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and CRIST ÓBAL ROJAS§¶

†Dipartimento di Matematica Applicata, Università di Pisa,
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We discuss some recent results related to the deduction of a suitable probabilistic model for

the description of the statistical features of a given deterministic dynamics. More precisely, we

motivate and investigate the computability of invariant measures and some related concepts.

We also present some experiments investigating the limits of naive simulations in dynamics.

1. Introduction

This paper is a contribution to the debate raised by this special issue of Mathematical

Structures in Computer Science. Quoting the Preface to this special issue:

‘Kolmogorov’s probabilistic syntax has been considered capable of quite satisfactorily hosting

and formally organising any specific factual probabilistic problem. Furthermore, hardly anybody

has seemed to be troubled by the fact that, in any given factual probabilistic situation, in order

to calculate predictions, we have to specify numerically the individual probabilities of each event

involved in that particular factual situation, whereas Kolmogorov’s theory of probabilities contains

exclusively general constraints on a probability measure, which are quite independent of any

particular probabilistic situation.’ (from the Preface)

In other words, while Kolmogorov’s axiomatisation of probabilities is suitable for the

mathematical analysis of the concept of probability, it does not tell us how to calculate the

individual probabilities that rule the statistics of a specific factual probabilistic situation.
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Depending on the point of view taken, this problem has several sides, with subtle

different interpretations, each of which requires its own approach to be discussed. For

example, in some simple cases (such as coin tossing), symmetry considerations might be

used to give convincing numerical values of the relevant probabilities. However, in most

practical situations, simple symmetry considerations cannot be applied. Instead, a deeper

study of the observed system can help in the creation of a suitable probabilistic model.

One possibility is to collect statistical data about the factual situation, and then try to

extrapolate from that data to the probabilistic model that best fits the data. However,

this empirical approach is always reinforced by assumptions made on the underlying

phenomenon.

There are other possibilities when the probabilistic situation arises from a physical

phenomenon governed by a deterministic law. Indeed, most real situations related to

classical physical phenomena can be nicely modelled by dynamical systems. As we shall

see, there are several classes of phenomena for which a careful study of the underlying

dynamical system can help us develop a good probabilistic model – at least, good for

answering some important classes of questions (for example, for forecasting the averages

of given observables).

The procedure for creating the probabilistic model from the deterministic law (modelled

as a dynamical system) will correspond to the computation of a physical invariant measure.

We shall see that while this procedure can be implemented in an important class of cases,

there are some subtleties involved that might, in some cases, prevent the procedure from

being implemented at all.

More precisely, if we model our phenomenon as a dynamical system, the resulting

mathematical problems are related to ergodic theory and its computability aspects. In

fact, a significant part of the ergodic theory of dynamical systems is motivated by this and

similar problems. Later in the paper, we shall explain how ergodic theory offers tools for

selecting, for any given dynamical model (arising from a physical phenomenon governed

by a deterministic law), a natural probability measure describing its behaviour. This

process of taking the deterministic law producing the factual situation and determining

a probability distribution that describes it can be seen as a way of relating abstract

Kolmogorov probabilities to factual ‘probabilistic’ situations, provided, of course, we have

access to the underlying deterministic law.

The remaining question is whether the numerical values of the selected probability

distribution can be calculated, say, by a modern computer. This question can be

approached in a rigorous way using computable analysis. We shall present a brief

introduction to this theory, together with some recent mathematical results concerning

the above-mentioned problem of determining the computability of invariant measures. It

will be seen that, again in theory, while there exists several tools, which can by used in

many interesting classes of systems to compute the interesting equilibrium probabilities†,

there are also some pathological probabilistic situations for which there is no algorithm

† These results are rather abstract, and while they state that some specific tasks can be achieved in principle,

the actual implementation of the procedure often involves overcoming several practical complications, such

as the computational resources required.
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to compute any of the equilibrium distributions describing it. On the other hand, if we

assume that the underlying system is a little noisy, the situation improves dramatically:

not only do all the interesting measures become computable, but they can be computed

efficiently (viz. in polynomial time).

There are a number of other problems related to the question of determining the

computability of the statistical properties in dynamical systems, such as computing the

speed of convergence of the above-mentioned time averages, and the computation of

points that behave as ‘random’ (typical) initial conditions. We shall briefly discuss some

recent results related to these issues later in the paper.

In contrast to the rigorous computation of the statistical behaviour of a system

(the computation of a suitable invariant mesasure), and unlike the empirical/statistical

observation mentioned earlier, there is the use of naive simulations on a computer (ignoring

rounding and other errors), which is still the most-performed method in the applied

sciences. It is a fascinating topic because naive simulations seem to work reasonably well

in many cases, despite the rounding errors, which when coupled with the typical instability

of chaotic systems can, in principle, destroy any similarity to the behaviour of system

that is meant to be simulated. We shall discuss some issues related to the limits of this

approach later in the paper.

1.1. Organisation of the paper

In Section 2, we give a brief introduction to ergodic theory, including a description of

how to select, from the deterministic description of the system, the ‘physically relevant’

probability distributions. In Section 3, we briefly describe how Turing computability can

be used to determine rigorously whether continuous objects (such as real functions or

probability distributions) can be computed, or not. In Section 4, we review some of

the recent results dealing with the question of the computability of relevant invariant

measures. In particular, we shall describe:

(i) a general method allowing the computation of the physical measure in many

interesting cases;

(ii) an example of a system where no invariant measure can be computed; and

(iii) a result supporting the conjecture that non-computability phenomena are not robust.

