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Large-scale coherent structures such as jets in Rayleigh–Bénard convection and related
systems are receiving increasing attention. This paper studies, both numerically and
theoretically, the process of jet formation in two-dimensional salt-finger convection.
The approach utilizes an asymptotically derived system of equations referred to as
the modified Rayleigh–Bénard convection (MRBC) model, valid in the geophysically
and astrophysically relevant limit in which the solute diffuses much more slowly
than heat. In these equations, convection is driven by a destabilizing salinity gradient
while the effects of the stabilizing temperature gradient manifest themselves as
an additional anisotropic dissipation acting on large scales. The MRBC system is
specified by two external parameters: the Schmidt number Sc (ratio of viscosity to
solutal diffusivity) and the Rayleigh ratio Ra (ratio between the Rayleigh numbers of
the destabilizing solutal stratification and the stabilizing thermal stratification). Two
distinct Ra regimes are explored for fixed Sc = 1. In all cases studied the system
develops a horizontal jet structure that is maintained self-consistently by turbulent
fluctuations, but coarsens over time. For intermediate Rayleigh ratios (e.g. Ra = 6),
the MRBC model captures the relaxation oscillations superposed on the jet structure
observed at similar parameter values in direct numerical simulations of the primitive
equations. For smaller Rayleigh ratios (e.g. Ra = 2), a regime for which direct
numerical simulation of the primitive equations is difficult because of the presence
of fast gravity waves, the MRBC model reveals the existence of statistically steady
jets whose properties are studied in detail. Three hierarchical models, the MRBC
and further reductions in the form of quasilinear and single-mode approximations,
are used to confirm that jets form and are sustained as a result of the interaction
between fluctuations (salt fingers) and large-scale horizontally averaged horizontal
flows (jets). Even though the small-scale structures exhibited by the three models
exhibit clear differences, all three produce the same power-law spectrum of the mean
fields at large vertical scales: in all, the spectrum of the mean streamfunction scales
as m−3 and the mean salinity field scales as m−1, with m the vertical wavenumber.
A theoretical explanation of these observations based on the dominant balances in
the mean and fluctuation equations is provided. As a consequence, the jets have a
zigzag profile, a conclusion that is consistent with numerical simulations. Based on
numerical observations, a three-component phenomenological model consisting of
a linearly growing mode, a linearly damped mode and a mean mode is proposed
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to explain the observed transition from statistically steady jet structure to jets with
superposed oscillations that takes place with increasing Rayleigh ratio.

Key words: convection, double diffusive convection, jets

1. Introduction
Salt-finger convection (SFC) occurs in stably stratified fluids where warm salty

water overlies cool fresh water and is driven by differential diffusivities of salt and
heat. The instability requires that the ratio τ of the solutal to thermal diffusivity (or
inverse Lewis number) satisfies τ < 1, i.e. that heat diffuses more rapidly than salt
(Turner 1974; Schmitt 1994; Merryfield, Holloway & Gargett 1999; Radko 2013).
Similar processes arise in other geophysical and astrophysical situations involving
competing fields whenever the destabilizing field diffuses more slowly than the
stabilizing field (Schmitt 1983).

