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Diffraction by slender bodies
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The scattering of high-frequency sound waves by two-dimensional curved boundaries has

received much attention over the past few decades, with particular interest in the effects of

tangential ray incidence. In the event that the radius of curvature is not small, an analysis near

the point of tangency gives rise to the Fock–Leontovič equation for the local field amplitude

which, in turn, matches the creeping field of Keller’s geometrical theory of diffraction. If

the radius of curvature is sufficiently small, however, then this analysis is not valid and it is

necessary to solve the full Helmholtz equation in the presence of a parabolic boundary. Under

these conditions, which are canonical for diffraction by a sufficiently slender body, results

are presented for the case of a plane wave impinging upon an acoustically hard parabolic

cylinder. This diffraction process engenders a creeping field at one tip of the slender body,

which then propagates around the body to the other tip. Here its energy is partially reflected,

partially transmitted and partially radiated out in a detached field. A full description of

this is given, along with a discussion of the ‘blunt’ limit in which we show that not only do

we get the traditional creeping field of Keller’s geometrical theory of diffraction, but also

an exponentially small backward-propagating creeping field not predicted by traditional ray

methods.

1 Introduction

In this paper, we examine the two-dimensional scattering of a time-harmonic, scalar wave-

field by an arbitrary finite, convex body in the high-frequency limit. The wave function

might be the acoustic velocity potential for a compressible fluid surrounding the obstacle

or perhaps a potential for an electromagnetic field. We adopt a Neumann boundary

condition on the resulting Helmholtz equation, though other boundary conditions can

also be examined using our methodology.

The principal tool for an asymptotic study of such a short-wavelength diffraction

problem is ray theory and an account of its derivation and reviews of some examples are

given by Keller & Lewis [1] and Babič & Buldyrev [2]. Essentially, the scattered field is

expressed in terms of an amplitude and a phase, with the latter being a solution of the

eikonal equation ∇u · ∇u = 1. The characteristics of this partial differential equation yield

the ‘rays’ along which we are able to construct and solve a recursive system of ordinary

differential equations for successive amplitude terms in an expansion in reciprocal powers

of wavenumber. This procedure can be applied at points of specular reflection when the

local normal to the boundary bisects the angle between the incident and reflected rays

(i.e. Snell’s law is satisfied) and the local amplitude of the reflected ray is governed by

the plane wave reflection coefficient, giving the initial condition for the leading order

amplitude equation to provide the solution away from the boundary. This approach
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cannot, however, be followed at points of diffraction, including points of non-analyticity

of the boundary, such as a sharp edge, or points where the incoming ray and the reflecting

boundary are tangent to one another.

In the case of a sharp edge, the appropriate inner problem near the tip is that of

scattering by a half-plane, first analysed by Sommerfeld [3] and reviewed by Bowman et

al. [4]. As is very well-known, this produces an expansion fan of diffracted rays centred

on the edge, with a far-field amplitude that is dependent upon the local polar angle θ

through a diffraction coefficient or ‘directivity’ function and which decays in an inverse

square root fashion with the distance r from the tip. In precise terms, for a plane wave

eik(x cos θi+y sin θi)−iωt incident upon a rigid semi-infinite plane y = 0, x > 0, the tip-diffracted

field is given by

φ(d)(r, θ) ∼ eikr+ iπ
4

√
2

πkr

sin 1
2
θi cos 1

2
θ

(cos θ − cos θi)
as k →∞, (1.1)

to leading order, where θi is the angle of incidence of the incoming plane wave with

respect to the half-plane, k is the wavenumber, x = r cos θ and y = r sin θ. Of course,

this expression is not uniform in θ and the solution must be modified near the critical

directions θ = θi, 2π − θi, which represent the boundaries for the regions occupied by the

incident and reflected ray fields.

The case of tangency on a blunt body is more complicated; if the curvature κ0 of the

body at the point of tangency is much less than k, the appropriate scalings for the local

arclength s and normal coordinate n are

s = κ
− 2

3

0 k−
1
3 ŝ, n = κ

− 1
3

0 k−
2
3 n̂, (1.2)

where ŝ and n̂ are both O(1). If we now seek an inner solution to the Helmholtz equation

in the form φ ∼ eiksÂ(ŝ, n̂), then the leading order scattered amplitude Â satisfies the

Fock–Leontovič equation [5]

∂2Â

∂n̂2
+ 2i

∂Â

∂ŝ
+ 2n̂Â = 0, (1.3)

along with appropriate boundary and far-field conditions. Further details of the deriva-

tion of this equation and its solution are given by Babič & Kirpičnikova [6] and Tew

et al. [7]. These analyses show that the outer limit of the solution in the shadow region

close to the surface of the body can be expressed as a sum of exponentially-decaying

surface modes, which provide the initial conditions for the creeping surface rays intro-

duced by Keller in the development of the ray approach [1]. As described in Tew et

al. [7], it is possible to go further and show that there are two transition zones lying

either side of the well-known Fresnel region surrounding the shadow boundary. The

solutions in these zones provide the matching with the reflected field and the diffracted

field radiated by the creeping ray. In these zones, the leading-order amplitudes are

functions of (k/κ0)
1
3 (y/x), where y is the transverse distance from the shadow boundary.

All of this analysis assumes that k � κ0, in which case the width of these transition

zones scales with (k/κ0)−
1
3 . However, if κ0 = O(k) then the transition zones merge

with the reflected and diffracted fields. We can also see directly from the scalings in

(1.2) that the Fock–Leontovič analysis will fail if the curvature and wavenumber are
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comparable. This is intuitively clear, since in this limit the curved tip of the object

begins to mimic a straight edge and the exponentially decaying structure of the creep-

ing ray and associated diffracted field must somehow be replaced by the algebraically

decaying radial field in (1.1). This cannot be predicted directly from the solution of

(1.3).

What we are looking for, then, is the canonical intermediate case of scattering by

a ‘slender’ body for which the inner diffraction structure near the tip satisfies neither

the Sommerfeld nor the Fock–Leontovič approximations, but which approaches these

solutions as the body becomes sharper or blunter, respectively, exposing the transition

between the radial and creeping fields just mentioned. Our main purposes in this paper

are to identify the scalings appropriate for such a slender body and then to use them to

provide a full asymptotic description of the field that is scattered when the body is subject

to plane wave incidence. We will achieve this by the construction of an outer solution

which is valid away from the boundary of the body, inner (‘tip’) solutions, and creeping

fields. These various expansions are matched to provide the complete wavefield structure.

There is some existing literature on diffraction by slender bodies. In the outline that

follows it is assumed that lengths are scaled to give the Helmholtz equation (2.4) with

k � 1.

In the work which is most closely related to what follows, Mei and Tuck [8] have

considered scattering by a two-dimensional slender body (in the context of shallow-water

wave theory) in the case of an incoming plane wave at zero angle of incidence. The

aspect ratio of the body was taken to be o(k−
1
2 ) or O(k−

1
2 ). Bigg [9] further analysed this

problem by matched asymptotic expansions, taking the aspect ratio to be O(k−
1
α ) with

0 < α 6 2. The case θi = 0 is very special in terms of our analysis, there being no shadow

region, and taking the aspect ratio to be o(k−
1
2 ), as is for the most part done in these

papers, greatly simplifies the analysis of the creeping field.

Most of the literature on diffraction by slender bodies concerns three-dimensional

bodies which are slender in two directions. In this case there is again little or no shadow

region and the results are of very limited relevance to what follows. Nevertheless, we

note the three papers [10, 11, 12] which concern bodies with length (l) being O(k−1)

and with the diameter of the cross section (d) being o(k−1); in [13] and [14] these

scalings are replaced by l � k−1, d = O(k−1). In [15] scattering by a curved wire is

considered for l � k−1 and d � k−1, while [16] also considers the case d � l � k−1;

see elsewhere [17, 18] for related results. The paper by Andronov & Bouche [19] is

also concerned with strongly prolate bodies, with binormal radius of curvature of O(k−
1
3 )

or O(k−
2
3 ). With the exception of Andronov & Bouche [19], these papers therefore all

assume the thickness of the body to be at most comparable to the wavelength, whereas

our analysis primarily concerns bodies which are much thicker. Some features of the

problems are similar, however, notably the need for separate discussions of the outer, tip

and surface regions.

As we have already noted one of our aims in this paper is to identify and solve a

canonical diffraction problem such that the solution to this single problem contains both

the Sommerfeld and Fock–Leontovič structures in the appropriate limits. In doing so,

we shall also identify some new features concerning creeping wave propagation in this

canonical geometry and also in the classical (Fock–Leontovič) case.
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Figure 1. A slender body.

2 Formulation of the problem

As we have said, our notion of a ‘canonical’ slender body is one for which the inner

diffraction problem near the point of ray tangency gives the full Helmholtz balance with a

nontrivial boundary curve, rather than approximations resulting in either the Sommerfeld

or the Fock–Leontovič solution. For this to happen the scalings (1.2) must be replaced by

s = k−1ŝ, n = k−1n̂, (2.1)

and this implies that the local radius of curvature κ−1
0 must be O(k−1). The width of a

closed, convex body away from the tip regions will then generically be O(k−
1
2 ), and so we

take the lower part of the surface ∂D (see Figure 1) to be of the form

y = −k− 1
2 f(x), (x, y) ∈ ∂D, (2.2)

with, generically,

f(x) ∼ β(2x)
1
2 as x→ 0. (2.3)

The origin of the coordinate system is located at the left-hand tip, and the O(1) constant

β is the curvature of ∂D at the origin. The function f(x) is taken to be independent of k.