In Section 5, we review the above-mentioned results related to the rigorous computation

of initial conditions exhibiting typical statistical behaviour (rigorous simulations). Finally,

in Section 6, we present a few numerical experiments providing some simple illustrations

of the problems that might arise when using non-rigorous computations, and the limits

of naive simulation (with rounding errors).

2. Dynamical systems and invariant probability distributions

2.1. Probability enters the dynamical model

In this section we shall give a brief description of some elementary ergodic theory in

discrete time dynamical systems as models of evolving physical systems. For a complete
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treatment, see, for instance, Walters (1982) and Mañé (1987). A dynamical system consists

of a metric space X representing all the possible states the system can ever occupy, and and

a map T : X → X representing the dynamics. In principle, such a model is deterministic

in the sense that complete knowledge of the state of the system, say x ∈ X, at some

initial time, entirely determines the future trajectory of the system: x, T (x), T (T (x)), ....

However, despite the deterministic character of the system, there are many interesting

situations for which it is impossible to predict any particular feature about any specific

trajectory. For example, if we are interested in knowing some feature (such as energy,

temperature...) of such a system that can be quantified, and thus represented by a function

f assigning to each state x ∈ X the corresponding quantity f(x), then it is impossible to

predict (compute) the sequence of values f(x), f(T (x)), f(T 2(x)), .... This is a consequence

of the famous sensitivity to initial conditions (chaotic behaviour) and the impossibility of

making measurements with infinite precision (approximation): two initial conditions that

are very close to each other (so they are indistinguishable by physical measurement) may

diverge in time, rendering the true evolution unpredictable in practice.

On the other hand, if we look instead at the averages of the function f along the orbit

Af(x) = lim
n→∞

f(x) + f(T (x)) + ...+ f(Tn−1(x))

n
,

they tend to be quite stable and, more importantly, they do not depend on x.

Suppose for the moment that the point x is such that the above limit exists for

each continuous, compactly supported function f. Then, the map f → Af(x) defines a

continuous functional Cc(X) → R. By the Riesz representation theorem, this functional can

be represented by a measure μx
†. This measure is invariant for the dynamics, μ(T−1A) =

μ(A) for each measurable set A, and represents the statistical limit distribution of the

trajectory of the point x in the space X.

Therefore, by changing our point of view and just looking for the probability distribution

related to the system’s statistics, we may get some useful information about the system’s

behaviour.

A common situation is one in which the phase space can be divided into regions

exhibiting qualitatively different statistical limiting behaviours. Within each region, all

the initial conditions give rise to a trajectory that approaches an ‘attractor’, on which

the limiting dynamics take place (and which can be quite complicated). Thus, different

initial conditions within the same region may lead in the long term to configurations that

have quite different pointwise behaviours, but that are identical in a statistical sense. Any

probability distribution supported in the region will also evolve in time, approaching a

limiting invariant distribution, which is supported in the attractor, and which describes

the dynamics of the equilibrium situation in statistical terms. Note that, depending on

the scale at which we are measuring time steps, the limiting equilibrium regime may be

approached in experiments after a short period of time. For instance, in some particle

† Referring again to the Preface of this special issue, this shows how measures (the Kolmogorov approach to

the concept of probability) come into the game very naturally when considering this kind of question, and

that they are naturally and unavoidabily related to the empirical statistical facts (in the frequentist approach).
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systems, the collisions occur so rapidly that the equilibrium situation is attained almost

instantly with respect to our scale of time.

A major inconvenience with such a mathematical description is that there are often

several probability measures that are invariant for a given dynamics (and it is often an

infinite dimensional convex set). In other words, the theory says that several limiting

equilibrium behaviours may occur, whereas, in practice, we usually observe only one, or a

finite set. Our task then is to understand how to select the prevalent equilibrium behaviour

we observe in practice, and, moreover, to compute the probability invariant distribution

associated with it.

2.2. Ergodic systems and physical probabilities

The basic idea is to select the invariant measures that emerge as a limiting statistical

behaviour for a large set of initial conditions, where the meaning of large will be made

precise later in this section.

A first result to help in this is the ergodic theorem. We say that a system is ergodic

when it is undecomposable in the sense that if T−1(A) = A up to a set of zero measure,

then A has total or null measure.

Theorem 2.1 (pointwise ergodic theorem). If a system is ergodic, then for any f ∈ L1(X, μ),

lim
n→∞

Sfn (x)

n
=

∫
f dμ, (1)

for μ almost each x, where

Sfn = f + f ◦ T + . . .+ f ◦ Tn−1.

In words, this theorem says that time averages of an observable f computed along

μ-typical orbits coincide with phase space averages with respect to μ. That is, the measure

μ describes the statistical behaviour of the system when started from almost every (with

respect to μ) initial point x. However, as we said earlier, for a given dynamics T ,

there could be many possible different ergodic measures (think about all the measures

supported on periodic orbits), each of which having its own notion of ‘almost everywhere’,

and the question then arises as to whether the measure μ we are looking at describes a

significant part of the system. It might perfectly well be that, for instance, the measure

μ is concentrated in a negligible part of the system, and thus describes a probabilistic

behaviour that is very unlikely to occur, so we almost never observe it.

We shall now explain a possible approach to the task of selecting the measures that

are more important for describing the ‘real, physical, observed’ behaviour of the system.

A physical invariant measure is a measure that arises as a time average for a large set of

initial conditions, where large here is in the sense of the natural, uniform measure that

can be put on the configuration space X of our system before starting the dynamics. For

example, when X is a manifold, this measure is usually taken to be the Lebesgue measure

(equidistribution).
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We say that a point x belongs to the basin of attraction of an invariant measure μ if (1)

holds at x for each bounded continuous f. In words, this means that if we assume the

initial state of the system to be x, then its probabilistic behaviour is described by μ (in a

way similar to the description at the beginning of Section 2).

