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Abstract Let p be an odd prime. For a number field K , we let K∞ be the maximal unramified pro-p
extension of K ; we call the group Gal(K∞/K ) the p-class tower group of K . In a previous work, as a
non-abelian generalization of the work of Cohen and Lenstra on ideal class groups, we studied how likely

it is that a given finite p-group occurs as the p-class tower group of an imaginary quadratic field. Here we
do the same for an arbitrary real quadratic field K as base. As before, the action of Gal(K/Q) on the p-class

tower group of K plays a crucial role; however, the presence of units of infinite order in the ground field

significantly complicates the possibilities for the groups that can occur. We also sharpen our results in the
imaginary quadratic field case by removing a certain hypothesis, using ideas of Boston and Wood. In the

appendix, we show how the probabilities introduced for finite p-groups can be extended in a consistent

way to the infinite pro-p groups which can arise in both the real and imaginary quadratic settings.
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1. Introduction

In the 1980s, Cohen and Lenstra gave a theoretical framework for the variation of class

groups of quadratic fields. The Cohen–Lenstra idea is twofold: the first part is to identify,

in any relevant number-theoretical situation, the correct collection of groups which can

arise as the groups of number-theoretical interest; the second part is to define a natural

measure or probability distribution on this collection. The heuristic then is that the

probability attached to the group in the identified collection is the same as the frequency

of occurrence as a group of number-theoretical interest.

The research of NB is supported by Simons grant MSN179747. The work of MRB was partially supported
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In [3], we initiated the study of a natural non-abelian extension of Cohen and Lenstra’s

work. Fix an odd prime p. For a quadratic field K , we consider the Galois group G K
of the maximal unramified p-extension of K . Note that the maximal abelian quotient

Gab
K is isomorphic to the p-class group of K by class field theory. We will call G K the

p-class tower group of K since that is how it first arose in the 1930s in the work of Artin,

Hasse, Furtwangler and others. In [3], we treated the case of imaginary quadratic fields.

The content of [3] included (a) an identification of the ‘right’ collection of groups (Schur

σ -groups), (b) an investigation of an associated measure giving the frequency of groups

within that collection and (c) a numerical study of p-class tower groups of imaginary

quadratic fields to test the conjecture we developed using (a) and (b). In this work, we

treat real quadratic fields in the same manner. As is to be expected, the presence of

units of infinite order in the base field has a marked influence on the structure of G K ,

and this makes some aspects of the current work slightly more complicated and more

interesting than in [3].

The organization of the paper is as follows. In § 2, we define Schur+ 1 σ -groups and

introduce certain measures for these groups and also special finite quotients which we

call Schur+ 1 σ -ancestor groups. We note that defining measures for the latter happens

first and is then used in defining measures for the former. In § 3, we state the main

heuristic, to the effect that a finite Schur+ 1 σ -group occurs as the p-class tower group

of a real quadratic field with frequency according to its measure. In § 4, we introduce

index p abelianization data (IPADs) and their associated measures. This provides a way

for us to indirectly test our conjectures since computing the full Galois group G K is

usually difficult unless the group is small. We then compare our theoretical predictions

with numerical data in § 5. We close with the Appendix in which we address assigning

measures to infinite groups, an issue we skirted around in [3] and also in the main body

of this paper. This is primarily of theoretical interest since any kind of direct test of our

conjectures in the context of infinite groups seems out of reach currently.

2. Schur+ 1 σ -groups

2.1. Preliminaries

Fix an odd prime p and a positive integer g. Let F be the free pro-p group on g
generators x1, . . . , xg. For a pro-p group G, recall that d(G) = dimFp H1(G,Fp) and

r(G) = dimFp H2(G,Fp) are its minimal number of (topological) generators and relations,

respectively.

In [11], Koch and Venkov defined the notion of a Schur σ -group of rank g. We recall

its definition.

Definition 2.1. A generator-inverting automorphism (GI-automorphism) of G is an

element σ ∈ Aut(G) of order 2 such that σ acts as inversion on Gab.

Definition 2.2. A finitely presented pro-p group G is called a Schur σ -group of rank g if

it satisfies: (1) Gab is finite; (2) (d(G), r(G)) = (g, g); (3) there exists a GI-automorphism

σ of G.
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Koch and Venkov were motivated to make the above definition through their study of

the properties of the Galois group of the maximal unramified p-extension of an imaginary

quadratic field. Similar considerations for real quadratic fields lead us to the following

definition.

Definition 2.3. A finitely presented pro-p group G is called a Schur+ 1 σ -group of rank g
if it satisfies: (1) Gab is finite; (2) (d(G), r(G)) = (g, g) or (g, g+ 1); (3) there exists a

GI-automorphism σ of G which acts as inversion on H2(G,Fp).

Remark 2.4. We note that an automorphism σ ∈ Aut(G) of order 2 is a GI-automorphism

if and only if it acts by inversion on H1(G,Fp) (see [2]). Thus, an alternative, perhaps

more natural, formulation of (3) above is: (3′) there exists σ ∈ Aut(G) of order 2 which

acts as inversion on H i (G,Fp) for i = 1, 2. We also note that a Schur+ 1 σ -group is a

Schur σ -group exactly when r(G) = d(G) even though our definition of a Schur σ -group

in [3] makes no explicit mention of the action on H2(G,Fp). This follows since, in this

situation, the action of σ by inversion on H2(G,Fp) is induced by the action on H1(G,Fp)

as shown in [11].

Lemma 2.5. The Galois group G K = Gal(L/K ) of the maximal unramified p-extension

L of a real quadratic field K is a Schur+ 1 σ -group of rank g where g is the p-rank of

the class group of K .

Proof. To ease the notation slightly, let us put G = G K . When G is a finite p-group,

this result has been observed by Schoof [15] (see especially Lemma 4.1). By working

with appropriate cohomology groups, as in the work of Kisilevsky and Labute [9] for

extensions of CM fields, we now show the statement still holds in the infinite case.

For condition (1), by class field theory, Gab is isomorphic to the p-class group of K ;

hence, it is finite. Furthermore, the generator rank of G is equal to the generator rank

of this abelian p-group which gives a part of condition (2). The relation rank part of

condition (2) comes from the fundamental estimate of Shafarevich (see [10, 12] or [16]),

for the partial Euler characteristic of G, namely

0 6 r(G)− d(G) 6 d(UK /U p
K ),

where UK = O×K is the unit group of K . We note that d(UK /U p
K ) = 1 by Dirichlet’s unit

theorem. That a lift σ of the non-trivial element of Gal(K/Q) to the p-Hilbert class field

of K acts on Gab
K by inversion can be seen from the fact that, if it did not, then it would

have to act on some quotient of Gab trivially, leading to an unramified p-extension of Q,

which does not exist. Alternatively, by Artin reciprocity, the action of this lift of σ on Gab
K

can be read off from the action of σ on the ideal class group of K , which is via inversion

because for any integral ideal a of K , the product aaσ is principal, being an ideal of Z.

The action of σ on H2(G,Fp) can be understood using the existence of a σ -equivariant

injection

H2(G,Fp) ↪→ hom(V/(K×)p,Fp) ∼= V/(K×)p,

where V consists of the elements a ∈ K× satisfying 〈a〉 = Ap for some fractional ideal A

in OK . This follows from the work of Shafarevich and we refer the reader to [9, § X.7] for

a more detailed description. Now if 〈a〉 = Ap for a ∈ K×, then 〈aaσ 〉 = (AAσ )p
= 〈d〉p
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for some d ∈ Q×. It follows that aaσ = ±d p
= (±d)p since p is odd and so we see that

aσ ∈ a−1
· (K×)p. This shows that σ acts by inversion on V/(K×)p and hence also on

H2(G,Fp).