The problem can now be posed as determining the asymptotic solution as k → ∞ of the

Helmholtz equation

(∇2 + k2)φ = 0 (2.4)

in the region D exterior to ∂D subject to the boundary condition

∂φ

∂n
= 0 (2.5)

on ∂D. We also require that φ − eik(x cos θi+y sin θi) be both outgoing and diminishing in

amplitude as (x2 + y2)
1
2 → ∞. Note that a time-harmonic factor e−iωt (with k = ω/c) has

been assumed, and that eik(x cos θi+y sin θi) represents the incident plane wave.

The large k assumption allows the incoming wave to be represented by a family of

parallel rays. Those that are incident upon ∂D will yield a reflected ray field. Of course,

this will not occur at all points on ∂D and the remaining portion lies within the shadow

zone whose outer edges are defined by the limiting incident rays impinging upon the

‘tips’ of the body. All other incoming rays miss the obstacle altogether and propagate

unimpeded. These simple observations illustrate the need for three different descriptions
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Figure 2. The ‘outer’ ray picture.

of the solution, depending on the region under consideration: (i) a ‘geometrical optics’

description away from the body, (ii) a creeping wavefield on and close to the surface of

the body, but away from its ends and (iii) an inner problem for each tip which involves

solving the full Helmholtz equation for plane wave incidence upon a parabolic boundary;

this solution, when matched to (i), will provide the directivity coefficients which cannot

be calculated from the outer analysis.

We shall first calculate the geometrical optics contribution and then follow this with a

thorough examination of the inner problem to find the required diffraction coefficients. We

shall study the problem for all values of the angle of incidence θi in the range 0 6 θi 6 π;

the cases with −π < θi < 0 follow immediately by reflection about the x axis. We then

describe the creeping fields, which have a number of novel features, and we conclude

with some discussion. Results for the special case in which the body is an ellipse are

summarised in Appendix A. Appendix B contains a list of results for parabolic cylinder

functions used in the paper.

3 Outer ‘ray’ field

To determine the outer (ray) solution, we first consider the reflection of rays incident

upon the lower section of the boundary at points other than the two tips. The regions in

which the various ray fields exist are indicated in Figure 2. We begin by writing

φ(x, y) = eik(x cos θi+y sin θi) + A0(x, y)eiku(x,y)+ik
1
2 U(x,y) + O(k−

1
2 ), (3.1)

where A0 is the leading order amplitude of the ‘outer’ scattered field and the two functions

u and U are to be determined. This ansatz is motivated by the fact that on this part of

the boundary ∂D, given by (2.2), the incident field is exp(ikx cos θi − ik
1
2 f(x) sin θi).

Substituting (3.1) into the Helmholtz equation (2.4) and extracting like powers of k

leads to

∇u · ∇u = 1, (3.2)

∇u · ∇U = 0, (3.3)

and

A0∇2u+ 2∇A0 · ∇u+ iA0∇U · ∇U = 0. (3.4)
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The boundary condition for u follows from (3.1) as

u(x, 0) = x cos θi, (3.5)

so by (3.2)

u(x, y) = x cos θi − y sin θi. (3.6)

Equations (3.6) and (3.3) imply that

U(x, y) = −2 sin θif(x+ y cot θi), (3.7)

where we have imposed the associated boundary condition

U(x, 0) = −2 sin θif(x), (3.8)

which follows from (3.1) because

u(x,−k− 1
2 f(x)) = x cos θi − k−

1
2 f(x) sin θi. (3.9)

Similarly, the boundary condition on A0 turns out to be

A0(x, 0) = e2if(x)f′(x). (3.10)

Solving (3.4) subject to (3.10), we find that

A0(x, y) = exp

[
2iy

sin θi
(f′(x+ y cot θi))

2 − 2i cos θif(x+ y cot θi)f
′(x+ y cot θi)

]
, (3.11)

from which the leading order reflected field propagating into y < 0 now follows.

In addition to the incident and reflected fields, the outer solution also contains two

diffracted fields, the tips each giving rise to an expansion fan of scattered rays (see

Figure 2). This leads to a diffracted field of the form

φ(d) ∼ F(θ)eikr√
kr

as k →∞ with r = O(1) (3.12)

from the left-hand tip, with a similar result holding for the other. The crucial point to

note here is that the tip is locally parabolic and so the directivity function F(θ) is not in

general given by (1.1). We must therefore examine the inner problem in order to determine

this aspect of the outer solution.

4 Inner diffraction analysis

4.1 Background

The diffraction of a plane wave by a parabolic cylinder (see Figure 3) has been considered

many times before (see, for example, [20–27]), though one significant difference between

our analysis and much of the other literature is that the wavenumber k scales out of our

problem; elsewhere it is often taken to be a large asymptotic parameter.

One way of posing and solving this problem is to decompose the incoming plane

wave into an infinite sum of appropriate parabolic cylinder functions and then add to

this another such sum so that the radiation and boundary conditions are simultaneously

satisfied. Ivanov [20] took this approach for the restricted range of angles of incidence

θi in the region − π
2
< θi <

π
2
. Though this works well for low frequencies, the resulting

sum is slow to converge for large values of k. One way of overcoming this problem is
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Figure 3. The inner parabolic tip structure.

to convert the sum into an integral using a Watson transform [28] and then to analyse

the integral using standard asymptotic techniques in the limit k → ∞, and Ivanov [20]

goes on to use this procedure. Rice [22] also adopted this methodology, and states that

the resultant integral is valid for the full-range required, 0 < θi < π. The residue sum

solution that results contains, for 0 < θi <
π
2
, parabolic cylinder functions of integer order,

whereas for π
2
< θi < π they are of non-integer order; for θi = π

2
which sum is valid is

dependent on (x, y). Another approach (see Jones [24] and Ott [25]) uses a representation,

due to Cherry [29], for the incident plane wave in terms of integrated parabolic cylinder

functions; it can easily be shown that the resulting integral solution is equivalent to that

obtained by Ivanov. Hochstadt [23] uses a Green’s function representation, the scattered

field being given by a multiple integral which is evaluated in the high frequency limit.

The more direct way of analysing the limit as k → ∞ by using the geometrical theory

of diffraction has been implemented by Keller [26]. The special case θi = 0, for which

the incident field propagates parallel to the axis of the cylinder, can be solved in closed

form in terms of a Fresnel integral (Lamb [27]), and this case has also been studied

asymptotically for k →∞ using geometrical optics (Keller et al. [30]).

As already noted, we are not here concerned with the limit k →∞; instead we need to

determine the far-field behaviour for k = 1, and this will also rely on having an integral

representation of the solution. We introduce an inner coordinate system (x̂, ŷ) defined by

x = k−1

(
x̂+

β2

2

)
, y = k−1ŷ (4.1)

and the parabolic cylinder coordinates (ξ, η) given by

x̂ =
ξ2 − η2

2
, ŷ = ηξ, (4.2)

where ξ ∈ (−∞,∞), η ∈ (0,∞) and the parabola is given by η = β. In these inner

coordinates (from which the hats will be dropped for the rest of this section) the leading

order inner problem for the total potential is

∂2φ

∂ξ2
+
∂2φ

∂η2
+ (ξ2 + η2)φ = 0, η > β, (4.3)
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∂φ

∂η
= 0, η = β. (4.4)

In the far-field we require that φ−ei(x cos θi+y sin θi)e
iβ2

2 cos θi satisfy an outgoing wave condition,

where the term subtracted from φ is the incident field in its inner form.

4.2 Solution to the Sommerfeld diffraction problem

We first note the solution to the classical Sommerfeld half-plane diffraction problem,

being the solution to (4.3) and (4.4) with β = 0. We denote this Sommerfeld solution by

φs, which can be written in the following equivalent forms, all valid for 0 < θ < 2π:

φs=
e−

iπ
4

√
π

[
−eir cos(θ−θi)F

(√
2r sin

θ − θi
2

)
+ eir cos(θ+θi)F

(√
2r sin

θ + θi

2

)]
, 0 < θi < π

(4.5)

=
e−

iπ
4

√
π

e−ir cos θF

(√
2r cos

θ

2

)
, θi = π (4.6)

=
i

2
√

2π

∫ − 1
2 +i∞

− 1
2−i∞

(
tan

θi

2

)ν
cos

θi

2

[D−1−ν(−p̄η)+D−1−ν(p̄η)]Dν(p̄ξ)
dν

sin νπ
, 0<θi < π (4.7)

=
1√

2π cos θi
2

∞∑
n=0

(
− tan

θi

2

)n
[D−1−n(−p̄η) + D−1−n(p̄η)]Dn(p̄ξ), 0 < θi <

π

2
(4.8)

=

√
2

√
π cos θi

2

∞∑
n=0

(
tan

θi

2

)−1−2n

D2n(p̄η)D−1−2n(p̄ξ),
π

2
< θi < π (4.9)

=
1√
2π
D−1(p̄ξ)D0(p̄η), θi = π. (4.10)

In the case θi = π the incident plane wave is taken to lie in y < 0; if it exists in y > 0

instead then ξ is replaced in (4.10) by −ξ and
√

2r cos θ
2

is replaced in (4.6) by −
√

2r cos θ
2
.

When θi = π/2 then (4.8) is valid for ξ < η and (4.9) for ξ > η. In these expressions

p =
√

2i, p̄ =
√
−2i, the Dν are parabolic cylinder functions (as defined in [31, 32]) and F

is the Fresnel integral defined by Bowman et al. [4] as

F(x) =

∫ ∞
x

eit
2

dt =

√
π

2
e
iπ
4 erfc(e−

iπ
4 x). (4.11)

The far-field asymptotics of φs are easily derived from (4.5), giving as r →∞

φs ∼ eir+
iπ
4

(
2

rπ

) 1
2 cos

θ

2
sin

θi

2
(cos θ − cos θi)

, 0 < θ < θi, (4.12)

∼ eir cos(θ−θi) + eir+
iπ
4

(
2

rπ

) 1
2 cos

θ

2
sin

θi

2
(cos θ − cos θi)

, θi < θ < 2π − θi, (4.13)

∼ eir cos(θ−θi) + eir cos(θ+θi) + eir+
iπ
4

(
2

rπ

) 1
2 cos

θ

2
sin

θi

2
(cos θ − cos θi)

, 2π − θi < θ < 2π. (4.14)
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Equation (4.12) represents a diffracted field, (4.13) incident and diffracted fields and (4.14)

incident, reflected and diffracted fields. These expressions are not valid for θ = θi and

θi = 2π − θ, which are, respectively, the shadow boundaries for the incident and reflected

fields.

