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In the present work, the influence of the gas–surface interaction law on the classical
problems of viscous drag and thermophoresis on a spherical particle with high thermal
conductivity immersed in a monatomic rarefied gas is investigated on the basis of the
solution of a kinetic model to the linearized Boltzmann equation. The scattering kernel
proposed by Cercignani and Lampis is employed to model the gas–surface interaction
law via the setting of two accommodation coefficients, namely the tangential momentum
accommodation coefficient and the normal energy accommodation coefficient. The
viscous drag and thermophoretic forces acting on the sphere are calculated in a range
of the rarefaction parameter, defined as the ratio of the sphere radius to an equivalent
free path of gaseous particles, which covers the free molecular, transition and continuum
regimes. In the free molecular regime the problem is solved analytically via the method
of the characteristics to solve the collisionless kinetic equation, while in the transition and
continuum regimes the discrete velocity method is employed to solve the kinetic equation
numerically. The numerical calculations are carried out in a range of accommodation
coefficients which covers most situations encountered in practice. The macroscopic
characteristics of the gas flow around the sphere, namely the density and temperature
deviations from thermodynamic equilibrium far from the sphere, the bulk velocity and the
heat flux are calculated and their profiles as functions of the radial distance from the sphere
are presented for some values of rarefaction parameter and accommodation coefficients.
The results show the appearance of the negative thermophoresis in the near-continuum
regime and the dependence of this phenomenon on the accommodation coefficients.
To verify the reliability of the calculations, the reciprocity relation between the cross
phenomena which is valid at an arbitrary distance from the sphere was found and then
verified numerically within an accuracy of 0.1 %. The results for the thermophoretic force
are compared to the more recent experimental data found in the literature for a copper
sphere in argon gas.
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1. Introduction

Problems regarding viscous drag and thermophoresis on spherical particles immersed
in a rarefied gas are classical in the field of rarefied gas dynamics and have been
investigated by many authors over the years; see, e.g. Yamamoto & Ishihara (1988),
Takata, Aoki & Sone (1992), Loyalka (1992), Beresnev & Chernyak (1995), Takata &
Sone (1995) and Chernyak & Sograbi (2019). The study of this topic is motivated by its
fundamental importance for the understanding of the physics underlying some phenomena,
such as the transport of aerosols in the atmosphere, and for practical applications such as
the development of technologies in the fields of microfluidics, semiconductor industry,
security of nuclear plants, etc. The well-known equations of continuum mechanics,
namely the Navier–Stokes–Fourier equations (see, e.g. Landau & Lifshitz 1989), can
be used to calculate the drag and the thermophoretic forces acting on a sphere, as
well as the macroscopic characteristics of the gas flow around it, only in situations
where the molecular mean free path is significantly smaller than a characteristic length
of the gas flow domain so that the continuum hypothesis is still valid. The Knudsen
number (Kn), defined as the ratio of the molecular mean free path to a characteristic
length of the gas flow, is the parameter often used to classify the gas flow regimes.
The equations of continuum mechanics are valid when Kn � 1. For instance, in air at
standard conditions, the molecular mean free path is approximately 0.065 μm. Then,
for small particles originated from several sources moving through the air, the Knudsen
number varies from about 0 to 65 when the size of particles ranges from 100 to
10−3 μm. Therefore, the modelling of the gas flow around aerosols in the atmosphere,
as well as the movement of these particles itself, cannot be accurately described by the
classical equations of continuum mechanics. Moreover, even in the continuum regime,
the Navier–Stokes–Fourier equations cannot predict the negative thermophoresis, which
means the movement of aerosol particles from cold to hot regions. This phenomenon was
first predicted theoretically, and satisfactorily explained as a result of the thermal stress slip
flow, by Sone (1972) in case of aerosol particles with high thermal conductivity related to
that of the carrier gas. However, experimental data regarding this phenomenon are still
scarce in the literature because the detection is very difficult. Actually, the more recent
experimental data concerning negative thermophoresis are provided by Bosworth et al.
(2016), in which the thermophoretic force on a copper sphere in argon gas was measured
in a wide range of the gas rarefaction.

Historically, the viscous drag force on a sphere was first investigated by Stokes (1845)
via hydrodynamic analysis based on the Navier–Stokes–Fourier equations, with the
derivation of his famous formula for the drag force on a sphere in a slow flow; see, e.g.
Landau & Lifshitz (1989). Regarding the thermophoresis, the first attempt to calculate
the thermal force on a sphere in a gas with a temperature gradient was done by Epstein
(1967). Since the theories of both Stokes and Epstein were valid in the continuum regime,
many attempts to modify the equations of continuum mechanics as well as the boundary
conditions were proposed over the years to increase their range of applicability in the
Knudsen number. For instance, the correction factor proposed by Cunningham (1910) to
consider the non-continuum effects of gas slippage on the boundary was incorporated in
the Stokes formula so that its applicability was extended to the so-called slip flow regime.
Concerning the thermophoresis, a continuum analysis based on the Navier–Stokes–Fourier
equations with slip corrections in the boundary condition was first carried out by Brock
(1962) in an attempt to improve the previous theory proposed by Epstein. Methods based
on the use of higher-order kinetic theory approximations, as that first proposed by Grad
(1949), were also employed to solve the problems of drag and thermophoresis on a sphere.
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For instance, Sone (1972) obtained an expression for the thermophoretic force acting
on a sphere with uniform temperature corrected up to the second order in the Knudsen
number using an asymptotic theory for small Knudsen numbers, and predicted the negative
thermophoresis as a result of the thermal stress slip flow. In a more recent paper, Torrilhon
(2010) investigated a slow flow past a sphere on the basis of the regularized 13-moment
equations as proposed by Struchtrup & Torrilhon (2003), a method which relies on the
combination of the moment approximation and asymptotic expansion in kinetic theory
of gases. Similarly, Padrino, Sprittles & Lockerby (2019) investigated the thermophoresis
on a sphere by employing the same method and predicted the negative thermophoresis.
According to Torrilhon (2010) and Padrino et al. (2019), the regularized 13-moment
method can be used to describe the drag and the thermophoresis on a sphere when Kn < 1.
In fact, although many efforts have been done over the years to expand the validity of the
continuum models in the description of gas flows, it is well known that all the theories and
methods currently available fail in describing gas flows properly when Kn ∼ 1 or Kn � 1.
In these kinds of situations, corresponding to transition and free molecular regimes, the
problem must be solved at the microscopic level via the methods of rarefied gas dynamics,
which are based on either the solution of the Boltzmann equation, e.g. Cercignani (1988)
and Sharipov (2016), and its related kinetic models, e.g. Bhatnagar, Gross & Krook (1954)
and Shakhov (1968), or the direct simulation Monte Carlo method as pioneered by Bird
(1994).

Although an extensive literature concerning the topic under investigation in the whole
range of the Knudsen number based on kinetic theory is available, most of the papers rely
on the assumption of diffuse reflection or complete accommodation of gas molecules on
the surface; see, e.g. the reviews on thermophoresis by Zheng (2002) and Young (2011).
However, in practice, the assumption of complete accommodation of gas molecules on the
surface is not always valid and its use can lead to large deviations of theoretical predictions
from experimental data. As pointed out by Zheng (2002), actually the gas–surface
interaction law is most probably something between the widely used diffuse and specular
reflection models. Thus, the so-called accommodation coefficients on the surface should
be conveniently introduced to accurately describe the gas–surface interaction. To the best
of our knowledge, Beresnev & Chernyak (1995) and Beresnev, Chernyak & Fomyagin
(1990) were the first authors to study the influence of the gas–surface interaction law on
the drag and thermophoretic forces acting on a sphere with basis on a kinetic model to the
Boltzmann equation in the whole range of the Knudsen number. These authors solved
numerically the linearized kinetic equation proposed by Shakhov (1968) by using the
integral-moment method with the boundary condition written in terms of accommodation
coefficients of momentum and energy as proposed by Shen (1967). According to this
condition, the distribution function of molecules reflected from the surface is expanded
in Hermite polynomials and unknown accommodation coefficients are determined from
the conservation laws of momentum and energy on the surface. The qualitative results
presented by the authors show a strong dependence of the drag and thermophoretic
forces on the accommodation coefficients. Moreover, their results predict the negative
thermophoresis in the case of a highly heat conducting sphere in the continuum regime as
dependent on the tangential momentum accommodation coefficient. However, Beresnev &
Chernyak (1995) and Beresnev et al. (1990) applied the variational method which implies
the use of trial functions. In other words, the macroscopic quantities are assumed a priori
to be parametric functions of the radial coordinate. Then, the functions parameters are
calculated using some variational principle. Such an assumption introduces a numerical
error which cannot be estimated without a direct numerical solution of the kinetic
equation. Recently, Chernyak & Sograbi (2019) calculated the drag and thermophoretic
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forces for several models on a non-diffuse gas–surface interaction, but their results are
restricted to the free molecular regime. Thus, till now, no numerical solution of the
kinetic equation subject to a non-diffuse scattering is available in the literature for rarefied
gas flows past a sphere. In contrast to the variational solution by Beresnev & Chernyak
(1995) and Beresnev et al. (1990), direct numerical calculations based on the kinetic
equation requires more detailed information about the gas–surface interaction, namely,
the scattering kernel. Maxwell (1879) proposed the diffuse-specular model assuming that
only a portion of the incident particles is reflected diffusely, while the remaining portion
is reflected specularly. As pointed out by Sharipov (2003b), this widely used model
contradicts some experimental data. For instance, several experimental works (see, e.g.
Podgursky & Davis 1961 and Edmonds & Hobson 1965) showed that the exponent in the
thermomolecular pressure difference (TPD) at low pressures varies from 0.4 to 0.5, but
the model by Maxwell always provides the TPD index equal to 0.5 in the free molecular
regime. To improve the Maxwell model, Epstein (1967) assumed that the probability
of the diffuse reflection depends on the velocity of the incident particles. This model
contains some parameters which a priori do not have any physical meaning. The model
proposed by Cercignani & Lampis (1971) has two parameters having the physical meaning,
namely, the tangential momentum accommodation coefficient (TMAC) and normal energy
accommodation coefficient (NEAC). Later, Cercignani (1972) derived this kernel from a
physical model of a surface based on the Fokker–Planck equation. Some authors (see, e.g.
Liang, Li & Ye 2013 and Spijker et al. 2010) analysed several gas–surface interaction
models to microflows and nanoflows, specifically the models proposed by Maxwell
(1879), Cercignani & Lampis (1971) and Yamamoto, Takeuchi & Hyakutake (2007), and
concluded that the Cercignani–Lampis model shows a better comparison with molecular
dynamics simulation. Kosuge et al. (2011) analysed the influence of the gas–surface
interaction model on the gas flow induced by thermal effects in the vicinity of a boundary,
e.g. the thermal creep flow, the thermal stress slip flow and the thermal edge flow which
are peculiar to rarefied gases. This type of flow induced solely by thermal effects vanishes
in the free molecular regime when the Maxwell model of gas–surface interaction is used
in the boundary condition. Kosuge et al. (2011) carried out a deterministic computation
based on the integral equation as well as on the direct simulation Monte Carlo (DSMC)
method and concluded that the Cercignani–Lampis boundary condition accurately predicts
the steady flow induced by thermal effects even in the free molecular limit. Sazhin et al.
(2007), Yakunchikov, Kovalev & Utyuzhnikov (2012) and Chernyak & Sograbi (2019)
analysed both Epstein and Cercignani–Lampis (CL) models, but they were not able to
point out which of these models was better. Yakunchikov et al. (2012), based on numerical
results from molecular dynamics, and Wu & Struchtrup (2017), based on the comparison
between experimental data and numerical results obtained from the Boltzmann equation,
proposed a combination of the Epstein and CL models which significantly increased the
number of adjusting parameters. Thus, the Cercignani–Lampis scattering kernel can be
actually considered the most reliable model of the gas–surface interaction because it
provides a correct physical description of many transport phenomena in gases which are
not described correctly by other models available in the literature.

