XK) = RΓ(XK , IDK
Ω≥r
XK

), r ∈ Z.

The crystalline cohomology of X0 over W (k)0 with compact support [Tsu99b, Definition 5.4]

RΓcr,c(X0/W (k)0) = RΓcr(X0/W (k)0,KD0),

where KD0 is an ideal sheaf induced by the sheaf ID0 [Tsu99b, Lemma 5.3]. The crystalline
cohomology RΓcr,c(X) is defined in a similar way. We filter it by setting F rRΓcr,c(X) =
RΓcr(X,KD0J [r]

X ), r ∈ Z. This allows us to define the syntomic cohomology with compact support
RΓsyn,c(X,Sn(r)) and RΓsyn,c(X,S ′n(r)).

The above cohomologies with compact support are special cases of cohomologies of finite
simplicial schemes. Define C(X,D) := cofiber(D̃•

i∗→ X), where D̃• is the Čech nerve of the
map

∐
iDi → D, Di being an irreducible component of D. The log-structure on the schemes

in C(X,D) is trivial if X is over OK and induced from the special fiber if X is over O×
K .

Lemma 2.1. Let RΓ(X) denote one of the cohomologies mentioned above. We have a natural

(filtered) quasi-isomorphism

RΓc(X) 
 RΓ(C(X,D)).

It is compatible with products.3

Proof. The étale and de Rham cases follow immediately from the following exact sequences
(r ∈ Z):

0→ jK!Qp → Qp,XK
→ i1∗Qp,D1

K
→ i2∗Qp,D2

K
→ · · · ,

0→ IDK
Ω≥r
XK
→ Ω≥r

XK
→ i1∗Ω≥r

D1
K
→ i2∗Ω≥r

D2
K
→ · · · .

(2.2)

Here Dm := D̃m is the direct sum of the intersections of m irreducible components of D. We
note that C(X,D)K 
 C(XK , DK) even if (X,D) is not geometrically irreducible.

The crystalline case over W (k)0 follows from a mixed characteristic analog of the second
sequence. And the case over W (k) reduces to this sequence as well. Indeed, if OK = W (k), this
is clear. In general, locally, we have an embedding into such a situation. Because, by assumption,
this embedding is regular, the above-mentioned sequence remains exact after tensoring with the
divided power envelope and computes cohomology with compact support.

For the syntomic case, it suffices to check that the above crystalline quasi-isomorphism
preserves filtrations. But this follows easily from the fact that the associated grading of the
filtration on the divided power envelope is free over OX .

Concerning compatibility with products, the étale, the de Rham, and the crystalline cases
are immediate from the expressions (2.2). In the syntomic case, compatibility follows from the
fact that syntomic cohomology is defined as a mapping fiber of (filtered) crystalline coho-
mology and the syntomic product is the mapping fiber product induced from the crystalline
product. �

3 The product on the cohomology of a simplicial scheme is defined as the holim-product induced by the cosimplicial
degree-wise products.
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2.1.4 Fontaine–Lafaille theory. The main reference for this section is [FL82]. Assume first
that OK = W (k). For the integral crystalline theory (Fontaine–Laffaille theory), we will need
the following abelian categories:

(i) MFbig(OK): an object is given by a p-torsion OK-module M and a family of p-torsion OK-
modules F iM together with OK-linear maps F iM → F i−1M, F iM →M , and σ-semilinear
maps φi : F iM →M satisfying certain compatibility conditions;

(ii) MF(OK): the full subcategory of MFbig(OK) with objects: finite OK-modules M such
that F iM = 0 for i 0, the maps F i(M)→M are injective and

∑
Imφi = M ;

(iii) MF[a,b](OK): the full subcategory of objects M of MF(OK) such that F aM = M and
F b+1M = 0.

Consider the category MF[a,b](OK) with b− a ≤ p− 2. There exists an exact and fully
faithful functor

L(M) = ker(F 0(M ⊗Acr{−b}(−b)) 1−φ0−−→M ⊗Acr(−b)),
where {−b} and (−b) are the MF and Tate twists4, respectively, from MF[a,b](OK) to finite
Zp-Galois representations. Its essential image is called the category of crystalline representations
of weight between a and b. This category is closed under taking tensor products and duals
(assuming that we stay in the admissible range of the filtration).

The following proposition generalizes [FM87, 2.7], Faltings [Fal89, 4.1], and [Niz09, Lemma
2.3] from schemes to finite simplicial schemes.

Proposition 2.3. Let X be a smooth and proper m-truncated simplicial scheme over OK =
W (k) whose components have dimension smaller than d. Then, for d ≤ p− 2 or for i ≤ p− 2, the

filtered Frobenius module H i
cr(Xn) lies inMF[0,d](OK) orMF[0,i](OK), respectively. Moreover,

then the natural morphism

ψn : H i
ét(XOK

,Sn(r)) ∼→ L(H i
cr(Xn){−r}) 
 F rH i

cr(XOK ,n
)φr=1

is an isomorphism for p− 2 ≥ r ≥ d or for 0 ≤ i ≤ r ≤ p− 2, respectively.

Here

H i
cr(Xn) 
 H i

dR(Xn/OK,n) := H i(Xn,Ω•
Xn/OK,n

)

and the maps

φk = “φ/pk” : F kH i
cr(Xn)→ H i

cr(Xn),

where φ denotes the crystalline Frobenius. The Hodge filtration is

F kH i
cr(Xn) 
 Im(H i(Xn,Ω

≥k
Xn/OK,n

)→ H i(Xn,Ω•
Xn/OK,n

))

since the Hodge–de Rham spectral sequence of Xn degenerates: by devissage, we can reduce to
n = 1 and then it follows from the results of Deligne and Illusie [DI87, Corollary 3.7].

Proof. The proof of [FM87, 2.7] for schemes goes through for truncated simplicial schemes,
proving the first claim of the proposition. For the second claim, we argue by induction on m ≥ 0
such that X 
 skmX. The case of m = 0 is treated in [FM87, 2.7]. Assume that our proposition

4 For M ∈ MF , we set F jM{i} := F j−iM, φM{i},j := piφM,j−i.
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is true for m− 1. To show it for m, consider the homotopy cofiber sequence

skm−1XOK
→ skmXOK

→ skmXOK
/ skm−1XOK

and apply the maps ψn to it. We get the following map of sequences.

H i−1
syn (skm−1X) ��

ψn�
��

H i−1
syn (X ′

m) ��

ψn�
��

H i
syn(skmX) ��

ψn
��

H i
syn(skm−1X) ��

ψn�
��

H i
syn(X ′

m)

ψn�
��

L(H i−1
cr (skm−1X)) �� L(H i−1

cr (X ′
m)) �� L(H i

cr(skmX)) �� L(H i
cr(skm−1X)) �� L(H i

cr(X
′
m))

Here we set H∗
syn(Y ) = H∗

ét(YOK
,Sn(r)), L(H∗

cr(Y )) = L(H∗
cr(Yn){−r}). We also put

H∗
α(X ′

m, ∗) = H∗
α(Xm, ∗) ∩ ker s∗0 ∩ · · · ∩ ker s∗m−1, α = syn, cr,

where each si : Xm−1 → Xm is a degeneracy map. The top sequence is exact. So is the bottom:
it is clearly exact before applying L and it stays exact because the relevant categories MF are
closed under taking subobjects and the functor L is exact.

By the inductive hypothesis, we have the isomorphisms shown. It follows that the map

ψn : H i
ét(skmXOK

,Sn(r))→ L(H∗
cr(skmXn){−r})

is an isomorphism as well. Since H i
ét(skmXOK

,Sn(r)) ∼→ H i
ét(XOK

,Sn(r)) and H∗
cr(skmXn) ∼→

H∗
cr(Xn), we are done. �

The above proposition can be applied to cohomology with compact support.

Corollary 2.4. Let X be a smooth and proper scheme over OK = W (k) with a divisor D that

has relative simple normal crossings and all the closed strata smooth over OK . Equip X with the

log-structure coming from D. Then, if the relative dimension d of X is ≤ p− 2 or if i ≤ p− 2, the

filtered Frobenius module H i
cr(Xn) lies inMF[0,d](OK) orMF[0,i](OK), respectively. Moreover,

then the natural morphism

ψn : H i
ét(XOK

,Sn(r)) ∼→ L(H i
cr,c(Xn){−r}) 
 F rH i

cr,c(Xn)φr=1

is an isomorphism for p− 2 ≥ r ≥ d or for 0 ≤ i ≤ r ≤ p− 2, respectively.

Proof. By Lemma 2.1, we have a canonical isomorphism

H i
cr,c(Xn) 
 H i

cr(C(X,D)n).

Our corollary follows now from Proposition 2.3. �

2.1.5 More cohomological identities. Let OK be general and let X be an OK-scheme. Recall
that, if X is smooth and proper, Kato and Messing [KM92] have constructed the following
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isomorphisms:

hcr : H i
cr(X0)Q ⊗B+

cr
∼→ H i

cr(XOK
)Q [KM92, 1.2],

H i
dR(XK)⊗B+

dR 
 lim←−
N

(
lim←−n H i

cr(XOK ,n
,On/J [N ]

n )
)

Q
[KM92, 1.4],

hdR : F r(H i
dR(XK)⊗B+

dR) ∼→ lim←−
N

(
lim←−n H i

cr(XOK,n
, J [r]
n /J [N ]

n )
)

Q
.

We will need also to know the following lemma [Niz98, Lemma 2.2].

Lemma 2.5. The following two compositions of maps are equal:

Q⊗ lim←−n H i
ét(XOK

,S ′n(r))→ lim←−
N

(
Q⊗ lim←−n H i

cr(XOK ,n
, J [r]
n /J [N ]

n )
)

h−1
dR−−→F r(H i

dR(XK)⊗B+
dR)

→ H i
dR(XK)⊗B+

dR,

Q⊗ lim←−n H i
ét(XOK

,S ′n(r))→ Q⊗ lim←−n H i
cr(XOK,n

) h−1
cr−−→H i

cr(X0)⊗W (k) B+
cr

δ−−→H i
dR(XK)⊗B+

dR,

where δ is induced by the Berthelot–Ogus isomorphism [BO83, 2.2] H i
cr(X0)⊗W (k) K 


H i
dR(XK).

Let X be any fine log-scheme which is log-smooth and proper over O×
K with saturated log-

structure on the generic fiber. We will need the crystalline interpretation of B+
dR ⊗K H i

dR(XK)
from [Kat94a] (see also [Tsu99a, 4.7]):

B+
dR ⊗K H i

dR(XK) ∼→ lim←−s H i
cr(XOK

/O×
K ,O/J [s])Q [Tsu99a, 4.7.6],

F r(B+
dR ⊗K H i

dR(XK)) ∼→ lim←−
s≥r

H i
cr(XOK

/O×
K , J

[r]/J [s])Q [Tsu99a, 4.7.13].
(2.6)

Finally, let us recall briefly the Hyodo–Kato isomorphism. We define the Hyodo–Kato
cohomology as

H i
HK(X) := H i

cr(X0/W (k)0)Q.

If the special fiber of X is of Cartier type, Kato defined [Kat94a, 4.2 and 4.5] canonical morphisms
(that however depend on the choice of π)

H i
cr(XOK

)Q
hπ→ (B̂+

st ⊗F H i
HK(X))N=0 ∼← (B+

st ⊗F H i
HK(X))N=0. (2.7)

It can be checked (see [Tsu99a, 4.5.6 and 4.5.7]) that these morphisms are compatible with Galois
action and the Frobenius. Moreover, Hyodo and Kato [HK94, 5.1] have constructed a canonical
K-isomorphism

ρπ : K ⊗F H i
HK(X) ∼→ H i

dR(XK). (2.8)

Hence, the composition

ρπhπ : H i
cr(XOK

)Q → B+
st ⊗F H i

dR(XK)

is functorial in X and compatible with Galois action.
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It is easy to check that all the above extends to finite simplicial (log-)schemes X.

(i) The map hcr actually lifts in a functorial way to a statement in the ∞-derived category5

and hence extends to simplicial schemes. Similarly for the morphisms in (2.7).
(ii) Similarly for the Hyodo–Kato isomorphism (2.8), though here finiteness of the simplicial

scheme is an important assumption one needs to make to control the denominators (for
details, see [Tsu98, 6.3] and [Kis02, 2.8]).

(iii) Similarly for the map hdR, the maps in Lemma 2.5, and the maps in (2.6), where in addition
one needs to use that the Hodge–de Rham spectral sequence for X degenerates (which, by
passing to the complex numbers, follows from the classical Hodge theory; see [Del74, 7.2.8]).

2.1.6 A key isomorphism. Let X be a proper semistable scheme over OK . The following
lemma will be crucial in the comparison of period morphisms.

Lemma 2.9. Let r ≥ i. There exists a natural isomorphism

H i
ét(XOK

,S ′(r))Q ∼→ (H i
HK(X)⊗F Bst)N=0,φ=pr ∩ F r(H i

dR(XK)⊗K BdR).

Proof. This is well known; see [NN16, Corollary 3.23] and [CN17, Proposition 5.22]. We will
sketch here the construction of the map for future reference; see [NN16, Corollary 3.23] for details.
Consider the following sequence of maps of homotopy limits; they are all quasi-isomorphisms.
Homotopy limits are taken in the ∞-derived category.

hr : RΓét(XOK
,S ′(r))Q ∼→ [RΓcr(XOK

)φ=pr

Q

can �� RΓcr(XOK
)Q/F r]

∼→ [RΓcr(XOK
/Rπ)N=0,φ=pr

Q

pπ
�� RΓcr(XOK

/O×
K)Q/F r]

∼← [(RΓcr(X/Rπ)⊗LRπ
B̂+

st)
N=0,φ=pr pπ⊗ι

�� (RΓdR(XK)⊗LK B+
dR)/F r]

ιπ← [(RΓHK(X)⊗LF B̂+
st)

N=0,φ=pr
ρπ⊗ι

�� (RΓdR(XK)⊗LK B+
dR)/F r]

∼← [(RΓHK(X)⊗LF B+
st)

N=0,φ=pr ρπ⊗ι
�� (RΓdR(XK)⊗LK B+

dR)/F r] .

(2.10)

Here the eigenspaces are taken in the derived sense and we used the brackets [−] to denote a
mapping fiber. The first two maps and the last map are the canonical maps. We wrote pπ for
the projection x �→ π. The second map is induced by the distinguished triangle

RΓcr(XOK
)→ RΓcr(XOK

/Rπ) N→ RΓcr(XOK
/Rπ).

The third map is induced by the Künneth map; we also used here the quasi-isomorphism (2.6).
The fourth map is induced by the section ιπ : RΓHK(X)→ RΓcr(X/Rπ)Q of the projection x �→ 0
(recall that ρπ = pπιπ). �

5 A good source of the quasi-isomorphisms of this type is [Bei13] as well as [NN16].
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2.2 Localization map
For (finite simplicial) schemes X over OK that are smooth or log-smooth and regular, the
localization map

j∗ : Ki(XOK
,Z/n)→ Ki(XK ,Z/n), i ≥ 0,

where j : XK ↪→ XOK
is the natural open immersion, is easy to understand as the two following

lemmas show. Here Ki(−,Z/n) is the K-theory with coefficients Z/n (see [Niz16, § 4.1.1]).

Lemma 2.11. Let X be a finite smooth simplicial OK-scheme. For any integer n, the localization

morphism

j∗ : Ki(XOK
,Z/n)→ Ki(XK ,Z/n), i ≥ 0,

is an isomorphism.