Given a finitely presented pro-p group G with GI-automorphism σ , we define

X (G, σ ) = {s ∈ G | σ(s) = s−1
}

and

Y (G, σ ) = {s ∈ G | σ(s) = s}.
As noted in [3], different choices of the GI-automorphism are always conjugate; hence,

the sizes of these sets depend only on G. In particular, we will usually simply write

|Y (G)| to indicate the number of fixed points later on. For any such G, one can always

find a presentation in which the generators lie in X (F, σ ) and the relations lie in

X = X (8(F), σ ), where 8(F) is the Frattini subgroup of F and σ is an automorphism

on F that inverts the generating set; i.e. σ(xi ) = x−1
i for all i . In general, when we

refer to the GI-automorphism of a free group F , we shall always mean this particular

GI-automorphism.

As in [3], we will be working with certain special quotients of Schur+ 1 σ -groups

by terms in a central series whose definition we now recall. For a pro-p group G, the

lower p-central series of G is defined by P0(G) = G and Pn+1(G) = [G, Pn(G)]Pn(G)p

for n > 0. If Pn(G) = 1 for n = c but not n < c, then we say that G has p-class c. We

use the notation Gc to denote the quotient G/Pc(G) which we call the maximal p-class

c quotient of G. If G is a finitely generated pro-p group, then Gc is a finite p-group. The

p-class of Gc is at most c but is not necessarily equal to c. Equality holds if and only if

G has p-class at least c.

The subgroups in the lower p-central series are characteristic, so any GI-automorphism

σ on G induces a GI-automorphism on the quotient Gc for all c > 1. In particular, the

GI-automorphism σ on F induces a GI-automorphism on Fc, which we will also denote

as σ . We let

Xc = X (8(Fc), σ ) = {s ∈ 8(Fc) | σ(s) = s−1
}.

If G and H are pro-p groups with H of p-class c and Gc ∼= H , then we say that G is

a descendant of H (or that H is an ancestor of G). If G has p-class c+ 1, then we say

that G is an immediate descendant. If G is a Schur+ 1 σ -group, then we refer to every

finite quotient Gc as a Schur+ 1 σ -ancestor group. Note that a finite Schur+ 1 σ -group

G will itself be referred to as a Schur+ 1 σ -ancestor group since Pc(G) = 1 and Gc = G
once c is sufficiently large.

In [13], an algorithm is described for enumerating all immediate descendants of a given

finite p-group and we make use of this in § 4. Various quantities related to the algorithm

are defined in terms of abstract presentations in [13]. There are no problems, however,

if one chooses to work with pro-p presentations as we do. For further discussion of this

point, see [3, Remark 2.4].

2.2. Measures on p-groups

Let G be a finite p-group of p-class c with d(G) = g and r(G) = g or g+ 1. One can

see that G is a quotient of Fc′ for all c′ > c. We will say that the tuple of elements

https://doi.org/10.1017/S1474748019000641 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000641


Heuristics for p-class towers of real quadratic fields 1433

v = (t1, . . . , tg+1) ∈ 8(Fc′)
g+1 presents G if Fc′/〈v〉 ∼= G, where 〈v〉 denotes the closed

normal subgroup of Fc′ generated by t1, . . . , tg+1. We let Sc′ = Sc′(G) denote the set of

all such tuples in 8(Fc′)
g+1.

When G is a Schur+ 1 σ -ancestor group, we wish to consider tuples of relations

satisfying an additional restriction. To explain this further, we need two lemmas. For

the proofs of these lemmas and several other results in this section, we will simply refer

to [3] since the presence of an extra relation in the tuple has no effect on the arguments.

Lemma 2.6. For all d > 1, we have Xd = X ′d , where

X ′d = {t
−1σ(t) | t ∈ 8(Fd)}.

Hence, for all g > 1, the map φd : 8(Fd)
g+1
→ X g+1

d defined by

(t1, . . . , tg+1) 7→ (t−1
1 σ(t1), . . . , t−1

g+1σ(tg+1))

is surjective. Indeed, for each w ∈ X g+1
d , the fiber φ−1

d (w) is a coset of Y g+1
d in 8(Fd)

g+1,

where Yd = Y (Fd , σ ).

Proof. See [3, Lemma 2.5].

Remark 2.7. As explained in [3, Remark 2.6], one consequence of this lemma is that

X = X ′, where

X ′ = {t−1σ(t) | t ∈ 8(F)}.
It follows that the map φ : 8(F)g+1

→ X g+1 defined by t 7→ t−1σ(t) in each component

is surjective.

Lemma 2.8. If H is a Schur+ 1 σ -ancestor group of p-class c, then it can be presented

with a tuple of relations in X g+1
c ⊆ 8(Fc)

g+1. Conversely, the group H presented by any

tuple of relations in X g+1
c is a Schur+ 1 σ -ancestor group of p-class at most c.

Proof. See [3, Lemma 2.7].

Definition 2.9. Let G be a Schur+ 1 σ -ancestor group of p-class c and generator rank g.

For c′ > c, let Tc′ = Tc′(G) denote the set of all tuples in X g+1
c′ which present G. We then

define the p-class c′-measure of G by

Measc′(G) =
|Tc′ |

|Xc′ |
g+1 .

Remark 2.10. We have chosen to adopt the same notation as in [3]. This will not cause

confusion unless one wants to discuss the values of both types of measure side by side.

In this situation, one might use the notation Meas+1
c′ (G) to indicate that one is working

with (g+ 1)-tuples of relations rather than g-tuples.

Example 2.11. Let p = 3 and g = c = 2. In this case, F2 = F/P2(F) has order 243 and the

set X2 happens to be a central elementary abelian subgroup of order 9. In [3, Example 2.9],

we saw that there were exactly three Schur σ -ancestor groups of 3-class 2, and we

computed their measures, as defined there, by explicitly counting tuples in X2. These

groups are also Schur+ 1 σ -ancestor groups and it is not hard to see that no others exist
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of 3-class 2. Indeed, by enumerating 3-tuples we can see that the list is complete and also

compute their measures as Schur+ 1 σ -ancestor groups.

One observes that 624 of the 93
= 729 3-tuples generate X2 and give rise (after taking

the quotient) to a group of order 27 which we labeled G1 in [3]. Of the tuples that

remain, 104 generate one of the four subgroups of order 3 inside X2 and give rise to a

group of order 81 that we labeled G2. That leaves one tuple with all components trivial

that gives rise to the group G3 ∼= F2. It follows that the p-class 2-measures of these

3-groups as Schur+ 1 σ -ancestor groups are Meas2(G1) = 624/729, Meas2(G2) = 104/729
and Meas2(G3) = 1/729.

As in [3], Lemma 2.8 implies that Measc(G) defines a discrete probability measure on

the set of isomorphism classes of maximal p-class c quotients of all Schur+ 1 σ -groups

of generator rank g. This set is finite and consists of the Schur+ 1 σ -ancestor groups of

p-class exactly c, together with all Schur+ 1 σ -groups of p-class less than c. The next

theorem shows how these different probability measures are related.

Theorem 2.12. Let G be a Schur+ 1 σ -ancestor group of p-class c.

(i) We have

Measc(G) = Measc+1(G)+
∑

Q

Measc+1(Q),

where the summation is over all immediate descendants Q of G which are Schur+ 1
σ -ancestor groups.

(ii) Measc′(G) = Measc+1(G) for all c′ > c+ 1.

Proof. See [3, Theorem 2.11].

Definition 2.13. Let G be a Schur+ 1 σ -ancestor group of p-class c. We define the measure

of G (denoted as Meas(G)) to be the constant value of Measc′(G) for c′ > c+ 1.

Remark 2.14. As for Schur σ -groups, a finite p-group G is a Schur+ 1 σ -group if and only

if Meas(G) > 0. As opposed to the situation for Schur σ -groups, it is possible for a group G
to be both a Schur+ 1 σ -group as well as a proper quotient of a larger Schur+ 1 σ -group.