As mentioned above, the CL model contains two independent accommodation
coefficients, namely TMAC ranging from 0 to 2 and NEAC varying from 0 to 1. In
practice, the values of these accommodation coefficients extracted from experiments can
be found in the literature; see, e.g. Semyonov, Borisov & Suetin (1984), Trott et al. (2011),
Sazhin, Borisov & Sharipov (2001) and Sharipov & Moldover (2016) for several gases and
surfaces. For instance, according to Trott et al. (2011) and Sharipov & Moldover (2016),
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the NEAC ranges from 0 to 0.1 for helium and from 0.5 to 0.95 for argon at ambient
temperature and several different smooth metallic surfaces such as aluminum, platinum
and stainless steel. Moreover, the TMAC of helium and argon ranges from 0.5 to 1 at the
same conditions. According to the results presented by Chernyak & Sograbi (2019), in the
free molecular regime the thermophoretic force is sensitive to both TMAC and NEAC.

As is known, the thermophoretic force is the so-called cross-effect from the viewpoint
of non-equilibrium thermodynamics (see, e.g. De Groot & Mazur 1984), i.e. it is coupled
with another cross-effect by the reciprocity relation. Basing on the general properties of
the Boltzmann equation and its boundary condition, Sharipov (2010) showed that the
thermophoretic force of a particle is related to a heat flux around the same particle in
the drag force problem. However, this relation has not been verified numerically because
of its complexity.

In the present work, the influence of the gas–surface interaction law on the drag
and thermophoretic forces acting on a sphere of high thermal conductivity immersed
in a monatomic rarefied gas is investigated by employing the CL scattering kernel. The
linearized kinetic equation proposed by Shakhov (1968) is solved numerically by the
discrete velocity method taking into account the discontinuity of the distribution function
of molecular velocities around a convex body; see, e.g. Sone (1966) and Sone & Takata
(1992). It is worth mentioning that the linearized approach is legitimate in the majority of
problems concerning aerosols because the Mach number of the induced flow, as well as
the temperature and density deviations, are very small.

The linearized Shakhov model is the most suitable to deal with the problem in question
because it maintains the original properties of the Boltzmann equation and provides the
correct Prandtl number, i.e. the correct values of both gas viscosity and heat conductivity.
The advantage of using this model is that its solution requires a modest computational
effort in comparison to that required to solve the Boltzmann equation itself. At the same
time it provides a good accuracy. For instance, Graur & Polikarpov (2009) calculated
the heat flux between parallel plates from the Shakhov kinetic equation and showed that
the deviation of their results from those obtained by Ohwada (1996) from the Boltzmann
equation and hard-spheres potential is less than 3 %. In the case of planar Couette flow, a
comparison presented by Sharipov (2016) between the results obtained from the solution of
the Shakhov model via the discrete velocity method and those obtained by Siewert (2003)
from the linearized Boltzmann equation based on hard-spheres potential and the DSMC
method based on the ab initio potential for argon gas given by Sharipov & Strapasson
(2013) shows that the discrepancy among results obtained from quite different methods
does not exceed 1 %. Concerning the problems of drag and thermophoresis on a sphere,
the comparison is still scarce in the literature. Nonetheless, Beresnev & Chernyak (1995)
showed that the discrepancy between their results for the thermophoretic force on a sphere
obtained from the Shakhov model is not greater than 5 %–7 % from those obtained by
Takata et al. (1992) from the linearized Boltzmann equation for hard-spheres potential.
Thus, the reliability of the Shakhov model is supported by literature.

The viscous drag and the thermophoretic forces on the sphere, as well as the
macroscopic characteristics of the gas flow around it, are calculated in a range of the
gas rarefaction which allows us to verify the influence of the accommodation coefficients
on these forces in the free molecular, transition and hydrodynamic regimes. The values of
the TMAC and NEAC are chosen with basis on experimental data as given by Trott et al.
(2011) and Sharipov & Moldover (2016).

The reciprocity relation between the cross phenomena is verified and used as an
accuracy criterion of the numerical calculations. The results obtained for both the drag and
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thermophoretic forces on the sphere in the whole range of the gas rarefaction are compared
to those results provided by Beresnev & Chernyak (1995), Beresnev et al. (1990), Takata
et al. (1992) and Takata, Sone & Aoki (1993) in case of diffuse scattering on the surface.
Moreover, the results obtained for the forces in the free molecular regime are compared to
those presented by Chernyak & Sograbi (2019) in a wide range of TMAC and NEAC.

Regarding the comparison with experimental data, it is worth mentioning that although
many data are available in the literature, such a comparison is still a difficult task because
in most of the experiments the carrier gas is air or a polyatomic gas, and the results are
limited to a certain range of the Knudsen number which usually covers the continuum
and near-continuum regimes. Moreover, the experiments involve particles of different
materials and some physical properties of matter, such as the thermal conductivity,
which may play an important role in the description of phoretic phenomena. A list of
measurements concerning thermophoresis on spherical particles can be found in the
review by Young (2011), while a critical review on the drag force on a sphere in the
transition regime which includes experimental data is given by Bailey et al. (2004). In
the present work a comparison with the more recent data on thermophoresis provided by
Bosworth et al. (2016) in the case of a copper sphere in argon gas is presented.

2. Formulation of the problem

We consider a sphere of radius R0 at rest placed in a monatomic rarefied gas. Far from
the sphere, the gas flows with a constant bulk velocity U∞ and has a temperature gradient
∇T∞ = ∂T/∂z′ in the z′-direction as shown in figure 1. Due to the problem geometry,
it is convenient to introduce spherical coordinates (r′, θ, φ) in the physical space. Then
according to figure 1, the components of the position vector r′ of gas molecules are given
as

x ′ = r′ sin θ cos φ, (2.1a)

y′ = r′ sin θ sin φ, (2.1b)

z′ = r′ cos θ. (2.1c)

Moreover, the components of the molecular velocity vector v read as

vx = (vr sin θ + vθ cos θ) cos φ − vφ sin φ, (2.2a)

vy = (vr sin θ + vθ cos θ) sin φ + vφ cos φ, (2.2b)

vz = vr cos θ − vθ sin θ, (2.2c)

where vr, vθ and vφ are the radial, polar and azimuthal components of the molecular
velocity vector, respectively, which are written in spherical coordinates (v, θ ′, φ′) in the
velocity space as

vr = v cos θ ′, (2.3a)

vθ = vt cos φ′, (2.3b)

vφ = vt sin φ′, (2.3c)

with the tangential component given as

vt =
√

v2
θ + v2

φ = v sin θ ′. (2.4)
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z′

x ′

y ′ R0

U∞

∇T∞

(r′, θ, φ)

r ′
θ

φ

FIGURE 1. Formulation of the problem.

It is assumed that the thermal conductivity of the spherical particle is significantly
higher than that corresponding to the carrier gas. As a consequence, the temperature of
the sphere is uniform and equal to the gas temperature in equilibrium. Let us denote by
n0, T0 and p0 the number density, temperature and pressure of the gas in thermodynamic
equilibrium, respectively. Two dimensionless thermodynamic forces are introduced here
as follows:

Xu = U∞
v0

, XT = �0

T0

∂T
∂z′ . (2.5a,b)

Here �0 and v0 denote the equivalent free path and the most probable molecular velocity,
defined as

�0 = μ0v0

p0
, v0 =

√
2kT0

m
, (2.6a,b)

where μ0 denotes the viscosity of the gas at temperature T0, while m and k are
the molecular mass and the Boltzmann constant, respectively. It is assumed that the
thermodynamic forces defined in (2.5a,b) are very small, i.e.

|Xu| � 1, |XT | � 1. (2.7a,b)

These assumptions of weak disturbance from equilibrium allow us to split the problem into
two independent parts corresponding to viscous drag and thermophoresis on the sphere.
Hereafter, the dimensionless sphere radius as well as the molecular position and velocity
vectors are introduced as follows:

r0 = R0

�0
, r = r′

�0
, c = v

v0
. (2.8a–c)

The pressure of the gas is constant and it is given by the state equation of an ideal gas as
p0 = n0kT0. As a consequence, the asymptotic behaviour of the number density n(r) and
temperature T(r) of the gas far from the sphere are given as

n∞ = lim
r→∞

n(r) = n0(1 − zXT), (2.9a)

T∞ = lim
r→∞

T(r) = T0(1 + zXT). (2.9b)

The main parameter of the problem is the rarefaction parameter, δ, which is inversely
proportional to the Knudsen number, but defined as the ratio of the sphere radius to the
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900 A37-8 D. Kalempa and F. Sharipov

equivalent molecular free path, i.e.

