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Abstract

The mean time to failure (MTTF) function in age replacement is used to evaluate the
performance and effectiveness of the age replacement policy. In this paper, based on the
MTTF function, we introduce two new nonparametric classes of lifetime distributions
with nonmonotonic mean time to failure in age replacement; increasing then decreasing
MTTF (IDMTTF) and decreasing then increasing MTTF (DIMTTF). The implications
between these classes of distributions and some existing classes of nonmonotonic ageing
classes are studied. The characterizations of IDMTTF and DIMTTF in terms of the scaled
total time on test transform are also obtained.
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1. Introduction

Failure of units during operation might sometimes be costly or dangerous. Age replacement
policy is the most common maintenance policy employed to prevent a unit from failure during
its operation. In age replacement policy, the unit is replaced either at failure time or at the
prespecified time t if it is alive at time t (known as planned replacement age). Let X[t] denote
the time to the first in-service failure of an item under the age replacement policy with the
planned replacement age t . Assuming that F is the lifetime distribution of a new item, the
survival function of X[t] (denoted by St ) is

St (x) = [F(t)]nF (x − nt), nt ≤ x < (n + 1)t, n = 0, 1, . . . ,

where F = 1 − F ; see [3]. The mean of X[t], denoted by MF (t), is called the mean time
to failure (MTTF) in age replacement. It was introduced by Barlow and Proschan [3] to
evaluate the performance and effectiveness of the age replacement policy. Suppose that the
replacement of items are continued even after the first failure is observed. Let Xi, i = 1, 2, . . . ,
be the lifetime of the ith item used in the age replacement policy with distribution F . Define
Wi = min{Xi, t}, i = 1, 2, . . . , and N as the total number of items used until we observe the
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first Wi which is strictly less than t . Then X[t] = ∑N
i=1Wi . Now,

E[X[t] | N = n] = E

[ n∑
i=1

Wi

∣∣∣∣ N = n

]

= E

[n−1∑
i=1

Wi

∣∣∣∣ N = n

]
+ E[Wn | N = n]

= (n − 1)t + E[Xn | Xn < t]

= (n − 1)t + −tF (t) + ∫ t

0 F(x) dx

F(t)
.

Thus, from the fact that the random variable N has a geometric distribution with parameter
F(t), it follows that

MF (t) =
(

1

F(t)
− 1

)
t + −tF (t) + ∫ t

0 F(x) dx

F(t)
=

∫ t

0 F(x) dx

F(t)
.

Kayid et al. [15] obtained MF (t) by a different argument. The distribution F is said to be
decreasing (increasing) mean time to failure (DMTTF (IMTTF)) in age replacement if MF (t)

is decreasing (increasing) on [0, ∞). DMTTF means a type of ‘deterioration’ and IMTTF
means ‘nondeterioration’ or improvement in some senses. The relationship between DMTTF
and IMTTF and some well-known ageing classes of distributions, which we review next, were
investigated by Klefsjö [16].

A lifetime distribution F is said to be an increasing (decreasing) failure rate (IFR (DFR))
if R(x) = − log[F(x)] is convex (concave) on [0, ∞) when finite; see [4]. Equivalently, F

is IFR (DFR) if and only if the failure rate function of F , rF (x) = f (x)/F (x), is increasing
(decreasing) on [0, ∞), provided that the lifetime density f exists. The distribution F is said
to be an increasing (decreasing) failure rate average (IFRA (DFRA)) if R(x)/x is increasing
(decreasing) on [0, ∞) when finite or, equivalently, if the failure rate average function of F ,
r̃F (t) = ∫ t

0 rF (x) dx/t , is increasing (decreasing) on [0, ∞). The distribution F is said to be
new better (worse) than used in expectation (NBUE (NWUE)) if μF (≥ [≤])∫ ∞

t
F (x) dx/F (t)

for all t ≥ 0, where μF is the finite mean of F .
From Klefsjö [16], we know that

IFR(DFR) �⇒ IFRA(DFRA) �⇒ DMTTF(IMTTF) �⇒ NBUE(NWUE).

The classes DMTTF and IMTTF of distributions have received extensive attention in the
literature; see [1], [12]–[15], [18], [19], and [22].