This means that if G has p-class c, then it is possible for both Meas(G) = Measc+1(G)
and the summation appearing on the right in Theorem 2.12(i) to be non-zero.

2.3. Measures on abelian p-groups

We now define measures on certain collections of finite abelian p-groups. This will

allow us to demonstrate that the heuristics introduced in § 3 are consistent with the

Cohen–Lenstra heuristics for p-class groups of real quadratic fields.

Every abelian pro-p group G comes equipped with a unique GI-automorphism, namely

the inversion mapping x 7→ x−1. Consider the abelianizations Fab and Fab
c . We define sets

X ab and X ab
c in an analogous way to X and Xc, but things are now simpler and it is easy

to verify that X ab
= 8(Fab) and X ab

c = 8(F
ab
c ).

Let G be a finite abelian p-group of p-class c with generator rank g and let c′ > c.

We will say that the tuple of elements v = (t1, . . . , tg+1) ∈ 8(Fab
c′ )

g+1 presents G if
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Fab
c′ /〈v〉

∼= G, where 〈v〉 denotes the (normal) subgroup of Fab
c′ generated by t1, . . . , tg+1.

Such tuples must exist since G is finite. We let Sab
c′ = Sab

c′ (G) denote the set of all such

tuples in 8(Fab
c′ )

g+1. In the non-abelian setting, we introduced a second set of tuples

Tc′ ⊆ Sc′ . We can do the same in the abelian setting, but the situation now is simpler

and we have T ab
c′ = Sab

c′ since X ab
c′ = 8(F

ab
c′ ).

Definition 2.15. Let G be an abelian p-group of p-class c and generator rank g. For

c′ > c, we define the abelian+ 1 c′-measure of G by

Measab
c′ (G) =

|T ab
c′ |

|X ab
c′ |

g+1

(
=

|Sab
c′ |

|8(Fab
c′ )|

g+1

)
.

Remark 2.10 also applies to our choice of notation in the abelian setting.

The remaining results in this section allow us to define the quantity Measab(G) for

a finite abelian p-group G, to relate the abelian measures to the non-abelian measures

introduced in the previous section, and to give explicit formulas for these measures.

Theorem 2.16. Let G be an abelian p-group of p-class c.

(i) We have

Measab
c (G) = Measab

c+1(G)+
∑

Q

Measab
c+1(Q),

where the summation is over all immediate abelian descendants Q of G.

(ii) Measab
c′ (G) = Measab

c+1(G) for all c′ > c+ 1.

Proof. As with [3, Theorem 2.15], this can be proved in a similar fashion to Theorem 2.12.

Definition 2.17. Let G be an abelian p-group of p-class c. We define the abelian+ 1
measure of G (denoted as Measab(G)) to be the constant value of Measab

c′ (G) for c′ > c+ 1.

Remark 2.18. It follows from part (i) of Theorem 2.16 that if G is an abelian p-group of

p-class c, then

Measab(G) = Measab
c (G)−

∑
Q

Measab
c+1(Q),

where the summation is over all abelian groups Q of p-class c+ 1 with Q/Q pc
∼= G; here

Q pc
is the subgroup of Q generated by all pcth powers.

Theorem 2.19. Let G be an abelian p-group of p-class c. For all c′ > c, we have

Measab
c′ (G) =

∑
Q

Measc′(Q),

where the summation is over all Schur+ 1 σ -ancestor groups Q with p-class at most c′

and Qab ∼= G.

Proof. See [3, Theorem 2.18].
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The next result is very similar to [3, Theorem 2.20]. However, observe that an extra

factor |G| now appears in the denominators and there has been a slight change to the

indexing on one of the products.

Theorem 2.20. Let G be an abelian p-group of p-class c and generator rank g. We have

Measab
c (G) =

1
|Aut(G)| |G|

pg(g+1)
g∏

k=1

(1− p−k)

g+1∏
k=g+2−u

(1− p−k),

where u counts the number of cyclic groups of order strictly less than pc in the direct

product decomposition of G.

For c′ > c, we have

Measab
c′ (G) = Measab(G) =

1
|Aut(G)| |G|

pg(g+1)
g∏

k=1

(1− p−k)

g+1∏
k=2

(1− p−k).

Proof. As in the proof of [3, Theorem 2.20], the number of normal subgroups R such

that Fab
c /R ∼= G is

|Epi(F,G)|
|Aut(G)|

=
|8(G)|g

|Aut(G)|

g∏
k=1

(pg
− pg−k).

The change occurs in the next step. The number of (g+ 1)-tuples that generate each

subgroup R is

|8(R)|g+1
u∏

k=1

(pg+1
− pu−k).

Combining the statements above, we have

Measab
c (G) =

|Sab
c (G)|

|8(Fab
c )|

g+1

=
1

|8(Fab
c )|

g+1
|8(G)|g

|Aut(G)|

g∏
k=1

(pg
− pg−k)|8(R)|g+1

u∏
k=1

(pg+1
− pu−k)

=
1

|8(Fab
c )|

g+1
(|8(Fab

c )|/|R|)
g

|Aut(G)|

g∏
k=1

(pg
− pg−k)

|R|g+1

p(g+1)u

u∏
k=1

(pg+1
− pu−k)

=
|R|

|8(Fab
c )|

1
|Aut(G)|

g∏
k=1

(pg
− pg−k)

1
p(g+1)u

u∏
k=1

(pg+1
− pu−k)

=
pg

|G|
1

|Aut(G)|

g∏
k=1

(pg
− pg−k)

1
p(g+1)u

u∏
k=1

(pg+1
− pu−k)

=
1

|Aut(G)| |G|
pg(g+1)

g∏
k=1

(1− p−k)

g+1∏
k=g+2−u

(1− p−k).

The derivation of the formula for Measab
c′ (G) for c′ > c involves replacing u with g as

discussed at the end of the proof of [3, Theorem 2.20].
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Remark 2.21. If we define η j (p) =
∏ j

k=1(1− p−k) as in [7], then the formulas in

Theorem 2.20 can be written as

Measab
c (G) =

1
|Aut(G)| |G|

pg(g+1)
(
ηg(p)ηg+1(p)
ηg+1−u(p)

)
Measab(G) =

1
|Aut(G)| |G|

pg(g+1)
(
ηg(p)ηg+1(p)

1− p−1

)
.

2.4. Formula for Measc(G)

In this section, we give explicit formulas for Measc(G) and Meas(G), where G is

a Schur+ 1 σ -ancestor group. In the context of Schur σ -groups, we obtained such

formulas [3, Theorem 2.25] under an additional technical hypothesis which we called

the kernel invariance property (KIP). This was the assumption that σ(kerψ) = kerψ
for every epimorphism ψ : F → G where F is free with the same generator rank as G.

Subsequently, it was shown by Boston and Wood in [6] how to obtain such formulas

without this assumption. We begin by explaining how this is carried out.

In [3, Theorem 2.25], the group G is assumed to be a Schur σ -ancestor group of p-class c
and rank g satisfying KIP. To derive a formula for Measc(G), we began by enumerating

the normal subgroups R in Fc with Fc/R ∼= G. There are

|Epi(F,G)|
|Aut(G)|

=
|8(G)|g

|Aut(G)|

g∏
k=1

(pg
− pg−k) =

|G|g

|Aut(G)|

g∏
k=1

(1− p−k)

such subgroups where Epi(F,G) denotes the set of surjective homomorphisms from F
to G. We then showed that each R is generated as a normal subgroup of Fc by the same

number of tuples in 8(Fc)
g. This allowed us to compute |Sc(G)| by summing this number

over all such subgroups R and so lead to a formula for the ratio |Sc(G)|/|8(Fc)|
g. KIP

then entered the picture through an application of [3, Lemma 2.23] which allowed us to

convert this into a formula for the desired ratio

Measc(G) =
|Tc(G)|
|Xc|g

.