When X is a manifold (possibly with boundary), a physical measure† is an invariant

measure μ whose basin of attraction has positive Lebesgue measure. This says that if

the system starts at some random (with respect to equidistribution) initial condition, then

there is a ‘positive probability’ that the statistical behaviour of the system is governed

by μ.

Physical measures are often a very small (finite) subset of the set of all invariant

measures. It turns out that physical measures also have several other good features, such

as a certain stability under perturbations and noise – for more details and a general survey,

see Young (2002). Moreover, they are often associated with attractors. The presence of

an attractor implies that a whole basin of attraction (with positive Lebesgue measure)

is mapped by the dynamics to this attracting set (in some sense, the physical invariant

measure in chaotic systems is where the Lebesgue measure is sent after many iterations),

which therefore supports a physical measure.

We shall give some concrete examples of physical measures for non-trivial systems in

Section 4.

A physical measure is thus a reasonable and natural notion of probability when applied

to a physical phenomena modelled by a dynamical system, provided we are interested in

the behaviour of averages, or other long term features of the dynamics.

Given this, it becomes important for us to have a way to compute this measure from

the description of the elementary rules of the system. Once we have this computation, we

can say things like ‘the numerical value of the probability that the event A occurs is p’,

without making further assumptions on the model.

3. Turing-rigorous computability over continuous spaces

In this section we present a very brief introduction to the concepts of computable analysis

needed to understand the meaning of the following results. We shall mainly restrict our

attention to computability on R, though much more general definitions and results can

be given – see Brattka et al. (2008) and Weihrauch (2000) or Galatolo et al. (2011b) for

more on the general theory.

3.1. Computability over R

The intuitive notion of an algorithmic or effective procedure on symbolic objects was

formalised in the 1930s in several different and independent ways (by Church, Kleene,

Turing, Post, Markov...), the most popular being Turing Machines. All these formalisations

turned out to be equivalent: they compute the same functions from N to N . The class

of functions thus defined is now called the class of computable functions. The subsets

† Physical measures coincide to a large extent with SRB measures – see Young (2002).
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Fig. 1. (Colour online) The Lorenz attractor – the unique physical measure of the system is

supported on this attractor

of natural numbers that can be enumerated by a computable function are said to be

recursively enumerable (r.e.). Computable functions can also operate on other countable

sets by identifying them with natural numbers through a convenient fixed numbering. In

his seminal paper, Turing introduced the computable reals as those x ∈ R for which there

is a Turing Machine that, upon input n, outputs the first n digits in the binary expansion

of x. The following is an equivalent, but more contemporary, definition.

Definition 3.1. A real number x is computable if there exists a computable function

ϕ : N → Q satisfying

|x− ϕ(n)| < 2n ∀ n ∈ N .
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The computability of sets is defined in a similar way: specifically, by approximating

them by rational intervals. Let IQ denote the set of all open rational intervals (which is

naturally a numbered set).

Definition 3.2. An open set A ⊂ R is effectively open if there is a computable function

ϕ : N → IQ such that

A =
⋃
n∈N

ϕ(n).

Computable real functions are now simply defined as computably continuous as follows.

Definition 3.3. A real function f : R → R is computable if the pre-images of open rational

intervals are all effectively open sets, in a uniform way. That is, there is a computable

function ϕ : IQ × N → IQ such that

f−1(I) =
⋃
n∈N

ϕ(I, n).

A function f is computable on D ⊆ X if, under the above assumptions,

f−1(I) ∩ D = D ∩
⋃
n∈N

ϕ(I, n).

Remark 3.4. It can be shown that a function f is computable if there is a computer

program that computes f(x) in the following sense: on input ε > 0, the program, during

its run, asks the user for approximations of x, and eventually halts and outputs a rational

point q ∈ R satisfying |f(x) − q| < ε. This idea can be formalised using, for example,

the notion of oracle computation. The resulting notion coincides with that given in the

previous definitions.

The following notion will play an important role in proving existence results.

Definition 3.5. A compact set K is computably compact if there is an algorithm AK that,

upon input ε ∈ Q, outputs a finite list of rational intervals I1, ..., In of diameter at most ε

such that

K ⊂
⋃

1�i�n

Ii.

That is, the output of AK (ε) is a finite ε-cover of K .

Examples of computably compact sets are [0, 1] and {x}, where x is a computable

point. Computable compactness in more general spaces is defined analogously (Galatolo

et al. 2011a).

Finally, the computability of probability measures is defined by considering measures

for which there is an algorithm that can compute integrals of simple functions.

Definition 3.6. A probability measure μ over [0, 1] is computable if the function i �→
∫
pi dμ

is computable, where {pi}i∈N is an enumeration of all polynomials pi : [0, 1] → R with

rational coefficients.
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It can be shown that a measure is computable in the above sense if and only if it can be

approximated up to any precision (in some distance defined on the space of probability

measures) by an algorithm producing ‘finite’ measures (think of clouds of points on the

screen) – for more on this, see Hoyrup and Rojas (2009).

4. Computing invariant measures

In this section we review some of the results dealing with the question of whether the

relevant invariant measures of a given system can be computed by an algorithm. As

might be suspected, there is no general answer to the question and, as we shall see, the

computability structure of the space of invariant measures can be intricate. In particular,

we shall give:

(i) general methods allowing the computation of the physical measures in many inter-

esting cases;

(ii) an example of a computable system for which NO invariant measure is computable;

and

(iii) a result supporting the conjecture that if we suppose the system to be a little noisy,

then all physical measures are always efficiently computable, and thus the system

becomes statistically predictable.