4.3 Exact solution to the full diffraction problem

4.3.1 Integral representations

An exact solution of the problem for the total potential defined by Eqs. (4.3) and (4.4) can

be written down in terms of integrated parabolic cylinder functions [4, 24] in the form

φ =
iei

β2

2 cos θi

2
√

2π

∫ − 1
2 +i∞

− 1
2−i∞

(
tan

θi

2

)ν
cos

θi

2

[
D−1−ν(−p̄η) +

D′−1−ν(−p̄β)

D′−1−ν(p̄β)
D−1−ν(p̄η)

]
Dν(p̄ξ)

dν

sin νπ
.

(4.15)

This solution is valid for 0 < θi < π though, as we shall see, some aspects of its

evaluation are dependent upon whether or not θi <
π
2
. To avoid carrying the factor

exp(iβ2 cos θi/2) in the analysis that follows, we work in terms of the potential Φ defined

by φ = Φ exp(iβ2 cos θi/2).

Since

D−ν−1(−p̄η) +
D′−1−ν(−p̄β)

D′−1−ν(p̄β)
D−1−ν(p̄η) =

√
2π

Γ (ν + 1)
(−i)ν

[
Dν(pη)− iD′ν(pβ)

D′−1−ν(p̄β)
D−ν−1(p̄η)

]
,

(4.16)

this integral solution can also be expressed as

Φ =
i

2 cos
θi

2

∫ − 1
2 +i∞

− 1
2−i∞

(
−i tan

θi

2

)ν
Γ (ν + 1)

[
Dν(pη)− iD′ν(pβ)

D′−1−ν(p̄β)
D−1−ν(p̄η)

]
Dν(p̄ξ)

dν

sin νπ
.

(4.17)

This is the expression derived by Ivanov [20], though there it was implicitly assumed that

the range of angles of incidence is restricted to 0 < θi <
π
2
. The first term in the integrand

in (4.17) is an integral representation of the incident plane wave and an equivalent series

representation is

eik(x cos θi+y sin θi) = sec
θi

2

∞∑
n=0

(
i tan

θi

2

)n
n!

Dn(p̄ξ)Dn(pη), −π
2
< θi <

π

2
. (4.18)

4.3.2 Series representations

It is possible to re-express the integral solution in terms of an exact residue series, a

procedure which depends upon the sign of θi − π
2
. If 0 < θi <

π
2

we can complete the

original path of integration, in (4.15), using an arc at infinity in the right-hand half plane

in which case the simple poles that contribute are the zeros of sin(νπ). This leads to the
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equivalent exact representations

Φ =
1

√
2π cos

θi

2

∞∑
n=0

(
− tan

θi

2

)n
[D−1−n(−p̄η) +

D′−1−n(−p̄β)

D′−1−n(p̄β)
D−1−n(p̄η)]Dn(p̄ξ) (4.19)

=
eix

2 cos
θi

2

∞∑
n=0

(
− tan

θi

2

)n
Hn(e

− iπ
4 ξ)
[
inerfc(−e−

iπ
4 η) (4.20)

+
2(n+ 1)inerfc(−e−

iπ
4 β)− e−

iπ
4 βin+1erfc(−e−

iπ
4 β)

2(n+ 1)inerfc(e−
iπ
4 β) + e−

iπ
4 βin+1erfc(e−

iπ
4 β)

inerfc(e−
iπ
4 η)

]
, (4.21)

where Hn is the Hermite polynomial of degree n and in is the integral operator defined in

[33] as

inerfc(z) =

∫ ∞
z

in−1erfc(t)dt, (n = 0, 1, 2, . . .), (4.22)

and

i−1erfc(z) =
2√
π

e−z
2

, i0erfc(z) = erfc(z). (4.23)

If π
2
< θi < π, then the analogous expression is

Φ =
−
√
π

√
2 cos

θi

2

∞∑
n=0

(
tan

θi

2

)νn
sin νnπ

Dνn(p̄ξ)D−1−νn (p̄η)
D′−1−νn (−p̄β)

∂

∂ν
D′−1−ν(p̄β)|ν=νn

. (4.24)

The difference in structure in these two ranges of θi arises because in the second case we

must complete the contour in the left half-plane, capturing residue contributions from the

simple poles at ν = νn, where the νn are the solutions of the transcendental equation

D′−1−ν(p̄β) = 0. (4.25)

These roots all have Re(ν) 6 −1, Im(ν) 6 0. The different forms of the ξ and η

dependence of (4.19) and (4.24) can also be derived by elementary separation of variables

considerations, but the calculation of the corresponding coefficients is non-trivial.

If θi = π
2

then which way the path of integration is completed is dependent on ξ, η: for

ξ < η then Eq. (4.19) is valid and for ξ > η (4.24) holds.

4.4 Far-field behaviour

4.4.1 β = O(1)

Having derived exact representations for the total potential in several distinct forms,

we now examine the corresponding far-field structure. To do so, it is easier to use the

integral (rather than the series) representations, since standard residue and stationary

phase methods can be applied directly.

The far-field structure depends on the polar angle θ. In particular, we anticipate a

different asymptotic form in the geometrical shadow from that in the illuminated zone.

This manifests itself in the way that we evaluate the integrals asymptotically, since the
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particular range of θ dictates which way complex integration paths are closed to trap the

appropriate residue contributions.

It turns out that there are three distinct ranges of θ (which, like r below, is now

measured from the origin of the displaced inner coordinates defined at the end of §4.1)

which necessitate separate analyses. These are 2π − θi < θ < 2π, θi < θ < 2π − θi and

0 < θ < θi. For the classical Sommerfeld problem, these correspond to the fully illuminated

(≡ incident, reflected and diffracted fields), illuminated (≡ incident and diffracted fields)

and geometrical shadow (≡ diffracted field) zones, respectively. However, for bodies of

O(1) aspect ratio (corresponding to β → ∞) the shadow boundaries of the incident and

reflected fields coincide (at θ = θi); we return to this distinction shortly.

(a) 2π − θi < θ < 2π

Whichever integral representation we use, we must apply the connection formula (B 3) to

the Dν(p̄ξ) term because, in this range, ξ is large in magnitude and negative and so the

argument of this parabolic cylinder function lies exactly on an anti-Stokes line. This gives

the solution for Φ in the form

Φ =
i

2
√

2π

∫ − 1
2 +i∞

− 1
2−i∞

(tan 1
2
θi)

ν

cos 1
2
θi

D−1−ν(−p̄η)Dν(p̄ξ)
dν

sin(νπ)

+
i

2
√

2π

∫ − 1
2 +i∞

− 1
2−i∞

(tan 1
2
θi)

ν

cos 1
2
θi

eνπi
D′−1−ν(−p̄β)

D′−1−ν(p̄β)
D−1−ν(p̄η)Dν(−p̄ξ)

dν

sin(νπ)

+
1

2π

∫ − 1
2 +i∞

− 1
2−i∞

(tan 1
2
θi)

ν

cos 1
2
θi

D′−1−ν(−p̄β)

D′−1−ν(p̄β)
e
νπi
2 Γ (1 + ν)D−1−ν(p̄η)D−1−ν(−ip̄ξ)dν. (4.26)

We must estimate each of these integrals asymptotically as ξ → −∞, η →∞ for β = O(1).

The first integral can be evaluated explicitly in terms of a complementary error function

and is actually one of the terms in the Sommerfeld solution (4.5) (cf. (4.7)). For the

second integral, we replace the ξ and η-dependent parabolic cylinder functions by the

leading term in their asymptotic expansions and evaluate the resulting integral exactly

by completing the path of integration with an arc at infinity in the left-half plane. Two

sets of residues contribute: the negative integers (for which sin(νπ) = 0) and the roots of

(4.25). The third integral necessitates replacing the parabolic cylinder functions for large

|ξ| and η by their Darwin expansions and then performing a stationary phase analysis.

The upshot is that this integral supplies the reflected field.

Collecting these results together, the far-field response is found in the form

Φ ∼ ei(x cos θi+y sin θi)

+ exp

[
i(x cos θi − y sin θi)− 2

3
2 βi sin

1
2 θi(x sin θi + y cos θi)

1
2

−iβ2 sin θi

(
x cos θi − y sin θi
x sin θi + y cos θi

)
− iβ2 cos θi

]

−
√
π

2r

eir+
iπ
4

2 cos 1
2
θi sin

1
2
θ

∞∑
n=0

(
tan 1

2
θi

| tan 1
2
θ|

)νn
eνnπi

sin(νnπ)

D′−1−νn (−p̄β)

∂

∂ν
D′−1−ν(p̄β)|ν=νn

, (4.27)
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where the νn are defined in (4.25). There is an O(r−
1
2 ) term omitted from the second

term in (4.27), which comes from the next order term in the stationary phase calculation.

However, this has the same phase as (and should be regarded as part of) the reflected

field and does not contribute to the diffracted field. We emphasize that (4.27) is written

in terms of the inner variables with hats omitted.

In (4.27), the first term on the right-hand side is the incident field and the second is the

reflected field. The latter should match the result derived in §3 once it has been expressed

in terms of the outer coordinates. In the limit considered here, we can take f(x) ∼ 2(βx)
1
2

in that calculation and it is then straightforward to see that there is indeed a perfect

match. The final term in Eq. (4.27) is the diffracted field.