The ageing patterns in the above classes are monotone. However, in practical situations,
it is often seen that the ageing pattern is nonmonotonic; see [5], [9], and [26]. The various
nonmonotonic ageing classes have been introduced in the literature to model such situations.
The classes of distributions with bathtub failure rate (BFR) and upside-down bathtub failure
rate (UBFR) are well-known nonmonotonic ageing classes and have been extensively studied
in the context of reliability; see [20]. Guess et al. [11] introduced the nonmonotonic ageing
classes of distributions with initially increasing (decreasing) and then decreasing (increasing)
mean residual life. The class of new worse (better) then better (worse) than used in the
expectation (NWBUE (NBWUE)) is defined in [17]. Deshpande and Suresh [9] introduced the
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nonmonotonic ageing class of increasing (decreasing) initially and then decreasing (increasing)
residual life. Belzunce et al. [5], based on the Laplace transform of the residual lifetime,
introduced a new concept of nonmonotonic ageing to model some situations in insurance. The
relations between the nonmonotonic ageing classes of distributions have also been studied in
the literature; see, for example, [5], [8], [9], and [24]–[26].

Motivated by the definition of the above nonmonotonic ageing classes, using the MTTF
function, we propose two new nonparametric classes of distributions as follows.

Definition 1. A lifetime distribution F is said to be the initially increasing then decreasing mean
time to failure (IDMTTF) if there exists a change point τ ≥ 0 such that MF (t) is increasing on
[0, τ ) and decreasing on [τ, ∞).

The dual class of ‘decreasing initially then increasing mean time to failure’ (DIMTTF)
distributions is defined similarly by changing the order of the monotonicity.

The class of IDMTTF distributions can be used to model a situation in which the effect
of age replacement is initially beneficial and then adverse, and the dual class of DIMTTF
distributions models the case that the effect of age replacement is initially adverse and then
beneficial. The change point of MF (t) is important in IDMTTF distributions. Clearly, MF (t)

is maximum at this point, so it may be taken as a possible optimal age replacement. Thus,
the IDMTTF property of the F distribution is of great interest in connection with the age
replacement optimization.

There is also a close relationship between the function MF (t) and the expected cost rate
which makes the MTTF change point more interesting. Let c1 be the cost of replacing each
failed unit that includes all costs resulting from a failure and its replacement and let c2 (< c1)
be the cost of exchanging each nonfailed unit. One of the most familiar criteria to determine
the optimal replacement time is minimizing the expected cost rate (see [27, p. 72]) which is
given by

CF (t) = c1F(t) + c2F(t)∫ t

0 F(x) dx
= c1 + c2(F (t)/F (t))

MF (t)
.

Now, let F be an IDMTTF distribution with the change point τ and let T be the optimal
replacement time that minimizes CF (t). From the fact that F(t)/F (t) is decreasing on (0, ∞),
it follows that CF (t) is decreasing on (0, τ ) which, in turn, implies that τ is a lower bound
for T . Furthermore, usually c2/c1 is relatively small, and for large t , F(t)/F (t) � 0 from
which it follows that for large τ , T � τ . We demonstrate this point in the following examples.

Example 1. Let F be a lifetime distribution with survival function

F(x) =

⎧⎪⎨
⎪⎩

e−x, 0 < x < 1,
16
15 e−1(1 − 1

16x3), 1 ≤ x < 2,
8
15 e−x+1, x ≥ 2.

(1)

The corresponding MF (t) is

MF (t) =

⎧⎪⎨
⎪⎩

1, 0 < t < 1,[
1 − 123

60 e−1 + 16
15 e−1t − 1

60 e−1t4][1 − 16
15 e−1(1 − 1

16 t3)]−1
, 1 ≤ t < 2,[

1 + 21
60 e−1 − 8

15 e−t+1
][

1 − 8
15 e−t+1

]−1
, t ≥ 2.