4.1. Positive results

We begin by illustrating a simple idea that allows us to establish the computability of the

invariant measure in the most simple case: uniquely ergodic systems. A system is said to

be uniquely ergodic if it has a unique invariant measure. In particular, this measure must

be ergodic and physical (in fact, the trajectory of every initial condition is described by

this measure). For simplicity, we shall state the result over [0, 1], but it holds in general

spaces as well.

Proposition 4.1. If a computable system T : [0, 1] → [0, 1] is uniquely ergodic, then its

invariant measure is computable.

Proof (idea). The key idea is to observe that, given a measure μ, we can algorithmically

detect whether a measure λ is NOT invariant. Indeed, invariant measures must satisfy∫
T dλ =

∫
T ◦ f dλ

for every continuous f. So, by computing the above integrals for a sufficiently rich family

of functions, we can detect whether a given measure λ is not invariant. In this way, we can

rule out all the non-invariant measures, and by compactness considerations, this allows

us to locate the only remaining measure, which is what we are looking for.

When the system is not uniquely ergodic, the mere detection of non-invariance is

not sufficient to locate invariant measures. This is one of the difficulties in extending

the above technique to more general cases. To overcome this obstacle, we have to find
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complementary conditions that allow us to isolate the relevant invariant measure we are

looking for, but ones that are also algorithmically detectable.

The so-called transfer operator provides a useful tool when trying to find these

complementary conditions. A function measurable T between metric spaces naturally

induces a function LT between probability measure spaces. This function LT is linear,

and is called the transfer operator (associated with T ). Measures that are invariant for T

are fixed points of LT .

Let us consider the space PM(X) of Borel probability measures over X. The transfer

operator LT : PM(X) → PM(X) is defined as follows. If μ ∈ PM(X), then LT (μ) ∈
PM(X) is such that

LT (μ)[A] = μ(T−1(A))

for each measurable set A ⊆ X. This operator describes how the measure is transported

by the dynamics. For example, one can check that when δx is the delta measure centred

in x, then LT (δx) = δT (x).

In the non-rigorous numerical approach† (which is commonly used in scientific com-

puting) to the calculations of invariant measures (and many other dynamical quantities),

the calculation is very often achieved by computing the fixed points (and some other

spectral information) of the transfer operator acting on a suitable function space. The

most applied and studied strategy is to find a suitable finite dimensional approximation of

LT (restricted to a suitable function space), which reduces the problem to the computation

of the corresponding relevant eigenvectors of a finite matrix.

An example of this is done by discretising the space X by a partition Ai and replacing

the system by a (finite state) Markov chain with transition probabilities

Pij =
m(Ai ∩ T−1Aj)

m(Ai)

where m is the Lebesgue measure on X (this is called the Ulam method, see, for example,

Froyland (2007), Froyland (2001), Liverani 2001 and Dellnitz and Junge (2002)). Then,

taking finer and finer partitions, we can, in some cases, show that the finite dimensional

model will converge to the real one (and its natural invariant measure to the physical

measure of the original system). In some cases there is an estimate of this speed of

convergence (see, for example, Froyland (2001) for a discussion), but a rigorous bound

on the error (and thus a completely rigorous computation) is known for only a few

cases (piecewise expanding or expanding maps – see Liverani (2001) and Galatolo and

Nisoli (2012).

In the rigorous framework, we can show that the transfer operator is a computable

function, and thus explicit conditions can be given to ensure the computability of some

of its fixed points.

† Non-rigorous here means calculations that do not take any particular account of rounding and discretisation

errors – these include the calculations performed by most of the commonly used numerical software packages.

This means that there is no effective estimate of the final distance between what is meant to be computed

and what is actually computed.
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Theorem 4.2 (Galatolo et al. 2011a, Theorem 3.2). Let T be computable on [0, 1] \ D.

Suppose there is a recursively compact set of probability measures V ⊂ PM([0, 1]) such

that for every μ ∈ V , we have μ(D) = 0. Then, every invariant measure isolated in V is

computable. Moreover, the theorem is uniform in that there is an algorithm that takes

as input finite descriptions of T and V and an ideal ball† in PM([0, 1]) that isolates‡ an

invariant measure μ, and then outputs a finite description of μ.

It is clear that Proposition 4.1 is now a trivial corollary of Theorem 4.2. As we have

already said, the main difficulty in the application of Theorem 4.2 is the requirement that

the invariant measure we are trying to compute be isolated in V . In general, the space

of invariant measures of a given dynamical system could be very large (in particular,

an infinite dimensional convex subset of PM([0, 1])), but there is often some kind of

regularity that can be exploited to characterise an interesting invariant measure, and thus

isolate it from the rest. Some examples of cases where this method can be applied are

given later in the paper.

4.1.1. Absolutely continuous invariant measures. The absolute continuity of a measure is

a property that can be used as a compact condition to rule out all the non-absolutely

continuous measures. In systems possessing a unique such measure, the above method

provides the following result.

Proposition 4.3. Let T be computable on [0, 1] \ D with dimH (D) < 1, and suppose

([0, 1], T ) has a unique absolutely continuous invariant measure μ with bounded density.

Then μ is computable (starting from T and a bound for the L∞ norm of the invariant

density).

Similar results hold for maps on manifolds (see Galatolo et al. (2011a) again). It is

well known that interesting examples of systems having a unique absolutely continuous

invariant measure (with bounded density as required) are the topologically transitive

piecewise expanding maps on the interval or the expanding maps on manifolds.