Proof. Recall that we have proved in [Niz98, Lemma 3.1] that this lemma is true if X is a single
smooth scheme over OK . By the same method, we get the other hypercohomology spectral
sequences, namely, the weight spectral sequences [Tho85, 5.13 and 5.48]

Est2 = Hs(m �→ πt(K(Xm),Z/n))⇒ Hs−t(X,K; Z/n), t− s ≥ 3.

Here K is the presheaf Z× Z∞BGL, where BGL(U) = inj limnBGLn(U). Since the natural
inclusion j : XK ↪→ XOK

induces a localization map on the corresponding spectral sequences
compatible with the localization maps on individual schemes, we get isomorphisms on the terms
of the spectral sequences that induce an isomorphism on the abutments, as wanted. �

LetX be a finite and saturated Zariski log-smooth log-scheme overO×
K (respectively overOK)

that is classically regular. The maximal open subset U = Xtr ⊂ X where the log-structure MX

is trivial is dense in X and we have MX = OX ∩ l∗O∗
U , where l : U ↪→ X is the open immersion.

The subset U is a complement of a divisor with simple normal crossings that is a union D0 ∪D
(respectively D) of the reduced special fiber and the horizontal part D.

Let K1 be a finite extension of K and let OK1 be its ring of integers. The log-scheme XOK1
is

in general singular but it can be desingularized by a log-blow-up, i.e., there exists a log-blow-up
f : Y → XOK1

that does not modify the regular locus and such that Y is a (classically) regular
Zariski log-scheme. Below we will only consider log-blow-ups of XOK1

that are vertical, i.e., we
blow up only closed strata involving the vertical divisor D0,OK1

. More precisely, let F (X) be the
fan of X [Kat94b, 10] (recall that X is assumed to be Zariski and regular). It is a fan over the
fan F (O×

K) = Spec(N), π : F (X)→ Spec(N). Let F0(X) be the vertical fan of F (X), i.e., the
maximal open subfan of F (X) containing the closed fiber π−1(s), where s = {n ≥ 1|n ∈ N} is
the closed point of Spec(N) [Sai04, proof of Lemma 2.5]. We have a natural map F (X)→ F0(X).

The log-scheme XOK1
has the fan F (XOK1

) = Fe(X) = F (X)×Spec(N) Spec(Ne), where e

denotes the ramification index of OK1/OK . We have the natural map F (XOK1
)→ F0,e(X).

From now on we consider only log-blow-ups Y → XOK1
induced from regular subdivisions of the

vertical fan F0,e(X). In the local picture above, we consider only log-blow-ups of XOK1
induced

from log-blow-ups of the vertical part Xv
OK1

. Notice that the scheme Y has generalized semistable
reduction as well and the horizontal divisor DY is the preimage of DOK1

.
Let XOK

denote the projective system of such pairs (f : Y → YOK1
,OK1) (that we will

sometimes just call Y ) and DOK
denote the induced projective system (DY ⊂ Y, f,OK1) for

(f : Y → XOK1
,OK1) ∈ XOK

. We will show that we can pass from the K-theory with compact
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support of the generic fiber XK to the K-theory with compact support of the regular model
XOK

that we define as

Kc
j (XOK

,DOK
,Z/pn) := lim−→

Y ∈XO
K

Kj(C(Y,DY ),Z/pn).

Lemma 2.12. Let j : XK ↪→ XOK
be the natural open immersion. Then the restriction

j∗ : Kc
j (XOK

,DOK
,Z/pn) ∼→ Kc

j (XK , DK ,Z/p
n), j > d+ 1,

is an isomorphism and the induced map on the γ-graded pieces

j∗ : F iγ/F
i+1
γ Kc

j (XOK
,DOK

,Z/pn)→ F iγ/F
i+1
γ Kc

j (XK , DK ,Z/p
n), j > d+ 1,

has kernel and cokernel annihilated by M(2d, i+ 1, 2j) and M(2d, i, 2j), respectively. Here

F iγKj(−,Z/pn) is a γ-filtration (see [Niz16, § 4.1.4]).

Remark 2.13. The integers M(k,m, n) are defined by the following procedure [Sou82, 3.4]. Let l
be a positive integer, and let wl be the greatest common divisor of the set of integers kN (kl − 1)
as k runs over the positive integers and N is large enough with respect to l. Let M(k) be the
product of the wl for 2l < k. Set M(k,m, n) =

∏
2m≤2l≤n+2k+1M(2l). An odd prime p divides

M(d, i, j) if and only if p < (j + 2d+ 3)/2, and divides M(l) if and only if p < (l/2) + 1.

Proof. It suffices to argue on finite levels. So, we may simply assume that we have a regu-
lar scheme X over OK with a divisor D that has relative simple normal crossings and whose
irreducible components are all regular. We need to show the above lemma just for the pair
(X,D).

For the first statement of the lemma, consider the following commutative diagram with the
horizontal sequences exact.

�� Kj+1(D̃•,Z/pn)

j∗
��

�� Kc
j (X,D,Z/p

n)

j∗
��

�� Kj(X,Z/pn)

j∗�
��

i∗ �� Kj(D̃•,Z/pn)

j∗
��

��

�� Kj+1(D̃K•,Z/pn) �� Kc
j (XK , DK ,Z/pn) �� Kj(XK ,Z/pn)

i∗ �� Kj(D̃K•,Z/pn) ��

It shows that it suffices to prove that the restriction map

j∗ : Kj(D̃•,Z/pn)→Kj(D̃K•,Z/pn), j > d+ 1,

is an isomorphism. To see that, write D =
⋃i=m
i=1 Di as a union of irreducible components Di

and argue by induction on m. Recall that we have proved in [Niz08, Lemma 3.5] that the above
lemma is true if m = 1. Assume now that the above isomorphism holds for m− 1. To prove it
for m, consider the restriction map of the following long exact sequences.

�� Kj+1(D̃Y •,Z/pn)

j∗�
��

�� Kj(D̃•,Z/pn)

j∗

��

�� Kj(Y,Z/pn)⊕Kj(D̃′
•,Z/pn)

j∗�
��

�� Kj(D̃Y •,Z/pn)

j∗�
��

��

�� Kj+1(D̃Y,K•,Z/pn) �� Kj(D̃K•,Z/pn) �� Kj(YK ,Z/pn)⊕Kj(D̃′
K•,Z/pn) �� Kj(D̃Y,K•,Z/pn) ��
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Here we wrote Y = D1, D′ =
⋃i=m
i=2 Di, and DY = D′ ∩ Y . By the inductive hypothesis, we have

the isomorphisms shown. It follows that we have the isomorphism

j∗ : Kj(D̃•,Z/pn) ∼→ Kj(D̃K•,Z/pn), j > d+ 1,

as wanted.
Hence, the first statement of the lemma is true. It implies that, for j > d+ 1, the top map

in the following commutative diagram is an isomorphism.

F̃ iγ/F̃
i+1
γ Kc

j (X,D,Z/p
n)

j∗

∼
��

��

F̃ iγ/F̃
i+1
γ Kc

j (XK , DK ,Z/pn)

��

F iγ/F
i+1
γ Kc

j (X,D,Z/p
n)

j∗
�� F iγ/F

i+1
γ Kc

j (XK , DK ,Z/pn)

Here F̃ iγ refers to a modified γ-filtration (see [Niz16, § 4.1.4] for details). Since, by [Niz16, Lemma
4.4], M(2d, i, 2j)F iγK

c
j (XK , DK ,Z/pn) ⊂ F̃ iγKc

j (XK , DK ,Z/pn), we get the second statement of
our lemma. �

2.3 Étale Chern classes
The following proposition shows that we can invert étale Chern classes modulo some constants.

Proposition 2.14. Let Y be a smooth finite simplicial scheme over K such that Y 
 skm Y .

Set d = maxs≤m dimYs. Let pn ≥ 5, j ≥ max{2d, 2}, j ≥ 3 for d = 0 and p = 2, and 2i− j ≥ 0.

There exists an integer D(d,m, i, j) depending only on d, m, i, and j such that the kernel and

cokernel of the Chern class map

cétij : griγ Kj(Y,Z/pn)→ H2i−j
ét (Y,Z/pn(i))

are annihilated by D(d,m, i, j). Any prime p > d+m+ j + 1 does not divide D(d,m, i, j).

Remark 2.15. This proposition is a K-theory version of the following theorem of Suslin [Sus00,
Gei10].

Theorem 2.16 Suslin. For Y a smooth scheme of dimension d over K, the change of topology

map

Hj
Zar(Y,Z/p

n(i)M )→ Hj
ét(Y,Z/p

n(i)M )

is an isomorphism for i ≥ d. Here Z/pn(i)M is the complex of motivic sheaves (Bloch higher

Chow complex).

Proof. To prove the proposition, we are going to argue by induction on m. The case of m = 0
was treated in [Niz08, Proposition 3.2]. We computed there that

D(d, 0, i, j) = (i− 1)!M(d, i, j)M(d, i+ 1, j)M(d, i+ 1, 2j)M(d, i, 2j)M(2d)2d.

Assume that m ≥ 1. For the inductive step, we need to filter Y by its skeletons. We work on the
site of schemes smooth over K equipped with the Zariski topology. Take a fibrant replacement
K → Kf . The pointed simplicial sets Hom(skt Y,Kf ) form a tower of fibrations converging to
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Hom(Y,Kf ) [BK72, X.3.2]. Let Ft be the fiber over ∗ of Hom(skt Y,Kf )→ Hom(skt−1 Y,K
f ).

Then, by Bousfield and Kan [BK72, Proposition X.6.3],

Ft 
 Hom(skt Y/ skt−1 Y,K
f ) 
 ΩtN tKf (Yt),

where

N tKf (Yt) = Kf (Yt) ∩ ker s∗0 ∩ · · · ∩ ker s∗t−1

and si : Yt−1 → Yt is a codegeneracy. In particular, the natural map

Hom(Y,Kf ) ∼→ Hom(skm Y,Kf )

is a weak equivalence.
For j ≥ 2 and j + t ≥ 3, using again [BK72, Proposition X.6.3], we get the long exact sequence

→ Kj+t(Y ′
t ,Z/p

n)→ Kj(skt Y,Z/pn)→ Kj(skt−1 Y,Z/pn)→ Kj+t−1(Y ′
t ,Z/p

n)→ . (2.17)

Here we set

Kj+t(Y ′
t ,Z/p

n) = Kj(skt Y/ skt−1 Y,Z/pn) = Kj+t(Yt,Z/pn) ∩ ker s∗0 ∩ · · · ∩ ker s∗t−1.

By functoriality, λ-operations act on this exact sequence and this yields a sequence of γ-gradings

→ gri
γ Kj+t(Y ′

t ,Z/p
n) d→ gri

γ Kj(skt Y,Z/pn) d1→ gri
γ Kj(skt−1 Y,Z/pn) d2→ gri

γ Kj+t−1(Y ′
t ,Z/p

n) d3→

that is exact only up to certain universal constants. More precisely, we have the following lemma.
�

Lemma 2.18. If the element [x] at any level of the long sequence (2.17) is a cocycle, then C[x]
is a coboundary for the following constant C:

(i) if d1([x]) = 0 then C = M(2i)M(2(j + t+ d− i));
(ii) if d2([x]) = 0 then C = M(2i)M(2(j + t+ d− i));

(iii) if d([x]) = 0 then C = M(2i)M(2(j + t+ d+ 1− i)).

Proof. First, note that F j+t+1
γ Kj+t(Y ′

t ,Z/p
n) = 0 since Kj+t(Y ′

t ,Z/p
n) ⊂ Kj+t(Yt,Z/pn) and

we have [Niz16, Lemma 4.3].
We will prove (i). The other cases can be proved in a similar way. Assume that [x] ∈

griγ Kj(skt Y,Z/pn) and look at the sequence

griγ Kj+t(Y ′
t ,Z/p

n) d→ griγ Kj(skt Y,Z/pn) d1→ griγ Kj(skt−1 Y,Z/pn).

Assume that x ∈ F iγKj(skt Y,Z/pn) is such that d1([x]) = 0. That means that on the level of
the long exact sequence (2.17), d1(x) ∈ F i+1

γ Kj(skt−1 Y,Z/pn). We will need certain projectors
[Sou82, 2.8]. For two natural numbers a �= b, denote by Aabk, k ≥ 2, a family of integers such
that w|b−a| =

∑
k≥2Aabk(k

a − kb). Let

φa,b =
∑
k≥2

Aabk(ψk − kb), φa =
∏

2≤b≤a−1

φa,b, φam =
∏

a+1≤b≤j+m+d

φa,b, a ≥ 2.
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Note that, for any x ∈ Kj(−,Z/pn), we have φa(x) ∈ F aγKj(−,Z/pn). Since the kth Adams
operation ψk acts on grcγKj(skt Y,Z/pn) as kc, we have

M(2(j + t+ d− i))x− φit−1(x) ∈ F i+1
γ Kj(skt Y,Z/pn),

so M(2(j + t+ d− i))[x] = [φit−1(x)]. Since d1x ∈ F i+1
γ Kj(skt−1 Y,Z/pn) and by [Niz16, Lemma

4.3] the length of the γ-filtration is j + t− 1 + d, we compute that d1(φit−1(x)) = φit−1(d1x) = 0.
Hence, M(2(j + t+ d− i))[x] = [y] is such that d1(y) = 0 and y ∈ F iγKj(skt Y,Z/pn).

From the long exact sequence (2.17), we then get w ∈ Kj+t(Y ′
t ,Z/p

n) such that dw = y.
Consider w1 = φi(w) ∈ F iγKj+t(Y ′

t ,Z/p
n). We have

[d(w1)] = [φi(dw)] =
∏

2≤b≤i−1

(∑
k≥2

Aibk([ψk(dw)]− kb[dw])
)

=
∏

2≤b≤i−1

(∑
k≥2

Aibk(ki − kb)
)

[dw] = M(2i)[dw].

Hence, M(2i)M(2(j + t+ d− i))[x] is a coboundary, as wanted. �

To proceed, we will need the following two lemmas.

Lemma 2.19. For a d-dimensional scheme Y smooth over K, we have

M(d, i+ 1, 2j)M(d, i, 2j) griγ Kj(Y,Z/pn) = 0, 2i− j < 0.

Proof. This is the K-theory version of the mod-pn Beilinson–Soulé conjecture. Recall that we
know its motivic version to be true. That is, H2i−j

Zar (Y,Z/pn) = 0 for 2i− j < 0 [Akh07]. So, we
just need to translate this statement into K-theory. Recall that Levine [Lev04] has constructed
a Zariski Atiyah–Hirzebruch spectral sequence from motivic cohomology to K-theory:

Es,q2 = Hs
Zar(Y,Z/p

n(q/2)M )⇒ Ks−q(Y,Z/pn).

Here the differential dr : Es,qr → Es+r,q+r−1
r . Denote by F iAH the filtration on K-theory groups

defined by this spectral sequence. Levine showed [Lev04, 13.11] that

M(d, i, 2j)F iAHKj(Y,Z/pn) ⊂ F̃ iγKj(Y,Z/pn) ⊂ F iAHKj(Y,Z/pn).

By the above, the kernel of the map

F̃ iγ/F̃
i+1
γ Kj(Y,Z/pn)→ F iAH/F

i+1
AHKj(Y,Z/pn)

is annihilated by M(d, i+ 1, 2j) and the cokernel by M(d, i, 2j). By [Niz16, (4.4)], the same holds
for the map

F̃ iγ/F̃
i+1
γ Kj(Y,Z/pn)→ F iγ/F

i+1
γ Kn(Y,Z/pn).