δ = R0

�0
= r0. (2.10)

When δ � 1 the gas is in the free molecular regime, while the opposite limit, δ � 1,
corresponds to the continuum or hydrodynamic regime. In other situations, the gas is in
the so-called transition regime.

The model of gas–surface interaction law proposed by Cercignani & Lampis (1971) is
employed in the boundary condition. According to this model, the type of gas–surface
interaction is chosen by setting appropriate values of NEAC and TMAC. Henceforth,
these accommodation coefficients will be denoted by αn and αt, respectively. The diffuse
scattering or complete accommodation on the surface corresponds to αn = 1 and αt = 1.

The viscous drag and thermophoretic forces acting on the sphere are calculated in a
range of the gas rarefaction parameter, δ, which covers all the regimes of the gas flow,
i.e. the free molecular, transitional and hydrodynamic regimes. Moreover, various values
of accommodation coefficients are considered in the calculations in order to analyse the
influence of the gas–surface interaction law on the solution of the problem. The flow
fields, i.e. the density and temperature deviations from equilibrium, bulk velocity and heat
flux around the sphere are also calculated. Some numerical results are compared to those
found in the literature. The reciprocity relation between cross phenomena is obtained at an
arbitrary distance from the sphere and then verified numerically.

3. Kinetic equation

For the problem in question, the Boltzmann equation in the absence of external forces
reads as

v · ∂f
∂r′ = Q( ff∗), (3.1)

where f = f (r′, v) is the distribution function of molecular velocities and Q( ff∗) is the
collision integral whose expression can be found in the literature; see, e.g. Ferziger &
Kaper (1972), Cercignani (1975) and Sharipov (2016). Here, the model proposed by
Shakhov (1968) for the collision integral is employed due to its reliability to deal with
problems regarding both mass and heat transfer. Then, the collision integral reads as

Q( ff∗) = QS = νS

{
f M

[
1 + 4

15

(
V2

v2
0

− 5
2

)
Q · V
p0v

2
0

]
− f (r′, v)

}
, (3.2)

where

f M(r′, v) =
[

m
2πkT(r′)

]3/2

exp
[
− mV 2

2kT(r′)

]
(3.3)

is the local Maxwellian function. The quantity νS has the order of the intermolecular
interaction frequency and V = v − U is the peculiar velocity so that V = |V | denotes
its magnitude. We denote by U(r′) and Q(r′) the bulk velocity and heat flux vectors,
respectively.
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The assumptions of smallness of the thermodynamic forces, given in (2.7a,b), allow us
to linearize the kinetic equation by representing the distribution function as

f (r, c) = f M
R [1 + h(T)(r, v)XT + h(u)(r, v)Xu], (3.4)

where h(T) and h(u) are the perturbation functions due to the thermodynamic forces XT and
Xu. The reference Maxwellian function is given by

f M
R = f M = f0

[
1 + z

(
c2 − 5

2

)
XT + 2czXu

]
, (3.5)

where f0 is the global Maxwellian function and c = |c| is the magnitude of the
dimensionless molecular velocity defined in (2.8a–c).

Then, after introducing the representation (3.4) into (3.1), and also introducing the
dimensionless quantities given by (2.8a–c), the linearized kinetic equation corresponding
to each thermodynamic force is written as

D̂h(n) = L̂Sh(n) + g(n)(r, c), n = T, u, (3.6)

where the operator

D̂ = c · ∂

∂r
(3.7)

and the linearized collision integral reads as

L̂Sh(n) = ν(n) + (
c2 − 3

2

)
τ (n) + 2c · u(n) + 4

15

(
c2 − 5

2

)
c · q(n) − h(n). (3.8)

The free terms are given by

g(T) = −cz
(
c2 − 5

2

)
, g(u) = 0. (3.9a,b)

The dimensionless quantities on the right-hand side of (3.8) correspond to the
density and temperature deviations from equilibrium, bulk velocity and heat flux
vectors, respectively, due to the corresponding thermodynamic force. These quantities
are calculated in terms of the distribution function of molecular velocities, and details
regarding these calculations are given by Ferziger & Kaper (1972). In our notation, these
quantities are written in terms of the perturbation function h(n) corresponding to each
thermodynamic force as

ν(n)(r) = 1
π3/2

∫
h(n)(r, c) e−c2

dc, (3.10)

τ (n)(r) = 2
3π3/2

∫ (
c2 − 3

2

)
h(n)(r, c) e−c2

dc, (3.11)

u(n)(r) = 1
π3/2

∫
ch(n)(r, c) e−c2

dc, (3.12)

q(n)(r) = 1
π3/2

∫
c
(

c2 − 5
2

)
h(n)(r, c) e−c2

dc. (3.13)

Far from the sphere (r → ∞), the asymptotic behaviour of the perturbation functions
are obtained from the Chapmann–Enskog solution for the linearized kinetic equation as

h(T)
∞ = lim

r→∞
h(T)(r, c) = −3

2
cz

(
c2 − 5

2

)
, (3.14)

h(u)
∞ = lim

r→∞
h(u)(r, c) = 0. (3.15)
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900 A37-10 D. Kalempa and F. Sharipov

Due to the spherical geometry of the problem, it is convenient to write the kinetic
equation (3.6) in spherical coordinates in both physical and molecular velocity spaces.
Details regarding this transformation are given by Shakhov (1967). Moreover, the problem
has symmetry on the azimuthal angle φ. Therefore, after some algebraic manipulation, the
left-hand side of the kinetic equation (3.6) is written as

D̂h(n) = cr
∂h(n)

∂r
− ct

r
∂h(n)

∂θ ′ + ct

r
cos φ′ ∂h(n)

∂θ
− ct

r
sin φ′ cot θ

∂h(n)

∂φ′ , (3.16)

where h(n) = h(n)(r, θ, c) and c = (c, θ ′, φ′). The symmetry of the solution on the
azimuthal angle also allows us to eliminate the dependence of the moments of the
perturbation function on the angle φ. Thus, the density and temperature deviations given
in (3.10) and (3.11) are written as

ν(n)(r, θ) = 1
π3/2

∫
h(n)(r, θ, c) e−c2

dc, (3.17)

τ (n)(r, θ) = 2
3π3/2

∫ (
c2 − 3

2

)
h(n)(r, θ, c) e−c2

dc, (3.18)

where dc = c2 sin θ ′ dc dθ ′ dφ′. Moreover, the non-zero components of the bulk velocity
and heat flux vectors given in (3.12) and (3.13) are written as

u(n)
r (r, θ) = 1

π3/2

∫
crh(n)(r, θ, c) e−c2

dc, (3.19)

u(n)
θ (r, θ) = 1

π3/2

∫
cθh(n)(r, θ, c) e−c2

dc, (3.20)

q(n)
r (r, θ) = 1

π3/2

∫
cr

(
c2 − 5

2

)
h(n)(r, θ, c) e−c2

dc, (3.21)

q(n)
θ (r, θ) = 1

π3/2

∫
cθ

(
c2 − 5

2

)
h(n)(r, θ, c) e−c2

dc. (3.22)

Similarly to the moments appearing in the kinetic equation, the force on the sphere in
the z′-direction is calculated in terms of the distribution function of molecular velocities
on the boundary as

F′
z = −

∫
Σ ′

w

dΣ ′
w

∫
mvrvz f (r0, v) dv, (3.23)

where dΣ ′
w = R2

0 sin θ dθ dφ is an area element taken in the surface of the sphere. For
convenience, the dimensionless force is introduced here as

Fz = F′
z

4πR2
0p0

. (3.24)

Then, after the introduction of the representation (3.4) into (3.23) and some algebraic
manipulation, the dimensionless force acting on the sphere reads as

Fz = FTXT + FuXu, (3.25)
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Drag and thermophoresis on a sphere in a rarefied gas 900 A37-11

where the dimensionless thermophoretic and drag forces are given as

FT = − 1
2π5/2

∫
Σw

dΣw

∫
crcz e−c2

[
h(T)(r0, θ, c) + z0

(
c2 − 5

2

)]
dc, (3.26)

Fu = − 1
2π5/2

∫
Σw

dΣw

∫
crcz e−c2

[h(u)(r0, θ, c) + 2cz] dc, (3.27)

with dΣw = dΣ ′
w/R2

0.

4. Boundary condition

The boundary conditions for both the drag and thermophoresis on the spherical surface
are obtained from the relation between the distribution functions of incident particles on
the wall and reflected particles from the wall. According to Cercignani (1975) and Sharipov
(2016), the general form of the linearized boundary condition at the surface reads as

h+(n) = Âh−(n) + h(n)
w − Âh(n)

w , (4.1)

where the signal ‘+’ denotes the reflected particles from the surface, while the signal ‘−’
denotes the incident particles on the surface. The source terms, obtained from (3.5), are
given as

h(T)
w = −z0

(
c2 − 5

2

)
, h(u)

w = −2cz, (4.2a,b)

where z0 = r0 cos θ and cz = cr cos θ − cθ sin θ .
In the spherical coordinates the scattering operator Â can be decomposed as

Âh(n) = ÂrÂθ Âφh(n), (4.3)

where

Ârξ = − 1
cr

∫
c′

r<0
c′

r exp (c2
r − c′2

r )Rr(cr → c′
r)ξ dc′

r, (4.4)

Âiξ =
∫ ∞

−∞
exp (c2

i − c′2
i )Ri(ci → c′

i)ξ dc′
i, i = θ, φ, (4.5)

for an arbitrary ξ as a function of the molecular velocity. The functions Rr, Rθ and Rφ are
components of the scattering kernel proposed by Cercignani & Lampis (1971), i.e.