(b) θi < θ < 2π − θi

In this region ξ changes sign and the cases ξ < 0 and ξ > 0 must be treated separately.

In the former case, we use the representation (4.26), except that now the evaluation of

the second integral involves completing the path of integration to the right and only

the simple poles at the non-negative integers contribute. The stationary phase estimate

resulting from the third integral is now exponentially small and is therefore ignored;

it may be interpreted as complex ray reflection from the analytical continuation of the

boundary, cf. [34].

For ξ > 0, we no longer need to use the connection formula on Dν(p̄ξ) and the

leading-order scattered potential is found to be

Φ ∼ ei(x cos θi+y sin θi) +
eir−

iπ
4

2
√
r cos 1

2
θi sin

1
2
θ

∞∑
n=0

1

n!

(
i tan 1

2
θi

tan 1
2
θ

)n
D′n(pβ)

D′n(p̄β)
, (4.28)

regardless of the sign of ξ.

(c) 0 < θ < θi

This is the geometrical shadow and is treated by recombining the second and third terms

in (4.26) using the connection formula in reverse and then enclosing the integral to the

left, having first replaced the parabolic cylinder functions by the first terms in their normal

asymptotic expansions. The field is purely diffracted and has the series representation

Φ ∼ − eir+
iπ
4

2 cos 1
2
θi sin

1
2
θ

√
π

2r

∞∑
n=0

(
tan 1

2
θi

tan 1
2
θ

)νn
D′−1−νn (−p̄β)

∂

∂ν
D′−1−ν(p̄β)|ν=νn

1

sin(νnπ)
. (4.29)

The directivity F(θ) in §3 can now be read off from (4.27), (4.28) and (4.29). We note

that the angles θ based on the inner and outer coordinate systems are asymptotically

equivalent when performing this matching; this is not true of the r variables, leading to

an extra factor exp(−iβ2 cos θ/2) when matching. This highlights a need for care when

defining directivity functions – a shift of the source location of a cylindrically spreading

wavefield by an O(k−1) amount induces an O(1) change in the directivity. Remembering
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to also reinstate the exp(iβ2 cos θi/2) prefactor to obtain φ from Φ, we have

F(θ) = −
√
π

2

e
iπ
4 e

iβ2

2 (cos θi−cos θ)

2 cos 1
2
θi sin

1
2
θ

∞∑
n=0

(
tan 1

2
θi

| tan 1
2
θ|

)νn
eνnπiD′−1−νn (−p̄β)

sin(νnπ)
∂

∂ν
D′−1−ν(p̄β)|ν=νn

,

2π − θi < θ < 2π, (4.30)

=
e−

iπ
4 ei

β2

2 (cos θi−cos θ)

2 cos 1
2
θi sin

1
2
θ

∞∑
n=0

1

n!

(
i tan 1

2
θi

tan 1
2
θ

)n
D′n(pβ)

D′n(p̄β)
, θi < θ < 2π − θi, (4.31)

= −e
iπ
4 ei

β2

2 (cos θi−cos θ)

2 cos 1
2
θi sin

1
2
θ

√
π

2

∞∑
n=0

(
tan 1

2
θi

tan 1
2
θ

)νn
D′−1−νn (−p̄β)

sin(νnπ)
∂

∂ν
D′−1−ν(p̄β)|ν=νn

,

0 < θ < θi. (4.32)

We have thus now established series representations for the directivity function F(θ) and

have demonstrated that it has different analytical structure depending upon the region in

which we are evaluating it. It can also be represented by the unified expression

F(θ) =
e
iπ
4 ei

β2

2 (cos θi−cos θ)

2
√

2π sin 1
2
(θi − θ)

+
e

3πi
4 ei

β2

2 (cos θi−cos θ)

4
√

2π cos 1
2
θi sin

1
2
θ

∫ − 1
2 +i∞

− 1
2−i∞

(
tan 1

2
θi

tan 1
2
θ

)ν
D′−1−ν(−p̄β)

D′−1−ν(p̄β)

dν

sin(νπ)

(4.33)

provided we take (cot 1
2
θ)ν = | cot 1

2
θ|νeνπi if cot 1

2
θ < 0. This expression provides a useful

integral representation of the directivity to complement the series forms given above.

One of the purposes of this analysis is to understand the transition between the Fock-

Leontovič (β → ∞) and Sommerfeld (β → 0) limits. We now consider these limits, which

also act as a useful check on the results we have obtained so far.

4.4.2 The limit β →∞

We begin our analysis of the far-field for the large β case by considering the shadow zone,

in which the field is given by the single expression in (4.29). In this limit, we are able to

estimate the roots νn of (4.25) and use them to evaluate the terms in the summand of

(4.29). In fact, using the Airy-type expansions that are listed in Appendix B we are able

to show that if we set νn = − 1
2

+ iµn, where µn is complex, then

µn =
β2

2
− γ2

ne
− 2πi

3 β
2
3

2
1
3

+ O(β−
1
3 ) (4.34)

as β →∞, where Ai is the standard Airy function and Ai′(−γ2
n) = 0. We can then use this

result, along with repeated use of the listed uniform expansions, to establish that

D′−1−νn (−p̄β)
∂
∂ν
D′−1−ν(p̄β)|ν=νn

∼ −β
2
3 eµnπAi′(−γ2

ne
− 2πi

3 )

2
1
3 γ2
nAi(−γ2

n)
(4.35)

from which the limiting form for Φ, given by

Φ ∼ −eir+ iπ
4

√
π

r sin θ sin θi
2

1
6 β

2
3

∞∑
n=0

Ai(−γ2
ne
− 2πi

3 )

γ2
nAi(−γ2

n)
e
iµn ln

(
tan 1

2
θi

tan 1
2
θ

)
, (4.36)
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is immediate. This is then the far-field behaviour of the inner solution in the limit β →∞.

To interpret this solution, we observe that if we scale x = β2X̂, then the inner diffraction

problem is to solve

(∇2 + β4)φ = 0 (4.37)

(where the Laplacian is with respect to X̂ and Ŷ ) exterior to the parabola Ŷ 2 = 2X̂ + 1

and subject to

∂φ

∂N̂
= 0 (4.38)

on it, with appropriate conditions at infinity. This is a ray problem (with β2 replacing the

wavenumber k) and so we expect a creeping field to be initiated at the point of tangency

between the incoming ray field and the boundary. In this neighbourhood, the solution to

the analogue of (1.2)–(1.3) yields a modal expansion for this limit of the creeping field

that propagates into shadow region and has the form

φ ∼ −φ(inc)
t

∞∑
n=0

π
1
2 2

1
6 e

iπ
4 Ai′(−γ2

ne
− 2πi

3 )

β
1
3 (κ(0)κ(s))

1
6 γ2
nAi(−γ2

n)τ
1
2

e
iβ2(s+τ)− iβ

2
3 γ2n

2
1
3

e
− 2πi

3

∫ s

0
κ

2
3 (s)ds

, (4.39)

where τ is the distance along the diffracted ray which leaves the boundary tangentially

from the point of arc-length s. The function κ(s) is the boundary curvature and φ
(inc)
t is

the incident field evaluated in the scaled coordinates at the point of tangency. We note

that each term in this sum is exponentially smaller than the one that precedes it.

In terms of a polar angle Θ̂ measured from the focus of the parabola, the boundary

can be expressed in the equivalent forms

(X̂, Ŷ ) =

(
cos Θ̂

2 sin2 1
2
Θ̂
,

sin Θ̂

2 sin2 1
2
Θ̂

)
, (4.40)

or

R̂ = (X̂2 + Ŷ 2)
1
2 =

1

2 sin2 1
2
Θ̂
, (4.41)

with Θ̂ = 2θi corresponding to the point of tangency. The curvature κ and the arc-length

s can then be expressed in terms of Θ̂ as

κ(s(Θ̂)) = sin3 1
2
Θ̂ (4.42)

and

s(Θ̂) =
1

2

(
cos 1

2
Θ̂

sin2 1
2
Θ̂
− cos θi

sin2 θi

)
+ 1

2
ln

(
tan 1

2
θi

tan 1
4
Θ̂

)
. (4.43)

An elementary calculation then shows that τ ∼ R̂ − cos θ
2 sin2 θ

and Θ̂ ∼ 2θ, where θ is the

angle in the far field directivity introduced in §3, and that, defining the net exponent of φ

in (4.39) as dn (including the contribution from φ
(inc)
t ), then

dn = iβ2R + i

(
β2

2
− β

2
3

2
1
3

γ2
ne
− 2πi

3

)
ln

(
tan 1

2
θi

tan 1
2
θ

)
+
iβ2

2
cos θi. (4.44)

Feeding these results into (4.39) and inverting the scalings reproduces (4.36) precisely

(once Φ has been re-expressed in terms of φ) and therefore acts as an independent check
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on the results. This shows how the diffracted field generated in the shadow for β = O(1)

changes into a forward-propagating creeping field as β →∞.

The simplest way of analysing the solution in the wedge θi < θ < 2π− θi is to consider

the representation of the directivity given by (4.33). In the limit β → ∞, we must use the

Darwin expansions to replace the ratio of β-dependent differentiated parabolic cylinder

functions by an appropriate asymptotic equivalent. This is best achieved by writing

ν = − 1
2

+ iµ and then using (B 24). Following a stationary phase and residue treatment,

the limiting form of the scattered field Φ(s) in this region is

Φ(s) ∼ β
(

sin 1
2
(θ − θi)

2r sin3 1
2
(θ + θi)

) 1
2

exp

(
ir − iβ2 sin 1

2
(θ − θi)

sin 1
2
(θ + θi)

)
. (4.45)

This result can also be checked by introducing the scalings leading to (4.37) and (4.38) and

solving the appropriate ray problem, a procedure that we have performed but for which

we omit the details. It is worth noting from a ray perspective that in the limit β →∞ the

expansion fan describing the far-field in the wedge θi < θ < 2π − θi is interpreted as the

far-field of a reflected field, whereas for β = 0 it is viewed very differently, namely as a

diffracted field. Our analysis for β = O(1) provides a smooth transition between the two.