Definition 4.4. A non-singular function T : ([0, 1], m) → ([0, 1], m) is said to be piecewise

expanding if §:

(1) There is a finite set of points d1 = 0, d2, ..., dn = 1 such that T |(di,di+1) is C2, and it can

be extended to a C2map on [di, di+1].

(2) There are c > 0, λ > 1 such that inf(Tn) � cλn.

(3) T is topologically mixing¶.

The following result holds for this class of maps.

† That is, a basic ‘computable’ ball, which is a generalisation of the intervals IQ in Definition 3.2 – see Galatolo

et al. (2011a).
‡ The isolating ball is not required if the invariant measure is unique in V .
§ Note that the definition of piecewise expanding maps frequently used in the current literature is slightly more

general than the definition we give here.
¶ A system is said to be topologically mixing if, given sets A and B, there exists an integer N such that, for all

n > N, we have fn(A) ∩ B �= �.
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Fig. 2. (Colour online) Two examples of piecewise expanding maps

Proposition 4.5. Suppose a piecewise expanding map T and its first and second derivatives

are computable on [0, 1]−{d1, ..., dn}. Suppose also that its extension to the closed intervals

[di, di+1] are computable. Then, the physical measure can be computed starting from a

description of the system (the points di and the programs computing the map and its

derivatives).

4.1.2. Maximal entropy measures. In some cases the same method can also be applied to

compute the unique invariant measures that maximise entropy. A particular case of great

interest is the so-called quadratic family over the complex numbers. This corresponds to

the family of functions, indexed by c ∈ C, of the form z �→ z2 +c. Each quadratic function

fc has a distinguished invariant set, called the Julia set, which supports the chaotic part

of the dynamics. Julia sets are among the mathematical objects that have attracted most

attention from the scientific community, possibly because of the beauty of their fractal,

self-similar structure. There are countless computer programs for visualising these sets on

a computer screen up to any prescribed resolution: that is, one can zoom-in on a given

region of the set as deeply as desired, observing more and more details of its structure.

The ability to perform such a computation for a set corresponds exactly to the notion of

computable closed set. Despite the variety of computer programs intended to compute the

Julia set, Braverman and Yampolsky (2006) showed that there are computable parameters

c for which the associated Julia set is NOT computable by any algorithm, so no image of

these Julia sets can ever be produced on a computer. This result should be understood as

a note of caution when using computer programs that allow for rounding errors.

This means that we cannot accurately visualise the set over which the chaotic dynamics

take place, but what about their statistical distribution? This question makes sense since
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for all z �= ∞ and every continuous test function ψ, we have

1

2n

∑
w∈(fc)−n(z)

ψ(w) −→
n→∞

∫
ψdλ,

where λ is the Brolin–Lyubich probability measure (Brolin 1965; Lyubich 1982) supported

on the Julia set Jc. This measure is characterised as being the one that maximises

entropy. We can thus ask whether the the Brolin–Lyubich measure is computable. Even

if Jc = Supp(λ) is not a computable set, the answer does not a priori have to be no. In

fact, the following result holds.

Theorem 4.6 (Binder et al. 2011). The Brolin–Lyubich measure of computable quadratic

polynomials is always computable.

This result also follows, essentially, from Theorem 4.2. The difficulty is once again in

finding a recursively compact condition that characterises Brolin–Lyubich measure. This

measure happens to be singular with respect to Lebesgue, so the absolute continuity

argument does not apply. The key property allowing the application of Theorem 4.2 in

this case is balance: a probability measure μ on C is said to be balanced with respect to

a rational function R (of degree at least 2) if for every set A ⊂ C on which R is injective,

we have

μ(R(A)) = d · μ(A),

where d denotes the degree of R.

Computation of the Brolin–Lyubich measure is then reduced to showing that for

probability measures, being balanced is a recursively compact condition. The proof of

this fact is not very difficult, but it does require us to overcome some problems, such as

the fact that the function μ → μ(A) is not computable – for more details, see (Binder

et al. (2011)).

4.2. Negative results and noise

The method described in the previous section has limitations, some of which are actually

impossible to overcome. Indeed, the following result was shown in Galatolo et al. (2011a).

Proposition 4.7. There is a computable, continuous map T on the circle having no

computable invariant probability measure.

For a description of the system and for applications to reverse mathematics, see Galatolo

et al. (2011a, Proposition 12). The construction of such a system is somewhat intricate,

and the question arises as to whether this is a common phenomenon, or a phenomenon

that can be observed in nature, and, in particular, whether the phenomenon persists after

the addition of some small noise. In the specific construction given by Proposition 4.7,

the function can be made as smooth as desired, but any random perturbation of it would

break the particular structure responsible for the non-computability phenomenon.

We are then led to ask whether the addition of a small amount of noise to a

system is sufficient to ‘destroy’ the non-computability phenomenon. The answer, perhaps
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surprisingly, is yes: while there are dynamical systems for which the invariant measures

are non-computable, perturbing such systems makes the invariant measures efficiently

computable. Thus, noise, which makes the short-term behaviour of the system harder to

predict, may make its long-term statistical behaviour computationally tractable.

In our framework, perturbations are modelled as follows: each iteration f of the system

is affected by (a small amount of) random noise. Thus, in the perturbed system Tε,

the state of the system jumps from x to f(x) and then disperses randomly around f(x)

with distribution pεf(x)(·). The parameter ε controls the ‘magnitude’ of the noise, so that

pεf(x)(·) → f(x) as ε → 0. The following result was proved in Braverman et al. (2012).