R(c → c′) = Rr(cr → c′
r)Rθ (cθ → c′

θ )Rφ(cφ → c′
φ), (4.6)

where

Rr(cr → c′
r) = 2cr

αn
exp

[
−c2

r + (1 − αn)c′2
r

αn

]
I0

(
2
√

1 − αn

αn
crc′

r

)
, (4.7)

Ri(ci → c′
i) = 1√

παt(2 − αt)
exp

{
− [ci − (1 − αt)c′

i]
2

αt(2 − αt)

}
, i = θ, φ. (4.8)

Here I0 denotes the modified Bessel function of first kind and zeroth order. According
to this model, the accommodation coefficients can vary in the ranges 0 ≤ αt ≤ 2 and
0 ≤ αn ≤ 1. The case αt = 1 and αn = 1 corresponds to diffuse scattering or complete
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900 A37-12 D. Kalempa and F. Sharipov

accommodation on the spherical surface, while the case αt = 0 and αn = 0 corresponds
to specular reflection at the surface. It is worth noting that, for intermediate values of αt
and αn , the scattering kernel proposed by Cercignani–Lampis differs significantly from
the diffuse specular which have just one accommodation coefficient.

It can be shown that the following relations are satisfied:

Âici = (1 − αt)ci, i = θ, φ, (4.9)

Âic2
i = (1 − αt)

2c2
i + 1

2αt(2 − αt), (4.10)

Âic3
i = (1 − αt)

3c3
i + 3

2αt(2 − αt)(1 − αt)ci, (4.11)

Ârcr = −√
αnH1(η), (4.12)

Ârc2
r = αn + (1 − αn)c2

r , (4.13)

Ârc3
r = −α3/2

n H3(η). (4.14)

Here

Hj(η) = 2 e−η2

∫ ∞

0
ξ j+1 e−ξ 2

I0(2ηξ) dξ, ξ = c′
r√
αn

, j = 1, 3, (4.15a,b)

and

η = cr

√
1
αn

− 1. (4.16)

Therefore, with the help of the relations (4.9)–(4.14), the boundary conditions at r = r0
and cr > 0, for each thermodynamic force are obtained from (4.1) as

h+(T) = Âh−(T) + z0[αn(1 − c2
r ) + αt(2 − αt)(1 − c2

t )], (4.17)

h+(u) = Âh−(u) − 2
z0

δ
[(1 − αt)cr + √

αnH1(η)] − 2αtcz. (4.18)

5. Reciprocity relation

As it is known from the non-equilibrium thermodynamics (see, e.g. De Groot &
Mazur 1984) the reciprocity relations between cross phenomena represent an important
criterion to verify the numerical precision in calculations regarding small deviations
from thermodynamic equilibrium. According to Sharipov (2006, 2010) and Sharipov &
Kalempa (2006), the reciprocity relation for the problem in question can be written as

Λt
uT = Λt

Tu, (5.1)

where the time reversal kinetic coefficients are defined as

Λt
kn = ((T̂g′(k), h(n))) +

∫
Σw

(T̂vrh(k)
w , h(n)) dΣ + 1

2

∫
Σg

(T̂vrh(k), h(n)) dΣ. (5.2)

The dimension free terms g′(n) = v0g(n)/�0 (n = u, T), where g(n) are given in (3.9a,b).
The source terms h(n)

w are given in (4.2a,b). Here, the time reversal operator T̂ just changes
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Drag and thermophoresis on a sphere in a rarefied gas 900 A37-13

the sign of the molecular velocity, i.e. T̂h(v) = h(−v). The scalar products are defined as

(ξ1, ξ2) =
∫

f0ξ1(r′, v)ξ2(r′, v) dv, (5.3)

and

((g, h)) =
∫

Ω

(g, h) dr′. (5.4)

Here Ω means the gas flow domain, while Σw and Σg mean the solid spherical surface
and the imaginary spherical surface at r′ > R0 which enclose the gas domain.

Then, after some algebraic manipulation, the time reversed kinetic coefficients are
written as

Λt
uT = −4πR2

0n0v0FT − 1
2

∫
Σg

(T̂vrh(T), h(u)) dΣ, (5.5)

Λt
Tu = v0n0

∫
Σg

zq(u)
r (r, θ) dΣ + 1

2

∫
Σg

(T̂vrh(T), h(u)) dΣ. (5.6)

Therefore, after substituting (5.5) and (5.6) into (5.1), the thermophoretic force on the
sphere is related to the solution of the drag force problem as

FT = − r2

2δ2

[
r
∫ π

0
q(u)

r (r, θ) cos θ sin θ dθ

+ 1
π3/2

∫ π

0

∫
crh(T)(r, θ,−c)h(u)(r, θ, c) e−c2

sin θ dc dθ

]
, (5.7)

where r is the radius of the imaginary spherical surface Σg, which can be arbitrary. The
right-hand side of the relation (5.7) was calculated numerically for r = 1, 5, 10 and 40 and
the fulfillment of such a relation was verified numerically within the numerical error of
0.1 %.

6. Method of solution

6.1. Free molecular regime
In the free molecular regime, i.e. δ � 1, the collision integral which appears in the
Boltzmann equation (3.1) can be neglected. As a consequence, in this regime of the gas
flow, the problem is solved analytically via solution of a differential equation for each
thermodynamic force. Thus, the linearized equation is obtained from (3.6) as

D̂h(n) = g(n), (6.1)

whose solution must satisfy the boundary condition given in (4.1) for the corresponding
thermodynamic force. Moreover, in this regime of the gas flow, the distribution function
of incident gas particles on the surface is not perturbed, which means that h−(n) = h(n)

∞
as given by (3.14) and (3.15). The method of the characteristics allows us to solve the
previous equations for each thermodynamic force and obtain analytic expressions for the
thermophoretic and drag forces acting on the sphere. Details regarding the solution are
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presented in appendix A. Then, after substituting the solutions given in (A 1) into (3.26)
and (3.27), the forces of interest are obtained as

FT = − 1
2
√

π

[
1 + αt

2
+ 2α1/2

n

∫ ∞

0
c2

r e−c2
r

(
αnH3(η) − 3

2
H1(η)

)
dcr

]
, (6.2)

Fu = 2
3
√

π

(
1 + αt + 2α1/2

n

∫ ∞

0
c2

r e−c2
r H1(η) dcr

)
, (6.3)

with H1(η), H3(η), η and ξ defined in (4.15a,b) and (4.16). In case of diffuse scattering, i.e.
αt = 1 and αn = 1, the thermophoretic and drag forces given in (6.2) and (6.3) correspond
to those found in the literature; see, e.g. Takata et al. (1993), Beresnev & Chernyak (1995)
and Sone (2007).

The macrocroscopic characteristics of the gas flow around the sphere due to each
thermodynamic force can be obtained just by substituting the corresponding solution given
in (A 1) into the expressions (3.17)–(3.22).

6.2. Arbitrary gas rarefaction
In order to consider arbitrary values of the gas rarefaction, the problem is solved
numerically by employing the linearized kinetic equations given in (3.16) for each
thermodynamic force subject to the corresponding boundary condition. Here, these
equations are solved by the discrete velocity method, whose details can be found in
the literature; see, e.g. Sharipov & Subbotin (1993) and Sharipov (2016). Moreover, the
split method proposed by Naris & Valougeorgis (2005) to deal with the problem of
the discontinuity of the distribution function of molecular velocities on the boundary is
employed. In rarefied gas dynamics, the problem of the discontinuity of the distribution
function is a peculiarity inherent to gas flows around convex bodies (see, e.g. Sone &
Takata 1992) and must be treated carefully when a finite-difference scheme is used. The
idea of the split method is the decomposition of the perturbation function into two parts as

h(n)(r, c) = h(n)

0 (r, c) + h̃(n)(r, c), (6.4)

where the function h(n)

0 is obtained from the solution of the differential equation

D̂h(n)

0 + h(n)

0 = 0, (6.5)

with boundary condition

h+(n)

0 = h(n)
w − Âh(n)

w , (6.6)

where h(n)
w is given in (4.2a,b) for the corresponding thermodynamic force.

The function h̃(n) satisfy the kinetic equation (3.6) just replacing h(n) by h̃(n), but with
the boundary condition

h̃+(n) = Âh̃−(n). (6.7)

Moreover, the asymptotic behaviour of the perturbation functions h(n)

0 and h̃(n), obtained
from (3.14) and (3.15), reads as

h(n)

0∞ = lim
r→∞

h(n)

0 = 0, h̃(n)
∞ = lim

r→∞
h̃(n) = h(n)

∞ , (6.8a,b)

where h(T)
∞ and h(u)

∞ are given in (3.14) and (3.15), respectively.
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The advantage of the split method is that the discontinuous function h(n)

0 can be obtained
analytically by employing the method of characteristics to solve a partial differential
equation, while the function h̃(n) is sufficiently smooth so that a finite-difference scheme
leads to a smaller numerical error. For convenience, the analytic solutions h(n)

0 for both
thermodynamic forces are presented in appendix B as well as their moments. To reduce
the number of variables of the perturbation function h̃(n), its dependence on the variables
θ and φ′ is eliminated by employing the similarity solution proposed by Sone & Aoki
(1983). Then, in our notation, the perturbation function h̃(n) is represented as

h̃(n)(r, θ, c) = h̃(n)
c (r, c, θ ′) cos θ + h̃(n)

s (r, c, θ ′)cθ sin θ. (6.9)

The substitution of the representation (6.9) into the kinetic equation (3.6) leads to a system
of kinetic equations for the new perturbation functions h̃(n)

c and h̃(n)
s , which are solved

numerically with the boundary conditions (6.7) and asymptotic behaviours obtained from
(6.8a,b).

