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ABSTRACT

In this paper, we present the full characterization of the iterativity condition
for the mean-value principle under the cumulative prospect theory. It turns out
that the premium principle is iterative for exactly six pairs of probability distor-
tion functions. Some of the corresponding premium principles are the classical
mean-value principle, essential infimum or essential supremum of the random
loss. Moreover, from the proof of the main theorem of this paper, it follows that
the iterativity of the mean-value principle is equivalent to the iterativity of the
generalized Choquet integral.
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1. INTRODUCTION

The concept of iterativity dates back at least to Bühlmann (1970), who explains
the difference between risk (individual) and collective premium. In order to cal-
culate an individual premium, an insurer takes into account all the features of
decision maker’s risks. If the parameter y of the aforementioned risk is known,
then H(X|y) is the premium for risk X whose characteristic is y. However, this
specific feature y is usually a realization of some random variable Y. Therefore,
the collective premium cannot be determined in a similar straightforward way,
but it should be calculated in two steps. First, an insurance company should de-
termine H(X|Y), which is a random variable dependent onY. Then, a risk struc-
ture Y should be compensated by evaluating H(H(X|Y)). Since the premium
H(X) is in most cases different from H(H(X|Y)), there appears a problem to
find under which circumstances these two values are the same. Bühlmann (1970)
and Gerber (1974) also note an analogy between iterativity and the method of
evaluating the credibility premium.

Gerber (1974) proves that the premium principle which satisfies a continu-
ity condition is iterative if and only if it is mean-value principle, i.e. it is the
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solution of v(H(X)) = Ev(X), where v is a strictly increasing, convex and
twice differentiable function. A generalization of the result by Gerber is given
by Goovaerts and de Vylder (1979). They prove that the Swiss principle is it-
erative if and only if it reduces to the mean-value principle or the zero-utility
principle with a linear or exponential utility function. Gerber (1979) also notes
that if S = X1 + · · · + XN is a random sum and premium principle H(X) is
both additive and iterative, then H(S) = H(H(S|N)) = H(H(X)N).Moreover,
Goovaerts et al. (2010) conclude that if the premium principle is a mixture of
exponential functions, then it is iterative if and only if the mixture function is
degenerate.

Kupper and Schachermayer (2009) note that there is a connection between
iterative premium principles and dynamic time-consistent risk measures. They
show that the only law invariant, time consistent and relevant dynamic riskmea-
sure is the entropic one. More results on dynamic time-consistent risk measures
are given by Acciaio and Penner (2011) and Föllmer and Schied (2011).

In the rank-dependent utility model, it is assumed that probabilities are dis-
torted by some increasing function g : [0, 1] → [0, 1] such that g(0) = 0 and
g(1) = 1, called probability distortion function (e.g. Segal, 1989; Denneberg,
1994). Let G denote the class of all probability distortion functions. For a fixed
g ∈ G and non-negative random variable X, the Choquet integral is defined by

EgX :=
∫ ∞

0
g (P (X > t)) dt.

Furthermore, we assume that all random variables are defined on some proba-
bility space (�,A, P). If X takes finite number of values x1 < x2 < · · · < xn
with probabilities P(X = xi ) = pi > 0, then EgX = x1 +∑n−1

i=1 g(qi )(xi+1 −xi ),
where qi = ∑n

k=i+1 pk; in particular, for n = 2 we have EgX = x1(1 − g(p2)) +
g(p2)x2.

For g, h ∈ G and an arbitrary random variable X, the generalized Choquet
integral is defined as

EghX = EgX+ − Eh (−X)+ ,

provided that both integrals are finite. Here and subsequently, X+ = max {0, X}.
The generalized Choquet integral is introduced by Tversky and Kahneman
(1992) for discrete random variables and is used to describe mathematical foun-
dations of cumulative prospect theory. In numerous experiments, Tversky and
Kahneman note that probabilities of losses are distorted in a different way than
probabilities of gains. They suggest replacing the utility function with a value
function that depends on a relative payoff. In contrast to expected utility the-
ory, the value function measures losses and gains but not absolute wealth. Un-
der cumulative prospect theory, both value function and probability distortion
function do not have to be differentiable.