Theorem 4.8. Let T be a computable system over a compact subset X of Rd and assume

pεf(x) is uniform on the ε-ball around f(x). Then, for almost every ε > 0, the ergodic

measures of the perturbed system Tε are all computable.

The assumption of uniformity on the noise is not essential, and it can be relaxed

to (computable) smoothness. The result follows from general considerations on the

computability and compactness of the relevant spaces. It shows that the non-computability

of invariant measures is not robust.

In addition to establishing the result on the computability of invariant measures in noisy

systems, we can also get upper bounds on the complexity of computing these measures.

However, these results are beyond the scope of this paper – see Braverman et al. (2012)

for details.

5. Computing the speed of ergodic convergence and pseudorandom points

As we mentioned earlier, the Birkhoff ergodic theorem (Theorem 2.1) tells us that if the

system is ergodic, there is a full measure set of points for which the averages of the values

of the observable f along its trajectory (time averages) coincides with the spatial average

of the observable f. Similar results can be obtained for the convergence in the L2 norm,

and others. Many more refined results are linked to the speed of convergence of this limit.

It is then natural to ask if there is a possibility of computing this speed of convergence.

Some abstract results in Avigad et al. (2010) imply that the speed of convergence of

such averages in a computable ergodic dynamical system can be estimated algorithmically.

On the other hand, it is also shown that there are non-ergodic systems where this kind of

estimate is impossible. A very short proof of the result for ergodic systems was given in

Galatolo et al. (2010).

The results on the computation of invariant measures and the speed of convergence

allows us to compute points that are statistically typical for the dynamics. Let μ be a

computable probability measure on [0, 1].

Points satisfying the pointwise ergodic theorem (Theorem 2.1) for an observable f are

said to be typical for f, and points that are typical for each continuous f are said to be

typical for the measure μ (and for the dynamics).

The set of computable points, being countable, is a very small (invariant) set, compared

with the whole space. For this reason, a computable point should only rarely be expected
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to be typical for the dynamics, as defined above. More precisely, the Birkhoff ergodic

theorem (Theorem 2.1) and other almost everywhere theorems that hold for a full measure

set, cannot help us decide if there exists a computable point that is typical for the dynamics.

A number of theoretical questions arise naturally from all these facts. Due to the

importance of forecasting and simulating a dynamical system’s behaviour, these questions

also have some practical motivation. In particular, we are led to ask whether there is some

computable initial condition realising the typical statistical behaviour, and how to choose

such points. Such points could be called pseudorandom points, and a result showing their

existence and their computability from the description of the system could be seen as a

constructive version of the pointwise ergodic theorem.

Based on a kind of constructive version of the Borel–Cantelli Lemma (Galatolo

et al. 2009), and on estimates of the speed of convergence of the ergodic averages

mentioned earlier, the following result can be established (see Galatolo et al. (2010) for

the details).

Theorem 5.1. If ([0, 1], μ, T ) is a computable ergodic system†, then there is a uniform

sequence xn of computable points that is dense on the support of μ and such that for each

n, we have xn is typical for μ. Moreover, this sequence can be computed starting from a

description of Tand μ.

In particular, for the classes of systems where the interesting invariant measure can be

computed from the description of the system, we get that the pseudorandom points can,

in turn, be computed starting from a description of the system alone.

Corollary 5.2. Each piecewise expanding map, with computable derivatives as in the

assumptions of Theorem 4.5, has a sequence of pseudorandom points that is dense in

the support of the measure. Moreover, this sequence can be computed starting from the

description of the system alone.

These two statements can be seen as constructive/effective versions of the ergodic

theorem.

6. Dynamics of non-rigorous simulations

In this section we consider in more detail the problem of naive simulations, that is,

simulations where we do not take account of the various rounding errors.

We simulate the system by discretising the map and the space to a finite set (the ‘floats’,

the ‘doubles’, and so on). It is clear that, in principle, the dynamics of the truncated map

is different from the original one. In spite of this, naive simulation is widely used, and

we can say that, within certain limits, it is quite effective. Of course, there are important

limits to this approach, and it is important to understand them. In the next section,

we shall present some experiments comparing the statistical behaviour of the truncated

map (approximated to a float or double) with the original. We can carry out a rigorous

† That is, a system having a computable invariant measure and a dynamics that is computable on an effective

Gδ-set (an intersection of a sequence of uniformly effective open sets) – see Galatolo et al. (2009) for details.

https://doi.org/10.1017/S0960129512000758 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000758


S. Galatolo, I. Nisoli and C. Rojas 16

simulation of the behaviour of the orbits of the system using special software packages

(iRRAM – see Müller (2001)), which are designed for this kind of work. This means that,

as in interval arithmetic, we compute a number along with the error in the computation.

Then, an iterative step takes place: if the error is too big, we redo the computation with

higher precision, and repeat the process until a precise result is obtained.

It is widely believed that naive computer simulations very often produce correct

statistical behaviour. The evidence for this is mostly heuristic, with most arguments

based on various ‘shadowing’ results (see, for example, Hasselblatt and Katok (1995,

Chapter 18)). In this kind of approach, it can be proved that in a suitable system, every

pseudo-trajectory (such as those obtained in simulations with some computation error) is

close to a real trajectory of the system.

However, even if we know that what we see in a simulation is near to some real

trajectory, we do not know if this real trajectory is typical in some sense†. Another

limitation of this approach is that shadowing results only hold in systems having some

strong hyperbolicity, while many physically interesting systems are not like this.