It is possible to show that F is IDMTTF with the change point τ = 1.7389; see Figure 1.
In Figure 2 we present plots of the expected cost rate function for c1 = 1000 and some small
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Figure 1: The MTTF function of distribution given in (1).
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Figure 2: Plots of the expected cost rate function CF (t) of the distribution given in (1) for c1 = 1000
and c2 = 0, 20, 40, 80, 120.

values of c2. From the figure we see the justification that CF (t) is close to c1/MF (t) for large t .
In Table 1 we present the optimal replacement time T for the given values of c1 and c2. We see
that as c2/c1 decreases, T approaches τ = 1.7389 from above.

Example 2. The modified Weibull (MW) model introduced in [21] has the survival function

F(t) = exp(−atαeλt ), t > 0,

with parameters a > 0, α > 0, and λ > 0. Lai et al. [21] showed that the MW model is BFR
whenever 0 < α < 1. From Theorem 4, the MW model is also IDMTTF. The change point of
MF (t) is τ = 2.007 for the parameter values a = 0.8, α = 0.5, and λ = 0.3.
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Table 1: The optimal replacement time T for c1 = 1000 and some small values of c2.

c2 T CF (T )

20 1.7525 850.5263
40 1.7661 856.4259
80 1.7936 856.6161

120 1.8211 857.1896

In Figure 3 we present plots of the expected cost rate function for c1 = 1000 and some small
values of c2. From the figure we see the justification that CF (t) is close to c1/MF (t) for large t .
In Table 2 we present the optimal replacement time T for the given values of c1 and c2. We see
that as c2/c1 decreases, T approaches τ = 2.007 from above.

In Section 2 we study the properties of IDMTTF and DIMTTF distributions and also inves-
tigate their relationships with other well-known nonmonotonic ageing notions. We prove that

BFR �⇒ IDMTTF �⇒ NWBUE

and

UBFR �⇒ DIMTTF �⇒ NBWUE.

We conclude this section by recalling some definitions and theorems which we use later in
this paper. Throughout, the terms increasing and decreasing are used for nonincreasing and
nondecreasing, respectively.
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c2 = 120
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Figure 3: Plots of the expected cost rate function CF (t) of the MW model for c1 = 1000 and c2 =
0, 20, 40, 80, 120.

Table 2: The optimal replacement time T for c1 = 1000 and some small values of c2.

c2 T CF (T )

20 2.0785 1139.826
40 2.1490 1142.683
80 2.2902 1147.652
120 2.4329 1151.749

https://doi.org/10.1017/jpr.2018.82 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.82


New nonparametric classes of distributions 1243

Let F be a lifetime distribution having support on [0, ∞). We say that F is BFR (UBFR)
if there exists a change point x0 ≥ 0 such that R(x) = − log[F(x)] is concave (convex)
on [0, x0) and convex (concave) on [x0, ∞). Equivalently, F is BFR (UBFR) if there exists
a change point x0 ≥ 0 such that rF (x) is decreasing (increasing) in [0, x0) and increasing
(decreasing) on [x0, ∞), provided that rF exists. We say that F is NWBUE (NBWUE) if
there exists a change point x∗ ≥ 0 such that

∫ ∞
x

F (t) dt(≥ [≤])μF F(x) for x < x∗ and∫ ∞
x

F (t) dt(≤ [≥])μF F(x) for x ≥ x∗.
The scaled total time on test (TTT) transform associated with F is

ϕF (u) =
∫ F−1(u)

0 F̄ (x) dx

μF

, u ∈ [0, 1],

where F−1(u) = inf{x, F (x) ≥ u}. The TTT transform plays an important role in reliability
theory because of its application in characterizing many ageing classes of lifetime distributions;
see, for example, [2], [6], and [7]. The following characterizations will help us to prove some
results in the next section.

Theorem 1. (Despande and Suresh [9].) A lifetime distribution F is BFR (UBFR) if and only
if there exist u0 ∈ [0, 1] such that ϕF (u) is convex (concave) on [0, u0) and concave (convex)
on [u0, 1].
Theorem 2. (Klefsjö [17].) A lifetime distribution F is NWBUE (NBWUE) if and only if there
exist u∗ ∈ [0, 1] such that ϕF (u)≤ [≥]u for u ∈ [0, u∗) and ϕF (u)≥ [≤]u for u ∈ [u∗, 1).