Since F iAH/F
i+1
AHKj(Y,Z/pn) is a subquotient of E2i−j,2i

2 = H2i−j
Zar (Y,Z/pn(i)M ), we are done. �

Lemma 2.20. (i) For i, j as in Proposition 2.14, the kernel and cokernel of the Chern class map

céti,j : griγ Kj(Y ′
m,Z/p

n)→ H2i−j
ét (Y ′

m,Z/p
n(i)),
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where H2i−j
ét (Y ′

m,Z/p
n(i)) = H2i−j

ét (Ym,Z/pn(i)) ∩ ker s∗0 ∩ · · · ∩ ker s∗m−1, are annihilated by a

constant T (d,m, i, j). Any prime p > d+ j + 1 does not divide T (d,m, i, j).
(ii) For 2i− j < 0, we have

i!(i+ 1)! · · · (j + d)!M(d, i+ 1, 2j)M(d, i, 2j) griγ Kj(Y ′
m,Z/p

n) = 0.

Proof. Let us start with the first statement. For the kernel, take x ∈ F iγKj(Y ′
m,Z/p

n) such that
céti,j(x) = 0. Then D(d, 0, i, j)x ∈ F i+1

γ Kj(Ym,Z/pn) ∩Kj(Y ′
m,Z/p

n). Set y = D(d, 0, i, j)x. We
have

γi+1(y) = (−1)ii!y mod F i+2
γ Kj(Ym,Z/pn) ∩Kj(Y ′

m,Z/p
n).

Since, by [Niz16, Lemma 4.3], F j+d+1
γ Kj(Ym,Z/pn) = 0, by the inductive argument, we get

i!(i+ 1)! · · · (j + d)!D(d, 0, i, j)x ∈ F i+1
γ Kj(Y ′

m,Z/p
n).

So, the kernel is annihilated by i!(i+ 1)! · · · (j + d)!D(d, 0, i, j).
For the cokernel, take x ∈ H2i−j

ét (Y ′
m,Z/p

n(i)). Then D(d, 0, i, j)x = céti,j(y) for some element
y of F iγKj(Ym,Z/pn). We need to show that some multiple of y lies in F iγKj(Y ′

m,Z/p
n). For each

l, 0 ≤ l ≤ m− 1, consider the following commutative diagram.

griγ Kj(Ym,Z/pn)
s∗l ��

céti,j
��

griγ Kj(Ym−1,Z/pn)

céti,j
��

H2i−j
ét (Ym,Z/pn(i))

s∗l �� H2i−j
ét (Ym−1,Z/pn(i))

Since s∗l (x) = 0, we have D(d, 0, i, j)s∗l (y) ∈ F i+1
γ Kj(Ym−1,Z/pn). Arguing just like in the proof

of Lemma 2.18, we find that

M(2(j + d− i))D(d, 0, i, j)[y] = [y′], y′ ∈ F iγKj(Ym,Z/pn), s∗l (y
′) = 0.

Hence, repeating this argument for all l, we get

D(d, 0, i, j)mM(2(j + d− i))m[y] = [y′], y′ ∈ F iγKj(Ym,Z/pn) ∩Kj(Y ′
m,Z/p

n).

As above, i!(i+ 1)! · · · (j + d)!D(d, 0, i, j)mM(2(j + d− i))m[y] = [y′], y′ ∈ F iγKj(Y ′
m,Z/p

n).
Hence, the cokernel is annihilated by i!(i+ 1)! · · · (j + d)!D(d, 0, i, j)m+1M(2(j + d− i))m. Set

T (d,m, i, j) = i!(i+ 1)! · · · (j + d)!D(d, 0, i, j)m+1M(2(j + d− i))m, 2i ≥ j +m.

For the second statement, assume that 2i− j < 0 and take x ∈ F iγKj(Y ′
m,Z/p

n). By Lemma 2.19,
we have M(d, i+ 1, 2j)M(d, i, 2j)x ∈ F i+1

γ Kj(Ym,Z/pn) ∩Kj(Y ′
m,Z/p

n). Arguing as above,
i!(i+ 1)! · · · (j + d)!M(d, i+ 1, 2j)M(d, i, 2j)x ∈ F i+1

γ Kj(Y ′
m,Z/p

n).
Consider now the homotopy cofiber sequence

skm−1 Y → skm Y → skm Y/ skm−1 Y.

By [Niz16, Remark 5.4], the étale Chern class maps are compatible with it and we get
the following commutative diagram (where we skipped the coefficients Z/pn and Z/pn(i),
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respectively).

gri
γ Kj+1(skm−1 Y )

d2 ��

céti,j+1
��

gri
γ Kj+m(Y ′

m)
d ��

céti,j+m

��

gri
γ Kj(skm Y )

d1 ��

cétij

��

gri
γ Kj(skm−1 Y )

d2 ��

cétij

��

gri
γ Kj+m−1(Y ′

m)

céti,j+m−1
��

H2i−j−1
ét (skm−1 Y ) �� H2i−j−m

ét (Y ′
m) �� H2i−j

ét (skm Y ) �� H2i−j
ét (skm−1 Y ) �� H2i−j−m+1

ét (Y ′
m)

Here we put H∗
ét(Y

′
m) = H∗

ét(Ym) ∩ ker s∗0 ∩ · · · ∩ ker s∗m−1.
Let us first look at the kernel of the map cétij : griγ Kj(skm Y,Z/pn)→ H2i−j

ét (skm Y,Z/pn(i)).
Diagram chasing and the inductive hypothesis together with Lemmas 2.18 and 2.20 imply easily
that this kernel is annihilated by

T (d,m, i, j +m)D(d,m− 1, i, j + 1)D(d,m− 1, i, j)M(2i)

×M(2(j +m+ d− i))i!(i+ 1)! · · · (j +m+ d)!

if 2i ≥ j +m; if 2i < j +m, we can drop the first term. Here we used the fact that the numbers
M(d, i+ 1, 2j) and M(d, i, 2j) that appear in Lemma 2.19 divide D(d, 0, i, j).

By a very similar argument, we get that the cokernel of the map cétij : griγ Kj(skm Y,Z/pn)→
H2i−j

ét (skm Y,Z/pn(i)) is annihilated by

T (d,m, i, j +m)T (d,m, i, j +m− 1)D(d,m− 1, i, j)M(2i)

×M(2(j +m+ d− i))i!(i+ 1)! · · · (j +m− 1 + d)!

if 2i ≥ j +m; if 2i = j +m− 1, we can drop the first term; if 2i < j +m− 1, we can drop the
first two terms.

Set

D(d,m, i, j) = T (d,m, i, j +m)T (d,m− 1, i, j +m− 1)D(d,m− 1, i, j + 1)

×D(d,m− 1, i, j)M(2i)M(2(j +m+ d− i)) i! (i+ 1)! · · · (j +m+ d)!

for 2i ≥ j +m; if 2i = j +m− 1, we drop the first term; if 2i < j +m− 1, we drop the first two
terms. Since an odd prime p divides M(l) if and only if p < (l/2) + 1 and Ht

ét(skm Y ) = 0 for
t > 2d+m+ 1, we get the last statement of the proposition. �

3. Comparison theorems for finite simplicial schemes via K-theory

We are now ready to prove comparison theorems for finite simplicial schemes using K-theory.

3.1 Crystalline conjecture for finite simplicial schemes
We start with the crystalline conjecture.

3.1.1 Integral crystalline conjecture. We treat first its integral version. Let X be a smooth
proper finite simplicial scheme over OK , OK = W (k). Assume that X 
 skmX and that
the dimension d ≤ p− 2, d = maxs≤m dimXs. We would like to construct functorial Galois-
equivariant morphisms

αab : Ha
ét(XK ,Z/p

n(b))→ L(Ha
cr(Xn){−b}).
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We will be able to do it under certain additional restrictions on the integers a, b, and d. Our
construction is based on the following diagram.

F bγ/F
b+1
γ K2b−a(XOK

,Z/pn) ∼−−−−→
j∗

F bγ/F
b+1
γ K2b−a(XK ,Z/p

n)⏐⏐�csyn
b,2b−a �

⏐⏐�cétb,2b−a

Ha
ét(XOK

,Sn(b)) Ha
ét(XK ,Z/p

n(b))

(3.1)

Here 1 ≤ b < p− 1, 2b− a ≥ 3, pn ≥ 5, and p �= 2. The Chern class map

csyn
b,2b−a : F bγKj(XOK

,Z/pn)→ Ha
ét(XOK

,Sn(b))

is defined as the limit over finite extensions O′
K/OK of the syntomic Chern class maps

F bγK2b−a(XO′
K
,Z/pn)→ Ha

ét(XO′
K
,Sn(b)).

Due to [Niz16, Lemma 5.3], the Chern class maps cétb,2b−a and csyn
b,2b−a factor through F b+1

γ yielding
the maps in the above diagram. The restriction map

j∗ : F bγ/F
b+1
γ K2b−a(XOK

,Z/pn)→ F bγ/F
b+1
γ K2b−a(XK ,Z/p

n)

is an isomorphism by Lemma 2.11. By Proposition 2.14, the étale Chern class map

cétb,2b−a : F bγ/F
b+1
γ K2b−a(XK ,Z/p

n)→ Ha
ét(XK ,Z/p

n(b))

is an isomorphism if p > d+m+ 2b− a+ 1.
Assume now that b ≥ d, 2b− a ≥ 3, and p− 2 ≥ d+m+ 2b− a. Define the morphisms

αab : Ha
ét(XK ,Z/p

n(b))→ L(Ha
cr(Xn){−b})

as the composition αab := ψnc
syn
b,2b−a(j

∗)−1(cétb,2b−a)
−1, where ψn is the natural map

Ha
ét(XOK

,Sn(b))→ L(Ha
cr(Xn){−b}).

Note that, by Proposition 2.3, this map is an isomorphism.
The following theorem generalizes our [Niz98, Theorem 4.1] from schemes to finite simplicial

schemes.

Theorem 3.2. For any proper smooth finite simplicial scheme X over OK = W (k), X 
 skmX,

the functorial Galois-equivariant morphism

αab : Ha
ét(XK ,Z/p

n(b)) ∼→ L(Ha
cr(Xn){−b})

is an isomorphism if the numbers p, b, d are such that b ≥ 2d+ 3, p− 2 ≥ 2b+ d+m for d =
maxs≤m dimXs.

Remark 3.3. The original constants that appear in [Niz98] are different than (worse than) the
ones we have quoted here. Also there we have assumed that the scheme X was projective over
OK . However, one can easily modify the proof of Theorem 4.1 from [Niz98] by replacing the
weak Proposition 4.1 used in [Niz98] with its improved version (Proposition 3.2) from [Niz08] to
get the above theorem for schemes.
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Proof. By Lemma 2.11, Proposition 2.14, and Proposition 2.3, it suffices to show that the
syntomic Chern class map

csyn
b,2b−a : grbγ K2b−a(XOK

,Z/pn)→ Ha
ét(XOK

,Sn(b))

is an isomorphism. Note that for a < 0 this is an isomorphism by Lemma 2.19.
We argue by induction on m ≥ 0 such that X 
 skmX. The case of m = 0 is treated by

[Niz98, Theorem 4.1]. Assume that our theorem is true for m− 1. To show it for m, consider the
homotopy cofiber sequence

skm−1XOK
→ skmXOK

→ skmXOK
/ skm−1XOK

and apply the syntomic Chern class maps to it. We get the following map of sequences.

Kb
2b−a+1(skm−1 X) ��

c
syn
b,2b−a+1�

��

Kb
2b−a+m(X ′

m) ��

c
syn
b,2b−a+m�

��

Kb
2b−a(skm X) ��

c
syn
b,2b−a

��

Kb
2b−a(skm−1 X) ��

c
syn
b,2b−a�

��

Kb
2b−a+m−1(X ′

m)

c
syn
b,2b−a+m−1�

��
Ha−1(skm−1 X, b) �� Ha−m(X ′

m, b) �� Ha(skm X, b) �� Ha(skm−1 X, b) �� Ha−m+1(X ′
m, b)

Here we set K∗∗ (Y ) = gr∗γ K∗(YOK
), H∗(Y, ∗) = H∗

ét(YOK
,Sn(∗)), and skipped the coefficients

Z/pn in K-theory. We also put

K∗
∗ (X ′

m) = K∗
∗ (Xm) ∩ ker s∗0 ∩ · · · ∩ ker s∗m−1, H

∗(X ′
m, ∗) = H∗(Xm, ∗) ∩ ker s∗0 ∩ · · · ∩ ker s∗m−1,

where each si : Xm−1 → Xm is a degeneracy map. The bottom sequence is exact. By Lemma
2.18, so is the top. By the inductive hypothesis and by the case m = 0 of this theorem plus
Lemmas 2.20 and 2.11, we have the isomorphisms shown. It follows that the syntomic Chern
class map

csyn
b,2b−a : grbγ K2b−a(skmXOK

,Z/pn)→ Ha
ét(skmXOK

,Sn(b))

is an isomorphism as well. Since

K2b−a(skmXOK
,Z/pn) ∼→ K2b−a(XOK

,Z/pn) and Ha
ét(skmXOK

,Sn(b)) ∼→ Ha
ét(XOK

,Sn(b)),

we are done. �

Example 3.4. Integral crystalline conjecture for cohomology with compact support. As a corollary
of the above comparison theorem, we obtain a comparison theorem for cohomology with compact
support. Consider a proper smooth scheme X over OK = W (k). Let i : D ↪→ X, built from m

irreducible components that are smooth over OK , be the divisor at infinity of X. Let U = X \D.
Consider the simplicial scheme C(X,D) := cofiber(D̃•

i∗→ X). We have C(X,D) 
 skmC(X,D).
Equip X with the log-structure associated to D. Applying the above constructions to C(X,D),
we obtain the basic following diagram

F bγ/F
b+1
γ Kc

2b−a(XOK
, DOK

,Z/pn) ∼−−−−→
j∗

F bγ/F
b+1
γ Kc

2b−a(XK , DK ,Z/p
n)⏐⏐�csyn

b,2b−a �
⏐⏐�cétb,2b−a

Ha
ét(C(XOK

, DOK
),Sn(b)) Ha

ét(C(XK , DK),Z/pn(b))
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and the induced period morphism

α′
ab : Ha

ét(C(XK , DK),Z/pn(b))→ Ha
ét(C(XOK

, DOK
),Sn(b)).

But, by Lemma 2.1,

Ha
ét(C(XK , DK),Z/pn(b)) 
 Ha

ét,c(UK ,Z/p
n(b)),

Ha
ét(C(XOK

, DOK
),Sn(b)) 
 Ha

ét,c(XOK
,Sn(b)).

Hence, we obtain a period morphism

α′
ab : Ha

ét,c(UK ,Z/p
n(b))→ Ha

ét,c(XOK
,Sn(b))

that composed with the map Ha
ét,c(XOK

,Sn(b))→ L(Ha
cr,c(Xn){−b}) yields a Galois-equivariant

map

αab : Ha
ét,c(UK ,Z/p

n(b))→ L(Ha
cr,c(Xn){−b}).

We get the following corollary of Theorem 3.2.

Corollary 3.5. The Galois-equivariant morphism

αab : Ha
ét,c(UK ,Z/p

n(b))→ L(Ha
cr,c(Xn){−b})

is an isomorphism if the numbers p, b, d are such that b ≥ 2d+ 3 and p− 2 ≥ 2b+ d+m.