7. Computing the measure density using the Birkhoff averages

In the first experiment, we shall present one of the possible pathological behaviours of

floating point arithmetics and show that the statistical features of the truncated dynamics

are quite similar to the original for a certain reasonably long time, but after that time,

there is a completely different behaviour.

Consider the map T : [0, 1] → [0, 1] given by

T (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
8

+ 3x+ 2x2 0 � x � 1
4

4(x− 1
4
) 1

4
< x � 1

2

4(x− 1
4
) 1

2
< x � 3

4
7
8

+ 3(x− 1) − 2(x− 1)2 3
4
< x � 1,

whose graph is shown in Figure 2b.

This map is a piecewise expanding map of the interval, like those studied in Lasota and

Yorke (1973). We know it admits a unique a.c. invariant measure with bounded variation

density.

One method for computing an approximation to the density of the invariant measure

is to take advantage of Birkhoff’s ergodic theorem (Theorem 1). We partition the interval

[0, 1] into homogeneous smaller intervals and take the first k iterates of a generic orbit

(with k big). The ratio of the number of iterates falling in one interval of the partition to

† To see why shadowing does not necessarily produce typical statistical behaviour, consider the map T : [0, 1] →
[0, 1] defined by T (x) = 2x (mod 1), and its discretisation to floating point arithmetics: T̃ : [0, 1] → [0, 1].

Due to the binary representation of floating point numbers as a finite sequence of 0s and 1s, and because

the map T̃ acts as a shift, we get that all the orbits of T̃ are attracted by the point 0, while typical orbits of

T are dense in [0, 1].

Hence, shadowing holds, and shows real orbits of T converging to 0. So these are real orbits of the system,

but are not at all typical.
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Fig. 3. 100, 000 Iterates: Birkhoff averages and Ulam approximation

the number of iterates tends to the measure of the interval with respect to the invariant

measure as k goes to infinity.

To see if the implementation of such an algorithm with truncation errors is reliable, we

implemented it using the double standard type, and compared the density obtained with

that obtained using the Ulam approximation, as in Galatolo and Nisoli (2012).

The Ulam approximation consists of approximating the Perron–Frobenius operator

associated with the map T by a finite state Markov chain; we partition the interval [0, 1]

into k homogeneous intervals {Ii}ki . The Markov chain is defined by

(P )ij =
m(T−1Ij ∩ Ii)

m(Ii)
,

and the steady state of this Markov chain approximates (in a way made precise in Galatolo

and Nisoli (2012)) the invariant measure of the map.

The partitions used for the algorithm and for the Ulam approximation are the same: a

homogeneous partition of the interval [0, 1] into 256 intervals.

We took up to 1, 000, 000 iterates for the point 0.311592865439987352675, and drew

graphs of the density at different timesteps.

Figure 3 shows the graph for the density computed with 100, 000 iterates. The solid line

marks the density computed with the Ulam approximation and the dashed line marks the

one computed using double precision. Modulo some fluctuations, the density computed

using double precision is quite close to the one computed with the Ulam partition.

If we take a larger number of iterates, common sense suggests that the fluctuations

will go to 0 as these averages converge, but, at 950, 000 iterates, a strange phenomenon
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Fig. 4. 950, 000 Iterates: Birkhoff averages and Ulam approximation

develops – Figure 4 shows that two peaks appear in the density computed with double

precision. It appears as if the orbit computed with double precision is accumulating in

these two intervals.

Indeed, taking 1, 000, 000 iterates, Figure 5 shows that the density computed using

doubles is a long way from that computed using the Ulam approximation, and shows

some weird behaviour: it appears as if we have entered a periodic orbit contained in

those two intervals.

Now, this can be explained by the fact that, since double precision numbers are a finite

subset of the real numbers, the function f is represented by a function f̃ from a discrete

set into a discrete set, called the discretised map.

Since f̃ maps a finite set to itself, if we choose any initial value x0, we have that

eventually, in the sequence of values

x0, x1 = f̃(x0), x2 = f̃(x1), . . . , xi = f̃(xi−1), . . . ,

one of the values is going to be repeated, that is, xi = xj with i > j. When this happens,

the function repeats the cycle of values xi, . . . , xj−1. This means that when we deal with

functions discretised in floating point arithmetics, all the points are preperiodic.

What happened in our example is that the point, after 947, 988 iterations enters

a periodic orbit of period 2; we computed this data using Brent’s cycle finding al-

gorithm (Brent 1980). Such a behaviour is also observed for other points, for example,

0.918763287687682768742351 enters a periodic orbit of period 2 after 13, 055, 370 itera-

tions.
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Fig. 5. 1, 000, 000 Iterates: Birkhoff averages and Ulam approximation

Table 1. The preperiodic behavior for some point.

Point λ τ

0.0 2 1

0.1 8183624 4816808

0.2 2 3243177

0.3 2 32345141

0.4 2 28

0.5 2 2

0.6 2 28

0.7 2 5067584

0.8 8183624 3612867

0.9 2 14935252

To check whether this behaviour was common, we developed another small experiment

in which, given evenly distributed points in the interval [0, 1], we compute the number

of iterates needed for them to land on a periodic orbit, denoted by τ, and the period of

the periodic orbit they land on, denoted by λ. We show the results of the experiment in

Table 1 for ten equidistributed points in [0, 1].

Therefore, a natural question to ask is whether we can find evidence of the convergence

of Birkhoff averages for the ‘discretised’ maps. In the next section we present some further

experiments showing how the convergence of this average is anything but trivial.
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8. Convergence of Birkhoff averages

In this section we look in more detail at the convergence of time averages of a given

observable to the space average. We shall see that, even in cases where we do not have the

pathology seen above, the convergence of the truncated dynamics is quite approximate

compared with the convergence of rigorous iterations.