Now, we remind a premium principle which is a modification of the mean-
value principle adjusted to cumulative prospect theory. Let X be an arbitrary

https://doi.org/10.1017/asb.2013.1 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.1


AN ITERATIVITY CONDITION FOR THEMEAN-VALUE PRINCIPLE 63

random variable which does not have to be non-negative. Then X should be
regarded as a total claim made by the insured, decreased by the possible gain
earned from investment. This allows us to consider insurance products involving
some investment options such as investment-linked life insurance or variable
annuity. In the case of non-life insurance, it is plausible to study non-negative
random variables. Consider a decision maker whose reference point is w ≥ 0
(e.g. initial wealth) and who wants to purchase an insurance policy paying out
the monetary equivalent of the random loss X. Furthermore, we call (X− w)+
losses (or catastrophic losses) and (w − X)+ gains (or non-catastrophic losses).
Assume that u1, u2 : R+ → R+ are some strictly increasing value functions,
where u1 measures gains and u2 measures losses. Let g and h be probability
distortion functions of gains and losses, respectively. Kaluszka andKrzeszowiec
(2012) introduce the premium H(X) for insuring X as the solution of

u1((w−H(X))+)−u2((H(X)−w)+) = Egu1((w−X)+)−Ehu2((X−w)+). (1)

Note that (1) can be rewritten as

u (w − H (X)) = Eghu (w − X) (2)

with strictly increasing function u(x) = u1(x+) − u2((−x)+) for x ∈ R, where

Eghu(w − X) = Eg[[u(w − X)]+] − Eh [[−u(w − X)]+].

Gerber (1979) considers a similar equation for premium H(X) under the as-
sumptions that the value function u is convex and probabilities are not distorted,
i.e. g(p) = h(p) = p. In a more general model, Luan (2001) assumes that
h = g, g is concave and the value function is convex, where g(x) = 1− g(1−x).
Van der Hoek and Sherris (2001) analyze a functional with different proba-
bility distortion functions for gains and losses. However, they study only the
case when the value functions are linear. Goovaerts et al. (2010) consider a risk
measure obtained by applying the equivalent utility principle in rank-dependent
utility and analyze when such a defined measure is additive. Their result states
that the probability distortion functions for gains and losses must be identities.
Wang and Young (1998) use distorted probabilities and study properties of the
risk-adjusted credibility premium. Al-Nowaihi et al. (2008), by solving func-
tional equations, state necessary and sufficient conditions describing preference-
homogeneity and risk-aversion under cumulative prospect theory. In particular,
they prove that probability distortion functions for gains and losses are identi-
cal. Kaluszka and Krzeszowiec (2012) analyze the mean-value principle under
cumulative prospect theory and study its properties. Some of them are satisfied
only if probabilities for gains and losses are distorted in the same way (or, in
particular, they are not distorted). The aim of this paper is to give the complete
characterization of the iterativity condition for the mean-value principle under
cumulative prospect theory.
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2. MAIN RESULT

In the actuarial literature, we can meet different approaches for defining the
conditional Choquet integral (e.g. Wang and Young, 1998; Chateauneuf et al.,
2001; Lehrer, 2005; Kast et al., 2008). We define the conditional generalized
Choquet integral as

Egh(X|Y) =
∫ ∞

0
g(P(X+ > s|Y))ds −

∫ ∞

0
h(P((−X)+ > s|Y))ds,

if both integrals are finite. Then, H(X|Y) is introduced as the solution of

u (w − H (X|Y)) = Egh [u (w − X) |Y] .
A premium principle H(X) is said to be iterative, if for all X, Y

H (X) = H (H (X|Y)) ,

provided that both H(X) and H(H(X|Y)) exist.
In order to characterize the property of iterativity of the premium princi-

ple which is the solution of (2), we need an auxiliary lemma. Furthermore, we
denote sup X = inf{x : P(X > x) = 0} and inf X = − sup(−X).

Lemma 1. Let X, Y be arbitrary random variables. Then sup(sup(X|Y)) =
sup X.

Proof of Lemma 1. Let sup(X|Y) = inf{x : P(X > x|Y) = 0}. Assume that
P(X > 0) > 0. Since X ≤ sup X a.s., thus Xk

+ ≤ (sup X)k a.s. for all k ∈ N,
where Xk

+ = (X+)k. Hence, [E(Xk
+|Y)]1/k ≤ sup X for all k ∈ N and

sup(X|Y) = sup
k∈N

[
E

(
Xk

+|Y)]1/k ≤ sup X a.s.