3.1.2 Rational crystalline conjecture. We will treat now the rational crystalline conjecture.
Let X be a smooth proper finite simplicial scheme over OK , where the ring OK is possibly
ramified over W (k). Assume that X 
 skmX and set d = maxs≤m dimXs. For large b, we will
construct Galois-equivariant functorial period morphisms

αab : Ha
ét(XK ,Qp(b))→ Ha

cr(X0)⊗B+
cr.

Assume that pn ≥ 5, 2b− a ≥ max{2d, 2}, 2b− a ≥ 3 for d = 0 and p = 2, and a ≥ 0. Nizio�l
[Niz16, Lemma 5.3] and Lemma 2.11 give us the following diagram.

F bγ/F
b+1
γ K2b−a(XOK

,Z/pn) ∼−−−−→
j∗

F bγ/F
b+1
γ K2b−a(XK ,Z/p

n)⏐⏐�csyn
b,2b−a

⏐⏐�cétij

Ha
ét(XOK

,S ′n(b)) Ha
ét(XK ,Z/p

n(b))

Define the morphisms

αnab : Ha
ét(XK ,Z/p

n(b))→ Ha
cr(XOK ,n

){−b}
as the composition

αnab(x) := ψnc
syn
b,2b−a(j

∗)−1D(d,m, b, 2b− a)(cétb,2b−a)
−1(D(d,m, b, 2b− a)x),

where ψn is the natural projection

ψn : Ha
ét(XOK

,S ′n(b))→ Ha
cr(XOK ,n

).
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Here (cétb,2b−a)
−1(D(d,m, b, 2b− a)x) is any element in the preimage of D(d,m, b, 2b− a)x (by

Proposition 2.14, D(d,m, b, 2b− a)x lies in the image of cétb,2b−a). By Proposition 2.14, any
ambiguity in that definition comes from a class of y such that D(d,m, b, 2b− a)[y] = [z],
z ∈ F b+1

γ K2b−a(XK ,Z/p
n), and this ambiguity we killed by twisting the definition of αnab by

a factor of D(d,m, b, 2b− a).
Define the morphism

αab : Ha
ét(XK ,Qp(b))→ Ha

cr(X0)⊗W (k) Bcr{−b}

as the composition of Q⊗ lim←−n αnab with the Kato–Messing isomorphism hcr : Ha
cr(XOK

)Q 

Ha

cr(X0)⊗W (k) B+
cr and the division by D(d,m, b, 2b− a)2.

The following theorem generalizes our [Niz08, Theorem 3.8] from schemes to finite simplicial
schemes.

Theorem 3.6. Let X be any proper smooth finite simplicial OK-scheme. Assume that X 

skmX and let d = maxs≤m dimXm. Then, assuming that b ≥ 2d+ 2, the functorial Galois-

equivariant morphism

αab : Ha
ét(XK ,Qp(b))⊗Qp Bcr → Ha

cr(X0)⊗W (k) Bcr{−b}

is an isomorphism. Moreover, the map αab preserves the Frobenius, is compatible with products

and Tate twists, and, after extension to BdR, induces an isomorphism of filtrations.

Proof. We argue by induction on m ≥ 0. The case m = 0 is treated by [Niz08, Theorem 3.8].
Assume that our theorem is true for m− 1. To show it for m, consider the homotopy cofiber
sequence

skm−1XOK
→ skmXOK

→ skmXOK
/ skm−1XOK

and apply the period morphisms α∗,∗ to it. We get the following map of sequences.

Ha−1
ét (skm−1 X, b) ��

αa+1,b�
��

Ha−m
ét (X ′

m, b)

αa−m,b�
��

�� Ha
ét(skm X, b) ��

αab

��

Ha
ét(skm−1 X, b) ��

αab�
��

Ha−m+1
ét (X ′

m, b)

αa−m+1,b�
��

Ha−1
cr (skm−1 X0, b) �� Ha−m

cr (X ′
m,0, b) �� Ha

cr(skm X0, b) �� Ha
cr(skm−1 X0, b) �� Ha−m+1

cr (X ′
m,0, b)

Here we put H∗
ét(T, b) = H∗

ét(TK ,Qp(b))⊗Bcr, H∗
cr(T, b) = H∗

cr(T )⊗Bcr{−b}. And we defined

H∗
ét(X

′
m, b) = H∗

ét(Xm, b) ∩ ker s∗0 ∩ · · · ∩ ker s∗m−1,

H∗
cr(X

′
m,0, b) = H∗

cr(Xm,0, b) ∩ ker s∗0 ∩ · · · ∩ ker s∗m−1,

where each si : Xm−1 → Xm is a degeneracy map. The horizontal sequences are exact by func-
toriality and finiteness of the étale and crystalline cohomologies. By the inductive hypothesis,
we have the isomorphisms shown in the diagram. Hence, the period morphism

αab : Ha
ét(skmXK ,Qp(b))⊗Qp Bcr → Ha

cr(skmX0)⊗W (k) Bcr{−b}

is an isomorphism. Since Ha
ét(skmXK ,Qp(b))

∼→ Ha
ét(XK ,Qp(b)) and Ha

cr(skmX0) ∼→ Ha
cr(X0),

this proves the first claim of the theorem.
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We will now check that the morphism αab is compatible with products. This follows from
the fact that the morphism hcr is compatible with products and from the following lemma. �

Lemma 3.7. Let x ∈ Ha(XK ,Z/p
n(b)), y ∈ Hc(XK ,Z/p

n(e)), 2b− a > 2, 2e− c > 2, and

pn ≥ 5. Set K(b, e) = −(b+ e− 1)!/((b− 1)!(e− 1)!). Then (assuming that all the indices are

in the valid range)

K(b, e)D(d,m, b, 2b− a)2D(d,m, e, 2e− c)2αna+c,b+e(x ∪ y)

= K(b, e)D(d,m, b+ e, 2b+ 2e− a− c)2αnab(x) ∪ αnce(y).

Proof. Use the product formulas from [Niz16, Lemma 5.3] and [Niz16, Remark 5.4]. �

The claim about Tate twists follows from the following computation.

Lemma 3.8. Let pn ≥ 5 and b ≥ 2d+ 2. We have the following relationship between Tate twists:

(−b)D(d,m, b, 2b− a)2αna,b+1(ζnx) = (−b)D(d,m, b+ 1, 2b+ 2− a)2αnab(x)t.

Proof. This follows just as in [Niz08, Lemma 3.6] from Lemma 3.7 and the fact that cét1,2(βn) = ζn

and csyn
1,2 (β̃n) = t (see [Niz98, Lemma 4.1]). Here βn ∈ K2(K,Z/pn) and β̃n ∈ K2(OK ,Z/pn) are

the Bott elements associated to ζn.
Now, to prove the claim about filtrations, first we evoke Lemma 2.5 that yields compatibility

of the period morphism with filtrations and then we note that it suffices to prove the analog of
our claim for the associated grading, i.e., that, for i ∈ Z, the induced map

αab : Ha
ét(XK ,Qp(b))⊗Qp C(i)→

⊕
j∈Z

Ha−j(XK ,Ω
j
XK/K

)⊗K C(i+ b− j)

is an isomorphism. But this can be proved by an analogous argument to the one we used to
prove the first claim of the theorem. �

Example 3.9 Rational crystalline conjecture for cohomology with compact support. Again, as a
special case consider a smooth proper scheme X over OK with a divisor D. We assume D to
have relative simple normal crossings and all the irreducible components smooth over OK . Let U
denote the complement of D in X and d be the relative dimension of X. Equip X with the log-
structure induced by D. Consider the simplicial scheme C(X,D) := cofiber(D̃•

i→ X), where all
the schemes have trivial log-structure. We have C(X,D) 
 skmC(X,D), where m is the number
of irreducible components of D. Applying the above constructions to C(X,D), we obtain the
following basic diagram.

F bγ/F
b+1
γ Kc

2b−a(XOK
, DOK

,Z/pn) ∼−−−−→
j∗

F bγ/F
b+1
γ Kc

2b−a(XK , DK ,Z/p
n)⏐⏐�csyn

b,2b−a

⏐⏐�cétb,2b−a

Ha
ét,c(XOK

,S ′n(b)) Ha
ét,c(UK ,Z/p

n(b))

Recall that we have

Ha
ét,c(XOK

,S ′n(b)) 
 Ha
ét(C(XOK

, DOK
),S ′n(b)).
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From this, we get a Galois-equivariant map

αab : Ha
ét,c(UK ,Q(b))→ Ha

cr,c(X0)⊗Bcr{−b}
and the following corollary of Theorem 3.6.

Corollary 3.10. The Galois-equivariant morphism

αab : Ha
ét,c(UK ,Qp(b))⊗Bcr → Ha

cr,c(X0)⊗Bcr{−b}
is an isomorphism for b ≥ 2d+ 2. Moreover, the map αab preserves the Frobenius, is compatible

with products and Tate twists, and, after extension to BdR, induces an isomorphism of filtrations.

3.2 Semistable conjecture for cohomology with compact support
We will now prove a comparison theorem for cohomology with compact support in the semistable
case using K-theory. We start with the definition of the period morphism. Let X be a proper
scheme over OK with (strictly) semistable reduction and of pure relative dimension d. Let i :
D ↪→ X be the horizontal divisor and set U = X \D. Equip X with the log-structure induced by
D and the special fiber. Assume that pn ≥ 5 and b ≥ 2d+ 2. We will define a period morphism

αnab : Ha
c (UK ,Z/p

n(b))→ Ha
cr,c(XOK ,n

){−b}.
We will use the following diagram.

F bγ/F
b+1
γ Kc

2a−b(XOK
,DOK

,Z/pn)
j∗−−−−→ F bγ/F

b+1
γ Kc

2a−b(XK , DK ,Z/p
n)⏐⏐�csyn

b,2a−b

⏐⏐�cétb.2a−b

Ha
ét,c(XOK

,S ′n(b)X(D)) Ha
ét,c(UK ,Z/p

n(b))

where j : XK ↪→ XOK
is the natural open immersion and we set

Ha
ét,c(XOK

,S ′n(b)X(D)) = lim−→
Y ∈XO

K

Ha
ét(C(Y,DY ),S ′n(b)).

Here the log-structure on the schemes Y,DY is trivial.
Define

αnab(x) := ψn(π∗)−1εcsyn
b,2b−aM(2d, b+ 1, 2(2b− a))(j∗)−1

×M(2d, b, 2(2b− a))D(d, d, b, 2b− a)(cétb,2b−a)
−1(D(d, d, b, 2b− a)x),

where ψn(π∗)−1ε is the composition

Ha
ét,c(XOK

,S ′n(b)X(D)) ε→ Ha
ét,c(XOK

,S ′n(b))
(π∗)−1

−−→Ha
ét,c(XOK

,S ′n(b))
ψn→ Ha

cr,c(XOK ,n
){−b},

where we set
Ha

ét,c(XOK
,S ′n(b)) = lim−→

Y ∈XO
K

Ha
ét(C(Y,DY ),S ′n(b)).

Here the log-structure on the schemes defining C(Y,DY ) is induced from the special fiber. The
pullback map

π∗ : Ha
ét,c(XOK

,S ′n(b)) ∼→ Ha
ét,c(XOK

,S ′n(b))

is an isomorphism by a simplicial (and easy to prove) version of [Niz08, Corollary 2.4].
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In the definition of αnab(x), for x ∈ Ha
c (UK ,Z/p

n(b)), we take (cétb,2b−a)
−1(D(d, d, b, 2b− a)x) ∈

F bγ/F
b+1
γ Kc

2b−a(XK , DK ,Z/p
n) to be any element in the preimage of D(d, d, b, 2b− a)x (this

is possible by Proposition 2.14). By Proposition 2.14, any ambiguity in that definition comes
from a class of y such that D(d, d, b, 2b− a)[y] = [z], z ∈ F b+1

γ Kc
2b−a(XK , DK ,Z/p

n), and that
we killed by twisting the definition of αnab by a factor of D(d, d, b, 2b− a). Similarly, for x ∈
F bγ/F

b+1
γ Kc

2b−a(XK , DK ,Z/p
n), we take (j∗)−1(M(2d, b, 2(2b− a))x) to be any element in the

preimage of M(2d, b, 2(2b− a))x under j∗. This is possible by Lemma 2.12 and by the same
lemma any ambiguity is killed by twisting the definition of αnab by M(2d, b+ 1, 2(2b− a)).

Let b ≥ 2d+ 2. We can now define the rational period morphism

αab : Ha
ét,c(UK ,Qp(b))→ Ha

cr,c(X0/W (k)0)⊗W (k) Bst{−b}
as the composition of Q⊗ lim←−n αnab with the map [Kat94a, 4.2 and 4.5]

hπ : Q⊗ lim←−n Ha
cr,c(XOK ,n

)→ Ha
cr,c(X0/W (k)0)⊗W (k) Bst

and with the division by M(2d, b+ 1, 2(2b− a))M(2d, b, 2(2b− a))D(d, d, b, 2b− a)2.
The morphism αab preserves the Frobenius, the action of Gal(K/K), and the monodromy

operator, and, after extension to BdR, is compatible with filtrations (use the simplicial analog
of Lemma 4.8.4 from [Tsu99a], which can be easily shown, as in § 2.1.5, by lifting all the maps
functorially to the ∞-derived category as was done in detail in [Bei13] and [NN16]; see also
[Tsu98, § 7]).

We have the following generalization of our [Niz08, Theorem 3.8] (where the divisor at infinity
D is trivial).

Theorem 3.11. Let X be a proper scheme over OK with semistable reduction. Let D be the

horizontal divisor, let U = X \D, and let d be the relative dimension of X. Equip X with the

log-structure induced by D and the special fiber. Then, assuming that b ≥ 2d+ 2, the morphism

αab : Ha
ét,c(UK ,Qp(b))⊗Qp Bst → Ha

cr,c(X0/W (k)0)⊗W (k) Bst{−b}

is an isomorphism. The map αab preserves the Frobenius, the action of Gal(K/K), and the

monodromy operator. It is independent of the choice of π and compatible with products and

Tate twists. Moreover, after extension to BdR, it induces a filtered isomorphism

αab : Ha
ét,c(UK ,Qp(b))⊗Qp BdR → Ha

dR,c(XK)⊗K BdR{−b}.

Proof. Consider the finite semistable vertical simplicial log-scheme C = C(X,D). The individual
schemes in the simplicial scheme are equipped with the log-structure induced from the special
fiber. We have C(X,D) 
 skmC(X,D) if D has m irreducible components. We filter C(X,D)
by its skeleta skiC(X,D) and will show, by induction on i ≥ 0, that the period morphism6

αab : Ha
ét(skiC(X,D)K ,Qp(b))⊗Qp Bst → Ha

cr(skiC(X,D)0/W (k)0)⊗W (k) Bst{−b}

6 It is easy to see that the definition of our period morphism extends, in a compatible manner, to the skeleta of
C(X, D).
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is an isomorphism. Start with i = 0, where the statement is known. For i ≥ 1, assume that our
theorem is true for i− 1. To show it for i, consider the homotopy cofiber sequences

ski−1C(Y,DY )→ skiC(Y,DY )→ skiC(Y,DY )/ ski−1C(Y,DY )

and apply the period morphisms α∗,∗ to it. We get the following map of exact sequences.