Regarding the boundary conditions, the representation (6.9) is compatible with the CL
boundary condition taking the form

Âh̃−(n) = cos θ ÂrÂ(0)
t h̃−(n)

c + sin θ cos φ′ÂrÂ(1)
t h̃−(n)

s , (6.10)

where

Ârξ = 2
αn

∫ ∞

0
c′

r exp
[
−(1 − αn)c2

r + c′2
r

αn

]

× I0

(
2
√

1 − αncrc′
r

αn

)
ξ(−c′

r, c′
t) dc′

r, (6.11)

Â(i)
t ξ = 2

αt(2 − αt)

∫ ∞

0
c′(i+1)

t exp
[
−(1 − αt)

2c2
t + c′2

t

αt(2 − αt)

]

× Ii

[
2(1 − αt)ctc′

t

αt(2 − αt)

]
ξ(c′

r, c′
t) dc′

t, (6.12)

where Ii (i = 0, 1) is the modified Bessel function of the first kind and ith order.
Therefore, the boundary conditions for the perturbation functions h̃(n)

c and h̃(n)
s are

obtained from (6.7) as follows:

h̃+(n)
c = ÂrÂ(0)

t h̃−(n)
c , h̃+(n)

s = 1
ct

ÂrÂ(1)
t h̃−(n)

s . (6.13a,b)

Moreover, from (6.8a,b), the asymptotic behaviours for the perturbation functions h̃(n)
c

and h̃(n)
s are given as

h̃(T)
c∞ = lim

r→∞
h̃(T)

c = −3
2

cr

(
c2 − 5

2

)
, h̃(T)

s∞ = lim
r→∞

h̃(T)
s = 3

2

(
c2 − 5

2

)
, (6.14a,b)

h̃(u)
c∞ = lim

r→∞
h̃(u)

c = 0, h̃(u)
s∞ = lim

r→∞
h̃(u)

s = 0. (6.15a,b)

Further details regarding the complete set of equations solved numerically are presented
in appendix B.
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It is worth noting that the moments defined in (3.17)–(3.22), and the dimensionless
forces defined in (3.26) and (3.27), are also decomposed into two parts due to the
representation (6.4). Then after some algebraic manipulation, the moments corresponding
to the density and temperature deviations from equilibrium, and the radial and polar
components of the bulk velocity and heat flux vectors can be written as

ν(n)(r, θ) = ν∗(n)(r) cos θ,

τ (n)(r, θ) = τ ∗(n)(r) cos θ,

u(n)
r (r, θ) = u∗(n)

r (r) cos θ,

u(n)
θ (r, θ) = u∗(n)

θ (r) sin θ,

q(n)
r (r, θ) = q∗(n)

r (r) cos θ,

q(n)
θ (r, θ) = q∗(n)

θ (r) sin θ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.16)

where the quantities dependent only on the radial coordinate r on right-hand side are given
in (B 6)–(B 11). The final expressions to calculate the thermophoretic and drag forces on
the sphere are also given in appendix B, specifically in (B 18).

Then, the system of kinetic equations for the functions h̃(n)
c and h̃(n)

s subject to the
corresponding boundary condition and asymptotic behaviour for each thermodynamic
force was solved numerically via the discrete velocity method with an accuracy of 0.1 % for
the moments of the perturbation functions at the boundary. Details regarding the discrete
velocity method can be found in the literature; see, e.g. Sharipov (2016). The Gaussian
quadrature was used to discretize the molecular velocity and calculate the moments of
the perturbation function. The numerical values of the nodes and weights as well as
the technique to calculate them are described in Krylov (2005). Moreover, a central
finite-difference scheme was used to approximate the derivatives which appear in the
kinetic equation. The accuracy was estimated by varying the grid parameters Nr, Nc and
Nθ corresponding to the number of nodes in the radial coordinate r, molecular speed c
and angle θ ′, as well as the maximum value of the radial coordinate, denoted here as rmax ,
which defines the gas flow domain. The values of these parameters providing such an
accuracy were Nc and Nθ fixed at 12 and 200, respectively, while Nr varied according to
the distance rmax so that the increment Δr ∼ 10−3. The maximum distance rmax varied
from 10 to 100 when the rarefaction parameter varied from 0.01 to 10. For instance,
for δ = 1, rmax = 40 and Nr = 10 000, while for δ = 10, rmax = 100 and Nr = 40 000
were used. Moreover, the reciprocal relation (5.7) was verified and confirmed within the
numerical error.

7. Results and discussion

7.1. Free molecular regime
Firstly, the results obtained from the analytic solutions (6.2) and (6.3) were compared to
those given by Chernyak & Sograbi (2019) in the free molecular regime. The analytic
expressions given by Chernyak & Sograbi (2019) to calculate the thermophoretic and drag
forces were obtained in the limit (1 − αt) � 1 and (1 − αn) � 1, which means almost
complete accommodation of gas particles on the sphere. However, the figures presented
by Chernyak & Sograbi (2019) show the profiles of the dimensionless thermophoretic
and drag forces on the sphere as functions of the TMAC, αt, and fixed values of NEAC
corresponding to αn = 0.1, 0.5 and 0.9. Moreover, the forces as functions of the NEAC
and fixed values of TMAC corresponding to αt = 0, 0.4, 0.8 and 1 are also presented by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

52
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.523


Drag and thermophoresis on a sphere in a rarefied gas 900 A37-17

FT

αt αn δ → 0 δ = 0.1 δ = 1

(5.7) (6.2)a (5.7) (3.6)b (5.7) (3.6)b

1 1 −0.2821 −0.2821 −0.2725 −0.2725 −0.1731 −0.1729
0.7 −0.3299 −0.3299 −0.3221 −0.3221 −0.2280 −0.2279
0.5 −0.3596 −0.3596 −0.3530 −0.3530 −0.2643 −0.2642
0.1 −0.4119 −0.4119 −0.4093 −0.4093 −0.3358 −0.3357

0.5 1 −0.2109 −0.2109 −0.2036 −0.2035 −0.1185 −0.1184
0.7 −0.2594 −0.2594 −0.2531 −0.2531 −0.1754 −0.1753
0.5 −0.2887 −0.2887 −0.2840 −0.2840 −0.2129 −0.2128
0.1 −0.3414 −0.3414 −0.3404 −0.3404 −0.2866 −0.2865

0.1 1 −0.1551 −0.1551 −0.1468 −0.1469 −0.0648 −0.0649
0.7 −0.2030 −0.2030 −0.1964 −0.1964 −0.1221 −0.1223
0.5 −0.2326 −0.2326 −0.2273 −0.2273 −0.1603 −0.1601
0.1 −0.2872 −0.2880 −0.2855 −0.2862 −0.2368 −0.2350

TABLE 1. Thermophoretic force on the sphere: verification of the reciprocity relation.
aAnalytical solution in the free molecular regime.

bNumerical solution due to XT (n = T).

the authors. The comparison shows a good agreement between the results obtained in the
present work and those given by Chernyak & Sograbi (2019) for the drag force in the whole
range of accommodation coefficients. There is a small difference between the results only
for small values of NEAC. On the contrary, there is a large disagreement between the
present results and those given by Chernyak & Sograbi (2019) for the thermophoretic
force in the whole range of the accommodation coefficients. In fact, the expression derived
by Chernyak & Sograbi (2019) for the thermophoretic force on the sphere is not correct
even in the limit of diffuse scattering. As one can see, under the assumption of diffuse
scattering, (6.2) and (6.3) lead to the following expressions for the thermophoretic and
drag forces on the sphere:

FT = − 1
2
√

π
, (7.1)

Fu = 4
3
√

π

(
1 + π

8

)
. (7.2)

These expressions are well known from the literature, e.g. Takata et al. (1993), Beresnev
& Chernyak (1995) and Sone (2007). The figures showing the comparison with the results
presented by Chernyak & Sograbi (2019) are provided as online supplementary material
available at https://doi.org/10.1017/jfm.2020.523.

It is also worth mentioning that the reciprocity relation between cross phenomena was
not verified by Chernyak & Sograbi (2019), while in the present work the reciprocity
relation given by (5.7) was fulfilled within the numerical error for arbitrary values of
accommodation coefficients. Table 1 presents the comparison between the values of the
thermophoretic force on the sphere calculated by (5.7) and (6.2). Moreover, numerical
results for both forces in the free molecular regime are given in tables 2 and 3. According
to these tables, the numerical results obtained via the kinetic equation for small values of
the rarefaction parameter tend to those given by (6.2) and (6.3).
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FT

αt αn = 0.1 0.5 0.8 0.9 1.0

δ → 0a 0.5 −0.3414 −0.2887 −0.2434 −0.2273 −0.2109
0.8 −0.3837 −0.3314 −0.2863 −0.2703 −0.2539
0.9 −0.3978 −0.3455 −0.3004 −0.2844 −0.2680
1.0 −0.4119 −0.3596 −0.3145 −0.2985 −0.2821

δ = 0.01 0.5 −0.3419 −0.2887 −0.2434 −0.2273 −0.2109
0.8 −0.3840 −0.3309 −0.2856 −0.2696 −0.2531
0.9 −0.3981 −0.3450 −0.2996 −0.2836 −0.2672
1.0 −0.4122 −0.3590 −0.3137 −0.2977 −0.2812

δ = 0.1 0.5 −0.3404 −0.2840 −0.2365 −0.2200 −0.2031
0.8 −0.3817 −0.3255 −0.2785 −0.2613 −0.2444
0.9 −0.3955 −0.3393 −0.2922 −0.2757 −0.2581
1.0 −0.4093 −0.3530 −0.3059 −0.2894 −0.2725

δ = 1 0.5 −0.2865 −0.2129 −0.1502 −0.1320 −0.1136
0.8 −0.3165 −0.2445 −0.1894 −0.1633 −0.1455
0.9 −0.3263 −0.2546 −0.1997 −0.1813 −0.1554
1.0 −0.3360 −0.2645 −0.2099 −0.1915 −0.1730

δ = 10 0.5 −0.0643 −0.0191 0.00663 0.01379 0.02054
0.8 −0.0661 −0.0296 −0.00769 −0.00146 0.00407
0.9 −0.0668 −0.0319 −0.0109 −0.00473 0.00072
1.0 −0.0674 −0.0339 −0.0136 −0.00765 −0.00199

TABLE 2. Dimensionless thermophoretic force on the sphere.
aEquation (6.2), free molecular regime.