The resulting formula for Measc(G) involved the quantity |Aut(G)|. In [3, Corollary 2.30],

we gave a formula in terms of |Autσ (G)|. The second conversion was carried out using

[3, Theorem 2.29] whose proof involved another application of the KIP assumption. The

formula for Meas(G) was obtained in a similar fashion.

The key observation in [6, § 4] is that one can directly compute the quantity |Tc(G)| by

enumerating over normal subgroups R in Fc which are σ -invariant and then counting the

number of tuples in X g
c that generate each such subgroup. One then immediately obtains

a formula for Measc(G) in terms of |Autσ (G)|. This is the approach taken in the proof

below noting that, in the context of Schur+ 1 σ -ancestor groups, our tuples of relations

now have g+ 1 components.

To avoid any confusion over notation,1 we briefly recall some useful results from [6, § 4]

involving the sizes of the sets X (G) = X (G, σ ) and Y (G) = Y (G, σ ) that will be used

1The objects that we denote as X (G) and Y (G) in this paper and also [3] are denoted as Y (G) and Z(G),
respectively, in [6].
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several times in what follows. In these results, the groups involved are understood to

be finite p-groups, each with a specified GI-automorphism σ . Given such a group G,

[6, Lemma 4.2] states that |G| = |X (G)||Y (G)|. The authors observe that this follows

directly from [8, Theorem 3.5]. It is also proved as part of [3, Lemma 2.5]. Given

a short exact sequence 1→ K → G → H → 1 of such groups in which the maps are

σ -equivariant, [6, Lemma 4.3 and 4.4] show that the induced map Y (G)→ Y (H) is

surjective from which it follows that |Y (G)| = |Y (K )||Y (H)|. Since |G| = |K ||H |, one

can then see that we also have |X (G)| = |X (K )||X (H)|. The surjectivity of the map is

established using the Schur–Zassenhaus theorem. It also follows from a more elementary

argument similar to that used in the proof of part (iv) of [3, Lemma 2.23].

Finally, recall that given a presentation F/R for G, we can form the Fp-vector space

R/R∗, where R∗ is the closure of R p
[F, R] in F . This is the p-multiplicator of G and its

dimension is equal to the relation rank r(G). We have an isomorphism R/R∗ ∼= H2(G,Fp).

If R is σ -invariant, then this isomorphism is σ -equivariant. In particular, if G is a

Schur+ 1 σ -group, then σ acts by inversion on R/R∗ and so on R/R
∗
, where R is the

image of R in Fc. If G has p-class c, then the subspace R∗Pc(F)/R∗ is called the nucleus

of G. We define h(G) to be the difference between the dimensions of the p-multiplicator

and the nucleus. Equivalently, it is the dimension of the Fp-vector space R/R∗Pc(F). For

more discussion of these quantities, see [3, § 2.1] and the remarks immediately following

[3, Definition 2.24].

Theorem 2.22. Let G be a Schur+ 1 σ -ancestor group of p-class c and rank g and let

h = h(G). Then we have

Measc(G) =
|Y (G)|

|Autσ (G)| |G|
pg(g+1)

(
ηg(p)ηg+1(p)
ηg+1−h(p)

)
.

If G is also a Schur+ 1 σ -group with r = r(G), then

Meas(G) =
|Y (G)|

|Autσ (G)| |G|
pg(g+1)

(
ηg(p)ηg+1(p)
ηg+1−r (p)

)
,

otherwise Meas(G) = 0.

Proof. Each tuple of elements in Tc(G) ⊆ X g+1
c generates a normal subgroup R of Fc

which is σ -invariant since σ(Xc) = Xc. It is straightforward to show that the number of
such σ -invariant normal subgroups is |Epiσ (F,G)|/|Autσ (G)|, where Epiσ (F,G) denotes

the set of surjective σ -equivariant homomorphisms from F to G. By [6, Lemma 4.6], we

have
|Epiσ (F,G)|
|Autσ (G)|

=
|X (G)|g

|Autσ (G)|

g∏
k=1

(1− p−k).

We now show that each R is generated as a normal subgroup of Fc by the same number

of tuples in X g+1
c . Observe that a (g+ 1)-tuple of elements generates R as a normal

subgroup of Fc if and only if its image generates the h-dimensional Fp-vector space

R/R
∗
, where R

∗
= R

p
[Fc, R] = Pc(F)R∗/Pc(F) with R the preimage of R in F . From

the observations made before the proof, the induced action of σ on R/R
∗

is by inversion.
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Applying the same argument as in the proof of [6, Lemma 4.5], we see that the intersection

of X (R) = Xc ∩ R with each fiber of the reduction map R→ R/R
∗

has a constant size

|R
∗
|/|Y (R)|. Since R/R

∗
is h-dimensional, it follows that the number of tuples in X g+1

c
which generate R is(

|R
∗
|

|Y (R)|

)g+1 h∏
k=1

(pg+1
− ph−k) =

|R
∗
|
g+1

|Y (R)|g+1
ph(g+1)

h∏
k=1

(1− ph−g−1−k).

Combining the above, we see that

Measc(G) =
|Tc(G)|
|Xc|g+1

=
1

|Xc|g+1
|X (G)|g

|Autσ (G)|

g∏
k=1

(1− p−k)
|R
∗
|
g+1

|Y (R)|g+1
ph(g+1)

h∏
k=1

(1− ph−g−1−k)

=
1

|Autσ (G)|
|X (G)|g|X (R)|g+1

|Xc|g+1

g∏
k=1

(1− p−k)

h∏
k=1

(1− ph−g−1−k),

where the simplification in the second line follows from the fact that |R
∗
| = |R|/ph and

|R| = |X (R)||Y (R)|.
Now consider the sequences

1→ 8(Fc)→ Fc → Fc/8(Fc)→ 1 and 1→ R→ Fc → G → 1.

From the first, we deduce that

|Xc| = |X (8(Fc))| = |X (Fc)|/|X (Fc/8(Fc))| = |X (Fc)|/pg

since σ acts by inversion on all of Fc/8(Fc). From the second, we have |X (Fc)| =

|X (G)||X (R)| from which it follows that |Xc| = |X (G)||X (R)|/pg. Substitution then yields

Measc(G) =
1

|Autσ (G)||X (G)|
pg(g+1)

g∏
k=1

(1− p−k)

h∏
k=1

(1− ph−g−1−k)

=
|Y (G)|

|Autσ (G)||G|
pg(g+1)

g∏
k=1

(1− p−k)

g+1∏
k′=g+2−h

(1− p−k′)

=
|Y (G)|

|Autσ (G)||G|
pg(g+1)

(
ηg(p)ηg+1(p)
ηg+1−h(p)

)
.

Now suppose that G is also a Schur+ 1 σ -group. By definition, Meas(G) = Measc+1(G).
The latter can be evaluated by following the same steps as above, but noting that if

G = F/R, then Pc(F) ⊆ R since G has p-class c and this implies Pc+1(F) ⊆ R∗. It follows

that R/R
∗ ∼= R/R∗, where R = R/Pc+1(F) ⊆ Fc+1, and so has dimension r = r(G). Thus,

one simply replaces h with r in the final formula above.

If G is a Schur+ 1 σ -ancestor group but not a Schur+ 1 σ -group, then either σ does not

act by inversion on R/R∗ ∼= R/R
∗

or the dimension r of this space is larger than g+ 1. In

either case, none of the tuples in X g+1
c+1 can generate any of the invariant normal subgroups

R since this would lead to a contradiction. Thus, Meas(G) = Measc+1(G) = 0.
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Remark 2.23. Theorem 2.22 above is the analog for Schur+ 1 σ -groups of [3,

Theorem 2.25 and Corollary 2.30]. A small correction needs to be made to the statement

of the earlier corollary. In addition to no longer needing the KIP assumption, the

simplified formula for Meas(G) = Measc′(G) in [3, Corollary 2.30] is only valid when

the group is a Schur σ -group. In this situation, g = r and the function ηg−r (p) appearing

in the denominator vanishes and could have been omitted. For a Schur σ -ancestor group

which is not a Schur σ -group, the measure is 0 as follows from [3, Theorem 2.25]. The

simplified formula does not give the correct value in this case and so it should have been

separated out in the statement of the corollary as we have done in the above theorem.