Ha−1
ét (ski−1C, b) ��

αa+1,b�
��

Ha−i
ét (C ′

i, b)

αa−i,b�
��

�� Ha
ét(skiC, b) ��

αab

��

Ha
ét(ski−1C, b) ��

αab�
��

Ha−i+1
ét (C ′

i, b)

αa−i+1,b�
��

Ha−1
cr (ski−1C0, b) �� Ha−i

cr (C ′
i,0, b) �� Ha

cr(skiX0, b) �� Ha
cr(ski−1C0, b) �� Ha−i+1

cr (C ′
i,0, b)

Here we put H∗
ét(T, ∗) = H∗

ét(TK ,Qp(b))⊗Bst, H∗
cr(T, b) = H∗

cr(T )⊗Bst{−b}. And we defined

H∗
ét(C

′
i, b) = H∗

ét(Ci, b) ∩ ker s∗0 ∩ · · · ∩ ker s∗i−1,

H∗
cr(C

′
i,0, b) = H∗

cr(Ci,0, b) ∩ ker s∗0 ∩ · · · ∩ ker s∗i−1,

where each si : ski−1C → skiC is a degeneracy map. By the inductive hypothesis, we have the
isomorphisms shown in the diagram. Hence, the period morphism

αab : Ha
ét(skiCK ,Qp(b))⊗Qp Bst → Ha

cr(skiC0)⊗W (k) Bst{−b}

is an isomorphism. Since Ha
ét(skmCK ,Qp(b))

∼→ Ha
ét(CK ,Qp(b)) and Ha

cr(skmC0) ∼→ Ha
cr(C0),

this proves the first claim of the theorem.
For the claim about the filtrations, we need to show that αdR

ab (that is, αab extended to BdR)
induces an isomorphism on filtrations. Passing to the associated grading, one reduces to showing
that the induced Hodge–Tate period map

αHT
ab : C ⊗Ha

ét(XK ,Qp(b))→ Ha
HT(XK , b),

where we set

Ha
HT(XK , b) :=

⊕
j∈Z

C(b− j)⊗K Ha−j(XK ,Ω
j
XK

),

is an isomorphism. But this can be checked exactly as above.
The claim about the uniformizer can be checked as in the proof of [Niz08, Theorem 3.8].

The claims about products and Tate twists can be checked as in the proof of Theorem 3.6 using
analogs of Lemmas 3.7 and 3.8 (where the constants have to be modified accordingly to the
definition of the maps αnab). �

4. Comparison of period morphisms

This section has two parts. In the first part we formulate a K-theoretical uniqueness criterion
for p-adic period morphisms for cohomology with compact support and, using it, we prove that
the period morphisms defined using the syntomic, almost étale, and motivic methods are equal.
In the second part we use h-topology and the Beilinson (filtered) Poincaré lemma to formulate
a simple uniqueness criterion for p-adic period morphisms. Using it, we show that the p-adic
period morphisms of Faltings, Tsuji (and Yamashita), and Beilinson are the same whenever they
are defined (so, in particular, for open varieties with semistable compactifications). Moreover,
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they are all compatible with (possibly mixed) products. This all holds up to a change of the
Hyodo–Kato cohomology described in § 4.3.2.

4.1 A simple uniqueness criterion
We start with a very simple uniqueness criterion.

4.1.1 The case of schemes. Recall the following formulation of the semistable conjecture of
Fontaine and Jannsen.

Conjecture 4.1 Semistable conjecture. Let X be a proper, log-smooth, fine, and saturated

O×
K-log-scheme with Cartier-type reduction. There exists a natural Bst-linear Galois-equivariant

period isomorphism

αi : H i
ét(XK,tr,Qp)⊗Qp Bst

∼→ H i
HK(X)⊗F Bst

that preserves the Frobenius and the monodromy operators and, after extension to BdR, induces

a filtered isomorphism

αi : H i
ét(XK,tr,Qp)⊗Qp BdR

∼→ H i
dR(XK)⊗K BdR.

This conjecture was proved, possibly under additional assumptions, by Kato [Kat94a], Tsuji
[Tsu99a, Tsu03], Yamashita [Yam11], Faltings [Fal02], Nizio�l [Niz08], and Beilinson [Bei13].
It was generalized to formal schemes by Colmez and Nizio�l [CN17] and by Česnavičius and
Koshikawa [ČK19] (who generalized the proof of the crystalline conjecture by Bhatt, Morrow
and Scholze [BMS18]) in the case when there is no horizontal divisor.

Let r ≥ 0. For a period isomorphism αi as above, we define its twist

αi,r : H i
ét(XK,tr,Qp(r))⊗Qp Bst → H i

HK(X)⊗F Bst{−r}

as αi,r := trαiε
−r. Clearly, it is an isomorphism. It follows from Conjecture 4.1 that we can

recover the étale cohomology with the Galois action from the Hyodo–Kato cohomology:

αi,r : H i
ét(XK,tr,Qp(r))

∼→ (H i
HK(X)⊗F Bst)N=0,φ=pr ∩ F r(H i

dR(XK)⊗K BdR). (4.2)

For r ≥ i, by Lemma 2.9, the right-hand side is isomorphic to H i
ét(XOK

,S ′(r))Q, i.e., there exists
a natural isomorphism

H i
ét(XOK

,S ′(r))Q ∼→ (H i
HK(X)⊗F Bst)N=0,φ=pr ∩ F r(H i

dR(XK)⊗K BdR).

We will denote by

α̃i,r : H i
ét(XK,tr,Qp(r))

∼→ H i
ét(XOK

,S ′(r))Q
the induced isomorphism and call it the syntomic period isomorphism.

The following lemma is immediate.

Lemma 4.3. Let r ≥ i. A period isomorphism αi,r, and hence also a period isomorphism αi
satisfying Conjecture 4.1, is uniquely determined by the induced syntomic period isomorphism

α̃i,r.
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4.1.2 The case of simplicial schemes. The above discussion carries over to finite simplicial
schemes. That is, we assume that we have a period isomorphism αi as in Conjecture 4.1 but for a
finite simplicial scheme X with components as in Conjecture 4.1. It then yields an isomorphism
αi,r as in (4.2) for i ≤ r. We will need the following analog of Lemma 2.9.

Lemma 4.4. Let r ≥ i. There exists a natural isomorphism

H i
ét(XOK

,S ′(r))Q ∼→ (H i
HK(X)⊗F Bst)N=0,φ=pr ∩ F r(H i

dR(XK)⊗K BdR).

Proof. By functoriality of all the maps involved, the proof of Lemma 2.9 yields a quasi-
isomorphism

RΓét(XOK
,S ′(r))Q 
 [(RΓHK(X)⊗F B+

st)
N=0,φ=pr

ρπ⊗ι
�� (RΓdR(XK)⊗K B+

dR)/F r] .

We have natural isomorphisms

H i((RΓHK(X)⊗F B+
st)

N=0,φ=pr
) 
 (H i

HK(X)⊗F B+
st)

N=0,φ=pr
,

H i((RΓdR(XK)⊗K B+
dR)/F r) 
 (H i

dR(XK)⊗K B+
dR)/F r.

The first isomorphism holds because H i
HK(X)⊗F B+

st is a (φ,N)-module (see [NN16, proof of
Corollary 3.25] for an argument) and the second one because we have a degeneration of the
Hodge–de Rham spectral sequence for X. This yields a natural long exact sequence

(H i−1
HK (X)⊗F B+

st)
N=0,φ=pr ρπ⊗ι−−→(H i−1

dR (XK)⊗K B+
dR)/F r ∂−−→H i

ét(XOK
,S ′(r))Q

→ (H i
HK(X)⊗F B+

st)
N=0,φ=pr ρπ⊗ι−−→(H i

dR(XK)⊗K B+
dR)/F r.

It suffices thus to show that, for i ≤ r, the map ∂ in the above exact sequence is zero. Or
that the map

(H i−1
HK (X)⊗F Bst)N=0,φ=pr ρπ⊗ιπ−−→(H i−1

dR (XK)⊗K BdR)/F r

is surjective. But this follows from the fact that the pair H i−1
HK (X), H i−1

dR (XK) is an admissible
filtered (φ,N)-module such that F rH i−1

dR (XK) = 0 (see [CN17, Proposition 5.20]). �

As above, we will denote by

α̃i,r : H i
ét(XK,tr,Qp(r))

∼→ H i
ét(XOK

,S ′(r))Q
the induced isomorphism and call it the syntomic period isomorphism. Again, the following
lemma is immediate.

Lemma 4.5. Let r ≥ i. A period isomorphism αi,r, and hence also a period isomorphism αi
satisfying Conjecture 4.1 for X, is uniquely determined by the induced syntomic period morphism

α̃i,r.

4.2 Comparison of period morphisms for cohomology with compact support
We will prove in this section that the comparison morphisms for cohomology with compact
support defined using the syntomic, almost étale, and motivic methods are equal. We will use
for that a motivic uniqueness criterion.
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4.2.1 A K-theoretical uniqueness criterion. We will prove now a uniqueness criterion for
period morphisms that generalizes the one stated in [Niz09]. Let X be a proper scheme over OK
with semistable reduction and of pure relative dimension d. Let i : D ↪→ X be the horizontal
divisor and set U = X \D. Equip X with the log-structure induced by D and the special fiber.

Proposition 4.6. Let r ≥ 2d+ 2. There exists a unique semistable period morphism

α̃i,r : H i
ét,c(UK ,Qp(r))→ H i

ét(XOK
, S′(r)(D))Q

that makes the diagram from § 3.2 commute.

Proof. Consider the diagram mentioned and use the fact that the étale Chern classes cétr,2r−i are
isomorphisms rationally by Proposition 2.14 and that the restriction map j∗ is an isomorphism
by Lemma 2.12. �

4.2.2 Comparison of period morphisms for cohomology with compact support. The compar-
ison morphisms of Faltings [Fal89, Fal02] and Tsuji [Tsu99a] extend easily to finite simplicial
schemes. This was done explicitly in [Kis02, Tsu98]. In particular, they extend to cohomology
with compact support. We will show in this section that they are equal to the period morphisms
constructed in § 3. We will use for that the uniqueness criterion for period morphisms stated
above. We will do the computations just for cohomology with compact support in the semistable
case. The arguments in other cases are analogous.

Theorem 4.7. (i) There exists a unique natural p-adic period isomorphism

αi : H i
ét,c(UK ,Qp)⊗Bst

∼→ H i
cr,c(X0/W (k)0)⊗W (k) Bst

such that:

(a) αi is Bst-linear, Galois equivariant, and compatible with Frobenius;

(b) αi, extended to BdR, induces a filtered isomorphism

αdR
i : H i

ét,c(UK ,Qp)⊗BdR
∼→ H i

dR,c(XK)⊗K BdR;

(c) αi is compatible with the étale and syntomic higher Chern classes from p-adic K-theory.

(ii) The period morphisms of Faltings, Tsuji, and Nizio�l are equal.7

Proof. The first claim follows from Proposition 4.6 and Lemma 4.5.
For the second claim, choose r such that r ≥ 2d+ 2 and r ≥ i. It suffices to show that the

Faltings, Tsuji, and Nizio�l period morphisms αFi,r, α
T
i,r, and αNi,r

α∗
i,r : H i

ét,c(UK ,Qp(r))⊗Bst
∼→ H i

cr,c(X0/W (k)0)⊗W (k) Bst{−r},
and their de Rham analogs are equal. For that, apply the first claim. The needed compatibility
of the period morphism with higher p-adic Chern classes is clear in the case of the map αNi,r
and was proved in [Niz09, Corollaries 4.14 and 5.9] for the other two maps. These corollaries are
stated for proper log-schemes but their proofs carry over to the case of finite simplicial schemes
(with the same properties). �

7 By Nizio�l period morphisms, we mean the morphisms defined in § 3.
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4.3 Comparison of Tsuji and Beilinson period morphisms
We prove in the next two sections that the Beilinson period morphisms [Bei12, Bei13] agree
with the period morphisms of Faltings and Tsuji whenever the latter are defined (and modulo a
change of Hodo–Kato cohomology). Our strategy is to appeal to Lemma 4.3 and then to sheafify
the syntomic morphisms induced by the latter period morphisms in the h-topology on the generic
fiber. We identify the syntomic period morphisms on the sheaf level as certain canonical maps
appearing in the fundamental exact sequence. Since we had shown in [NN16] that the same
maps are used to define the Beilinson syntomic period morphism, it follows that all the period
morphisms are equal. Along the way we obtain useful properties of the Faltings and Tsuji period
morphisms.

We start with comparing the period morphisms of Tsuji and Beilinson.

4.3.1 Tsuji period morphism. We will briefly discuss the period morphism used by Tsuji.
Let X be a log-smooth log-scheme over O×

K . Recall that Fontaine and Messing, and Kato have
defined natural period morphisms on the étale site of X0 [FM87, Tsu98]

βT
r : Sn(r)→ i∗Rj∗Z/pn(r)′, r ≥ 0,

where i : X0 ↪→ X, j : XK,tr ↪→ X are the natural immersions. Here we set Z/pn(r)′ :=
(1/(paa!)Zp(r))⊗ Z/pn, where a is the largest integer ≤ r/(p− 1). Recall that we have the
fundamental exact sequence [Tsu99a, Theorem 1.2.4]

0→ Z/pn(r)′ → J 〈r〉
cr,n

1−φr−−→Acr,n → 0,

where
J 〈r〉
n := {x ∈ J [r]

n+s | φ(x) ∈ prAcr,n+s}/pn

for some s ≥ r.
The above period morphisms were used to prove the following comparison theorem.

Theorem 4.8 (Tsuji [Tsu99a, 3.3.4, Theorem 3.4.4]). (i) Let X be a semistable scheme over

OK or a finite base change of such a scheme. Then, for any 0 ≤ i ≤ r, the kernel and cokernel of

the period morphism

βT
r : Hi(Sn(r)X)→ i

∗Rij∗Z/p
n(r)′XK,tr

are annihilated by pN for an integer N which depends only on p, r, and i. Here i and j are

extensions of i and j to X := XOK
.

(ii) Assume moreover that X is proper. Then, for any 0 ≤ i ≤ r, the induced morphism

H i
ét(XOK

,S(r))Q → H i
ét(XK,tr,Qp(r))

is an isomorphism.

For a proper semistable scheme X over OK and r ≥ i, the modulo pn and rational semistable
Tsuji period morphisms are defined as

βT
r,n : RΓét(XOK

,S ′n(r)) can−−→RΓét(XOK
,Sn(r))

βT
r−−→RΓét(XK,tr,Z/p

n(r)′),

βT
r : RΓét(XOK

,S ′(r))Q can−−→RΓét(XOK
,S(r))Q

βT
r−−→RΓét(XK,tr,Qp(r))

p−r

→ RΓét(XK,tr,Qp(r)).
(4.9)

By Theorem 4.8, βT
r is a quasi-isomorphism after truncation at τ≤r.
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The Tsuji period morphism

αT
i,r : H i

ét(XK,tr,Qp(r))→(H i
HK(X)⊗F Bst)N=0,φ=pr

is defined by composing the above morphism with the map hπ (and changing B̂st to Bst).

4.3.2 Beilinson comparison theorem. In [Bei13], Beilinson proved the following comparison
theorem.

Theorem 4.10 Semistable conjecture [Bei13]. Let X be a proper semistable scheme over OK
endowed with its canonical log-structure. There exists a natural Bst-linear Galois-equivariant

period isomorphism8

αBh,i : H i
ét(XK,tr,Qp)⊗Qp Bst

∼→ HB,i
HK(X)⊗F Bst

that preserves the Frobenius and the monodromy operators and, after extension to BdR, induces

a filtered isomorphism

αBi : H i
ét(XK,tr,Qp)⊗Qp BdR

∼→ H i
dR(XK)⊗K BdR.