7.2. Transitional regime
Under the assumption of complete accommodation of gas particles on the surface, the
results obtained for the thermophoretic and viscous drag forces were compared to those
presented by Beresnev & Chernyak (1995), Beresnev et al. (1990), Takata et al. (1992)
and Takata et al. (1993). The comparison is shown in figures 2 and 3, in which F∗

T and F∗
u

denote the ratio of the thermophoretic and drag forces to the corresponding values in the
free molecular regime given in (7.1) and (7.2). Beresnev & Chernyak (1995) and Beresnev
et al. (1990) used the integral-moment method to solve the same linearized kinetic
equation of the present work and also the variational method to calculate the macroscopic
quantities. On the other hand, Takata et al. (1992) and Takata et al. (1993) solved the full
linearized Boltzmann equation via a finite-difference scheme method and the similarity
solution proposed by Sone (1966). It is worth noting that the integral-moment method
consists of obtaining a set of integral equations for the moments of the distribution
function and its advantage is that only the physical space must be discretized. However, this
method requires much more computational memory and CPU time than that required when
the discrete velocity method is employed. Regarding the solution of the full Boltzmann
equation, in spite of the great computational infrastructure currently available, finding this
solution is still a difficult task which requires considerable computational effort and so
the use of kinetic model equations still plays an important role in solving problems of
practical interest in the field of rarefied gas dynamics. According to figures 2 and 3, there
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Fu

αt αn = 0.1 0.5 0.8 0.9 1.0

δ → 0a 0.5 0.9312 0.8979 0.8746 0.8670 0.8596
0.8 1.0441 1.0107 0.9874 0.9799 0.9724
0.9 1.0817 1.0483 1.0250 1.0175 1.0100
1.0 1.1193 1.0859 1.0626 1.0551 1.0477

δ = 0.01 0.5 0.9276 0.8940 0.8708 0.8633 0.8559
0.8 1.0397 1.0062 0.9830 0.9755 0.9681
0.9 1.0771 1.0436 1.0204 1.0129 1.0055
1.0 1.1144 1.0810 1.0578 1.0503 1.0429

δ = 0.1 0.5 0.8954 0.8631 0.8388 0.8316 0.8245
0.8 1.0027 0.9707 0.9484 0.9387 0.9316
0.9 1.0382 1.0063 0.9841 0.9769 0.9671
1.0 1.0738 1.0419 1.0197 1.0125 1.0054

δ = 1 0.5 0.6431 0.6237 0.5836 0.5796 0.5757
0.8 0.7137 0.6953 0.6824 0.6456 0.6419
0.9 0.7361 0.7179 0.7052 0.7011 0.6627
1.0 0.7579 0.7400 0.7275 0.7234 0.7194

δ = 10 0.5 0.1318 0.1309 0.1306 0.1305 0.1304
0.8 0.1397 0.1393 0.1391 0.1391 0.1390
0.9 0.1403 0.1401 0.1400 0.1399 0.1398
1.0 0.1436 0.1431 0.1430 0.1430 0.1429

TABLE 3. Dimensionless viscous drag force on the sphere.
aEquation (6.3), free molecular regime.

is a good agreement between our results and those provided by the other authors when
diffuse scattering is assumed. Moreover, in case of thermophoresis, the results obtained
in the present work are in better agreement with the data reported by Takata et al. (1993)
than those obtained by Beresnev & Chernyak (1995) in the considered range of the gas
rarefaction. Since our results and those by Beresnev & Chernyak (1995) are based on the
solution of the same kinetic equation, one can conclude that the better agreement with the
results obtained from the Boltzmann equation is due to the numerical technique used in
our work, i.e. the discrete velocity method. The reciprocity relation (5.7) is fulfilled within
the numerical error. Table 1 shows the fulfillment of the reciprocity relation (5.7) when
δ = 0.1 and 1 for some sets of accommodation coefficients.

For other kinds of gas–surface interaction law, some numerical results obtained in
the present work are presented in tables 2 and 3 for a range of rarefaction parameters
δ which covers the free molecular, transitional and hydrodynamic regimes. The values
of the accommodation coefficients considered in the calculations were chosen because,
in practice, the coefficients vary in the ranges 0.6 ≤ αt ≤ 1 and 0.1 ≤ αn ≤ 1 for some
gases; see, e.g. Sharipov (1999) and Sharipov & Moldover (2016). According to table 2,
the thermophoretic force can be either in the direction of the temperature gradient or in
the opposite direction to it. Usually, the thermophoretic force is in the opposite direction
to the temperature gradient, i.e. the force tends to move the particle from a hot to cold
region in the gas. However, in some situations the movement of the particle from a cold to
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FIGURE 2. Ratio of the thermophoretic force on the sphere to its value in the free molecular
regime: comparison to the results presented by Beresnev & Chernyak (1995) and Takata et al.
(1992) for diffuse scattering.

0

0.2

0.4

0.6

0.8

1.0

10–1 101100

F*u

δ

Beresnev
Takata
Present work

FIGURE 3. Ratio of the drag force on the sphere to its value in the free molecular regime:
comparison to the results presented by Beresnev et al. (1990) and Takata et al. (1993) for diffuse
scattering.

hot region can occur and such a phenomenon is known as negative thermophoresis, which
corresponds to a force in the same direction of the temperature gradient. The negative
thermophoresis of particles with high thermal conductivity is expected to appear at large
values of rarefaction parameter, i.e. in the continuum and near-continuum regimes. The
thermal creep flow, or thermal slip flow, which is induced in the vicinity of a boundary
subject to a temperature gradient along it, is the main mechanism of thermophoresis. The
thermal creep flow is strongly sensitive to both the TMAC and NEAC (see, e.g. Sharipov
2011) and it appears in an approximation of first order in the Knudsen number so that
the equations of continuum mechanics with the usual slip boundary conditions lead to
it. In the case of particles with low and moderate thermal conductivity related to that of
the gas, the thermal creep flow is dominant. However, in the case of particles with high
thermal conductivity, the more accepted explanation for the reversal of the thermophoretic
force is still that given by Sone (1966, 1972, 2007) with the introduction of the so-called
thermal stress slip flow, which is an effect of second order in the Knudsen number caused
by the non-uniformity of the temperature field in the gas and also dependent on the
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gas–surface interaction law. Minute details regarding the thermal stress slip flow are given
by Sone (1966, 1972, 2007). Nevertheless, it is important to point out that the dependence
of the thermal stress slip flow on the TMAC and NEAC as introduced by Cercignani
& Lampis (1971) is not known yet. Table 2 shows the appearance of the negative
thermophoresis when δ = 10 for some sets of accommodation coefficients. For instance,
when αn = 0.1 and αt varies from 1 to 0.5, the force is reversed, i.e. the force is positive
in the direction of the temperature gradient. These results show that the occurrence of the
negative thermophoresis depends not only on the rarefaction degree of the gas flow and
thermal conductivity of aerosol particles, but also on the accommodation coefficients on
the surface. Therefore, the appropriate modelling of the gas–surface interaction plays a
fundamental role for the correct description of the thermophoresis phenomenon.

According to tables 2 and 3, the thermophoretic and drag forces depend on both
accommodation coefficients in the whole range of the gas rarefaction. As one can see in
table 2, for fixed values of αn , when the thermophoretic force is in the opposite direction
to the temperature gradient, its magnitude decreases as αt varies from 1 to 0.5. Moreover,
for fixed values of αt, the magnitude of the thermophoretic force increases when αn varies
from 1 to 0.1. The same qualitative behaviour is observed in table 3 for the drag force on
the sphere. In fact, this kind of behaviour is due to the fact that an increase of αt means
an increase of tangential stress acting on the sphere, while an increase of αn means an
increase of normal stress on the sphere. However, when the force is reversed, the bevavior
of the thermal force on the accommodation coefficients is opposite, i.e. the larger the
NEAC the larger the magnitude of the thermophoretic force, and the larger the TMAC
the smaller the magnitude of the thermophoretic force on the sphere. The results given
in these tables also show us that, in spite of the smallness of the thermophoretic force
in comparison to the drag force on the sphere, the dependence of the thermophoretic
force on the accommodation coefficients is stronger than that observed for the drag force.
For instance, the maximum deviation of the thermophoretic force from the corresponding
value for complete accommodation is around 50 % when δ = 0.1, 94 % when δ = 1 and
larger than 100 % when δ = 10. On the other hand, the maximum deviation of the drag
force from that value in the case of diffuse scattering is around 7 % when δ = 0.1, 5 %
when δ = 1 and 0.5 % when δ = 10. It can also be seen that the dependence of the
thermophoretic force on the accommodation coefficients is larger in the hydrodynamic
regime, while for the drag force such a dependence is larger in the free molecular regime.

7.3. Slip flow regime
In situations where δ � 1, the drag force acting on the sphere can be obtained from the
solution of the Navier–Stokes equations with slip boundary condition. Thus, according to
Sharipov (2011), the dimensionless drag force is written as

Fu = 3
2δ

(
1 − σP

δ

)
, (7.3)

where σP is the viscous slip coefficient, which strongly depends on the TMAC. Siewert
& Sharipov (2002) and Sharipov (2003a) provide some values of σP for a single gas
obtained numerically via the solution of the Shakhov kinetic equation and the CL model of
gas–surface interaction. For practical applications, a formula which perfectly interpolates
the results provided by Siewert & Sharipov (2002) and Sharipov (2003a) is presented by
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Sharipov (2011) as

σP = 1.772
αt

− 0.754. (7.4)

The results obtained from (7.3) are in good agreement with the experimental data found
in the literature. For instance, in the case of αt = 1 and δ > 10, the results obtained from
(7.3) agree very well with the experimental data provided by Allen & Raabe (1985) and
Hutchinson, Harper & Felder (1995) for the drag force on spherical particles of polystyrene
latex in air at ambient conditions.

Similarly, for situations where δ > 10, an expression for the thermophoretic force on
the sphere can be obtained from the solution of the Navier–Stokes–Fourier equations with
slip velocity and temperature jump boundary conditions, e.g. Brock (1962). However,
the thermophoretic force predicted from these equations have a large deviation from
experimental data for high thermal conductivity particles, e.g. Jacobsen & Brock (1965).
This failure is attributed to the fact that the first-order slip solution cannot account
for the phenomena arising in the vicinity of the particle, which is a region with large
departure from local thermodynamic equilibrium. On the contrary, theories based on
higher-order approximation in the Knudsen number, as that proposed by Sone (1966),
are able to predict the thermophoretic force on high thermal conductivity particles in the
continuum and near continuum or slip flow regimes. However, it is worth mentioning
that the solutions obtained from higher-order approximations in the Knudsen number
rely on the accurate determination of the slip velocity and temperature jump coefficients,
and these quantities can be strongly dependent on the accommodation coefficients and
intermolecular interaction potential. As pointed out in the review by Sharipov (2011),
to obtain more reliable theoretical values of the slip and jump coefficients, numerical
methods to solve the Boltzmann equation with a realistic potential of intermolecular
interaction and new models of the gas–surface interaction should be developed as well
as carrying out more experiments.