2.5. Some numerical examples

In this section, we illustrate the theory with some numerical examples in the simplest

case where p = 3 and g = 2. Let G be a Schur+ 1 σ -ancestor group of 3-class c and

rank 2. By Theorem 2.22,

Measc(G) =
432|Y (G)|
|Autσ (G)| |G|

3∏
k=4−h

(1− 3−k),

where h = h(G). If G is also a Schur+ 1 σ -group, then we have

Meas(G) =
432|Y (G)|
|Autσ (G)| |G|

3∏
k=4−r

(1− 3−k),

where r = r(G) is either 2 or 3.

• For r = 3, the smallest examples of Schur+ 1 σ -groups are, in the notation of

Magma, SmallGroup(81, i) for i = 7, 8, 10 with measures 1664/38, 1664/38, 3328/39,

respectively, and SmallGroup(243, i) for i = 16, 18, 19, 20 with measures 3328/311,

3328/311, 1664/310, 1664/310, respectively.

• For r = 2, the smallest examples of Schur+ 1 σ -groups are the groups

SmallGroup(243, i) for i = 5, 7, with respective measures 1664/310 and 832/310. As a

point of comparison, the latter groups are also Schur σ -groups and would be assigned

measures 128/729 and 64/729, respectively, in the context of [3]. Thus, our heuristics in

the next section will predict different frequencies of occurrence for these groups as G K
when K is a real quadratic field. However, the 2:1 ratio between the probabilities

is preserved and so we expect SmallGroup(243, 5) to occur twice as frequently as

SmallGroup(243, 7) in both the real and imaginary quadratic settings. This is reflected

in the available numerical data discussed in § 5 and also in [3, § 5].

In the examples above, all of the groups G involved have 3-class 3 and nuclear rank 0.

This implies h(G) = r(G) and so Meas3(G) = Meas(G) in each case. In general, as noted

in Remark 2.14, it is possible for Measc(G) and Meas(G) to both be non-zero and not

equal. This occurs when G is both a Schur+ 1 σ -group and the ancestor of a strictly

larger Schur+ 1 σ -group.

As an example of this new phenomenon, consider the group G = SmallGroup(729, 8). It

is a Schur+ 1 σ -ancestor group with 3-class 3, r(G) = 3 and h(G) = 2. By Theorem 2.22,
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Meas3(G) = 1664/312 and Meas(G) = Meas4(G) = 3328/313. By Theorem 2.12(i), the

difference must equal the sum of Meas4(Q) over all the Schur σ -ancestor groups which

are children of G. A computation shows that there are three such children Q, all of which

are Schur+ 1 σ -ancestor groups and each with Meas4(Q) = 1664/314. We then have

3 · (1664/314) = 1664/313
= Meas3(G)−Meas(G)

as expected. Interestingly, since none of the measures of the children could be omitted

from the sum without contradicting the required equality in Theorem 2.12(i), we see

that we can actually use the theorem to deduce that all three children must be

Schur+ 1 σ -ancestor groups without an explicit check. Of course, one must still find

a GI-automorphism for each group as a first step in order to be able to evaluate the

formula and this can be costly in itself as the groups get larger.

When testing whether a group G is a Schur+ 1 σ -ancestor group, it is helpful to observe

that necessary conditions include possessing a GI-automorphism and having h(G) 6 g+ 1
(for the latter condition, see [4] and [5]). These conditions do not suffice though and there

exist groups which satisfy both but are not Schur+ 1 σ -ancestor groups analogous to the

pseudo-Schur groups of [3]. We call such groups pseudo-Schur+1 groups.

Returning to Example 2.11, we see that the Schur+ 1 σ -ancestor groups G1, G2
and G3 correspond to SmallGroup(27, 3), SmallGroup(81, 3) and SmallGroup(243, 2),
respectively, in Magma’s database. All three have 3-class 2 and one computes that

r(G1) = r(G2) = 4 > 3 and r(G3) = 5 > 3 which means that these groups are not

Schur+ 1 σ -groups, and, thus, we have Meas(Gi ) = 0 for i = 1, 2, 3. After computing

the nuclear ranks and subtracting, we obtain h(G1) = 2, h(G2) = 1 and h(G3) = 0. Using

Theorem 2.22, we see that Meas2(G1) = 208/243, Meas2(G2) = 104/729 and Meas2(G3) =

1/729, and this agrees with the earlier values obtained by explicitly counting tuples of

relations.

There are four other groups of 3-class 2 that do not arise as Schur+ 1 σ -ancestor groups.

These include the abelian groups Z/3×Z/9 and Z/9×Z/9 which are examples of the

pseudo-Schur+1 phenomenon discussed above. If one were enumerating tuples of relations

in X3
2 and constructing the corresponding quotients of F2, then after encountering the

groups G1, G2 and G3 and computing the corresponding values of Meas2, one would

be able to terminate the enumeration and deduce that the list of Schur+ 1 σ -ancestor

groups of 3-class 2 is complete since

208/243+ 104/729+ 1/729 = 1 = Meas1(Z/3×Z/3).

Note that Z/3×Z/3 is the unique 2-generated 3-group of 3-class 1. All 2-generated

3-groups of larger 3-class descend from this group.

These computations can be continued. For instance, G1 = SmallGroup(27, 3) has 11
children, all of which have a GI-automorphism and all of which are Schur+ 1 σ -ancestor

groups. Of these, five are terminal Schur+ 1 σ -groups and are the three examples of

order 81 together with the two Schur σ -groups of order 243 arising at the start of

this section. Computing Meas3(Q) for each of the 11 children and then summing, we

obtain Meas2(G1) = 208/243, as expected. Continuing this process yields a probability

distribution on part of O’Brien’s rooted tree. The figure below shows more of the tree
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below SmallGroup(27, 3). Each node represents a descendant group G labeled with

Measc(G), where c is the p-class G. The values of Meas(G) are not listed explicitly

but can be obtained by applying Theorem 2.12(i). Simply take the value on any node

and subtract off the sum (if any) of the measures of its children.
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3. Non-abelian conjectures

In this section, we introduce our main heuristic assumption, that the frequency of

occurrence of certain groups as G K (or G K /Pc(G K )) as K varies among real quadratic

fields, is given by the group theoretical measures introduced in § 2.

To make this more precise, we introduce some notation. For x > 0, let Fx denote the

set of real quadratic fields with discriminant not exceeding x . If K ∈ Fx , then we let AK
denote the p-class group of K and G K denote the Galois group of the maximal unramified

p-extension of K . For each natural number g, let Fx,g be the subset of Fx consisting of

those fields K having d(G K ) = d(AK ) = g. For pro-p groups G and H , define chG(H) to

be 1 if H ∼= G and 0 otherwise.

Definition 3.1. Let G be a finitely generated pro-p group with generator rank g. We

define

Freq(G) = lim
x→∞

∑
K∈Fx,g

chG(G K )∑
K∈Fx,g

1
,

assuming the limit exists. If G is also finite, then, for c > 1, we define

Freqc(G) = lim
x→∞

∑
K∈Fx,g

chG(G K /Pc(G K ))∑
K∈Fx,g

1
,

assuming the limit exists.

We conjecture that the frequencies defined above exist and, more specifically, the

following.

Conjecture 3.2. For every finite p-group G, we have

Freq(G) = Meas(G)

Freqc(G) = Measc(G).