2. Characterization and implications

In this section we first obtain a characterization for the IDMTTF distribution in terms of
the scaled TTT transform. Then we discuss the interrelationships between IDMTTF, BFR,
and NWBUE.

To prove the following theorem, we use similar arguments to those of Klefsjö [16] to prove
the characterizations of the DMTTF and IMTTF properties in terms of the scaled TTT transform.

Theorem 3. A lifetime distribution F is IDMTTF if and only if there exist ũ ∈ [0, 1] such that
ϕF (u)/u is increasing in u ∈ [0, ũ) and decreasing in u ∈ [ũ, 1].

Proof. If F is continuous and strictly increasing, the proof follows by using the substitution
u = F(t). We prove the theorem in the general case as follows.

Necessary. Suppose that F is IDMTTF with the change point τ . Then F is continuous on
(0, τ ) and strictly increasing on [τ, ∞). To show that F is continuous on (0, τ ), let t be an
arbitrary point in (0, τ ). We can find a sequence (tn)

∞
n=1 that increases to t . Then, we have

∫ tn
0 F(x) dx

F(tn)
≤

∫ t

0 F(x) dx

F(t)
, n = 1, 2, . . . .

Now, letting n → ∞, it follows that F(t−) ≥ F(t0) which means that F is continuous in t .
Now, to show that F is strictly increasing on [τ, ∞), we suppose that this does not hold, that
is, there are τ ≤ t1 < t2 such that F(t1) = F(t2). From the fact that MF (t) is decreasing on
[τ, ∞), it follows that

∫ t1
0 F(x) dx ≥ ∫ t2

0 F(x) dx which is a contradiction.
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Now, to show that ϕ(u)/u is increasing and then decreasing, let u1 < u2 < ũ = F(τ) and
ti = F−1(ui), i = 1, 2. Then, t1 < t2 < τ and∫ t1

0 F(x) dx

F(t1)
≤

∫ t2
0 F(x) dx

F(t2)
.

The continuity of F on (0, τ ) implies that ϕF (u1)/u1 ≤ ϕF (u2)/u2. Now, let ũ ≤ u1 < u2
and, again, ti = F−1(ui), i = 1, 2. If t1 = t2 then ϕF (u1) = ϕF (u2) which implies that
ϕF (u1)/u1 ≥ ϕF (u2)/u2. If τ ≤ t1 < t2 then we can find two sequences (yj )

∞
j=1 and (zk)

∞
k=1

such that (yj )
∞
j=1 increases to t2 and (zk)

∞
k=1 decreases to t1 and zk < yj for k, j = 1, 2, . . . .

As MF (t) is decreasing on [τ, ∞), it follows that for j, k = 1, 2, . . . ,∫ zk

0 F(x) dx

F(zk)
≥

∫ yj

0 F(x) dx

F(yj )
.

Now, letting j and k go to ∞ and from the fact that limj→∞ F(yj ) ≤ u2 and limk→∞ F(zk) ≥
u1, we obtain ϕF (u1)/u1 ≥ ϕF (u2)/u2.

Sufficiency. Suppose that ϕF (u)/u is increasing and then decreasing with the change point ũ.
Let τ = F−1(ũ). Similar to the necessary part, we show that F−1 is continuous on (0, ũ) and
strictly increasing on [ũ, 1) which is equivalent to F being strictly increasing on (0, τ ) and
continuous on [τ, ∞); see, for example, [10]. Let t1 < t2 < τ and ui = F(ti), i = 1, 2. Then
u1 < u2 < ũ and from the fact that ϕF (u)/u is increasing on (0, ũ) and the continuity of F−1,
it follows that MF (t1) ≤ MF (t2). Now, let τ ≤ t1 < t2. If u1 = u2 then MF (t1) ≤ MF (t2).
If ũ ≤ u1 < u2 then we have two sequences (vj )

∞
j=1 and (wk)

∞
k=1 such that (vj )

∞
j=1 increases to

u2 and (wk)
∞
k=1 decreases to u1 and wk < vj for k, j = 1, 2, . . .. Since ϕF (u)/u is decreasing

on (ũ, 1), it follows that for j, k = 1, 2, . . . ,
∫ F−1(wk)

0 F(x) dx

wk

≥
∫ F−1(vj )

0 F(x) dx

vj

.