We added the subscript h (for h-topology) to underscore the different formulation from
Theorem 4.1. Here HB,i

HK(X) is the Beilinson–Hyodo–Kato cohomology [Bei13, 1.16.1] and the
base change to the de Rham comparison uses the Beilinson–Hyodo–Kato isomorphism

ρB : HB,i
HK(X)⊗F K ∼→ H i

dR(XK)

as well as the canonical map ιp : Bst → BdR [NN16, § 2.1]. A priori, these Hyodo–Kato-type
constructions are not the same as the original ones (for one thing, they are independent of the
choice of the uniformizer π; in fact, they should be seen, in a sense that can be made precise, as
associated to the canonical choice of p). However, the two constructions are related by a natural
quasi-isomorphism, i.e., there is a natural map κ that makes the following diagram commute
[NN16, (31)].

H i
HK(X)

ρπ
�� H i

dR(XK)

HB,i
HK(X)

κ �
��

ρB

������������

4.3.3 Beilinson equivalence of topoi. To describe the Beilinson period morphism, we will
need to work with h-topology on the generic fiber. Beilinson has shown that h-topology has a
base consisting of semistable schemes. We will review his result briefly.

For a field K, let VarK denote the category of varieties over K. We will equip it with
h-topology (see [Bei12, 2.3]), i.e., the coarsest topology finer than the Zariski and proper topolo-
gies.9 We note that the h-topology is finer than the étale topology. It is generated by the
pretopology whose coverings are finite families of maps {Yi → X} such that Y :=

∐
Yi → X

8 See § 4.3.6 for a precise definition.
9 The latter is generated by a pretopology whose coverings are proper surjective maps.
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is a universal topological epimorphism (i.e., a subset of X is Zariski open if and only if its
preimage in Y is open). We denote by VarK,h, Xh, X ∈ VarK , the corresponding h-sites.

LetK be now as in § 2. An arithmetic pair overK is an open embedding j : U ↪→ U with dense
image of a K-variety U into a reduced proper flat V -scheme U . A morphism (U,U)→ (T, T )
of pairs is a map U → T which sends U to T . In the case that the pairs represent log-regular
schemes, this is the same as a map of log-schemes. For a pair (U,U), we set VU := Γ(U,OU ) and
KU := Γ(UK ,OU ). The ring KU is a product of several finite extensions of K (labeled by the
connected components of U) and, if U is normal, VU is the product of the corresponding rings
of integers.

A semistable pair over K [Bei12, 2.2] is a pair of schemes (U,U) over (K,V ) such that:

(i) U is regular and proper over V ;
(ii) U \ U is a divisor with normal crossings on U ;

(iii) the closed fiber U0 of U is reduced and its irreducible components are regular.

A closed fiber is taken over the closed points of VU . We will think of semistable pairs as
log-schemes equipped with log-structure given by the divisor U \ U . The closed fiber U0 has the
induced log-structure.

A semistable pair over K [Bei12, 2.2] is a pair of connected schemes (T, T ) over (K,V ) such
that there exist a semistable pair (U,U) over K and a K-point α : KU → K such that (T, T ) is
isomorphic to the base change (UK , UV ). We will denote by Pss

K
the category of semistable pairs

over K.
Let, for just a moment, K be any field of characteristic 0. A geometric pair over K is a pair

(U,U) of varieties over K such that U is proper and U ⊂ U is open and dense. We say that
the pair (U,U) is an nc-pair if U is regular and U \ U is a divisor with normal crossings in U ;
it is a strict nc-pair if the irreducible components of U \ U are regular. A morphism of pairs
f : (U1, U1)→ (U,U) is a map U1 → U that sends U1 to U . We denote the category of nc-pairs
over K by Pnc

K .
For the category Pss

K
mentioned above, let γ : (U,U)→ U denote the forgetful functor. Beilin-

son proved [Bei12, 2.5] that the category (Pss
K
, γ) forms a base for VarK,h. This implies that γ

induces an equivalence of the topoi

γ : Shvh(Pss
K

) ∼→ Shvh(VarK).

Similarly for the categories Pss
K and Pnc

K (and the category VarK).

4.3.4 Definitions of cohomology sheaves. We will now recall briefly the definition of geo-
metric syntomic cohomology, i.e., syntomic cohomology over K, from [NN16], and the related
cohomologies from [Bei13].

(i) Absolute crystalline cohomology. For (U,U) ∈ Pss
K

, r ≥ 0, we have the absolute crystalline
cohomology complexes and their completions

RΓcr(U,U,J [r])n := RΓcr(Un,ét,Ru∗J [r]),

RΓcr(U,U,J [r]) := holimn RΓcr(U,U,J [r])n,

RΓcr(U,U,J [r])Q := RΓcr(U,U,J [r])⊗Qp,
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where u : Un,cr → Un,ét is the natural projection. The complex RΓcr(U,U) is a perfect Acr-
complex and

RΓcr(U,U)n 
 RΓcr(U,U)⊗LAcr
Acr/p

n 
 RΓcr(U,U)⊗L Z/pn.

In general, we have RΓcr(U,U,J [r])n 
 RΓcr(U,U,J [r])⊗L Z/pn. Moreover, by [Tsu99a, 1.6.3
and 1.6.4],

J [r]
cr = RΓcr(Spec(K),Spec(V ),J [r]).

The absolute crystalline cohomology complexes are filtered E∞ algebras over Acr,n, Acr, or
Acr,Q, respectively. Moreover, the rational ones are filtered commutative dg algebras.

Let J [r]
cr and Acr be the h-sheafifications on VarK of the presheaves sending (U,U) ∈ Pss

K
to

RΓcr(U,U,J [r]) and RΓcr(U,U), respectively. Let J [r]
cr,n and Acr,n denote the h-sheafifications of

the mod-pn versions of the respective presheaves; and let J [r]
cr,Q and Acr,Q be the h-sheafifications

of the rational versions of the same presheaves.
For X ∈ VarK , set RΓcr(Xh) := RΓ(Xh,Acr). It is a filtered (by RΓ(Xh,J [r]

cr ), r ≥ 0) E∞
Acr-algebra equipped with the Frobenius action φ. The Galois group GK acts on VarK and it
acts on X �→ RΓcr(Xh) by transport of structure. If X is defined over K, then GK acts naturally
on RΓcr(Xh).

(ii) Geometric syntomic cohomology. For r ≥ 0, the mod-pn, completed, and rational syntomic
complexes RΓsyn(U,U, r)n, RΓsyn(U,U, r), and RΓsyn(U,U, r)Q are defined by the formulas

RΓsyn(U,U, r)n := [RΓcr(U,U,J [r])n
pr−φ−−−−→RΓcr(U,U)n)],

RΓsyn(U,U, r) := holimn RΓsyn(U,U, r)n,

RΓsyn(U,U, r)Q := [RΓcr(U,U,J [r])Q
1−φr−−−−→RΓcr(U,U)Q)].

We have RΓsyn(U,U, r)n 
 RΓsyn(U,U, r)⊗L Z/pn. Let S ′(r) be the h-sheafification on VarK
of the presheaf sending (U,U) ∈ Pss

K
to RΓsyn(U,U, r). Let S ′n(r) and S ′(r)Q denote the

h-sheafifications of the mod-pn and the rational versions of the same presheaf, respectively.
For r ≥ 0, set RΓsyn(Xh, r)n = RΓ(Xh,S ′n(r)), RΓsyn(Xh, r) := RΓ(Xh,S ′(r)Q). We have

RΓsyn(Xh, r)n 
 [RΓ(Xh,J [r]
cr,n)

pr−φ−→ RΓ(Xh,Acr,n)],

RΓsyn(Xh, r) 
 [RΓ(Xh,J [r]
cr,Q)

1−φr−→ RΓ(Xh,Acr,Q)].

The direct sum
⊕

r≥0 RΓsyn(Xh, r) is a graded E∞ algebra over Zp.
(iii) de Rham cohomology. Consider the presheaf (U,U) �→ RΓdR(U,U) := RΓ(U,Ω•

(U,U)
) of

filtered dg K-algebras on Pnc
K . Let AdR be its h-sheafification. It is a sheaf of filtered K-algebras

on VarK . For X ∈ VarK , we have Deligne’s de Rham complex of X equipped with Deligne’s
Hodge filtration: RΓdR(Xh) := RΓ(Xh,AdR).

(iv) Beilinson–Hyodo–Kato cohomology. Let ABHK be the h-sheafification of the presheaf
of (arithmetic) Beilinson–Hyodo–Kato cohomology (U,U) �→ RΓBHK(U,U)Q on Pss

K ; this is an
h-sheaf of E∞ F -algebras on VarK equipped with a φ-action and a derivation N such that
Nφ = pφN . For X ∈ VarK , set RΓBHK(Xh) := RΓ(Xh,ABHK).

Let ABHK be the h-sheafification of the presheaf (U,U) �→ RΓBHK(U,U)Q of (geometric) Beilin-
son–Hyodo–Kato cohomology on Pss

K
. This is an h-sheaf of E∞ F nr-algebras, where F nr is the
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maximal unramified extension of F , equipped with a φ-action and locally nilpotent deriva-
tion N such that Nφ = pφN . For X ∈ VarK , set RΓBHK(Xh) := RΓ(Xh,ABHK). We have the
Beilnson–Hyodo–Kato quasi-isomorphism

ρBh : RΓBHK(Xh)⊗Fnr K
∼→ RΓdR(Xh).

(v) Comparison statements. The h-topology definitions of cohomology are often compatible
with the original definitions.

Lemma 4.11. We have the following comparison statements.

(i) For (U,U) ∈ Pnc
L , L = K,K, the canonical map RΓdR(U,U) ∼→ RΓdR(Uh) is a filtered

quasi-isomorphism [Bei12, 2.4].

(ii) For any (U,U) ∈ Pss
K

, r ≥ 0, the canonical maps

RΓcr(U,U,J [r])Q
∼→ RΓ(Uh,J [r]

cr )Q, RΓBHK(U,U) ∼→ RΓBHK(Uh)

are quasi-isomorphisms (see [Bei13, 2.4] and [NN16, Proposition 3.21]). In particular,

RΓsyn(U,U, r) ∼→ RΓsyn(Uh, r).

(iii) For any arithmetic pair (U,U) that is fine, log-smooth over O×
K , and of Cartier type, the

canonical map

RΓBHK(U,U) ∼→ RΓBHK(Uh)

is a quasi-isomorphism [NN16, Proposition 3.18].

4.3.5 Poincaré lemma. We will recall the Poincaré lemma of Beilinson [Bei13] and its
syntomic cohomology version [NN16].

Theorem 4.12 (Filtered crystalline Poincaré lemma [Bei13, 2.3], [Bha12, Theorem 10.14]). Let

r ≥ 0. The canonical map J
[r]
cr,n → J [r]

cr,n is a quasi-isomorphism of h-sheaves on VarK .

Set S′
n(r) := Cone(J [r]

cr,n
pr−φ−−→Acr,n)[−1]. There is a natural morphism of complexes τn :

S′
n(r)→ Z/pn(r)′ (induced by pr on J [r]

cr,n and Id on Acr,n), whose kernel and cokernel are anni-
hilated by pr. The filtered crystalline Poincaré lemma implies easily the following syntomic
Poincaré lemma.

Corollary 4.13. There is a unique quasi-isomorphism S′
n(r) ∼→ S ′n(r) of complexes of sheaves

on VarK,h that is compatible with the crystalline Poincaré lemma.

Proof. We include here the simple proof from [NN16, Corollary 4.5]. Consider the following map
of distinguished triangles.

S ′n(r) �� J [r]
cr,n

pr−φ
�� Acr,n

S′
n(r) ��

���
�
�

J
[r]
cr,n

�
��

pr−φ
�� Acr,n

�
��
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The triangles are distinguished by definition. The vertical continuous arrows are quasi-
isomorphisms by the crystalline Poincaré lemma. They induce the dashed arrow that is clearly
a quasi-isomorphism. �

4.3.6 Beilinson period morphism. We will now recall the definition of the period morphism
of Beilinson [Bei13, 3.1]. Let X ∈ VarK . Recall first the definition of the crystalline period
morphism [Bei13]

βB
cr : RΓcr(Xh)→ RΓ(Xét,Zp)⊗̂Acr.

Consider the natural map πn : RΓcr(Xh)→ RΓ(Xh,Acr,n) and take the composition

ρn : RΓ(Xét,Zp)⊗LZp
Acr,n

∼→ RΓ(Xét,Acr,n) ∼→ RΓ(Xh,Acr,n) ∼→ RΓ(Xh,Acr,n).

Set βB
cr,n := ρ−1

n πn and βB
cr := holimn β

B
cr,n.

The Beilinson–Hyodo–Kato period map

βHK : RΓBHK(Xh)⊗LFnr B+
st → RΓ(Xét,Qp)⊗L B+

st, βHK := βcr,Qι
B
st,

is obtained by composing the map βcr,Q with the quasi-isomorphism

ρBcr : RΓBHK(Xh)⊗LFnr B+
st

∼→ RΓcr(Xh)Q.

We have the induced quasi-isomorphism

βHK : RΓBHK(Xh)⊗LFnr Bst → RΓ(Xét,Qp)⊗L Bst

and we set αBh := β−1
HK.

The Beilinson–de Rham period map

βdR : RΓdR(Xh)⊗L
K

BdR → RΓ(Xét,Qp)⊗L BdR

is obtained from the Beilinson–Hyodo–Kato period map βHK using the Beilinson–Hyodo–Kato
isomorphism ρHK : RΓBHK(Xh)⊗LFnr K

∼→ RΓdR(Xh) and the canonical map ιp : Bst → BdR. We
set αB := β−1

dR .
The induced syntomic period morphism

βB
r : RΓsyn(Xh, r)→ RΓ(Xét,Qp(r)), r ≥ 0,

can be described in the following way. Take the natural map πn : RΓ(Xh,S ′(r))→ RΓ(Xh,S ′n(r))
and the zigzag

βB
n : RΓ(Xh,S ′n(r)) ∼← RΓ(Xh, S

′
n(r)) τn−−→RΓ(Xh,Z/pn(r)′) ∼← RΓ(Xét,Z/pn(r)′).

Set βB := (holimn β
B
n )⊗Q. Then the map

β̃B
h,r := p−rβBπ : RΓsyn(Xh, r)→ RΓ(Xét,Qp(r)),

where π := (holimn πn)⊗Q, is the induced syntomic period morphism. By [NN16, Proposition
4.6], it is an isomorphism after truncation τ≤r.
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Remark 4.14. It is worth looking carefully at the composition

βBπ : RΓsyn(Xh, r)
π−−→(holimn RΓ(Xh,S ′n(r)))Q

βB

−−→RΓ(Xét,Qp(r)).

This composition is a quasi-isomorphism after truncation τ≤r. Since, by Corollary 4.13, the
second map is a quasi-isomorphism, it follows that the first map is a quasi-isomorphism after
truncation τ≤r as well.

4.3.7 A very simple comparison criterion. This is an analog of the criterion in Lemma 4.3
in the context of Beilinson comparison morphisms from Theorem 4.10.