This now leaves the final region to consider, namely the fully illuminated range 2π−θi <
θ < 2π, whose analysis requires the study of (4.27) in the limit β → ∞. In this case, the

first two terms can be approximated no further but the third can be, since we can set

νn = − 1
2

+ iµn and use (4.34) once more. Doing this yields the scattered field in the form

Φ(s) ∼ −eir+ iπ
4

√
π

r sin θi| sin θ|
2

1
6 β

2
3

∞∑
n=0

Ai(−γ2
ne
− 2πi

3 )

γ2
nAi(−γ2

n)
e
−πµn+iµn ln

(
tan 1

2
θi

| tan 1
2
θ|

)
. (4.46)

The crucial difference between this and its counterpart (4.36) valid in the geometrical

shadow is that it is exponentially small by virtue of the e−πµn factor. This means that

all the superposed modes in (4.46) decay super-exponentially, like exp(−πβ2/2) in fact,

as β → ∞. Our inner diffraction analysis predicts not only a creeping field propagating

forwards into the shadow zone, given by (4.36) as β → ∞, but also one that propagates

backwards into the fully illuminated region; this backward creeping field is exponentially

small in the limit β →∞ but is non-negligible for β = O(1).

The limit as β →∞ of the directivity F(θ) is given by

F(θ) ∼ −e iπ4 + iβ2

2 (cos θi−cos θ)

√
π

sin θ sin θi
2

1
6 β

2
3

∞∑
n=0

Ai(−γ2
ne
− 2πi

3 )

γ2
nAi(−γ2

n)
e
iµn ln

(
tan 1

2
θi

tan 1
2
θ

)
,

0 < θ < θi, (4.47)

∼ e
iβ2

2 (cos θi−cos θ)β

(
sin 1

2
(θ − θi)

2 sin3 1
2
(θ + θi)

) 1
2

exp

(
−iβ2 sin 1

2
(θ − θi)

sin 1
2
(θ + θi)

)
,

θi < θ < 2π − θi, (4.48)

∼ −e
iβ2

2 (cos θi−cos θ)+ iπ
4

√
π

sin θi| sin θ|
2

1
6 β

2
3

∞∑
n=0

Ai(−γ2
ne
− 2πi

3 )

γ2
nAi(−γ2

n)
e
−πµn+iµn ln

(
tan 1

2
θi

| tan θ|

)
,

2π − θi < θ < 2π. (4.49)
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4.4.3 The limit β → 0

In this limit we can expand the β-dependent terms in (4.15) using a Taylor series expansion,

which gives

D′−1−ν(−p̄β)

D′−1−ν(p̄β)
∼ 1−

2β(ν + 1
2
)e−

iπ
4 Γ

(
1

2
+
ν

2

)
Γ
(

1 +
ν

2

) , as β → 0. (4.50)

To find approximate expressions for the roots, νn, of (4.25), we note that

D′−1−ν(0) = −
√
π2−

ν
2

Γ

(
1

2
+
ν

2

) , (4.51)

which implies that νn ∼ −(2n+ 1). These poles coincide with those from the sin(νπ) term

and this has to be taken in to account when performing the residue calculation. The

far-field directivity, in terms of the outer coordinates, can then be written in terms of the

diagamma function ψ as

F(θ) ∼
√

2

π

e
iπ
4 cos

θ

2
sin

θi

2
(cos θ − cos θi)

+
β

√
2π sin

θi

2
cos

θ

2

∞∑
n=0

×

(
cot

θi

2
tan

θ

2

)2n

Γ ( 1
2
− n)Γ (1 + n)

×
[
2 + (2n+ 1

2
)

(
2 ln cot

θi

2
tan

θ

2
+ ψ( 1

2
− n)− ψ(1 + n)

)]
,

β → 0, 0 < θ < θi, (4.52)

F(θ) ∼ e
iπ
4

(
2

π

) 1
2 cos θ

2
sin θi

2

(cos θ − cos θi)
− β
√

2π cos
θi

2
sin

θ

2

×
∞∑
n=0

(
− tan

θi

2
cot

θ

2

)n(
1

2
+ n

)
Γ

(
1

2
+
n

2

)
Γ
(

1 +
n

2

) ,

β → 0, θi < θ < 2π − θi, (4.53)

F(θ) ∼
√

2

π

e
iπ
4 cos

θ

2
sin

θi

2
(cos θ − cos θi)

+
β√

2π sin θi
2

cos θ
2

∞∑
n=0

×

(
cot

θi

2
tan

θ

2

)2n

Γ ( 1
2
− n)Γ (1 + n)

×
[
2 + (2n+ 1

2
)

(
2 ln cot

θi

2
tan

θ

2
+ ψ( 1

2
− n)− ψ(1 + n)

)]
,

β → 0, 2π − θi < θ < 2π. (4.54)

In each case we observe that φ differs from φs by O(β) and for β = 0 we recover the

Sommerfeld result, as required.
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4.4.4 The limits θ → 0 and θ → 2π

The limiting behaviour for F(θ) as θ → 0 and θ → 2π for β = O(1) follow from (4.29) as

F(θ) ∼ −
√
πe

iπ
4 e

iβ2

2 (cos θi−1)

2
√

2 cos
θi

2

(
tan

θi

2

)ν0
(
θ

2

)−ν0−1

sin ν0π

D′−1−ν0
(−p̄β)

∂

∂ν
D′−1−ν(p̄β)|ν=ν0

, (4.55)

and

F(θ) ∼ −
√
πe

iπ
4 e

iβ2

2 (cos θi−1)

2
√

2 cos
θi

2

(
tan

θi

2

)ν0
(

2π − θ
2

)−ν0−1

sin ν0π

eiν0πD′−1−ν0
(−p̄β)

∂

∂ν
D′−1−ν(p̄β)|ν=ν0

, (4.56)

respectively; only the first term in each of the series solutions has been included as this

dominates. We note that in these limits F(θ) rapidly oscillates, because ν0 is complex.

4.5 The limit ξ →∞, η = O(1) for β = O(1)

We shall need the structure of the field close to the boundary and deep into the shadow

region, i.e. as ξ → ∞ with η = O(1), since this will be used to match into the creeping

field. In this limit the integral solution given by (4.15) becomes

Φ ∼ ie
iξ2

2

2
√

2π

∫ − 1
2 +i∞

− 1
2−i∞

(
p̄ξ tan

θi

2

)ν
cos

θ

2

[
D−1−ν(−p̄η) +

D′−1−ν(−p̄β)

D′−1−ν(p̄β)
D−1−ν(p̄η)

]
dν

sin νπ
. (4.57)

This can be evaluated using an arc at infinity in the left-half plane and the residue solution

that results is

Φ ∼ − e
iξ2

2
√
π

√
2 cos

θi

2

∞∑
n=0

(
p̄ξ tan

θi

2

)νn
sin νnπ

D−νn−1(p̄η)
D′−νn−1(−p̄β)

∂

∂ν
D′−ν−1(p̄β)|ν=νn

, (4.58)

where once more the νn are given by (4.25).

4.6 Special cases θi = 0, π

There are two special cases in which the previous results are not valid, namely θi = 0 and

π. For the case θi = 0, the solution was given by Lamb [27] and is

Φ = D0(p̄ξ)

[
D0(pη)− iD′0(pβ)

D′−1(p̄β)
D−1(p̄η)

]
(4.59)

= eix

[
1 +

p̄β

p̄β
√

π
2
erfc(e−

iπ
4 β)− 2eiβ

2

√
π

2
erfc (e−

iπ
4 η)

]
. (4.60)
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Figure 4. Creeping field structure. The forward and backward creeping fields generated at the
left tip each propagate to the right tip, where they are partially transmitted, partly reflected and
(mainly) radiated into a detached field.

For θi = π, it is not possible to impose an incoming plane wave when β > 0. We do,

however, note the solution

Φ =
1√
2π
Dν(p̄ξ)D−1−ν(p̄η), (4.61)

where ν satisfies (4.25), which represents a generalization to β > 0 of the Sommerfeld

solution (4.10); for the root ν = ν0 with the largest real part, we have ν → −1 as β → 0.

Conversely, in the limit β → ∞ we have ν0 ∼ − 1
2
− i
(
β2

2
−
(
β2

2

) 1
3

e−
2iπ
3 γ2

0

)
where γ2

0

is the smallest root of Ai′(−γ2) = 0 and (4.61) implies

Φ ∼ e− iπ
3

(
t2

(η2 − β2)(ξ2 + β2)

) 1
4

Ai(−t
2iπ
3

2 )e
2
3 it

3
2
1 , (4.62)

where ν0 = − 1
2
− iµ0, so that µ0 ∼

β2

2
−
(
β2

2

) 1
3

e−
2iπ
3 γ2

0 , and for η, ξ = O(β) we have

t1 =

3β2

4

[
ξ̂

√
ξ̂2 + 1 + ln(2ξ̂)

]
− 3β

2
3 e−

2iπ
3 γ2

0

2
4
3

(ln(2ξ̂) +
ξ̂

2

√
ξ̂2 + 1

)

 2
3

, (4.63)

t2 =

[
3η

4

√
η2 − β2 − 3β2

4
ln

(
η +

√
η2 − β2

β

)] 2
3

, (4.64)

where ξ = ξ̂β.