7.4. Flow fields
The macroscopic characteristics of the gas flow around the sphere are dependent on
the accommodation coefficients. Figures 4–7 show the profiles of the radial and polar
components of the bulk velocity, density and temperature deviations from equilibrium,
respectively, due to the thermodynamic force XT , as functions of the distance r/δ, when
δ = 0.1, 1 and 10. Similarly, figures 8 and 9 show the profiles of the radial and polar
components of the bulk velocity, the density and temperature deviations from equilibrium,
but due to the thermodynamic force Xu. Since it was verified that there is no influence
of the NEAC on the gas bulk velocity due to Xu, and the influence of the TMAC on the
density and temperature deviations from equilibrium due to the same thermodynamic force
is negligible, the profiles of these quantities as functions of the distance r/δ are provided
as online supplementary material. Note that, according to the definitions given in (2.8a–c)
and (2.10), the dimensionless distance r/δ corresponds to the ratio of the dimension radial
distance r′ from the sphere to the radius R0 of the sphere. The dependence on the TMAC
is shown in figures 4, 5 and 8, with the NEAC fixed at αn = 0.1. The dependence on the
NEAC is shown in figures 6, 7 and 9, with the TMAC fixed at αt = 1. The fixed values
of αn and αt were chosen because, as noted in tables 2 and 3, the larger deviations of the
thermophoretic and drag forces from those values in the case of diffuse scattering occurs
when αn = 0.1 and αt = 1.
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FIGURE 4. Components of the bulk velocity as functions of the radial distance from the sphere
due to the thermodynamic force XT for fixed αn = 0.1. (a) Rarefaction parameter δ = 0.1;
(b) rarefaction parameter δ = 1; (c) rarefaction parameter δ = 10.

From figures 4–7, regarding the macroscopic quantities due to the thermodynamic force
XT , one can conclude the following. (i) According to figures 4 and 6, the radial and polar
components of the bulk velocity depend on both accommodation coefficients. However,
the dependence on the TMAC tends to be larger as the gas flow tends to the free molecular
regime, while the dependence on the NEAC tends to be larger as the gas flow tends to
the hydrodynamic regime. Quantitatively, the dependence on the NEAC is larger than that
on the TMAC. Figure 6 shows us that when δ = 10, αn = αt = 1, the bulk velocity of
the gas in the vicinity of the sphere starts to change direction, which means the starting
of the negative thermophoresis on the sphere. In order to see the dependence of the bulk
velocity of the gas flow due to the temperature gradient on the NEAC and the appearance
of the negative thermophoresis, the speed contour and the velocity streamlines are given
in figure 10 for δ = 10, the TMAC is fixed at αt = 0.5 and the NEAC at αn = 0.1 and 1.
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FIGURE 5. Density and temperature deviations as functions of the radial distance from the
sphere due to the thermodynamic force XT for fixed αn = 0.1. (a) Rarefaction parameter δ = 0.1;
(b) rarefaction parameter δ = 1; (c) rarefaction parameter δ = 10.

According to this figure, the bulk velocity of the gas flow strongly depends on the NEAC
and it is even reversed when αn = 1, which means a gas flow in the opposite direction to
the temperature gradient and, thus, the movement of the particle in the same direction of
the temperature gradient, i.e. the negative thermophoresis on the sphere. From figure 10,
it is worth noting that the NEAC also influences the flow field far from the sphere, which
can be noted by the vortex position in the figure. (ii) The temperature of the gas flow tends
to increase in the vicinity of the sphere in free molecular and transition regimes. However,
in the hydrodynamic regime the temperature of the gas decreases near the sphere. The
qualitative behaviour is the same for arbitrary values of accommodation coefficients, but
the influence of the NEAC is larger than that on the TMAC.

From figures 8 and 9, regarding the macroscopic quantities due to the thermodynamic
force Xu, one can conclude the following. (i) According to figure 8, near the sphere the
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FIGURE 6. Components of the bulk velocity as functions of the radial distance from the
sphere due to the thermodynamic force XT for fixed αt = 1. (a) Rarefaction parameter δ = 0.1;
(b) rarefaction parameter δ = 1; (c) rarefaction parameter δ = 10.

radial component of the bulk velocity tends to decrease while the polar component tends to
increase. This situation corresponds to a decrease in the bulk velocity of the gas flow due to
the presence of the sphere. This qualitative behaviour is already known from the literature.
As previously mentioned, it was verified that there was no influence of the NEAC on the
bulk velocity of the gas flow due to Xu. However, as one can see from figure 8, there is
a small dependence on the TMAC. (ii) Regarding the number density and temperature of
the gas flow around the sphere, according to figure 9, these quantities always decrease in
the vicinity of the sphere. However, while the dependence of the density and temperature
deviations on the TMAC is negligible, there is a significant dependence on the NEAC.
As one can see in figure 9, when αn varies from 1 to 0.1, the temperature deviation near
the sphere strongly deviates from the corresponding plot for diffuse scattering in the three
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FIGURE 7. Density and temperature deviations as functions of the radial distance from the
sphere due to the thermodynamic force XT for fixed αt = 1. (a) Rarefaction parameter δ = 0.1;
(b) rarefaction parameter δ = 1; (c) rarefaction parameter δ = 10.

situations of gas rarefaction considered, i.e. δ = 0.1, 1 and 10. The dependence of the
density deviation on the NEAC is negligible in the free molecular regime, but it tends to
be significant as the gas flow tends to the hydrodynamic regime.

7.5. Comparison with experiment
Figure 11 shows the comparison between the results obtained in the present work for the
dimension thermophoretic force, in μN, and those provided by Bosworth et al. (2016) for
a copper sphere in argon gas in a wide range of the gas rarefaction. The experimental
apparatus employed by Bosworth et al. (2016) consisted of measuring the thermophoretic
force acting on a sphere, with a radius of about 0.025 m, and fixed in the middle of two
61 cm × 61 cm × 0.9 cm copper plates placed within a vacuum chamber filled with argon
gas at ambient temperature and pressure ranging from 13.3 to 0.013 Pa. The distance
between the plates was fixed at 40 cm and their temperatures were set up to establish
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FIGURE 8. Components of the bulk velocity as functions of the radial distance from the sphere
due to the thermodynamic force Xu for fixed αn = 0.1. (a) Rarefaction parameter δ = 0.1;
(b) rarefaction parameter δ = 1; (c) rarefaction parameter δ = 10.

a temperature gradient of 35 K m−1 between them. However, in rarefied conditions, the
profile of the gas temperature between the plates is not linear and there is a temperature
jump at the plates. Moreover, the temperature gradient through the gas tends to decrease as
the pressure decreases. Therefore, to compare our numerical results with the experimental
data provided by Bosworth et al. (2016), these effects must be taken into account. For
pressures lower than 1 Pa, the temperature gradient can be estimated with basis on
the temperature profiles presented by Bosworth et al. (2016) in figure 5, which were
obtained numerically via the DSMC method. The temperature jump coefficient necessary
to estimate the gas temperature at the walls can be obtained from the interpolating formula
given by Sharipov & Moldover (2016). Here, it is worth noting that the experimental
configuration provides the maximum radial coordinate r′ = 8δ�0, where the equivalent
mean free path �0 is defined in (2.6a,b). Nonetheless, the convergence of the numerical
calculations within the numerical error was achieved by considering the maximum radial
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FIGURE 9. Density and temperature deviations as functions of the radial distance from the
sphere due to the thermodynamic force Xu for fixed αt = 1. (a) Rarefaction parameter δ = 0.1;
(b) rarefaction parameter δ = 1; (c) rarefaction parameter δ = 10.

coordinate varying from 10�0 to 100�0 as the rarefaction parameter δ varied from 0.01 to
10. Therefore, in the present work, as the rarefaction parameter decreases, the comparison
between our numerical results and the experimental data provided by Bosworth et al.
(2016) is valid only at approximately δ = 1. For δ < 1, the comparison is no longer
valid because the experimental configuration, i.e. the distance between the plates and
sphere radius, does not provide our problem assumption of local equilibrium far from
the sphere. According to the literature (see, e.g. Sazhin et al. 2001 and Sharipov &
Moldover 2016) in the case of argon gas and a metallic surface, the more reliable values of
accommodation coefficients supported by experimental data are αt = 1 and αn = 0.9 on
an atomically clean surface whereas on a contaminated surface the gas–surface interaction
is closer to diffuse scattering. Then, the results obtained in the present work for diffuse
scattering, i.e. αt = 1 and αn = 1, and also αt = 1 and αn = 0.9, are given in figure 11.
The viscosity of the gas was obtained from Vogel et al. (2010). According to figure 11,
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FIGURE 10. Speed contour and velocity streamlines for fixed αt = 0.5 and δ = 10.
(a) αn = 0.1 and (b) αn = 1.

there is a good agreement between the results obtained in the present work and the
experimental data provided by Bosworth et al. (2016) in the range 1 ≤ δ ≤ 10. However,
although the negative thermophoresis was detected in the experiment carried out by
Bosworth et al. (2016), in the present work it was not predicted numerically for the
chosen set of accommodation coefficients. Nonetheless, according to the results presented
in table 2, the negative thermophoresis is predicted numerically for δ = 10 only for
some sets of accommodation coefficients. From figure 11 one can also see that, in the
range 1 ≤ δ ≤ 10, the results corresponding to αt = 1 and αn = 0.9 are closer to the
experimental data provided by Bosworth et al. (2016) than those corresponding to diffuse
scattering.
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FIGURE 11. Dimensional thermophoretic force: comparison with experimental data provided
by Bosworth et al. (2016) for a copper sphere in argon gas.