Let X be a semistable scheme over OK . Let r ≥ 0. For a period isomorphism αh,i as in
Theorem 4.10, we define its twist

αh,i,r : H i
ét(XK,tr,Qp(r))⊗Qp Bst → HB,i

HK(X)⊗F Bst{−r}
as αh,i,r := trαh,iε

−r. Clearly, it is an isomorphism. It follows from Theorem 4.10 that we can
recover the étale cohomology with the Galois action from the Beilinson–Hyodo–Kato cohomology:

αh,i,r : H i
ét(XK,tr,Qp(r))

∼→ (HB,i
HK(X)⊗F Bst)N=0,φ=pr ∩ F r(H i

dR(XK)⊗K BdR). (4.15)

For r ≥ i, by [NN16, Proposition 3.25 and Corollary 3.26], the right-hand side is isomorphic to
H i

syn(XK,h, r), i.e., there exists a natural isomorphism

hh,i,r : H i
syn(XK,tr,h, r)

∼→ (HB,i
HK(Xtr)⊗F Bst)N=0,φ=pr ∩ F r(H i

dR(Xtr)⊗K BdR). (4.16)

We will denote by

α̃h,i,r : H i
ét(XK,tr,Qp(r))

∼→ H i
syn(XK,tr,h, r)

the induced isomorphism and call it the syntomic period isomorphism.
The following lemma is immediate.

Lemma 4.17. Let r ≥ i. A period isomorphism αh,i,r, and hence also a period isomorphism αh,i
satisfying Theorem 4.10, is uniquely determined by the induced syntomic period isomorphism

α̃h,i,r.

Remark 4.18. We also have an analog of Lemma 4.17 for finite simplicial schemes with
components as in that lemma. The proof is analogous to the proof of Lemma 4.4.

4.3.8 Comparison of Tsuji and Beilinson period morphisms. Let X ∈ VarK . We can
h-sheafify the Tsuji syntomic period morphism by setting, for (U,U) ∈ Pss

K
,

βT
r,n : RΓét((U,U),S ′n(r)) can−−→RΓét((U,U),Sn(r))

βT
r−−→RΓét(U,Z/pn(r)′)

from (4.9) to obtain the compatible maps of h-sheaves

βT
r,n : S ′n(r)→ Z/pn(r)′. (4.19)

Taking cohomology, we get the induced compatible syntomic period morphisms

βT
n : RΓ(Xh,S ′n(r))

βT
r,n−−→RΓ(Xh,Z/pn(r)′) ∼← RΓ(Xét,Z/pn(r)′).
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As in the case of the Beilinson period morphism, they induce a syntomic period morphism

β̃T
h,r := p−rβTπ : RΓsyn(Xh, r)→ RΓét(X,Qp(r)), βT := (holimn β

T
n )⊗Q. (4.20)

It is a quasi-isomorphism after truncation τ≤r: by Remark 4.14, the map π is a quasi-isomorphism
after truncation τ≤r and, by Corollary 4.13, the map (4.19) is a pr-quasi-isomorphism and hence
the map βT is a quasi-isomorphism after truncation τ≤r as well.

Theorem 4.21. Let r ≥ 0.

(i) Let X ∈ VarK . The Tsuji and Beilinson syntomic period morphisms

β̃T
h,r, β̃

B
h,r : RΓsyn(Xh, r)→ RΓét(X,Qp(r))

are equal.

(ii) If X = (U,U) ∈ Pss
K and is split over10 OK , the period isomorphisms

αT
h,i, α

B
h,i : H i

ét(UK ,Qp)⊗Qp Bst
∼→ HB,i

HK(X)⊗F Bst,

αT
i , α

B
i : H i

ét(UK ,Qp)⊗Qp BdR
∼→ H i

dR(XK)⊗K BdR,

where we set αT
h,i := κ−1αT

i , are equal as well.

Proof. For the first claim, by construction of the syntomic period morphisms β̃T
h,r and β̃B

h,r, it
suffices to show that, for all n ≥ 1, the maps

βB
n : S ′n(r) ∼← S′

n(r) τn−−→Z/pn(r)′,

βT
n : S ′n(r)

αT
r−−→Z/pn(r)′

are equal. Or that so are the maps

τn : S′
n(r)→ Z/pn(r)′,

S′
n(r) ∼→ S ′n(r)

βT
r−−→Z/pn(r)′.

But this is immediate from the functoriality of βT
r,n: for (U,U) ∈ Pss

K
, the canonical map (U,U)→

(SpecK, SpecOK) yields the following commutative diagram.

RΓét((U,U),S ′n(r))
βT

r �� RΓét(U,Z/pn(r)′)

RΓét((SpecK, SpecOK),S ′n(r))
βT

r ��

��

RΓét(SpecK,Z/pn(r)′)

��

S′
n(r)

τn ��

�
��

Z/pn(r)′
�

��

For the second claim, let X = (U,U) ∈ Pss
K be split over OK . By Lemma 4.17, it suffices to show

that, for r ≥ i, the induced maps α̃T
h,i,r and α̃B

h,i,r from H i
ét(UK ,Qp(r)) to H i

syn(UK,h, r) are equal.
But, by the first claim of this theorem, it suffices to prove the following lemma.

10 Recall that this means that the associated log-scheme over O×
K is semistable.
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Lemma 4.22. (i) The map α̃B
h,i,r is the inverse of the map β̃B

h,i,r.

(ii) The map α̃T
h,i,r is the inverse of the map β̃T

h,i,r : H i
syn(UK,h, r)→ H i

ét(UK ,Qp(r)) induced

by β̃T
h,r.

Proof. The first claim was shown in [NN16, (49)]. The second claim is also basically shown in
[NN16] (which contains a detailed analysis of the Beilinson–Hyodo–Kato map and its interaction
with more classical constructions). However, we could not find there the exact statement we need
here so we provide an argument how the proof can be glued from statements proved already in
[NN16].

Consider the following diagram (all the maps are isomorphisms)

H i
ét(UK ,Qp(r))

α̃T
i,r

��

αT
h,i,r

��

α̃T
h,i,r

��

αT
i,r

����������������
C(HB,i

HK(UK,h), r)

�κ

��

H i
syn(UK,h, r)

hh,i,r
		

β̃T
h,i,r





C(H i
HK(X), r) H i

syn(XK , r),
hi,r

		

β̃T
i,r

��

can �
��

where we set

C(HB,i
HK(UK,h), r) := ker((HB,i

HK(UK,h)⊗Fnr B+
st)

N=0,φ=prρB⊗ιp−−→(H i
dR(UK,h)⊗K B+

dR)/F r),

C(H i
HK(X), r) := ker((H i

HK(X)⊗F B+
st)

N=0,φ=pr ρπ⊗ιπ−−→(H i
dR(XK)⊗K B+

dR)/F r),

H i
syn(XK , r) := H iRΓsyn(XK , r) := H iRΓét(XOK

,S ′(r))Q.

The map hi,r is induced by the map hr defined in (2.10). Since, by definition, αT
i,r = hi,r(β̃T

i,r)
−1

and the maps β̃T
h,i,r, β̃

T
i,r are compatible, a diagram chase shows that it suffices to show that the

right square in the diagram commutes.
This diagram can be lifted to the ∞-derived category, where it takes the following form:

C(RΓBHK(UK,h), r)

κ�
��

RΓsyn(UK,h, r)
hh,r

		

C(RΓHK(X), r) RΓsyn(XK , r)
hr		

�
��

where we set

C(RΓBHK(UK,h), r) := [[RΓBHK(UK,h)⊗LFnr B+
st]
N=0,φ=prρB⊗ιp−−→(RΓdR(UK,h)⊗L

K
B+

dR)/F r],

C(RΓHK(X), r) := [[RΓHK(X)⊗LF B+
st]
N=0,φ=prρπ⊗ιπ−−→(RΓdR(X)⊗LK B+

dR)/F r].
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Proceeding now as in the proof of [NN16, Lemma 4.7], we reduce to proving that, possibly
changing the base field K, the following diagram commutes for all X = (U,U) ∈ Pss

K that are
split over OK .

C(RΓBHK(XOK
), r)

κ�
��

RΓsyn(XK , r)
hB

r		

hr���������������

C(RΓHK(X), r)

Recall that the map hBr is defined as the following composition:

hBr : RΓsyn(XK , r)
∼−→ [ [RΓcr(XOK

)Q]φ=pr γ−1
r �� (RΓdR(XK)⊗L

K
B+

dR)/F r ]

∼← [ [RΓBHK(X)⊗LF B+
st]
N=0,φ=pr

ρB⊗ιp
�� (RΓdR(XK)⊗LK B+

dR)/F r ]

=: C(RΓB
HK(XOK

), r)

where we have used the quasi-isomorphism γr : (RΓdR(XK)⊗L
K

B+
dR)/F r ∼→ RΓcr(XOK

)Q/F r

and the second quasi-isomorphism in the definition of hBr uses the Beilinson crystalline period
quasi-isomorphism

ρBcr : (RΓBHK(X)⊗LF B+
st)

N=0 ∼→ RΓcr(XOK
)Q

(that is compatible with the action of N and φ) as well as [NN16, Lemma 3.24] (which shows that
we have the needed commutative diagrams). Recall that the map hr is defined as the following
composition:

hr : RΓsyn(XK , r)
∼−→ [ [RΓcr(XOK

)Q]φ=pr γ−1
r �� (RΓdR(XK)⊗L

K
B+

dR)/F r ]

∼−→ [ [RΓcr(XOK
/Âst)]

N=0,φ=pr

Q

γπ
�� (RΓdR(XK)⊗LK B+

dR)/F r ]

∼←−∪ [ [RΓcr(X/Rπ)Q ⊗LRπ,Q
B̂+

st)]
N=0,φ=pr

Q

pπ⊗ιπ
�� (RΓdR(XK)⊗LK B+

dR)/F r ]

∼←−−−
ιπ⊗Id

[ [RΓHK(X)⊗LF B̂+
st]
N=0,φ=pr

ρπ⊗ιπ
�� (RΓdR(XK)⊗LK B+

dR)/F r ]

∼← [ [RΓHK(X)⊗LF B+
st]
N=0,φ=pr ρπ⊗ιπ

�� (RΓdR(XK)⊗LK B+
dR)/F r ] (4.23)

Here the map γπ is defined as the composition

γπ : RΓcr(XOK
/Âst)Q → RΓcr(XOK

/O×
K)Q/F r

∼← (RΓdR(XK)⊗L
K

B+
dR)/F r.

The fact that the second and the third quasi-isomorphisms in the definition of the map hr are
well defined follows from the last commutative diagram in the proof of [CDN20, Proposition
3.48].
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Finally, recall that the map κ can be lifted to the ∞-derived category as well: we have the
following commutative diagram (see [NN16, (31)]).

RΓHK(X)
ρπ

�� RΓdR(XK)

RΓBHK(X)

� κ

��

ρB

�������������

(4.24)

Using this map κ and its analogs, one can write the bottom four homotopy fibers in the definition
of the map hr (and the maps between them) using Beilinson–Hyodo–Kato cohomology instead
of the original Hyodo–Kato cohomology (this includes a change of p to π). See the last large
diagram in the proof of [NN16, Lemma 4.7] for how this is done. This diagram also shows that
the obtained result is isomorphic to the map hBr , as wanted. �

�

4.3.9 Period morphisms for motives, I. Recall that the Beilinson period morphism lifts to
the Voevodsky triangulated category of (homological) motives DMgm(K,Qp) [DN18, 4.15]. That
is, for any Voevodsky motive M , we have the Hyodo–Kato and de Rham comparison quasi-
isomorphisms

αB
pst : RΓét(M)⊗LQp

Bst
∼→ RΓHK(M)⊗LFnr Bst,

αB
dR : RΓét(M)⊗LQp

BdR
∼→ RΓdR(M)⊗L

K
BdR.

They are compatible via the Hyodo–Kato quasi-isomorphism ρ : RΓHK(M)⊗LFnr K
∼→ RΓdR(M)

and the map ιp : Bst → BdR. The complexes RΓét(M), RΓHK(M), and RΓdR(M) are the étale,
Hyodo–Kato, and de Rham realizations of M , respectively. All cohomologies are geometric.
The comparison quasi-isomorphisms are compatible with Galois action, filtrations, monodromy,
and Frobenius (when appropriate). If we apply them to the cohomological Voevodsky motive
M(X)∨ = f∗(1X) of any variety X over K with structural morphism f , we get back Beilinson
period quasi-isomorphisms from § 4.3.6.

Example 4.25. An interesting case is obtained by using the (homological) motive with compact
support M c(X) in DMgm(K,Qp) of Voevodsky for any K-variety X, and its dual M c(X)∨ =
Hom(M c(X),Qp) which belongs to DMgm(K,Qp) as well. Since, in terms of the six-functors
formalism, M c(X)∨ = f!(1X) [CD15, Proposition 8.10], RΓét(M c(X)∨) is the étale cohomology
with compact support (as defined by Grothendieck and Deligne).

Similarly for the Hyodo–Kato and de Rham cohomologies. Let X be a scheme over OK with
generalized semistable reduction as in § 2.1.3. Let D be its divisor at ∞. Define the Voevodsky
motive M(XK , DK) ∈ DMgm(K,Qp) as the cone

M(XK , DK) := Cone(M(D̃•,K) i∗−−→M(XK)),

where D̃• is the Čech nerve of the map
∐
iDi → D, Di being an irreducible component of D.

Hence, the dual motive M(XK , DK)∨ ∈ DMgm(K,Qp) is

M(XK , DK)∨ 
 Fiber(M(XK)∨ i∗−−→M(D̃•,K)∨).

1955

https://doi.org/10.1112/S0010437X20007344 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007344


W. Nizio�l

Lemma 4.26. For U := X \D, we have

M c(UK)∨ 
M(XK , DK)∨.

Proof. This easily follows from the localization property:

M c(UK)∨ 
 Fiber(M(XK)∨ i∗−−→M(DK)∨)

and the Mayer–Vietoris property for closed coverings (a special case of cdh-descent [CD19,
3.3.10]), which yields

M(DK) 
M(D̃•,K). �

Hence, by Lemma 2.1, the realization RΓε(M c(UK)∨), ε = HK,dR, represents the compactly
supported cohomology of UK .

Similarly, the Tsuji period morphism also lifts to the Voevodsky triangulated category of
(homological) motives DMgm(K,Qp) [DN18, 4.15]. More specifically, for X ∈ VarK , the syntomic
period morphism from (4.20)

β̃T
h,r : RΓsyn(Xh, r)→ RΓét(X,Qp(r))

extends to a syntomic period morphism

β̃T
r : RΓsyn(M, r)→ RΓét(M,Qp(r)), M ∈ DMgm(K,Qp).

It is quasi-isomorphism after truncation τ≤r. If we apply it to the cohomological Voevodsky
motive M(U)∨ = f∗(1X) for any proper semistable scheme X over OK , and U = XK \DK

with structural morphism f , we get back Fontaine–Messing period quasi-isomorphisms (modulo
identifications of the cohomologies involved and their h-localizations).

For M ∈ DMgm(K,Qp), define

α̃T
r : τ≤rRΓét(M,Qp(r))

β̃T
r←−−∼ τ≤rRΓsyn(M, r)

hh,r−−→τ≤r(RΓHK(M)⊗LFnr Bst{−r}),
αT

pst,r : τ≤rRΓét(M,Qp)→ τ≤r(RΓHK(M)⊗LFnr Bst), αT
pst,r := t−rα̃T

r ε
r.

Here hh,r is the motivic lift of the h-sheafification of the map hr from (4.23). Write

RΓét(M,Qp(r)) 
 hocolimr τ≤rRΓét(M,Qp(r))

and set
αT

pst := hocolimr α
T
pst,r : RΓét(M,Qp)→ RΓHK(M)⊗LFnr Bst.