5 The creeping field

5.1 Introduction

Figure 4 is intended to clarify the nature of the regions to be discussed in this section.

Similar fields are produced from the right hand-tip; moreover, each creeping mode

repeatedly circulates around the body, shedding most of its energy into a detached field

each time it reaches one of the tips.

We shall discuss only the forward case, the backward creeping field (see Figure 4),

being very similar in structure. We take β = O(1) and define Y = k
1
2 y, writing the upper
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part of ∂D as Y = g(x), where g(0) = g(2a) = 0, and 2a is the length of the body. The

analysis which follows assumes that 0 < θi < π; in view of (4.59), the initial and far-field

conditions which hold on (5.1)–(5.2) when θi = 0 differ from those arising below, the

transition between the two cases occurring in a regime in which θi is small. We note

that the formulation derived below can be significantly simplified in the limits g � 1 and

g � 1, as is to be expected.

5.2 Forward creeping field

Writing φ = Λ(k)eikxv(x, Y ), where Λ(k) will be determined shortly, we obtain at leading

order as k →∞ the parabolic approximation

2i
∂v0

∂x
+
∂2v0

∂Y 2
= 0, (5.1)

with boundary condition

∂v0

∂Y
= i

dg

dx
v0, Y = g(x), (5.2)

where v ∼ v0. The required condition as Y → +∞ can be regarded as a radiation condition

which corresponds to matching into the expansion fan in the ‘outer’ ray structure (see

Figure 2); thus v0 must have exponential dependence of the form exp(iY 2/2x) as Y → +∞
and must not contain terms which are simply algebraic in Y . The initial condition on

(5.1) arises from matching as x→ 0+ into the inner (tip) region and we now describe this

matching.

We have g(x) ∼ β(2x)
1
2 as x→ 0 and we solve (5.1) in this limit by seeking a similarity

solution of the form

v0 ∼
1

xm
Υ

(
Y

x
1
2

)
as x→ 0+, (5.3)

where m remains to be determined. The general solution for Υ (ζ) is

Υ (ζ) = e
iζ2

4 (AD2m−1(e−
iπ
4 ζ) + BD2m−1(e

3iπ
4 ζ)). (5.4)

The second of these terms does not satisfy the radiation condition, so we require B = 0,

and the boundary condition on Y = g(x) then implies that m = −ν/2 where ν satisfies

(4.25). The similarity exponent m is thus determined by solving an eigenvalue problem,

making (5.3) a similarity solution of the second kind. Hence we obtain the initial condition

v0 ∼ Ax
ν
2 e

iY 2

4x D−1−ν(e
− iπ

4 Y /x
1
2 ) as x→ 0 (5.5)

for some constant A. Re-expressing (5.5) in inner variables in the limit ξ → +∞ with

η = O(1), so that x = 1
2
k−1(ξ2 − η2 + β2) ∼ 1

2
k−1ξ2, y = k−1ηξ, yields

φ ∼ Ae
iβ2

2 Λ(k)(2k)−
ν
2 ξνe

iξ2

2 D−1−ν(p̄η). (5.6)

We require that (5.6) matches with (4.58), and we thus see that each term in (4.58) will

generate a creeping mode, with Λ(k) = Λn(k) = k
νn
2 and where A = An can be read off

from (4.58). The dominant creeping mode thus corresponds to the root of (4.25) with the

largest real part (ν = ν0; we note that Re ν0 < −1 for β > 0), the other modes having

amplitudes which are algebraically smaller in k.

https://doi.org/10.1017/S0956792598003441 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003441


148 J. C. Engineer et al.

Having determined the initial condition, which completes the specification of v0, it

remains to analyse its behaviour as the other tip, at x = 2a, is approached. Taking

g(x) ∼ γ(2(2a − x))
1
2 as x → 2a−, the behaviour in the limit x → 2a− consists of two

regions:

(i) Y = O(1), v0 ∼ V (Y ), (5.7)

where V (Y ) = v0(2a, Y ) cannot be determined without solving (5.1), which must be done

numerically in general. Since

v0 ∼ Ae
iπ
4 (ν+1)x−

1
2 (Y /x)−(ν+1)e

iY 2

2x as Y → +∞, for all x ∈ (0, 2a), (5.8)

this matching outwards into (4.55) when ν = ν0, it follows that

V (Y ) ∼ A(2a)ν+
1
2 e

iπ
4 (ν+1)Y −(ν+1)e

iY 2

4a as Y → +∞. (5.9)

(ii) Y = O((2a− x)
1
2 ). (5.10)

Here we take

v0 ∼
1

(2a− x)q
Ω

(
Y

(2a− x)
1
2

)
, (5.11)

where q will be determined from an eigenvalue problem for Ω(ζ), the general solution for

which can be written as

Ω(ζ) = e−
iζ2

4 (ED−2q(e
− iπ

4 ζ) +KD−2q(e
3iπ
4 ζ)), (5.12)

where E and K are constants. The far-field condition on Ω differs from that on Υ ; in

order to match with (5.7) we require

Ω(ζ) ∼ Cζ−2q, as ζ → +∞, V (Y ) ∼ CY −2q as y → 0+, (5.13)

for some constant C whose calculation again requires the numerical solution of (5.1),

Ω(ζ) being required to contain no terms having exponential dependence of the form

exp(−iζ2/2) as ζ → +∞. This implies that K = 0, E = C and the condition on Y = g(x)

then requires that q be given by

D′−1−ρ(p̄γ) = 0, (5.14)

(cf. (4.25)) where q = 1
2
(ρ+ 1). We thus have

v0 ∼ Ce−
iπ
4 (ρ+1)(2a− x)−

1
2 (ρ+1)e−

iY 2

4(2a−x)D−1−ρ

(
e−

iπ
4

Y

(2a− x)
1
2

)
, as x→ 2a−, (5.15)

where ρ satisfies (5.14). In general, the behaviour as x → 2a with Y = O((2a − x)
1
2 ) will

consist of an infinite number of terms of this type, but that in which the real part of ρ is

largest, namely ρ = ρ0 (with Re ρ0 < −1 for γ > 0), will again dominate.

To obtain matching conditions for the right-hand tip region, we introduce a new set of

inner variables (ξ, η), now defined by

x = 2a− 1

2
k−1(ξ2 − η2 + γ2), y = −k−1ηξ. (5.16)

From (5.15) we then obtain a matching condition for this inner region, namely

φ ∼ k
(ν+ρ+1)

2 e2ika2
(ρ+1)

2 Ce−( π4 (ρ+1)+ 1
2 γ

2)i e−
iξ2

2

(−ξ)ρ+1
D−1−ρ(p̄η), (5.17)

which gives the incident creeping field in the limit ξ → −∞, η = O(1).
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5.3 Transmitted and reflected creeping fields

Writing

φ = k
(ν+ρ+1)

2 e2ikaψ, (5.18)

where we again note that the dominant term is that for which ν = ν0, ρ = ρ0, then at the

right-hand tip the leading order inner solution for ξ, η = O(1) which matches with (5.17)

is simply (using (B 5))

ψ0 = cDρ(p̄ξ)D−1−ρ(p̄η), (5.19)

where

c = 2ρ+1e−( π2 (ρ+1)+ 1
2 γ

2)iΓ (−ρ)
C√
2π
. (5.20)

It is particularly noteworthy that no mode conversion occurs in this region, the solution

(5.19) consisting of a single term.

In the limit ξ → +∞, using (B 4) and (5.19) implies that

ψ ∼ k
ρ
2 2ρc e−( π4 ρ+ 1

2 γ
2)ieik(2a−x)(2a− x)

ρ
2 e

iY 2

4(2a−x)D−1−ρ

(
e−

iπ
4

(−Y )

(2a− x)
1
2

)
, (5.21)

holds as matching condition as x → 2a−, −Y = O((2a − x)
1
2 ) (cf. (5.5)), generating a

further creeping field along Y = −f(x) from x = 2a. In view of (5.18) and (5.21), this

transmitted creeping field is a factor kρ+ 1
2 smaller than the creeping field along Y = g(x)

from which it originates.

The expression (5.17) corresponds to the second term in (B 5) in the limit ξ → −∞ of

(5.19); the first term in (B 5) leads to an additional contribution to ψ, which we denote

by ψ(r) (the reflected creeping field), for which it follows from (5.19) that

ψ(r) ∼ k
ρ
2 2ρc e( 3π

4 ρ−
1
2 γ

2)ieik(2a−x)(2a− x)
ρ
2 e

iY 2

4(2a−x)D−1−ρ

(
e−

iπ
4

Y

(2a− x)
1
2

)
(5.22)

is the matching condition as x→ 2a−, Y = O((2a− x)
1
2 ); this reflected creeping field then

propagates backwards along Y = g(x) from x = 2a. It is also smaller than the original

creeping field by a factor kρ+ 1
2 .

The inner solution (5.19) also initiates a further expansion fan propagating into

the outer region; by (B 4)–(B 5), ψ0 has a term in its far-field limit with directivity

c(cot 1
2
θ)νe

iπ
4 /2 sin 1

2
θ.

5.4 Detached creeping field

In x > 2a, the leading order detached creeping field, by which we mean the diffracted

field shed by the forward propagating creeping field, is given by, using (5.7),

2i
∂v0

∂x
+
∂2v0

∂Y 2
= 0, (5.23a)

with

v0 = V (Y ), x = 2a, Y > 0,

v0 = 0, x = 2a, Y < 0,
(5.23b)
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and with radiation conditions holding as |Y | → ∞; a similar problem governs the detached

field produced by the backward creeping field. The solution of (5.23b) is readily derived

in the form

v0 =
1

(2πx)
1
2

e−
iπ
4

∫ ∞
0

V (Y ′)e
i(Y−Y ′ )2

2x dY ′; (5.24)

in view of (5.9) this integral has to be interpreted in the appropriate fashion. As x→ +∞
with Y = O(x) we thus obtain the standard asymptotic form

v0 ∼
1

x
1
2

G

(
Y

x

)
e
iY 2

2x , (5.25)

where in this case

G

(
Y

x

)
=

1√
2π

e−
iπ
4

∫ ∞
0

V (Y ′)e−
iY Y ′
x dY ′. (5.26)

The far-field directivity thus features a narrow region θ = O(k−
1
2 ) which contains, through

V (Y ), complete details of the shape g(x) of the body. This contrasts with diffraction by

a blunt body, whose shape within the shadow region makes only an exponentially small

contribution to the directivity.