Thus, sup(sup(X|Y)) ≤ sup X. As for any random variable Z, we have sup Z=
supk∈N

(EZk+)1/k (see Aliprantis and Border, 2006, p. 462); hence, for all k ∈ N

we have

sup (sup (X|Y)) = sup
k∈N

(
E (sup (X|Y))k+

)1/k ≥ (
E (sup (X|Y))k+

)1/k

≥ [
E

((
E

(
Xk

+|Y))1/k)k
+
]1/k = (

EXk
+
)1/k

. (3)

From (3), it follows that sup(sup(X|Y)) ≥ sup X. Finally, sup(sup(X|Y)) =
sup X. If P(X ≤ 0) = 1, then we may add some c such that P(X+ c > 0) > 0
and use the fact that sup(X+ c) = sup X+ c. �

Let H(X) be the premium principle determined from (2). Consider the fol-
lowing cases:
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(i) If g(x) = h(x) = x for 0 ≤ x ≤ 1, then EghX = EX and H(X) =
w−u−1 (Eu (w − X)). Thus,H (X) is themean-value principle, which is iterative
(see Gerber, 1979; Goovaerts et al., 1984).

(ii) If g (x) = 1{1} (x) and h (x) = g (x) = 1(0,1] (x), then EghX = inf X and
H (X) = sup X. From Lemma 1, it follows that H (X) is iterative.

(iii) If g (x) = 1(0,1] (x) and h (x) = g (x) = 1{1} (x), then EghX =
sup X and H (X) = inf X. As inf X = − sup (−X), from (ii) it follows that
inf (inf (X|Y)) = inf X.

(iv) If g (x) = h (x) = 1{1} (x) for 0 ≤ x ≤ 1, then EghX = (inf X)+ −
(− sup X)+ and

H (X) =
⎧⎨
⎩
sup X if X ≤ w a.s.,
inf X if X ≥ w a.s.,
w if inf X ≤ w ≤ sup X.

It is clear that if H (X) = w, then H (X) is iterative. From this, (ii) and (iii), it
follows that H (X) is iterative.

(v) If g (x) = x and h (x) = 1{1} (x) for 0 ≤ x ≤ 1, then EghX = EX+ −
(− sup X)+ and

H (X) =
⎧⎨
⎩

w − u−1 (Eu (w − X)) if X ≤ w a.s.,
inf X if X ≥ w a.s.,
w − u−1

(
E [u (w − X)]+

)
if inf X ≤ w ≤ sup X.

Note that E [E (X+|Y)]+ = E [E (X+|Y)] = EX+. From this, (i) and (iii), it
follows that H (X) is iterative.

(vi) If g (x) = 1{1} (x) and h (x) = x for 0 ≤ x ≤ 1, then EghX = (inf X)+ −
E (−X)+ and

H (X) =
⎧⎨
⎩
sup X if X ≤ w a.s.,
w − u−1 (Eu (w − X)) if X ≥ w a.s.,
w − u−1

(
E [−u (w − X)]+

)
if inf X ≤ w ≤ sup X.

From (i), (ii) and (v), it follows that H (X) is iterative.
The main theorem of this paper is the following.

Theorem 2. Let w ≥ 0 be fixed. Assume that u is strictly increasing, continuous,
u (0) = 0 and g, h ∈ G. Then, H (X) which is the solution of (2) is iterative if and
only if H (X) is defined by one of the formulas from (i) to (vi).

Proof. For a fixed w, let v (x) := u (w − x). Then H (X) = v−1(Eghv(X)).
Moreover,

H(X|Y) = v−1(Egh(v(X)|Y)) (4)

and
v (H (H (X|Y))) = Eghv (H (X|Y)) . (5)
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From (4) and (5), the condition H (X) = H (H (X|Y)) is equivalent to

v−1(Eghv(X)) = v−1(Eghv(H(X|Y))) = v−1(Egh(Egh(v(X)|Y))),

which means that the premium principle is iterative if and only if

EghZ= Egh(Egh(Z|Y)), (6)

where Z = v (X). The first implication of this theorem follows from (i) to (vi).
Now, we prove the inverse implication.