Now, letting j and k go to ∞ and from the fact that

lim
j→∞ F−1(vj ) ≥ t2 and lim

k→∞ F−1(wk) ≤ t1,

we obtain MF (t1) ≤ MF (t2) and the proof is complete. �
In Figure 4 we present the plot of the scaled TTT transform of an IDMTTF distribution.

Geometrically, from Theorem 3, a distribution is IDMTTF if and only if the angle θ(u) is
increasing and then decreasing on (0, 1). It is obvious that in an IDMTTF distribution, ũ is a
point that maximizes the angle, that is, sup0<u<1 θ(u) = θ(ũ).

Remark 1. Using similar arguments to those in the proof of Theorem 3, we can show that a
lifetime distribution F is DIMTTF if and only if there exist ũ ∈ [0, 1] such that ϕF (u)/u is
decreasing in u ∈ [0, ũ) and increasing in u ∈ [ũ, 1].

We need to prove the following lemma to show that the BFR class of lifetime distributions
is a subset of the IDMTTF class of distributions.

Lemma 1. Let f : [x∗, x∗∗] → R+ be a positive and concave function on [x∗, x∗∗] and define
ã = max{a; f (x) − ax = 0 has at least one root in [x∗, x∗∗]}, x̃1 = min{x; ãx = f (x)} and
x̃2 = max{x; ãx = f (x)}.

(i) If x̃2 = x∗∗ then f (x)/x is increasing on [x∗, x∗∗].
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Figure 4: The scaled TTT transform function of an IDMTTF distribution.

(ii) If x̃1 = x∗ then f (x)/x is decreasing on [x∗, x∗∗].
(iii) If x∗ < x̃1 ≤ x̃2 < x∗∗ then f (x)/x is increasing on [x∗, x̃] and decreasing on [x̃, x∗∗],

where x̃ is any value in [x̃1, x̃2].
Proof. (i) Suppose that f (x)/x is not increasing on [x∗, x∗∗], that is, there exist x1 and x2

such that x∗ ≤ x1 < x2 ≤ x∗∗ and a1 = f (x1)/x1 > f (x2)/x2 = a2. It follows from the
concavity of f that

f (x̃2) − a1x1

x̃2 − x1
= f (x̃2) − f (x1)

x̃2 − x1
≥ f (x̃2) − f (x2)

x̃2 − x2
= f (x̃2) − a2x2

x̃2 − x2
>

f (x̃2) − a1x2

x̃2 − x2
.

After some algebraic manipulation, we arrive at f (x̃2) < a1x̃2 or, equivalently, ã < a1, since
f (x̃2) = ãx̃2. This is a contradiction to the definition of ã.

(ii) Similar to part (i), suppose that f (x)/x is not decreasing on [x∗, x∗∗], that is, there exist x1
and x2 such that x∗ ≤ x1 < x2 ≤ x∗∗ and a1 = f (x1)/x1 < f (x2)/x2 = a2. Now, the
concavity of f again implies that

f (x̃1) − a2x1

x̃1 − x1
>

f (x̃1) − a1x1

x̃1 − x1
= f (x̃1) − f (x1)

x̃1 − x1
≥ f (x̃1) − f (x2)

x̃1 − x2
= f (x̃1) − a2x2

x̃1 − x2
,

from which it follows that ã = f (x̃1)/x̃1 < a2 and this is a contradiction to the definition of ã.

(iii) Applying parts (i) and (ii) to [x∗, x̃1] and [x̃1, x
∗] (or [x∗, x̃2] and [x̃2, x

∗]), respectively,
we obtain the required result. �

Theorem 4. If a lifetime distribution F is BFR with the change point t0, then F is IDMTTF
with a change point τ > t0.