In particular, Freq(G) 6= 0 if and only if G is a Schur+ 1 σ -group and Freqc(G) 6= 0 if

and only if G is a Schur+ 1 σ -ancestor group with p-class c or G is a Schur+ 1 σ -group

with p-class at most c.

Remark 3.3. We point out that as a consequence of Conjecture 3.2, we expect every finite

Schur+ 1 σ -group to occur as G K for a positive proportion of real quadratic fields K .

We also note that our conjectures in the non-abelian setting are compatible with those

of Cohen and Lenstra. In particular, if A is an abelian p-group, then one can define the

frequency Freqab(A) in an analogous way, as the asymptotic proportion of fields for which

the p-class group is isomorphic to A. If A has p-class c and we fix c′ > c, then using the

definitions of the measures, Theorem 2.19 and our conjecture above, we have

Freqab(A) =
∑

G

Freqc′(G) =
∑

G

Measc′(G) = Measab
c′ (A) = Measab(A),

where the middle summations are over all Schur+ 1 σ -ancestor groups G with p-class

at most c′ and Gab ∼= A. We are implicitly using the fact here that a field K will
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have AK ∼= A if and only if G K /Pc′(G K ) has abelianization isomorphic to A once c′ > c.

By Theorem 2.20, we then have

Freqab(A) = Measab(A) =
1

|Aut(G)| |G|
pg(g+1)

g∏
k=1

(1− p−k)

g+1∏
k=2

(1− p−k).

This is consistent with the predictions made by Cohen and Lenstra in [7] although some

manipulations are needed to extract this formula from their work. See the discussion in

[3, § 1] for more details.

4. Index p abelianization data

To test our prediction of the last section, we would like to be able to compute the Galois

group G K of the p-class tower of a given real quadratic field K for many different choices

of K . This is hard to do, so we instead focus on collecting more limited information

about G K , namely its abelianization and the abelianizations of its maximal subgroups.

By class field theory, this can be done by computing the p-class groups of K and its

unramified extensions of degree p. As in [3], we call this information the ‘Index p
Abelianization Data’.

For example, the groups SmallGroup(81, i) for i = 8, 10 each have IPAD [[3, 3];
[3, 3]3[3, 9]], which means that their abelianization is [3, 3] and that three of their

maximal subgroups have abelianization [3, 3] and the other [3, 9]. It turns out that these

are the only Schur+ 1 σ -groups with this IPAD. The measures of these groups add up to

8320/39
= 0.4227. We therefore expect that just over 42% of real quadratic fields K with

3-class group of rank 2 will have one of these two groups as their G K . We call 8320/39

the measure of the IPAD.

In general, there may be infinitely many Schur+ 1 σ -groups with a given IPAD I;

however, if we sum Measc(G) over the Schur+ 1 σ -ancestor groups G of p-class at most

c with IPAD equal to I, then this quantity stabilizes for sufficiently large c as explained

in [3, § 4], and so we take this to be the definition of Meas(I). In practice, one can often

avoid having to compute Measc(G) for large values of c by recalling from [3] that there is

a partial ordering on IPADs such that if H is a child of G, then the IPAD of G is less than

or equal to that of H and such that if their IPADs agree, then all further descendants

have the same IPAD (we call such a branch stable). Using Theorem 2.12, we see that

computing Measc(G) for the top node (of p-class c) in such a stable branch gives the part

of the measure for this IPAD which arises from all of the Schur+ 1 σ -groups within this

branch of the tree.

We now illustrate the ideas above by determining the 10 IPADs with the largest

measure.

Theorem 4.1. (1) IPAD [[3, 3]; [3, 3]3[3, 9]] has measure 8320/39
= 0.4227.

(2) IPAD [[3, 3]; [3, 3]3[3, 3, 3]] has measure 1664/38
= 0.2536.

(3) IPAD [[3, 3]; [3, 3]3[9, 9]] has measure 3328/310
= 0.0564.

(4) IPAD [[3, 9]; [3, 3, 3][3, 9]2[3, 27]] has measure 3328/310
= 0.0564.

https://doi.org/10.1017/S1474748019000641 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000641


Heuristics for p-class towers of real quadratic fields 1445

(5) IPAD [[3, 3]; [3, 3, 3][3, 9]3] has measure 1664/310
= 0.0282.

(6) IPAD [[3, 3]; [3, 3]3[9, 27]] has measure 13312/312
= 0.0250.

(7) IPAD [[3, 9]; [3, 3, 9][3, 9]3] has measure 11648/312
= 0.0219.

(8) IPAD [[3, 9]; [3, 3, 3][3, 3, 9][3, 9]2] has measure 3328/311
= 0.0188.

(9) IPAD [[3, 3]; [3, 3, 3]2[3, 9]2] has measure 832/310
= 0.0141.

(10) IPAD [[3, 3]; [3, 3, 3]3[3, 9]] has measure 832/310
= 0.0141.

Proof. The groups whose IPAD begins [3, 3] are the descendants of SmallGroup(27, 3),
and so the reader is referred to the earlier figure displaying these. It has 11 children, all of

which are Schur+ 1 σ -ancestor groups, and as noted above, 5 are terminal. The second

and fourth of the 11 have IPAD(1), as does the non-terminal third child. Its only child,

which is a Schur+ 1 σ -ancestor group, has IPAD [[3, 3]; [3, 3]3[9, 9]]. No other groups

have small enough IPAD to produce IPAD(1), and so this establishes (1) above.

The child with IPAD [[3, 3]; [3, 3]3[9, 9]] has seven children of its own, six terminal, of

which three contribute to IPAD(3) and three to IPAD(6). The one non-terminal child

has a single Schur+ 1 σ -ancestor group as a child. Its IPAD is [3, 3]; [3, 3]3[27, 27]]. In

this way, we exhaust all possibilities and so establish (3) and (6) above. This branch

appears to be following a simple pattern so that we conjecture [[3, 3]; [3, 3]3[3k, 3k
]] will

have measure 3328/33k+4 and [[3, 3]; [3, 3]3[3k, 3k+1
]] measure 13312/33k+6 (for k > 2).

As for IPAD(2), SmallGroup(81, 7) is terminal and is the only one of the 11
children whose IPAD only involves 3s, and so (2) is established. As for IPAD(5),

SmallGroup(243, 5) accounts for this. The eighth child might also have contributed since

it has the same IPAD, but it is not a Schur+ 1 σ -group itself and only one of its children

is a Schur+ 1 σ -ancestor group and has larger IPAD, so that takes care of (5). This,

in turn, has 14 children, of which 8 are terminal. Of these, two contribute measure

1664/311 to IPAD [[3, 3]; [3, 3, 3][3, 9]2[9, 9]] and the remaining six, plus four of the

non-terminal children whose subsequent branches are stable, measure 6656/313 to IPAD

[[3, 3]; [3, 3, 3][3, 9]2[9, 27]]. In both cases, this is too small to make the top 10 list above,

as is the remaining measure once this is accounted for.

SmallGroup(243, 7) accounts for IPAD(9). The fifth child might also have contributed

since it has the same IPAD, but it is not a Schur+ 1 σ -group itself and only one of its

children is a Schur+ 1 σ -ancestor group and has larger IPAD. This in turn has 1116
children which are Schur+ 1 σ -ancestor groups. Their IPADs do not make the top 10 list

above. As for IPAD(10), the sixth child and its only child which is a Schur+ 1 σ -ancestor

group have this, showing that this is a stable branch.

The 10th and 11th children of SmallGroup(27, 3) both have IPAD [3, 3]; [3, 9]4]. The

11th (but not the 10th) leads to a stable branch, but this only yields measure 208/310 for

that IPAD which is too small to make our list. The 10th produces some terminal groups

with IPADs [[3, 3]; [3, 9]3[9, 9]], [[3, 3]; [3, 9]3[9, 27]], and so on, but their measures do

not make our list.