Stern (1960) was the first to study the onset of the salt-finger instability. However,
as the amplitude of the linearly unstable salt-finger mode grows, secondary instabilities
are triggered (Holyer 1984), initializing processes that ultimately lead to a statistically
saturated state that may consist of large-scale structures embedded in a field of
fluctuations. Stern (1969) developed from first principles the notion of collective
instability, a particular case of secondary instability, to explain the saturation of the
salt-finger instability, and proposed a dimensionless number now known as the Stern
number as the key parameter in the saturation process. Further progress was made
by Radko & Smith (2012), who proposed that saturation begins when the growth
rate of the secondary finger instability becomes comparable to that of the primary
salt-finger instability. Finger collisions may also contribute to saturation (Shen 1995).
The saturation process itself is complicated by the presence of scales larger than the
finger scale (Radko 2008). These may take the form of salt-rich blobs or modons
(Radko 2008) or finger-generated large-scale flows (Garaud & Brummell 2015).
Recently, Xie et al. (2017) formulated a two-dimensional reduced model to address
some of these questions in a more tractable setting. This model is derived in the limit
of small diffusivity ratio, τ � 1, large thermal to solutal density ratio, Rρ � 1, and
infinite Schmidt number Sc, a situation relevant to the oceans. Here Sc is the ratio
between viscosity and solutal diffusivity. Xie et al. (2017) find that the generation of
large-scale structures depends strongly on the Rayleigh ratio Ra, the ratio between
the saline and thermal Rayleigh numbers, and conclude that large-scale structures are
crucial to the saturation process when the Rayleigh ratio is large, but unimportant
otherwise.

Among the large-scale structures arising in salt-finger convection, the most striking
example is provided by the thermohaline staircase (Radko 2013). Staircase formation
is intimately related to the dominant saturation mechanism of the salt-finger instability.
Stern’s (1969) theory explains the onset of incipient staircases, but does not describe
the dynamics leading to the establishment of fully developed staircases. Paparella
& von Hardenberg (2012) discuss the formation of thermohaline staircases using a
density flux theory for stably stratified fluids, originally proposed by Balmforth,
Llewellyn Smith & Young (1998). A largely successful but phenomenological
flux-based theory, the γ -instability theory, was proposed by Radko (2003) and
generalized by Traxler et al. (2011b) and Stellmach et al. (2011). The resulting
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theory is consistent with existing direct numerical simulations and was applied to
astrophysical fingering convection by Brown, Garaud & Stellmach (2013).

In addition to staircase formation, large-scale horizontal velocities or jets represent
another type of geophysically important layered structure. In two-dimensional
salt-finger convection, jets were first observed by Radko (2010) in reduced models
for weakly nonlinear salt fingers and later by Garaud & Brummell (2015) in direct
numerical simulations of the primitive equations. In addition, jets have also been
studied using low-order truncated models (Paparella & Spiegel 1999). This paper
aims at understanding the basic mechanisms behind jet formation in salt-finger
convection by focusing on an asymptotic model also valid in the limit τ → 0, but
this time with Sc = O(1) (Xie et al. 2017). This regime thus corresponds to low
Prandtl numbers, and so is pertinent to astrophysical objects (Traxler, Garaud &
Stellmach 2011a; Brown et al. 2013; Prat, Lignières & Lagarde 2015; Garaud 2018).
In contrast, the regime Sc� 1, Pr=O(1) studied by Xie et al. (2017) is relevant to
terrestrial oceans.

In the following we refer to this model as the modified Rayleigh–Bénard convection
(MRBC) model since the governing equations resemble those for Rayleigh–Bénard
convection (RBC) except for the presence of large-scale anisotropic damping arising
from thermal effects that are otherwise eliminated in the asymptotic procedure. The
model thus represents a connection between SFC and RBC, and as such merits study
in its own right (Chong et al. 2017). We mention that large-scale shear flows in RBC
were originally observed by Malkus (1954) and Krishnamurti & Howard (1981), and
studied extensively within both low-order truncated models (Howard & Krishnamurti
1986; Hermiz, Guzdar & Finn 1995; Childress 2000) and direct numerical simulations
in two dimensions (Fitzgerald & Farrell 2014; Goluskin et al. 2014). Other RBC-
related systems with jet formation include rotating convection (Busse 1983; Brummell
& Hart 1993; von Hardenberg et al. 2015), plasma flows in tokamaks
(Horton, Hu & Laval 1996) and magnetoconvection (Matthews et al. 1993; Rucklidge
& Matthews 1996).