To study the convergence of Birkhoff averages, we carried out the following numerical

experiment:

(1) We computed the ergodic average of an observable using a good approximation of

the invariant measure for a piecewise expanding map (by the Ulam method).

(2) We took a large number of homogeneously distributed points in the interval [0, 1].

(3) For each of the points, we computed a large number of iterates, both rigorously and

with single float precision.

(4) At chosen timesteps, we compared the Birkhoff average computed along each of these

orbits (rigorous and single float) with the ergodic average.

(5) We computed the ratio of points along the rigorous orbit and the single float orbit

for which the error on the Birkhoff average was bigger than a given threshold.

To do this, we used the iRRAM library, which enables us to compute a real number

Turing-rigorously up to a given precision.

Computing an orbit using this library enables us to produce two time series, each

containing single precision numbers: the first dataset contains the truncation to floats

of all the points in the rigorous orbit and the second contains the orbit of the single

precision discretised map. Using these datasets, we computed the Birkhoff averages: since

the Birkhoff averages are computed using floating point arithmetic, we can assume that

the behaviour with respect to truncation and rounding of the two averages is the same,

and that any difference in the behaviour is given purely by the dynamical error.

The Lipschitz observable we chose for our experiment is

φ(x) =

⎧⎨
⎩

4x 0 � x � 1
4

1 − 4(x− 1
4
) 1

4
< x � 1

2

0 1
2
< x � 1.

We decided to study the behaviour of a known map (one of the maps from Lan-

ford (1998)). The T : [0, 1] → [0, 1] map we chose is given by

T (x) = 2x+ 0.5x(x− 1) mod 1,

whose graph is shown in Figure 2a.

The ergodic average of the observable was computed using an approximation of the

invariant measure obtained using the Ulam method on a partition of [0, 1] with 2, 097, 152

smaller intervals.

For this map, the ergodic average of the observable (with respect to the approximation

of the invariant measure) is 0.2133442063; we took 100, 000 uniformly spaced points and

fixed the threshold at 0.15625, and then, at every iterate, we compared the ratio

#{points exceeding the error bound}/#{points}.
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Fig. 6. Probability of exceeding the threshold with:

#Points=100, 000, Threshold=0.015625 and Iterates=3, 000

The results are given in Figure 6, which shows the ‘probability’ of exceeding the threshold

for the rigorous computation and the discretised orbit, and the difference between the two

probabilities.

From the graph, it seems as if the probability of exceeding the error bound decreases

exponentially with respect to the number of iterates. The first interesting fact is that

the decay rate seems to be smaller for floating point arithmetics. A second is that the

difference between the two ratios seems to become constant as the number of iterates

increases.

In fact, further experiments show a behaviour that seem to confirm these observa-

tions: to show this, we took longer orbits, taking only 2, 000 points (Turing-rigorous

computations are really expensive) with an error bound of 0.001953. The outcome of this

experiment is shown in Figure 7, from which it appears that the number of points for

which the error is large, on the floating point orbits, stabilises around 70% after 18, 000

iterates.

As a further check, we computed the Birkhoff averages for some points, taking long

orbits, and checked whether the absolute difference compared with our estimate of the

ergodic average went to 0 – the graph for the point
√

2/2 is given in Figure 8.

If we zoom the tail of the graph, as shown in the inset of Figure 8, we see that, while

the error in the Birkhoff average computed on the truncation of the rigorous orbit looks

like it is converging to 0, the error in the average computed along the discretised orbit is

far from 0, and does not show any convergence.
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Fig. 7. Probability of exceeding the threshold with:

#Points=2, 000, Threshold=0.001953 and Iterates=20, 000
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Table 2.

Iterate Error for the rigorous orbit Error for the floating point orbit

59997 0.000943788 0.0041985

59998 0.000940217 0.00420198

59999 0.000936645 0.00420547

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000

Ratio

Fig. 9. Ratio between the points that had already reached the periodic orbit and the total number

of points as the number of iterates grows

It seems that the dynamical error plays an important role in the convergence of the

Birkhoff averages. The behaviour is similar for other points: Table 2 shows the behaviour

for the point
√

3/2 when we look at the errors after almost 60, 000 iterates

One idea we have is that this error may be generated by the fact that none of the orbits

of the discretised map shows a typical behaviour, even when we consider relatively short

times. To investigate this, we took 20, 000 evenly distributed points in [0, 1] and, at each

iterate, calculated the ratio between the points that had already reached the periodic orbit

and the total number of points. As Figure 9 shows, all the points are in a periodic orbit

after 6, 000 iterates, which means that, for all of them, we are computing the Birkhoff

average along a periodic orbit, and the Birkohff averages on a periodic orbit do not, in

general, converge to the ergodic average.

Another interesting fact is that if we look at the length of the periodic orbits where

the points land, on average, this length is 14, 232.4 iterates. This means that after 20, 000

iterations, almost all the points we took into consideration have followed a full periodic

https://doi.org/10.1017/S0960129512000758 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000758


S. Galatolo, I. Nisoli and C. Rojas 24

cycle, which seems to strengthen our idea that the Birkhoff averages do not converge

because we are trapped in periodic orbits.

In our opinion these experiments shows that, in general, using floating point arithmetics

to compute Birkhoff averages and invariant measures should not be considered reliable,

but not because of truncation and rounding errors, but rather because the dynamics of

the discretised map does not mirror the generic dynamic of the real map.
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