6 Discussion

One of the noteworthy features of our analysis is the identification of a number of new

types of creeping and associated diffracted fields (see Figure 4). Creeping field propagation

around a two-dimensional body of non-uniform curvature acts in many ways like one-

dimensional wave propagation through a non-homogeneous material (an analogy which

can be made more precise in the case of an ellipse; see (A 4)); in particular exponentially

little reflection occurs away from points at which the curvature of the body is at least

O(k). Similar types of creeping field also occur for blunt bodies whose boundaries contain

points of non-analyticity; we restrict ourselves to giving a schematic (Figure 5) of the case

in which the body contains a corner in the shadow region. The reflected and transmitted

creeping fields result from the expansion fan at the corner (cf. Figure 2; the presence

of expansion fans underlies many of the creeping field phenomena with which we are

concerned) which is produced by the incident creeping field. If the corner coincides with

the point of ‘tangency’ then a backward creeping field of comparable size to the forward

one is produced. A corner within the illuminated region also leads to an expansion fan

and hence to creeping fields.

A number of natural generalisations of the problem studied here are worth noting:

(a) Other types of tip. While (2.3) is generic, there are other analytical forms whereby

f(x) ∼ β(2x)
1
2n for some positive integer n. To obtain the full Helmholtz balance in the

tip region the aspect ratio of the body must be changed, with (2.2) being replaced by

y = −k−(1− 1
2n )f(x). (6.1)

In consequence, for n > 1 the creeping field problem is simpler, because the body appears

flat to leading order, but the tip problems are more complicated; in particular, the

Helmholtz equation is not separable in the required geometries so that mode conversion
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Figure 5. Creeping field scattering at a corner.

occurs at the tips. Slender bodies with non-analytic tips, such as cusps and corners of

small angle, can also be analysed by similar asymptotic methods.

(b) Three-dimensional problems. The appropriate generalization involves bodies which

are slender in one direction only, a thickness of O(k−
1
2 ) again being the relevant scaling

for such strongly oblate bodies. Similar analyses to those described above still apply but

some interesting extra features emerge, particularly with respect to the creeping field.

(c) Implicit in the above analysis is the assumption that the ‘centreline’ of the slender

body is straight. Much of it carries over to the curved case, but obvious complications

result from the boundary then not being convex.

It is worth noting the transitions in the far-field behaviour of the scattered field,

φ(s) ∼ 1

r
1
2

Ψ (θ; k)eikr as r →∞, (6.2)

which occur as the aspect ratio of the scatterer increases. For a body of infinitesimal

width, for which the inner problems are of Sommerfeld type, for almost all angles θ we

have that the directivity Ψ = O(k−
1
2 ), being determined by the field diffracted by the two

tips. For θ = 2π − θi + O(k−1), however, we have Ψ = O(k
1
2 ) due to the reflected field.

By contrast, for a body of O(1) aspect ratio we have Ψ = O(1) for almost all θ (due to

the reflected field), while θ = θi + O(k−
1
3 ) is a region of rapid variation of the directivity

in which Ψ = O(k−
1
6 ), determined by matching back into the transition zones mentioned

earlier. For bodies of aspect ratio O(k−
1
2 ), however, the directivity is rapidly-varying about

three different angles, namely where θ = 2π−θi+O(k−1) (as above) and where θ = O(k−
1
2 )

and θ = π + O(k−
1
2 ), due to the detached creeping fields (albeit with the rapidly-varying

component in these cases being algebraically smaller in k than the component due to the

field diffracted from the tip). For β � 1 (cf. §4.4.2) then, away from θ = θi and θ = 2π−θi,
the diffracted field leads to Ψ = O(βk−

1
2 ), giving the required transition (an O(1) aspect

ratio body has β = O(k
1
2 ) and the scaling which gives the relevant transition is β = O(1)).

As β becomes large the transition zones emerge out of the diffracted field and correspond

to θ = θi +O(β−
2
3 ), giving a fourth region of rapid variation in Ψ in this limit and again

reproducing the blunt body result for β = O(k
1
2 ); as β → ∞ the field scattered from

the tip thus decomposes into, in particular, the reflected field in the illuminated region

and transition zones around the shadow region. Finally, we note that the analysis of the

reflected field in §3 becomes non-uniform when, taking f = O(β), x sin θi + y cos θi = O(1)

with x sin θi−y cos θi = O(k
1
2 β−1) for k−

1
2 � β � k

1
2 and with x sin θi−y cos θi = O(k) for
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β = O(k−
1
2 ) or smaller. In the former case the region of rapid variation in the directivity

is θ = 2π − θi + O(βk−
1
2 ) with Ψ = O(k

1
4 β−

1
2 ), again providing the required transition.

We conclude by making the following points by way of summary:

(i) For high-frequency scattering by a convex body, the cases in which the most

complicated asymptotic balances result are bodies with aspect ratios of O(1) and O(k−
1
2 ).

The literature on the former is immense; here we have been concerned with the latter.

We emphasize that, while slender, such bodies are nevertheless many wavelengths thick.

Moreover, the application of Sommerfeld-type results is not legitimate until the aspect

ratio of the body becomes exceedingly small (namely o(k−
1
2 )); similar comments may be

relevant to the description of other circumstances involving diffraction by thin objects

(for example, those involving cracks).

(ii) For aspect ratios of O(k−
1
2 ) the inner (tip) problems require the analysis of plane

wave scattering by a parabola. We have discussed this in some detail in §4, it having

an important status as a canonical diffraction problem, with two of the best-known such

problems (Sommerfeld and Fock–Leontovič) as limiting cases. It is thus fortunate that

the Helmholtz equation happens to be separable in parabolic cylindrical coordinates.

(iii) Many of the novel phenomena concerning slender bodies relate to the creeping

fields. Unlike the situation with blunt bodies, these fields are algebraically (rather than

exponentially) small in k; the crucial parameters determining their magnitude are β and γ

(the curvatures at the end points), this being quantifiable through the roots of (4.25) and

(5.14) with largest real part. Moreover, the creeping fields are confined to boundary layer

regions, the analogues of the diffracted rays shed by the creeping rays of blunt body theory

emerging from the tips, as expansion fans, rather than from the whole boundary. As a

blunt body is made more slender, the transition zones noted in the introduction expand

in size to light up the deep shadow region, the field in the shadow becoming of O(k−
1
2 ),

rather than being exponential small, when the body is made sufficiently slender. The

solution (4.61) plays an important role in describing creeping field behaviour and deserves

emphasis, being a closed from solution to the full Helmholtz equation which illustrates

several noteworthy phenomena (such as as exponentially small backward creeping field in

the limit β →∞) and which generalises the θi = π Sommerfeld solution.
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Appendix A Diffraction by an ellipse

A.1 Introduction

Our purpose here is to illustrate some of the preceding analysis by describing certain

aspects of the special case in which ∂D is given by the ellipse

(x− a)2

a2
+
y2

b2
= 1, (A 1)

with a > b > 0. We first briefly consider the order one aspect ratio case and then outline

the relevant asymptotic solutions in the slender case b = O(k−
1
2 ), a = O(1) for which, in

our earlier notation, β = k
1
2 b/
√
a = γ. We note that Goodrich & Kazarinoff [35], using
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a Green’s function approach, have found the approximate surface field for even more

slender elliptic cylinders, for which k
1
2 b/
√
a� 1.

A.2 Separable solutions

As is well-known, the Helmholtz equation is separable in elliptic cylindrical coordinates

(ξ, η), (see, for example, [4, 36, 37]), where

x− a = (a2 − b2)
1
2 cosh ξ cos η, y = (a2 − b2)

1
2 sinh ξ sin η, (A 2)

the ellipse (A 1) being given by ξ = ξ0 ≡ cosh−1(a/(a2 − b2)
1
2 ); we note that ξ and η here

denote different quantities from those elsewhere in the paper. Writing φ = Ξ(ξ)H(η)

yields the Mathieu and modified Mathieu equations

d2Ξ

dξ2
− k2(λ2 − (a2 − b2) sinh2 ξ)Ξ = 0, (A 3)

d2H
dη2

+ k2(λ2 + (a2 − b2) sin2 η)H = 0, (A 4)

where λ is some (complex) constant. There are two useful infinite sum representations for

φ made up of solutions of this type:

(1) λ chosen such that H(η) is a 2π-periodic function of η;

(2) λ chosen such that Ξ(ξ) satisfies the required boundary condition,

dΞ

dξ
= 0, ξ = ξ0, (A 5)

and a radiation condition at infinity.

The second representation is valid in the shadow region, can be obtained from the first

by the Watson transformation followed by a residue calculation (see, for example, [38])

and is the one of interest to us here in describing the creeping field in the limit k → ∞.