8. Concluding remarks

In the present work, the classical problems of thermophoresis and viscous drag
on a sphere with high thermal conductivity were investigated on the basis of the
linearized kinetic equation proposed by Shakhov and the Cercignani–Lampis model to
the gas–surface interaction law. In the free molecular regime the solutions for both
problems were obtained analytically, while in the transitional and hydrodynamic regimes
the problems were solved numerically via the discrete velocity method with a proper
method to take into account the discontinuity of the distribution function around a convex
body. The reciprocity relation between the cross phenomena was obtained and verified
numerically within the numerical error. The thermophoretic and drag forces acting on the
sphere, as well as the macroscopic characteristics of the gas flow around it, were calculated
for some sets of TMAC and NEAC which were chosen according to the data available
in the literature concerning experiments for monatomic gases at various surfaces. The
results show a strong dependence of the thermophoretic force on both accommodation
coefficients, including the appearance of the negative thermophoresis in the hydrodynamic
regime as TMAC and the NEAC vary. Moreover, the results show a dependence of the
viscous drag force on the accommodation coefficients, but such a dependence is smaller
than that observed for the thermophoretic force. Similarly, the flow fields around the sphere
also depend on the accommodation coefficients, but the dependence of the quantities due
to the thermodynamic force Xu is smaller than that observed for the quantities due to
the thermodynamic force XT . As the gas tends to the hydrodynamic regime, the drag
force tends to be independent of the NEAC as predicted by the expression obtained
from the Navier–Stokes equations with slip boundary conditions at the spherical surface.
Regarding the comparison with experimental data provided by Bosworth et al. (2016), a
good agreement was verified for the case of a copper sphere in argon gas when αt = 1
and αn = 0.9 in the range of the rarefaction parameter 1 ≤ δ ≤ 10. For smaller values
of δ, the comparison is no longer valid because the assumption of local equilibrium far
from the sphere is not valid. Moreover, in the comparison with experiment our results did
not predict the negative thermophoresis for δ = 10 and the chosen sets of accommodation
coefficients. However, in the present work, the negative thermophoresis is predicted for
other sets of accommodation coefficients. Thus, according to the results of the present
work, a better understanding of the transport phenomena of spherical aerosols relies on
the correct description of the gas–surface interaction law so that further investigations on

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

52
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.523


Drag and thermophoresis on a sphere in a rarefied gas 900 A37-31

this research topic must be encouraged, experimentally and numerically. Moreover, since
the data on this topic are still scarce in the literature, the results provided in the present
work represent a significant contribution towards a better understanding of the phoretic
phenomena.
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Figures 1–4 show the comparison between our results and those provided by Chernyak

& Sograbi (2019) for the drag and thermophoretic forces in the free molecular regime as
the NEAC and TMAC vary.

Figure 5 shows the profiles of the radial and polar components of the bulk velocity due
to Xu as functions of the distance r/δ when δ = 0.1, 1 and 10. The TMAC is fixed at
αt = 1, while the NEAC assumes the values αn = 0.1, 0.5, 0.8 and 1.

Figure 6 shows the profiles of the density and temperature deviations due to Xu as
functions of the distance r/δ when δ = 0.1, 1 and 10. The NEAC is fixed at αn = 0.1,
while the TMAC assumes the values αt = 0.5, 0.8 and 1.

Appendix A. Analytic solution in the free molecular regime

The method of the characteristics allows us to obtain the solution of the collisionless
kinetic equation (6.1) for each thermodynamic force (n = T , u) as

h(n)(r, θ, c) =
⎧⎨
⎩h(n)

c cos θ + h(n)
s cθ sin θ + g(n)

S
c
, 0 ≤ θ ′ ≤ θ0,

h(n)
∞ , θ0 ≤ θ ′ ≤ π,

(A 1)

where

h(n)
c (r, c, θ ′) = C(n)

1

(
r − S

c
cr

)
− C(n)

2 cr, (A 2)

h(n)
s (r, c, θ ′) = C(n)

1
S
c

+ C(n)

2 . (A 3)

The free terms g(n) are given in (3.9a,b). The functions h(n)
∞ are given in (3.14) and (3.15)

and, for convenience, they can be written as

h(n)
∞ = h(n)

c∞ cos θ + h(n)
s∞ cθ sin θ, (A 4)
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where
h(T)

c∞ = − 3
2 cr

(
c2 − 5

2

)
, h(T)

s∞ = 3
2

(
c2 − 5

2

)
, (A 5a,b)

and
h(u)

c∞ = 0, h(u)
s∞ = 0. (A 6a,b)

We denote by S the distance between a point in the gas flow domain with Cartesian
coordinates (x, y, z) and a point on the spherical surface with Cartesian coordinates
(x0, y0, z0) which is written as

S = r cos θ ′ −
√

r2
0 − r2 sin2 θ ′. (A 7)

It is worth noting that the vector S is directed towards -c and, consequently, the following
relation is valid:

z0 = z − S
c

cz. (A 8)

The angle θ0 is given by

θ0 = arcsin
(r0

r

)
. (A 9)

The quantities C(T)

1 and C(T)

2 are obtained from the boundary condition (4.17) as follows:

C(T)

1 = 3
2r0

{
α3/2

n H3(η) + α1/2
n H1(η)

[
αt(2 − αt) + (1 − αt)

2c2
t − 5

2

]}

+ αn(1 − c2
r ) + αt(2 − αt) − αt(2 − αt)c2

t + C(T)

2
cr

r0
, (A 10)

C(T)

2 = 3
2
(1 − αt)

[
αn + (1 − αn)c2

r + (1 − αt)
2c2

t + 2αt(2 − αt) − 5
2

]
. (A 11)

Similarly, the quantities C(u)

1 and C(u)

2 are obtained from the boundary condition (4.18)
as

C(u)

1 = −2[(1 − αt)cr + √
αnH1(η)]

r0
, (A 12)

C(u)

2 = 2αt. (A 13)

The integrals H1(η) and H3(η) are defined in (4.15a,b).

Appendix B. Split method to solve the kinetic equation

The differential equation (6.5) subject to the boundary condition (6.6) is solved
analytically via the method of characteristics and its solution is written as

h(n)

0 (r, θ, c =
{

[h(n)
c cos θ + h(n)

s sin θ ] e−S/c, 0 ≤ θ ′ ≤ θ0,

0, θ0 < θ ′ ≤ π,
(B 1)

where the distance S along the characteristic line and the angle θ0 are given in (A 7) and
(A 9). The functions h(n)

c and h(n)
s are given in (A 2) and (A 3), but here

C(T)

1 = αn(1 − c2
r ) + αt(2 − αt)(1 − c2

t ), C(T)

2 = 0, (B 2a,b)

while C(u)

1 and C(u)

2 are given in (A 12) and (A 13).
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The system of kinetic equations obtained from the substitution of the representation
(6.9) into the kinetic equation for the function h̃(n) reads as

cr
∂ h̃(n)

c

∂r
− ct

r
∂ h̃(n)

c

∂θ ′ + c2
t

r
h̃(n)

s = ν∗(n) +
(

c2 − 3
2

)
τ ∗(n) + 2cru∗(n)

r

+ 4
15

cr

(
c2 − 5

2

)
q∗(n)

r − h̃(n)
c + g∗(n)

1 , (B 3)

cr
∂ h̃(n)

s

∂r
− ct

r
∂ h̃(n)

s

∂θ ′ − cr

r
h̃(n)

s − 1
r

h̃(n)
c = 2u∗(n)

θ

+ 4
15

(
c2 − 5

2

)
q∗(n)

θ − h̃(n)
s + g∗(n)

2 , (B 4)

where the free terms for each thermodynamic force are given as

g∗(T)

1 = −cr
(
c2 − 5

2

)
, g∗(T)

2 = c2 − 5
2 , g∗(u)

1 = g∗(u)

2 = 0. (B 5a–c)

Then, from (3.17)–(3.22) and (6.16), the dimensionless moments which appear on the
right-hand side of (B 3) and (B 4) are written as

ν∗(n)(r) = ν
(n)

0 (r) + 2√
π

∫ ∞

0

∫ π

0
cth̃(n)

c e−c2
c dc dθ ′, (B 6)

τ ∗(n)(r) = τ
(n)

0 (r) + 4
3
√

π

∫ ∞

0

∫ π

0

(
c2 − 3

2

)
cth̃(n)

c e−c2
c dc dθ ′, (B 7)

u∗(n)
r (r) = u(n)

r0 (r) + 2√
π

∫ ∞

0

∫ π

0
crcth̃(n)

c e−c2
c dc dθ ′, (B 8)

u∗(n)
θ (r) = u(n)

θ0 (r) + 1√
π

∫ ∞

0

∫ π

0
c3

t h̃(n)
s e−c2

c dc dθ ′, (B 9)

q∗(n)
r (r) = q(n)

r0 (r) + 2√
π

∫ ∞

0

∫ π

0
crct

(
c2 − 5

2

)
h̃(n)

c e−c2
c dc dθ ′, (B 10)

q∗(n)
θ (r) = q(n)

θ0 (r) + 1√
π

∫ ∞

0

∫ π

0
c3

t

(
c2 − 5

2

)
h̃(n)

s e−c2
c dc dθ ′, (B 11)

where the quantities with subscript zero are calculated using the known functions h(n)

0 ,
given in (B 1), and read as

ν
(n)

0 (r) = 2√
π

∫ ∞

0

∫ θ0

0
cth(n)

c e−c2−S/cc dc dθ ′, (B 12)

τ
(n)

0 (r) = 4
3
√

π

∫ ∞

0

∫ θ0

0

(
c2 − 3

2

)
cth(n)

c e−c2−S/cc dc dθ ′, (B 13)

u(n)

r0 (r) = 2√
π

∫ ∞

0

∫ θ0

0
crcth(n)

c e−c2−S/cc dc dθ ′, (B 14)
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u(n)

θ0 (r) = 1√
π

∫ ∞

0

∫ θ0

0
c3

t h(n)
s e−c2−S/cc dc dθ ′, (B 15)

q(n)

r0 (r) = 2√
π

∫ ∞

0

∫ θ0

0
crct

(
c2 − 5

2

)
h(n)

c e−c2−S/cc dc dθ ′, (B 16)

q(n)

θ0 (r) = 1√
π

∫ ∞

0

∫ θ0

0
crct

(
c2 − 5

2

)
h(n)

s e−c2−S/cc dc dθ ′. (B 17)

The dimensionless drag and thermophoretic forces on the sphere, which are defined in
(3.26) and (3.27), are written as

Fn = Fn0 − 4
3
√

π

∫ ∞

−∞

∫ ∞

−∞
c2

r cth̃(n)
c (r0, cr, ct) e−c2

dcr dct

+ 4
3
√

π

∫ ∞

−∞

∫ ∞

−∞
crc3

t h̃(n)
s (r0, cr, ct) e−c2

dcr dct, (B 18)

where Fn0 is obtained by substituting the solution (B 1) into (3.26) and (3.27) when r = r0.
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