Let (Z,Y) be the random vector with distribution P (Z= 0,Y = 1) = 1/4,
P (Z= s,Y = 1) = 1/4, P (Z= s,Y = 2) = 1/4, P (Z= 1,Y = 2) = 1/4,
where 0 < s < 1 is arbitrary. Then

EghZ= s (g (3/4) − g (1/4)) + g (1/4) ,

Egh (Z|Y = 1) = sg (1/2) , (7)

Egh (Z|Y = 2) = s (1 − g (1/2)) + g (1/2) .

Since Egh (Z|Y = 1) ≤ Egh (Z|Y = 2), we have

Egh(Egh(Z|Y)) = s(2g(1/2) − 2(g(1/2))2) + (g(1/2))2. (8)

From (6), (7) and (8), it follows that the premium principle H (X) is iterative if

s(g (3/4) − g (1/4)) + g (1/4) = s(2g (1/2) − 2 (g (1/2))2) + (g (1/2))2

for 0 < s < 1. We obtained the equality of two polynomials of variable s.
Comparing their coefficients yields{

g (3/4) − g (1/4) = 2g (1/2) − 2 (g (1/2))2 ,

g (1/4) = (g (1/2))2 .
(9)

Now, let random vector (Z,Y) has the distribution P (Z= 0,Y = 1) = 1/4,
P (Z= 1,Y = 1) = 1/4, P (Z= g (1/2) ,Y = 2) = 1/2. Then

EghZ= g (1/2) (g (3/4) − g (1/4)) + g (1/4) ,
(10)

Egh (Z|Y = 1) = Egh (Z|Y = 2) = g (1/2)

and since Eghc = c for c ∈ R (see Kaluszka and Krzeszowiec, 2012), thus

Egh(Egh(Z|Y)) = g (1/2) . (11)

From (6), (10) and (11), it follows that H (X) is iterative if
g (1/2) (g (3/4) − g (1/4)) + g (1/4) = g (1/2). From this and (9), we have that
2 (g (1/2))3 − 3 (g (1/2))2 + g (1/2) = 0. Hence, g (1/2) = 0, or g (1/2) = 1/2
or g (1/2) = 1.

Consider the random vector (Z,Y) with distribution P (Z= s,Y = 1) =
1/4 + c, P (Z= 1,Y = 1) = 1/4 − c, P (Z= s,Y = 2) = 1/4 + d,
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P (Z= 1,Y = 2) = 1/4 − d, where 0 < s < 1 is arbitrary and 0 ≤ c, d ≤ 1/4.
Then

EghZ= s (1 − g (1/2 − c − d)) + g (1/2 − c − d) ,
Egh (Z|Y = 1) = s (1 − g (1/2 − 2c)) + g (1/2 − 2c) , (12)
Egh (Z|Y = 2) = s (1 − g (1/2 − 2d)) + g (1/2 − 2d) .

Moreover, Egh (Z|Y = 1) ≤ Egh (Z|Y = 2) if and only if c ≥ d. Thus,

Egh(Egh(Z|Y)) = [s (1 − g (1/2 − 2c)) + g (1/2 − 2c)] (1 − g (1/2))

+ [s (1 − g (1/2 − 2d)) + g (1/2 − 2d)] g (1/2) (13)

if 0 ≤ c ≤ d ≤ 1/4 and

Egh(Egh(Z|Y)) = [s (1 − g (1/2 − 2d)) + g (1/2 − 2d)] (1 − g (1/2))

+ [s (1 − g (1/2 − 2c)) + g (1/2 − 2c)] g (1/2) (14)

if 0 ≤ d ≤ c ≤ 1/4. From (6) and (12)–(14), it follows that H (X) is iterative if

s (1 − g (1/2 − c − d)) + g (1/2 − c − d)

= [s (1 − g (1/2 − 2c)) + g (1/2 − 2c)] (1 − g (1/2)) + [s (1 − g (1/2 − 2d))

+ g (1/2 − 2d)] g (1/2) (15)

for 0 < s < 1 if 0 ≤ c ≤ d ≤ 1/4 and

s (1 − g (1/2 − c − d)) + g (1/2 − c − d)

= [s (1 − g (1/2 − 2d)) + g (1/2 − 2d)] (1 − g (1/2)) + [s (1 − g (1/2 − 2c))

+ g (1/2 − 2c)] g (1/2) (16)

for 0 < s < 1 if 0 ≤ d ≤ c ≤ 1/4. Consider the following cases:

(a) g (1/2) = 0. Then clearly g (x) = 0 for 0 ≤ x ≤ 1/2.
(b) g (1/2) = 1/2. Then from (15) and (16), we have

2s (1 − g (1/2 − c − d)) + 2g (1/2 − c − d)

= s (1 − g (1/2 − 2c)) + g (1/2 − 2c) + s (1 − g (1/2 − 2d)) + g (1/2 − 2d)

for 0 < s < 1 and 0 ≤ c, d ≤ 1/4. Comparing coefficients of the above polyno-
mials gives

2g (1/2 − c − d) = g (1/2 − 2c) + g (1/2 − 2d) (17)

for 0 ≤ c, d ≤ 1/4. Let f (x) = g (1/2 − 2x). Then, (17) can be rewritten as
2 f ((c + d) /2) = f (c)+ f (d) for 0 ≤ c, d ≤ 1/4, which is the Jensen functional
equation. Since f is monotonic, thus measurable, it follows that f is linear (see
Kuczma, 2009, p. 354). As f (0) = g (1/2) = 1/2 and f (1/4) = g (0) = 0,
hence f (x) = −2x+ 1/2 for 0 ≤ x ≤ 1/4. Finally, g (x) = x for 0 ≤ x ≤ 1/2.
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(c) g (1/2) = 1. Then from (15), we have

s (1 − g (1/2 − c − d)) + g (1/2 − c − d) = s (1 − g (1/2 − 2d)) + g (1/2 − 2d)

for 0 < s < 1 and 0 ≤ d ≤ c ≤ 1/4. Comparing the coefficients of the above
polynomials gives

g (1/2 − c − d) = g (1/2 − 2d) (18)

for all 0 ≤ d ≤ c ≤ 1/4. Putting d = 0 yields g (1/2 − c) = g (1/2) = 1 for
0 ≤ c ≤ 1/4. Thus, g (x) = 1 for 1/4 ≤ x ≤ 1/2. Setting c = 1/4 in (18) gives
g (x) = g (2x) for 0 ≤ x ≤ 1/4. Since g (1/2) = 1, we have g (1/2) = g (2/4) =
g (1/4) = g (2/8) = g (1/8) and so on. Hence, g (x) = 1 for 0 < x ≤ 1/2.

Consider the random vector (Z,Y) with distribution P (Z= s,Y = 1) =
1/4 − c, P (Z= 1,Y = 1) = 1/4 + c, P (Z= s,Y = 2) = 1/4 − d,
P (Z= 1,Y = 2) = 1/4 + d, where 0 < s < 1 is arbitrary and 0 ≤ c, d ≤ 1/4.
Then, an analogous argumentation as in the previous part of the proof shows
that H (X) is iterative if

s (1 − g (1/2 + c + d)) + g (1/2 + c + d)

= [s (1 − g (1/2 + 2c)) + g (1/2 + 2c)] (1 − g (1/2))

+ [s (1 − g (1/2 + 2d)) + g (1/2 + 2d)] g (1/2) (19)

for 0 < s < 1 if 0 ≤ c ≤ d ≤ 1/4 and

s (1 − g (1/2 + c + d)) + g (1/2 + c + d)

= [s (1 − g (1/2 + 2d)) + g (1/2 + 2d)] (1 − g (1/2))

+ [s (1 − g (1/2 + 2c)) + g (1/2 + 2c)] g (1/2) (20)

for 0 < s < 1 if 0 ≤ d ≤ c ≤ 1/4. Consider the following cases:

(a) g (1/2) = 0. From (19), we get

s (1 − g (1/2 + c + d)) + g (1/2 + c + d) = s (1 − g (1/2 + 2c)) + g (1/2 + 2c)

for 0 ≤ c ≤ d ≤ 1/4. Comparing coefficients of the above polynomials gives

g (1/2 + c + d) = g (1/2 + 2c) (21)

for 0 ≤ c ≤ d ≤ 1/4. Putting c = 0 yields g (1/2 + d) = g (1/2) = 0 for
0 ≤ d ≤ 1/4. Thus, g (x) = 0 for 1/2 ≤ x ≤ 3/4. If we set d = 1/4 in (21), then
we get

g (3/4 + c) = g (1/2 + 2c) (22)

for 0 ≤ c ≤ 1/4. Putting c = 1/8 in (22) gives g (7/8) = g (3/4) = 0. Hence,
g (x) = 0 for 1/2 ≤ x ≤ 7/8. Setting c = 3/16 in (22) gives g (15/16) =
g (7/8) = 0. Thus, g (x) = 0 for 1/2 ≤ x ≤ 15/16. An analogous reasoning
shows that g (x) = 0 for 1/2 ≤ x < 1.
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(b) g (1/2) = 1/2. Then from (19) and (20), we have