Thus in case (ii) it follows from (A 3) that as k →∞ we should introduce the scalings

ξ = ξ0 + k−
2
3 ξ̂, λ ∼ (a2 − b2)

1
2 sinh ξ0 + k−

2
3 λ̂ (A 6)

to give at leading order

d2Ξ0

dξ̂2
+ 2b(aξ̂ − λ̂)Ξ0 = 0 (A 7)

and the possible values of λ̂ can, in the usual way, be expressed in terms of the zeros

of Ai′. The η dependence of each of these creeping modes is then given by (A 4), in

which λ = O(1) can be determined asymptotically via (A 6). Equation (A 4) could also

be viewed as representing one-dimensional wave propagation through a specific type of

inhomogeneous medium; as is well-known, in the limit k → ∞ the reflected field in such

a medium is exponentially small (see, for example, [36]). This provides an example of

the exponentially small nature, noted above, of the ‘reflected’ creeping field away from

regions of high curvature.

In the circular case a = b, the corresponding separable solutions are of the form

H
(1)
kλ (kr)Θ(θ), (A 8)
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where x− a = r cos θ, y = r sin θ the possible values of λ are given by

H
(1)′

kλ (ka) = 0, (A 9)

so that λ = 1 + O(k−
2
3 ) as k →∞. Since Θ satisfies

d2Θ

dθ2
+ k2λ2Θ = 0, (A 10)

the circle acts as a homogeneous (reflectionless) medium for the creeping field. This is to

be expected since a circle has constant curvature.

A.3 Slender ellipses

Writing b = k−
1
2
√
aβ, y = k−

1
2Y , we have

g(x) = β(x(2a− x)/a)
1
2 (A 11)

and we now discuss the creeping field problem (5.1) in this special case. Somewhat

remarkably, for this g(x) the problem admits a similarity solution of the form, (cf.

Bluman and Cole [39] for a classification of all classical similarity reductions of the heat

equation)

v0 =
x

ν
2

(2a− x)(ν+1)/2
e−

iY 2(x−a)
2x(2a−x) Υ

(
a

1
2Y

(x(2a− x))
1
2

)
, (A 12)

which satisfies the initial-boundary value problem (5.1), (5.5), ν again being a solution to

(4.25); it is easily shown that Υ (ζ) satisfies

d2Υ

dζ2
+ ((2ν + 1)i+ ζ2)Υ = 0, (A 13)

dΥ

dζ
= 0, ζ = β, (A 14)

with a radiation condition as ζ → +∞, and hence, in order to match with (5.5), that

Υ (ζ) = A(2a)(ν+1)/2D−1−ν(p̄ζ). (A 15)

In the case of an ellipse, mode conversion therefore does not occur in the creeping field.

It follows from (A 12)–(A 15) that for the ellipse we have

V (Y ) = CY −(ν+1)e
iY 2

4a (A 16)

and

C = A(2a)(ν+1)/2e
iπ
4 (ν+1), (A 17)

consistent with our earlier results. In particular we obtain (5.15) as x → 2a− with

Y = O((2a− x)
1
2 ); we note that for the ellipse we have γ = β so that ρ = ν here.

Given (A 16), the solution to (5.23b) is also of self-similar form, namely

v0 =
x

ν
2

(x− 2a)(ν+1)/2
e
iY 2(x−a)
2x(x−2a) Υ̂

(
a

1
2Y

(x(x− 2a))
1
2

)
(A 18)
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with, using (B 5),

Υ̂ (ζ) = A
( a
π

) 1
2

Γ (−ν)Dν(−p̄ζ); (A 19)

in (5.25) we thus have

G

(
Y

x

)
= e

iaY 2

2x2 Υ̂

(
a

1
2Y

x

)
. (A 20)

Appendix B Useful formulae

What follows is a list of some results concerning parabolic cylinder functions that have

been useful in deriving the results contained in the body of this paper. Some are standard

and are listed elsewhere [33, 40], whilst others have had to be derived from these.

B.1 Connection formulae

Dν(z) =
Γ (ν + 1)√

2π

[
e

1
2 νπiD−1−ν(iz) + e−

1
2 νπiD−1−ν(−iz)

]
(B 1)

= e−νπiDν(−z) +

√
2π

Γ (−ν) e−
1
2 (1+ν)πiD−1−ν(iz) (B 2)

= eνπiDν(−z) +

√
2π

Γ (−ν) e
1
2 (1+ν)πiD−1−ν(−iz). (B 3)

B.2 Asymptotic formulae

Asymptotic expansions valid as |z| → ∞ for |ν| = O(1) are

Dν(z) ∼ zνe−
1
4 z

2

, |argz| < π

2
, (B 4)

Dν(z) ∼ zνe−
1
4 z

2 −
√

2π

Γ (−ν) eνπiz−1−νe
1
4 z

2

,
π

2
< argz < π, (B 5)

Dν(z) ∼ zνe−
1
4 z

2 −
√

2π

Γ (−ν) e−νπiz−1−νe
1
4 z

2

, −π < argz < −π
2

; (B 6)

the Stokes lines are at |argz| = π/2 and both exponential terms have been included

wherever both are present.

If x, µ are both real and positive then, if x > 0 and µ → ∞, the following uniform

expansions hold:

D− 1
2−iµ

(x e−
iπ
4 ) ∼ 2

√
π exp

[
−πµ

4
− iφ2

2
+
iπ

24

](
t1

x2 − 4µ

) 1
4

Ai(−t1e
2πi
3 ), (B 7)

D− 1
2−iµ

(−x e−
iπ
4 ) ∼ 2

√
π exp

[
3πµ

4
− iφ2

2
− iπ

8

](
t1

x2 − 4µ

) 1
4

Ai(−t1), (B 8)

D− 1
2 +iµ(x e−

iπ
4 ) ∼ 2

√
π exp

[
πµ

4
+
iφ2

2
+
iπ

24

](
t2

x2 + 4µ

) 1
4

Ai(−t2e
2iπ
3 ), (B 9)
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D− 1
2 +iµ(−x e−

iπ
4 ) ∼ 2

√
π exp

[
πµ

4
+
iφ2

2
− iπ

8

](
t2

x2 + 4µ

) 1
4

Ai(−t2), (B 10)

where

t1 =


−
[

3µ

2
cos−1

(
x

2
√
µ

)
− 3x

8

√
4µ− x2

] 2
3

, 2
√
µ > x

+

[
3x

8

√
x2 − 4µ− 3µ

2
ln

(
x+

√
x2 − 4µ

2
√
µ

)] 2
3

, 2
√
µ 6 x,

(B 11)

t2 =

[
3µ

2
ln

(
x+

√
x2 + 4µ

2
√
µ

)
+

3x

8

√
x2 + 4µ

] 2
3

, (B 12)

and

φ2 = arg Γ ( 1
2

+ iµ). (B 13)

If x/2
√
µ is close to 1 then, introducing ζ = (2

√
µ−x)µ

1
6 , the following expansions hold

for ζ = O(1), x, µ→∞, being useful limit cases of (B 7)–(B 8):

D− 1
2−iµ

(x e−
iπ
4 ) ∼

√
2π exp

[
−πµ

4
− iφ2

2
+
iπ

24

]
µ−

1
12 Ai(ζe

2πi
3 ), (B 14)

D− 1
2−iµ

(−x e−
iπ
4 ) ∼

√
2π exp

[
3πµ

4
− iφ2

2
− iπ

8

]
µ−

1
12 Ai(ζ), (B 15)

D′− 1
2−iµ

(x e−
iπ
4 ) ∼

√
2π exp

[
−πµ

4
− iφ2

2
− iπ

24

]
µ

1
12 Ai′(ζe

2πi
3 ), (B 16)

D′− 1
2−iµ

(−x e−
iπ
4 ) ∼

√
2π exp

[
3πµ

4
− iφ2

2
+
iπ

8

]
µ

1
12 Ai′(ζ). (B 17)

At points at which Ai′(ζ e
2πi
3 ) = 0 we need the representation

∂

∂µ
D′− 1

2−iµ
(x e−

iπ
4 ) ∼ −

√
2π exp

[
−πµ

4
− iφ2

2
+

7iπ

24

]
µ−

1
4 ζAi(ζ e

2πi
3 ). (B 18)

Limiting cases of (B 7)–(B 8), valid as x, µ → ∞ for x/2
√
µ > 1, are the Darwin

expansions

D− 1
2−iµ

(±x e−
iπ
4 ) = 2−

1
2 exp

[
−πµ

4
− iφ2

2
− iπ

8

]
E(µ,±x), (B 19)

D− 1
2 +iµ(±x e−

iπ
4 ) = 2−

1
2 exp

[
πµ

4
+
iφ2

2
− iπ

8

]
E(−µ,±x), (B 20)

where

E(µ, x) ∼ 2
1
2 (x2 − 4µ)−

1
4 exp

(
iπ

4
+
ix

4

√
x2 − 4µ− iµ ln

[
x+

√
x2 − 4µ

2
√
µ

])
, (B 21)

E(µ,−x) ∼ 2
3
2 (x2 − 4µ)−

1
4 eπµ sin

(
π

4
+
x

4

√
x2 − 4µ− µ ln

[
x+

√
x2 − 4µ

2
√
µ

])
, (B 22)

E(−µ,±x) ∼ 2
1
2 (x2 + 4µ)−

1
4 exp

(
iπ

4
+
ix

4

√
x2 + 4µ+ iµ ln

[
x+

√
x2 + 4µ

2
√
µ

])
. (B 23)
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These results can be used to establish that

D′− 1
2−iµ

(−x e−
iπ
4 )

D′− 1
2−iµ

(x e−
iπ
4 )
∼

2ieπµ cos

(
π

4
+
x

4

√
x2 − 4µ− µ ln

[
x+

√
x2 − 4µ

2
√
µ

])

exp

(
iπ

4
+
ix

4

√
x2 − 4µ− iµ ln

[
x+

√
x2 − 4µ

2
√
µ

]) , (B 24)

D′− 1
2 +iµ

(−x e−
iπ
4 )

D′− 1
2 +iµ

(x e−
iπ
4 )
∼ e−2i

√
µx. (B 25)
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