As for the IPADs starting [3, 9], these must come from descendants of

SmallGroup(81, 3), which has 31 children, all Schur+ 1 σ -ancestor groups. The eighth

and ninth of these are terminal (and are SmallGroup(243, i) for i = 19, 20) and account
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for IPAD(4). No other child has small enough IPAD to contribute. The fifth child

(SmallGroup(243, 16)) is terminal and contributes 3328/311 to IPAD(7). The third and

fourth children also have the same IPAD. The branch of the third child is stable (and

terminates soon after), so it contributes its measure, 1664/312, whereas the fourth group

is not a Schur+ 1 σ -group and its only child, which is a Schur+ 1 σ -ancestor group, has

larger IPAD and so contributes nothing.

The seventh child (SmallGroup(243, 18)) is terminal and accounts for IPAD(8). The

sixth child might also have contributed, but it is not a Schur+ 1 σ -group itself and only

one of its children is a Schur+ 1 σ -ancestor group and has larger IPAD. There are two

other terminal children of SmallGroup(81, 3), namely SmallGroup(729, i) for i = 14, 15.

From these, [[3, 9]; [3, 3, 9]2[3, 27]2] acquires measure 3328/312, not enough to make the

list. Another child (SmallGroup(729, 13)), which is not a Schur+ 1 σ -group, has the same

IPAD, but its children have larger IPADs.

None of the other children of SmallGroup(81, 3) or of the third group of 3-class 2
produce IPADs with measure large enough to make the list.

5. Numerical data

As evidence for our conjectures, we have collected numerical data in the case of the

smallest odd prime p = 3 and generator rank g = 2. In particular, we have computed the

four unramified cyclic extensions of degree 3 over K and their 3-class groups (assuming

the Generalized Riemann Hypothesis) for all real quadratic fields K with 3-class group

of rank 2 and discriminant dK satisfying dK < 109. By class field theory, this yields the

IPAD for the Galois group G K for each of these fields. The calculations were carried

out indirectly by using existing methods to enumerate non-cyclic cubic extension of Q.

See [3, § 5] for more details.

The computations were implemented using both the symbolic algebra package

PARI/GP [14], version 2.5.4 and Magma [1], version 2.19-5 running on 2× 2.66 GHz

6-Core Intel Xeon processors under OS X 10.8.5. The computations were run in parallel

across multiple cores by dividing up the discriminants into subintervals and then searching

through a space of potential defining polynomials. Roughly 3000 core hours were used in

total.

We now give tables summarizing the data collected. In each table, we have broken

down the interval of discriminants dK with 1 < dK < 109 into five nested subintervals I j ,
where I j = {dK | 1 6 dK 6 j · 107

}, and we have selected values of j so that the length of

each successive subinterval is scaled by a factor of
√

10 ≈ 3.2.

The first table is a census of the most common IPADs. The second lists their relative

proportions obtained by dividing through by the total number of fields examined in each

column. In addition, the last column of the second table lists the values predicted by

our heuristics as computed in Theorem 4.1. As in [3], there are two IPADs which each

determine the isomorphism type of a single group. These appear in lines 5 and 9 of Table 2

and correspond to the groups SmallGroup(243, 5) and SmallGroup(243, 7), respectively.

Thus, on these two lines, the predicted and computed frequencies for an individual group

can be compared, providing a direct test of our non-abelian heuristics.
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Table 1. Census of the most common IPADs.

I1 I3.2 I10 I32 I100
[3, 3]; [3, 3]3 [3, 9] 1382 5 035 17 618 61 826 208 236

[3, 3]; [3, 3]3 [3, 3, 3] 698 2 813 10 244 36 285 122 955

[3, 3]; [3, 3]3 [9, 9] 150 623 2 180 7 869 26 678

[3, 9]; [3, 3, 3] [3, 9]2 [3, 27] 135 541 2 141 7 831 26 748

[3, 3]; [3, 3, 3] [3, 9]3 93 323 1 122 3 993 13 712

[3, 3]; [3, 3]3 [9, 27] 72 242 955 3 444 11 780

[3, 9]; [3, 3, 9] [3, 9]3 45 211 805 2 970 10 373

[3, 9]; [3, 3, 3] [3, 3, 9] [3, 9]2 32 164 718 2 535 8 733

[3, 3]; [3, 3, 3]2 [3, 9]2 47 156 546 1 987 6 691

[3, 3]; [3, 3, 3]3 [3, 9] 27 123 493 1 901 6 583
Other IPADs (175 types) 189 778 2 969 11 142 39 267

Total 2870 11 009 39 791 141 783 481 756

Table 2. Relative proportions of the most common IPADs.

I1 I3.2 I10 I32 I100 Predicted

[3, 3]; [3, 3]3 [3, 9] 0.4815 0.4574 0.4428 0.4361 0.4322 0.4227

[3, 3]; [3, 3]3 [3, 3, 3] 0.2432 0.2555 0.2574 0.2559 0.2552 0.2536

[3, 3]; [3, 3]3 [9, 9] 0.0523 0.0566 0.0548 0.0555 0.0554 0.0564

[3, 9]; [3, 3, 3] [3, 9]2 [3, 27] 0.0470 0.0491 0.0538 0.0552 0.0555 0.0564

[3, 3]; [3, 3, 3] [3, 9]3 0.0324 0.0293 0.0282 0.0282 0.0285 0.0282

[3, 3]; [3, 3]3 [9, 27] 0.0251 0.0220 0.0240 0.0243 0.0245 0.0250

[3, 9]; [3, 3, 9] [3, 9]3 0.0157 0.0192 0.0202 0.0209 0.0215 0.0219

[3, 9]; [3, 3, 3] [3, 3, 9] [3, 9]2 0.0111 0.0149 0.0180 0.0179 0.0181 0.0188

[3, 3]; [3, 3, 3]2 [3, 9]2 0.0164 0.0142 0.0137 0.0140 0.0139 0.0141

[3, 3]; [3, 3, 3]3 [3, 9] 0.0094 0.0112 0.0124 0.0134 0.0137 0.0141
Other IPADs (175 types) 0.0659 0.0707 0.0746 0.0786 0.0815 0.0888
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Appendix. Measures for infinite groups

In the current paper and also in [3], we initially avoided the issue of assigning measures to

groups which are infinite. Given the limitations one immediately encounters when trying

to test the conjectures as stated, this seems like a small omission. On the other hand, it

would be nice to have a consistent theoretical framework for assigning probabilities to

all groups that may arise, even if testing the conjectures for individual infinite groups
seems out of reach currently. We will now show how this can be carried out for Schur+ 1
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σ -groups. The same ideas can be easily modified to extend the measure introduced for

Schur σ -groups in [3].

Fix an odd prime p and a positive integer g. Let � denote the set of all Schur+ 1
σ -groups with generator rank g (up to isomorphism). For c > 1, let �c = {Gc | G ∈ �}.
Note that although the set � may be infinite and contain infinite pro-p groups as

elements, the set �c is always finite and contains only finite p-groups with p-class at

most c. In § 2, we have introduced a function Meas(G) which is defined only for the

finite groups G in �. We will now show that this function can be extended to cover all

elements of � by using some standard results in measure theory to define a measure on

an appropriate σ -algebra. (Here we encounter an unfortunate notational conflict since

this use of σ has nothing to do with the σ -automorphisms of the groups involved.)

We start by considering the functions Measc : �c → [0, 1] for c > 1 that were

introduced in § 2. Each of these functions can be extended from individual elements

to subsets by summation, and thus each gives rise to a measure defined on the (finite)

power set algebra P(�c). We have a natural map X g+1
c → �c defined by v 7→ Fc/〈v〉.

This map is surjective (by Lemma 2.5) and Measc is simply the probability measure

which results from pushing forward the uniform counting measure for X g+1
c along this

map.