2s (1 − g (1/2 + c + d)) + 2g (1/2 + c + d)

= s (1 − g (1/2 + 2c)) + g (1/2 + 2c) + s (1 − g (1/2 + 2d))

+g (1/2 + 2d)

for 0 < s < 1 and 0 ≤ c, d ≤ 1/4. Comparing coefficients of the above polyno-
mials gives

2g (1/2 + c + d) = g (1/2 + 2c) + g (1/2 + 2d) (23)

for 0 ≤ c, d ≤ 1/4. Let f (x) = g (1/2 + 2x). Then (23) can be rewritten as
2 f ((c + d) /2) = f (c) + f (d) for 0 ≤ c, d ≤ 1/4. Since f is measurable,
thus it is linear (see Kuczma, 2009, p. 354). As f (0) = g (1/2) = 1/2 and
f (1/4) = g (1) = 1; hence, f (x) = 2x+1/2 for 0 ≤ x ≤ 1/4. Finally, g (x) = x
for 1/2 ≤ x ≤ 1.

(c) g (1/2) = 1. Then clearly g (x) = 1 for 1/2 ≤ x ≤ 1.
Reassuming, so far we proved that if the premium principle H(X) is iterative,

then g(x) = x, or g(x) = 1{1}(x) or g(x) = 1(0,1](x) for 0 ≤ x ≤ 1. Furthermore,
it suffices to note that Egh(−X) = −EhgX in order to conclude that h(x) = x,
or h(x) = 1{1}(x) or h(x) = 1(0,1](x) for 0 ≤ x ≤ 1 (see (6)). Thus, we obtained
nine possible pairs of functions g and h. We will show that for three of these
pairs the iterativity condition is not satisfied. Let random vector (Z,Y) has the
distribution P(Z = −1,Y = 1) = 1/4, P(Z = 1,Y = 1) = 1/2, P(Z =
−1,Y = 2) = 1/4. Then EghZ = g(1/2) − h(1/2), Egh(Z|Y = 1) = g(2/3) −
h(1/3) and Egh(Z|Y = 2) = −1. As Egh(Z|Y = 1) ≥ Egh(Z|Y = 2), thus
Egh(Egh(Z|Y)) = (g(2/3) − h(1/3))g(3/4) − h(1/4) if g(2/3) − h(1/3) ≥ 0 and
Egh(Egh(Z|Y)) = (g(2/3)−h(1/3))(1−h(1/4))−h(1/4) if g(2/3)−h(1/3) ≤ 0.
From (6), it follows that if H(X) is iterative, then

g (1/2) − h (1/2) = (g (2/3) − h (1/3)) g (3/4) − h (1/4) (24)

if g (2/3) − h (1/3) ≥ 0 and

g (1/2) − h (1/2) = (g (2/3) − h (1/3)) (1 − h (1/4)) − h (1/4) (25)

if g (2/3)−h (1/3) < 0. From (24) and (25), it follows that H (X) is not iterative
if g (x) = 1(0,1] (x) and h (x) = x, or g (x) = x and h (x) = 1(0,1] (x), or g (x) =
h (x) = 1(0,1] (x).

3. CONCLUDING REMARKS

In this paper, by solving functional equations, we analyze the mean-value prin-
ciple under cumulative prospect theory. We give full characterization of the iter-
ativity condition for this premium principle which turns out to be equivalent to
the iterativity of the generalized Choquet integral.We prove that this property is
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satisfied not only when probabilities are not distorted (which corresponds to the
classical mean-value principle), but also for five other cases. For all of them, the
probability distortion functions are either identities or are degenerated to two
points, producing the premium principles which are not commonly met in the
actuarial literature. Regarding this result, in order to study possibly wide class
of functionals under cumulative prospect theory, there is a justified necessity to
put possibly weakest assumptions on value function and probability distortion
functions.
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