This makes sense since, by [Tsu99a, Corollary 4.8.8], we have tα̃T
r−1 = α̃T

r ε.
To sum up, for any Voevodsky motive M , we have the Hyodo–Kato and de Rham comparison

quasi-isomorphisms

αT
pst : RΓét(M)⊗LQp

Bst
∼→ RΓHK(M)⊗LFnr Bst,

αT
dR : RΓét(M)⊗LQp

BdR
∼→ RΓdR(M)⊗L

K
BdR

(4.27)

as in the case of Beilinson comparison quasi-isomorphisms. By Theorem 4.21, these comparison
quasi-isomorphisms are the same as the ones of Beilinson. If we apply them to the cohomological
Voevodsky motive M(U)∨ = f∗(1X) for any proper semistable scheme X over OK , and U =
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XK \DK with structural morphism f , we get back Tsuji period quasi-isomorphisms after the
identification of the Beilinson–Hyodo–Kato and the original Hyodo–Kato cohomologies via the
map κ : RΓBHK(X)→ RΓHK(X) from (4.24).

Remark 4.28. In [Tsu03], Tsuji has shown that the Fontaine–Messing period morphism yields
a comparison theorem for U as above. This was done by showing compatibility of the period
morphism with the Gysin sequence and thus reducing to the proper case. The period quasi-
isomorphisms (4.27) imply Tsuji’s result. But we know now of another way: using Banach–Colmez
spaces [Col02] as in [CN17] one can obtain the isomorphism (4.16), which is enough to prove
that the period map is an isomorphism; in this way one avoids using Poincaré duality.

The map κ and its properties extend to finite proper simplicial schemes with semistable
reduction and of Cartier type, which implies that the Tsuji comparison theorem for cohomology
with compact support from [Tsu98] agrees with the one of Beilinson (after the identification of
Hyodo–Kato cohomologies). Similarly, since the comparison theorems of Yamashita for cohomol-
ogy with (possibly partial) compact support can also be seen as defined using finite simplicial
schemes (use the arguments of Lemma 2.1) and the Fontaine–Messing period morphisms, they
are the same as those of Tsuji and Beilinson.

Finally, as shown in [DN18, Proposition 4.24], the Beilinson period morphisms are compatible
with (possibly mixed) products. By the same argument, so are the period morphisms (4.27). It
follows that so are the period morphisms of Tsuji and Yamashita (the change of the Hyodo–Kato
cohomology map κ is compatible with products: pass through the Hyodo–Kato isomorphisms,
which are compatible with products, to de Rham cohomology).

4.4 Comparison of Faltings and Beilinson period morphisms
We will compare now the Faltings and Beilinson period morphisms.

4.4.1 Faltings period morphism. We will briefly recall the definition of the period morphism
of Faltings.

(i) Faltings site. Faltings’ construction of the period morphism uses an auxiliary topos, a
topos of ‘sheaves of local systems’ (see [Fal89, III] and [Fal02, 3]), that is now known as the
‘Faltings topos’ (a term coined by Abbes and Gros [AG16]). We will briefly describe it.

For a scheme X, letXFét denote the topos defined by the site of finite étale morphisms U → X

with coverings given by surjective maps. For a connected X and a choice of a geometric point
x→ X, XFét is equivalent to the topos of sets with a continuous action of the fundamental group
π1(X,x). In particular, for an abelian sheaf F , the étale cohomology H∗(XFét,F) is isomorphic
to the (continuous) group cohomology H∗(π1(X,x),Fx). Let X be noetherian. Then XFét is
equivalent to the topos of étale sheaves that are inductive limits of locally constant sheaves.11

There is a map of topoi

π : Xét → XFét

with π∗F given by the restriction of F to finite étale schemes over X and π∗(F) = F for an
ind-locally constant sheaf F .

Recall the following notion.

11 For us, locally constant is a shorthand for locally constant constructible.
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Definition 4.29. A noetherian scheme X is a K(π, 1)-space if for every integer n invertible
on X and any locally constant sheaf L of Z/n-modules, the natural map L → Rπ∗π∗(L) is an
isomorphism.

The following analog of a classical result of Artin [AGV73, Exposé XI, 4.4] on the existence
of a base for the Zariski topology consisting of K(π, 1)-spaces was proved by Faltings [Fal88, 2.1]
in the good reduction case and by Achinger [Ach15, Theorem 9.5] in general.

Theorem 4.30 (Faltings, Achinger). Let X be a log-smooth O×
K-log-scheme such that XK is

smooth over K. For every geometric point x of X, X(x) ×X Xtr,K is a K(π, 1)-space.

Let X be a noetherian OK-scheme. The Faltings topos X̃K,ét is defined12 by a site which has
for objects pairs (U, V ), where U is an étale X-scheme and V → XK is a finite étale morphism;
morphisms are compatible pairs of maps, and coverings are pairs of surjective maps (see [AG16]
for details).

There is a canonical map

ρ : XK,ét → X̃K,ét

from the étale topos of XK to X̃K,ét. On the level of sites, this map is given by sending (U, V ) to
V . If X is a log-smooth log-scheme over O×

K with a smooth generic fiber, it follows (see [Fal02,
III] and [Ach15, Corollary 9.6]) from Theorem 4.30 that, for a locally constant sheaf L on XK ,
the natural map

RΓ(X̃K,ét, ρ∗L)→ RΓ(XK,ét,L) (4.31)

is a quasi-isomorphism.
(ii) Faltings period morphism. Let X be a saturated, log-smooth, and proper log-scheme over

O×
K . Then, by [Fal02, Corollary 3.1], we have a natural almost quasi-isomorphism

vr,n : RΓ(X̃K,ét,Z/p
n)⊗L F rAcr,n

∼→ RΓ(X̃K,ét, F
rAcr,n), r ≥ 0,

where Acr,n is a relative version of the crystalline period ring (equipped with the log-structure
(N→ Acr,n, 1 �→ [π�])). For r ≥ 0, there is a natural morphism

βr,n : RΓcr(Xn/Rπ,n,J [r])→ RΓ(X̃K,ét, F
rAcr,n).

Faltings’ main comparison result is the following theorem.

Theorem 4.32 (Faltings [Fal02, Corollary 5.4]). The almost morphism

β̃n : RΓcr(Xn/Rπ,n)⊗LRπ,n
Acr,n → RΓét(Xtr,K ,Z/p

n)⊗L Acr,n, β̃n := ρ∗v−1
0,nβ0,n,

has an inverse up to td (that is, composition either way is the multiplication by td), d = dimXK .

It is compatible with Frobenius and filtration.

The map Rπ,n → Acr,n above is induced by x �→ [π�]. This is not Galois-equivariant and
hence, for the period morphism α̃ to be compatible with the Galois action, this action has to be

12 We use here the modification of the original definition of Faltings presented by Abbes and Gros in [AG16].
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twisted (using monodromy) on the domain (see [Fal02, p. 259] for details). Passing to the limit
over n and tensoring with Q in the above yields an almost morphism

β̃ : RΓcr(X/Rπ)⊗LRπ
B+

cr → RΓét(Xtr,K ,Zp)⊗L B+
cr.

Taking cohomology, we get an isomorphism

β̃i : H i
cr(X/Rπ)Q ⊗Rπ,Q

Bcr
∼→ H i

ét(Xtr,K ,Qp)⊗Bcr.

The Faltings period isomorphism

αF
i : H i

ét(Xtr,K ,Qp)⊗Bcr
∼→ H i

HK(X)⊗F Bcr

is defined as αF
i := (βF

i )−1, βF
i := β̃iιπ, where ιπ : H i

HK(X)→ H i
cr(X/Rπ)Q is the Hyodo–Kato

section.
(iii) Faltings syntomic period morphism. Let r ≥ 0. The definition of the map βr,n above can

be generalized easily to obtain an almost map

βr,n : RΓcr(XOK ,n
/Rπ,n,J [r])→ RΓ((X̃OK

)K,ét, F
rAcr,n) a.is.←− RΓ(X̃K,ét, F

rAcr,n).

Here we set RΓ((X̃OK
)K,ét, F

rAcr,n) := hocolimK′ RΓ((X̃OK′ )K,ét, F
rAcr,n), where the limit is

over finite extensions K ′/K. In an analogous way we define almost maps13

β̃r,n : RΓcr(Xn,J [r])→ RΓ(X̃K,ét, F
rAcr,n), β̃r,n : RΓcr(XOK ,n

,J [r])→ RΓ(X̃K,ét, F
rAcr,n).

All these maps are compatible.
Recall that we have the fundamental exact sequence

0→ Z/pn(r)′s → F rpAcr,n
φr−1−−→F rAcr,n → 0. (4.33)

Here F rpAcr,n denotes the Frobenius ‘divisible’ filtration and, for a sheaf F on X̃K,ét, Fs stands for
its restriction to the special fiber, i.e., to the complement of the generic fiber (the site consisting
of objects with trivial special fiber). For X proper and F torsion, the proper base-change theorem
yields that the cohomologies of F and Fs coincide.

Using the map β̃r,n and the above sequence, we obtain a map

β̃r,n : RΓét(XOK
,S ′n(r))→ RΓét(X̃K ,Z/p

n(r)′s).

More precisely, we get a canonical map from RΓét(XOK
,S ′n(r)) to the X̃K-cohomology of the

mapping fiber of φ− pr : F rAcr,n → Acr,n, which in turn maps via multiplication by pr on
F rAcr,n to the X̃K-cohomology of the mapping fiber of φr − 1 : F rpAcr,n → Acr,n. But the last
mapping fiber, by the fundamental exact sequence (4.33), is quasi-isomorphic to Z/pn(r)′s.

Hence, the Faltings period isomorphism induces a morphism (a genuine morphism not just
an almost morphism; see [Niz09, § 5.1])

βF
r,n : RΓét(XOK

,S ′n(r))→ RΓét(Xtr,K ,Z/p
n(r)′) (4.34)

13 We note that these maps do not depend on the choice of the uniformizer π.
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as the composition

βF
r,n : RΓét(XO

K
,S ′n(r))

β̃r,n−−→RΓét(X̃K ,Z/p
n(r)′s)

∼←RΓét(X̃K ,Z/p
n(r)′) ∼→RΓét(Xtr,K ,Z/p

n(r)′).

The first quasi-isomorphism holds because X is proper. The last quasi-isomorphism holds by
(4.31). Consider now the composition (βF

r := (holimn β
F
r,n)Q)

β̃F
r : RΓét(XOK

,S ′(r))Q βF
r−−→RΓét(XK ,Qp(r))

p−r

−−→RΓét(XK ,Qp(r)).

For r ≥ i, using the diagram (2.10) and the discussion in [Niz09] preceding Theorem 5.8, it is easy
to check that, on degree-i cohomology, (β̃F

i,r)
−1 is the syntomic period morphism α̃F

i,r induced
from the Faltings period morphism αF

i,r via the procedure described in § 4.1.

4.4.2 Comparison of Faltings and Beilinson period morphisms. Let X ∈ VarK . We can h-
sheafify the Faltings period morphism by setting, for (U,U) ∈ Pss

K
,

βF
r,n : RΓét((U,U),S ′n(r)) can−−→RΓét((U,U),Sn(r))

βF
r,n−−→,RΓét(U,Z/pn(r)′),

where the morphism βF
r,n is the one from (4.34), to obtain the compatible maps of h-sheaves

βF
r,n : S ′n(r)→ Z/pn(r)′. (4.35)

Taking cohomology, we get the induced compatible syntomic period morphisms

βF
n : RΓ(Xh,S ′n(r))

βF
r,n−−→RΓ(Xh,Z/pn(r)′) ∼← RΓ(Xét,Z/pn(r)′).

As in the case of the Beilinson period morphism, they induce a syntomic period morphism

β̃F
h,r := p−rβFπ : RΓsyn(Xh, r)→ RΓét(X,Qp(r)), βF := (holimn β

F
n )⊗Q.

It is a quasi-isomorphism after truncation τ≤r: by Remark 4.14, the map π is a quasi-isomorphism
after truncation τ≤r and, by Corollary 4.13, the map (4.35) is a pr-quasi-isomorphism and hence
the map βF is a quasi-isomorphism after truncation τ≤r as well.

Since the Faltings syntomic period morphism βF
r,n is functorial, an argument analogous to

the one we used in the proof of Theorem 4.21 shows that β̃F
h,r = β̃B

h,r. We have obtained the first
claim of the following theorem.

Theorem 4.36. Let r ≥ 0.

(i) Let X ∈ VarK . The induced Faltings and Beilinson syntomic period morphisms

β̃F
h,r, β̃

B
h,r : RΓsyn(Xh, r)→ RΓét(X,Qp(r))

are equal.

(ii) If X = (U,U) ∈ Pss
K and is split over OK , the period morphisms

αF
h,i, α

B
h,i : H i

ét(UK ,Qp)⊗Qp Bst
∼→ HB,i

HK(X)⊗F Bst,

αF
i , α

B
i : H i

ét(UK ,Qp)⊗Qp BdR
∼→ H i

dR(XK)⊗K BdR

are equal as well. Here we set αF
h,i := κ−1αF

i .

1960
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Proof. Let X = (U,U) ∈ Pss
K be split over OK . By Lemma 4.17, it suffices to show that, for

r ≥ i, the induced maps α̃F
h,i,r and α̃B

h,i,r from H i
ét(UK ,Qp(r)) to H i

syn(UK,h, r) are equal. But,
by Lemma 4.22, the map α̃B

h,i,r is the inverse of the map β̃B
h,i,r. Hence, by the first claim of our

theorem, it suffices to prove the lemma below. �

Lemma 4.37. The map α̃F
h,i,r is the inverse of the map β̃F

h,i,r.

Proof. Identical to the proof of the second claim of Lemma 4.22 (recall that the main issue there
was a relation between syntomic cohomology and the Hyodo–Kato and Beilinson–Hyodo–Kato
cohomologies). �

4.4.3 Period morphisms for motives, II. The content of § 4.3.9 goes through practically ver-
batim for the Faltings period morphism. We obtain that, for any Voevodsky motive M , we have
the Hyodo–Kato and de Rham comparison quasi-isomorphisms

αF
pst : RΓét(M)⊗L Qp Bst

∼→ RΓHK(M)⊗LFnr Bst,

αF
dR : RΓét(M)⊗LQp

BdR
∼→ RΓdR(M)⊗L

K
BdR

as in the case of Beilinson comparison quasi-isomorphisms. By Theorem 4.36, these comparison
quasi-isomorphisms are the same as the ones of Beilinson. If we apply them to the cohomological
Voevodsky motive M(U)∨ = f∗(1X) for any proper semistable scheme X over OK , and U =
XK \DK with structural morphism f , we get back Faltings period quasi-isomorphisms after the
identification of the Beilinson–Hyodo–Kato and the original Hyodo–Kato cohomologies via the
map κ : RΓBHK(X)→ RΓHK(X) from (4.24).

Hence, we recover Theorem 4.7 comparing Faltings and Fontaine–Messing period morphisms
for cohomology with compact support. But we also get:

(i) Faltings and Fontaine–Messing period morphisms are equal for open varieties: because they
are equal to Beilinson period morphisms;

(ii) Faltings period morphisms are compatible with (mixed) products (which recovers [Fal02]):
use the argument for Tsuji products in § 4.3.9.
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Kat94b K. Kato, Toric singularities, Amer. J. Math. 116 (1994), 1073–1099.
KM92 K. Kato and W. Messing, Syntomic cohomology and p-adic étale cohomology, Tohoku Math. J.

44 (1992), 1–9.
Kis02 M. Kisin, Potential semi-stability of p-adic étale cohomology, Israel J. Math. 129 (2002),

157–173.
Lev04 M. Levine, K-theory and motivic cohomology of schemes, Preprint (2004).
LP19 Sh. Li and X. Pan, Logarithmic de Rham comparison for open rigid spaces, Forum Math. Sigma

7 (2019), e32.
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