We now focus our attention on these uniform counting measures. For each c, we have a

natural map ψc : X g+1
→ X g+1

c . Let Ac ⊆ P(X g+1) denote the algebra which results by

taking the inverse image of the algebra P(X g+1
c ) under ψc. Let µc : Ac → [0, 1], then

denote the probability measure that results from pulling back the uniform counting

measure along ψc; i.e. for A ∈ Ac, we have

µc(A) =
|ψc(A)|
|Xc|g+1 .

Observe that the family of algebras {(Ac, µc)}
∞

c=1 form a nested sequence inside P(X g+1).

The associated probability measures µc are compatible in the sense that if A ∈ Ac ⊆

Ac+1, then µc+1(A) = µc(A). This follows from the fact that the fibers of the natural

projection X g+1
c+1 → X g+1

c are uniform in size. This is explained in the proof of [3,

Theorem 2.11]. It is due to the fact that this projection fits into a commuting square

in which the other maps also have constant fibers. This observation will recur in our

discussion of Figures 1 and 2.

Define µ :
⋃
∞

c=1 Ac → [0, 1] by µ(A) = µc(A) if A ∈ Ac. The map µ is well defined by

our previous observation. Now let A be the smallest σ -algebra containing
⋃
∞

c=1 Ac. By

the Carathéodory extension theorem, the map µ can be extended to A provided that the

following conditions hold:

(i) µ(∅) = 0.

(ii) If A ∈
⋃
∞

c=1 Ac and we have A =
⋃
∞

i=1 Ai where {Ai } is a collection of pairwise

disjoint elements also in
⋃
∞

c=1 Ac, then

µ(A) =
∞∑

i=1

µ(Ai ).
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Figure 1

Figure 2

The fact that condition (i) holds is clear. Condition (ii) can be reformulated as

(ii)′ If {Bi } is a sequence of elements in
⋃
∞

c=1 Ac satisfying Bi ⊇ Bi+1 for i > 1 and⋂
∞

i=1 Bi = ∅, then

lim
i→∞

µ(Bi ) = 0.

This reformulation can now be verified using topological considerations. The set X is

closed inside the free pro-p group F and hence both it and the product space X g+1 are

compact. The maps from X g+1 to the finite discrete spaces X g+1
c are continuous so it

follows that all the elements of the algebras Ac and hence of
⋃
∞

c=1 Ac are compact inside

X g+1. If {Bi } is a sequence of elements in
⋃
∞

c=1 Ac satisfying Bi ⊇ Bi+1 for i > 1 and⋂
∞

i=1 Bi = ∅, then using compactness we see that some finite intersection must be empty.

i.e. there exists n ∈ N such that

∅ =

n⋂
i=1

Bi = Bn .

But then, for all i > n, we have Bi = Bn = ∅ and µ(Bi ) = 0 which implies limi→∞ µ(Bi ) =

0 as desired.

Having established that µ can be extended to A, we now wish to use µ to define a

measure on an associated space of groups. Let �̂ = {F/〈v〉 | v ∈ X g+1
}. Note that �̂ is
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strictly larger than � since a quotient F/〈v〉 may have relation rank strictly less than

both g and g+ 1. As an extreme example, if every component in v is the identity element,

then F/〈v〉 ∼= F showing that �̂ contains the free group F . We will return to this issue

shortly.

Let η : X g+1
→ �̂ be the map v 7→ F/〈v〉. Defining E ⊆ �̂ to be measurable if η−1(E) ∈

A, we obtain a σ -algebra B̂ on �̂. We can then push µ forward along η to obtain a

measure Meas : B̂→ [0, 1] by defining Meas(E) = µ(η−1(E)). Observe that if G ∈ �̂, then

the singleton set {G} belongs to B̂. This follows from the fact that G ∼= lim
←−

Gc. In more

detail, if we let fc : �̂→ �c denote the natural map which sends G 7→ Gc, then one can

check that this function is measurable with respect to the respective σ -algebras B̂ and

P(�c). It then follows that {G} =
⋂
∞

c=1 f −1
c (Gc) ∈ B̂ and we see that

Meas({G}) = lim
c→∞

µ( f −1
c (Gc)) = lim

c→∞
Measc(Gc).

In particular, if G is finite then we have G ∼= Gc once c is sufficiently large and we obtain

the same value for Meas(G) := Meas({G}) as specified in Definition 2.13. Thus, this new

definition of Meas extends the old one.

We finish by showing that � ∈ B̂ and that Meas(�) = 1, equivalently, the complement

�̂−� ∈ B̂ and Meas(�̂−�) = 0. In particular, if G ∈ �̂−�, then Meas(G) = 0. This

is desirable for our applications since the groups in �̂−� should never arise as Galois

groups of the extensions we are considering. If we then define B = {E ∩� | E ∈ B̂} and

restrict Meas to B, we obtain a probability measure on �. As noted above, this definition

of Meas extends our earlier definition which was restricted to individual finite groups

in �.

First, we note that all of the constructions above can be carried out in the abelian

setting. Recall from § 2.3 that X ab
= 8(Fab). As before, we construct an algebra

⋃
∞

c=1 Aab
c

and then σ -algebra Aab on (X ab)g+1 with accompanying measure µab. One can then see

that the natural reduction map X g+1
→ (X ab)g+1 is measurable and compatible with

the measures µ and µab. This follows ultimately from the observation that the square in

Figure 1 commutes and that all of the maps between the finite sets appearing there have

fibers which are constant in size (for all c > 1). This in turn follows since this square is

the front face of the cube in Figure 2. Note that the maps on the back face of the cube

are all induced by natural epimorphisms either from Fc to Fab
c or Fc+1 to Fc. The maps

φ∗ connecting the front and back faces are not homomorphisms, but they do have fibers

of constant size as discussed in Lemma 2.6. The g+ 1 components of each map φ∗ have

the form t 7→ t−1σ(t). For the abelian objects, this simplifies to t 7→ t−2.

Now define the corresponding space of groups in the abelian setting by

�̂ab
= {Fab/〈v〉 | v ∈ (X ab)g+1

} = {Gab
| G ∈ �̂}

and let η : (X ab)g+1
→ �̂ab be the map v 7→ Fab/〈v〉. Defining E ⊆ �̂ab to be measurable

if η−1(E) ∈ Aab, we obtain a σ -algebra B̂ab on �̂ab. We can then push µab forward along

η to obtain a measure Measab on B̂ by defining Measab(E) = µab(η−1(E)). As with the

measure Meas on �̂, this definition of Measab extends the one given in Definition 2.17.
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Figure 3

Let α : �̂→ �̂ab be the map G 7→ Gab. Define �ab
= α(�) and observe that �ab

consists of all finite abelian p-groups. Further, α−1(�ab) = �. This follows since if G ∈
�̂−�, then r(G) < g and Gab must have at least one infinite cyclic component Zp.

The map α is surjective and measurable, and we have Meas(α−1(E)) = Measab(E) for

all E ∈ B̂ab since α forms part of the commuting square in Figure 3. Thus, to show

� is measurable with Meas(�) = 1, it suffices to show that �ab is measurable with

Measab(�ab) = 1.

By definition, this reduces to verifying that η−1(�ab) ⊆ (X ab)g+1 is measurable with

measure 1 under µab. This can be seen by first noting that (X ab)g+1
= 8(Fab)g+1 is a

compact abelian group. The measure µab is translation invariant and hence is a Haar

measure, normalized so that µab(8(Fab)g+1) = 1. Since Fab ∼= Zg
p, we have 8(Fab) ∼=

(pZp)
g ∼= Zg

p, and so the elements of 8(Fab)g+1 can be viewed as (g+ 1)× g matrices

with entries in Zp. In particular, the elements of η−1(�ab) are the matrices of full rank

and it is a standard fact that these have measure 1 with respect to this Haar measure.
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