Proof. Since F is BFR, it follows from Theorem 3 that there exists u0 ∈ [0, 1] such that
ϕF (u) is convex on [0, u0). Using this observation, from [23, Proposition 21.A.11] and the
fact that ϕF (0) = 0, we see that ϕF (u)/u is increasing on (0, u0). Now, again from the BFR
property of F , it follows from Theorem 3 that ϕF (u) is concave on [u0, 1]. Now, it follows
from this and Lemma 1 that there exists ũ ∈ [u0, 1] such that ϕF (u)/u is increasing on [u0, ũ)

and decreasing on [ũ, 1], where τ = F−1(ũ) ≥ F−1(u0) = t0. �

In the following example we show that an IDMTTF lifetime distribution might not be BFR.
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Example 3. Let F be a lifetime distribution with survival function given in (1). From Exam-
ple 1, we known that F is IDMTTF with the change point τ = 1.7389. The hazard rate function
of F is

rF (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 < t < 1,

3t2e1

16(1 − t3/16)
, 1 ≤ t < 2,

1, t ≥ 2.

Now, rF (1.5) = 1.45 > 1 = rF (0.5) = rF (2.5) which means that F is not BFR.

In the next theorem we establish the fact that the IDMTTF property implies the NWBUE
property.

Theorem 5. If a lifetime distribution F is IDMTTF with change point τ , then F is NWBUE
with the change point t0 < τ .

Proof. From Theorem 3, there exist 0 < ũ < 1 such that ϕF (u)/u is increasing on (0, ũ)

and decreasing on [ũ, 1]. Thus, for u ∈ [ũ, 1], ϕF (u)/u ≥ ϕ(1)/1 = 1, that is, ϕF (u) ≥ u.
It is obvious that ϕF (u) − u has at most one sign change in [0, ũ]; if there is a sign change,
it is in the order −, +. If there is no sign change, ϕF (u) ≥ u for u ∈ [0, 1] then F is NBUE
which is a NWBUE with change point t0 = 0. If there is a sign change then there exists a
u0 ∈ [0, ũ] such that ϕF (u) ≤ u for u ∈ [0, u0] and ϕF (u) ≥ u for u ∈ [u0, ũ]. Hence, the
proof is complete. �

In the next example we show that the converse of the above result does not hold in general.

Example 4. Let F be a lifetime distribution with survival function

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−x, 0 < x < 1,

e−1

x2 , 1 ≤ x < 2,

1
8x exp

(−( 1
8x2 + 1

2

))
, x ≥ 2.

(2)

Mitra and Basu [26] showed that F is NWBUE with change point x∗ = 4. The MTTF function
of F is

MF (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 < t < 1,

t2 − e−1t

t2 − e−1 , 1 ≤ t < 2,

[
1 − 1

2 exp
(−( 1

8 t2 + 1
2

))][
1 − 1

8 t exp
(−( 1

8 t2 + 1
2

))]−1
, t ≥ 2;

see Figure 5, from which we see that F is not IDMTTF.

Remark 2. From Theorems 4 and 5, we have the following implications:

BFR �⇒ IDMTTF �⇒ NWBUE.

Remark 3. Using similar arguments used to prove the above implications, we obtain the
following implications:

UBFR �⇒ DIMTTF �⇒ NBWUE.
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Figure 5: Plot of the MTTF function of the distribution given in (2).

3. Summary and future work

In this paper we introduced two new nonparametric classes of distributions with non-
monotonic MTTF in age replacement. IDMTTF (DIMTTF) is a class of distribution with
increasing (decreasing) and then decreasing (increasing) MTTF function. We characterized
these classes of distribution in terms of the scaled TTT transform function. Using these char-
acterizations, we obtained the following chain of implications between IDMTTF (DIMTTF)
class of distributions with the well-known classes of BFR and NWBUE (UBFR and NBWUE)
distributions:

BFR �⇒ IDMTTF �⇒ NWBUE

and

UBFR �⇒ DIMTTF �⇒ NBWUE.

A reasonable starting point in reliability analysis is to determine the ageing class of the
underlying distribution F . Hence, it is of practical importance to investigate the problem of
testing exponentiality against the IDMTTF property. If the IDMTTF property of the underlying
distribution is characterized, in practice, the estimation of the change point of the MTTF function
is of great interest. These problems form the basis of our future work.
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