Although direct numerical simulations (DNS) of the primitive equations provide
invaluable information and can be used to identify essential mechanisms (e.g. Traxler
et al. 2011b), reduced models derived by a systematic mathematical procedure
are expected to preserve key features of the primitive equations within a simpler
formulation. They can therefore be used to probe extreme parameter regimes that are
inaccessible to the DNS approach (Stern & Radko 1998; Radko & Stern 1999; Prat
et al. 2015). For example, in the investigations carried out by Garaud & Brummell
(2015), the buoyancy frequency of a stably stratified layer places strong limitations
on the achievable temporal resolution. As a result, the accessible density ratios are
significantly below Rρτ =O(1) when τ � 1, a parameter regime of interest for stars
on the red giant branch (Denissenkov 2010). In contrast, the MRBC model studied
here is derived specifically for the case Rρτ =O(1) and τ� 1, and enables a detailed
exploration of this extreme regime at much lower cost than typical DNS studies
performed well below Rρτ =O(1).

In this paper we use the asymptotically derived MRBC model to study two-
dimensional SFC in doubly periodic domains instead of vertically bounded domains.
This formulation avoids complications that arise from the formation of boundary
layers and associated effects, and is justified a posteriori by the presence of an
intrinsic length scale in the problem – a length scale independent of the domain size.
The MRBC model inherits this property of SFC through the presence of large-scale
damping, which makes the doubly periodic domain set-up appropriate for a study
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of domain-size-independent properties. Because of this property the MRBC model
represents a natural generalization of the two-dimensional vorticity equation with
large-scale Rayleigh friction, driven by prescribed small-scale random forcing (Smith
& Yakhot 1994; Bouchet & Simonnet 2009; Laurie et al. 2014; Frishman 2017;
Frishman, Laurie & Falkovich 2017). However, in contrast to the vorticity problem,
in our system the large-scale structures that form interact with and modify the
fluctuations that sustain them.

The structure of the paper is as follows. In § 2 we formulate the reduced MRBC
model and summarize its linear stability properties. In § 3 we report on two
representative sets of numerical simulations, with Ra = 6 (§ 3.1) and with Ra = 2
(§ 3.2), both for Sc = 1. The former captures the relaxation oscillations observed
in simulations of the primitive equations at intermediate density ratios by Garaud
& Brummell (2015), thereby validating the MRBC model. In the latter regime, our
simulations approach the regime of very large density ratios, Rρ ∼ τ−1

� 1, that is
at present inaccessible to DNS of the primitive equations owing to the presence of
fast gravity waves, and show that this regime is characterized by quasi-steady jet-like
structures that coarsen over time. We show that the jets are the result of an interaction
between the fluctuations and the mean, and perform in § 4 two further reductions
of the MRBC system based on this understanding. We show that these reductions
preserve the essential physics of the jet formation problem, and utilize our findings
in § 5 to extract universal spectral scalings for the large-scale mean fields. Finally, in
§ 6 we use the simulation results to motivate a phenomenological model that captures
the transition from statistically steady jets at Ra= 2 to the oscillating jets present at
larger Ra. Our results are summarized along with concluding remarks in § 7.

2. Formulation and linear stability
The two-dimensional modified Rayleigh–Bénard convection (MRBC) model filters

out fast gravity waves and hence represents a projection of the primitive equations
onto the slow manifold. As a result, the model is suitable for studying strongly
driven systems in which gravity wave frequencies are high and the simulation of
the primitive equations prohibitively expensive. In two dimensions the dimensionless
model equations take the form (Xie et al. 2017)

1
Sc

[
∂

∂t
∇

2ψ +J (ψ,∇2ψ)

]
= −

∂S
∂x
+ (1−1∂xx +∇

4)ψ, (2.1a)

∂

∂t
S+J (ψ, S)+ Ra

∂ψ

∂x
= ∇

2S. (2.1b)

Here ψ is the streamfunction while S denotes the perturbation salinity field around a
destabilizing linear salinity gradient, with J (a, b)≡ axbz − azbx and 1−1 the inverse
Laplacian operator. Owing to rapid thermal diffusion, the temperature field is slaved
to the velocity field and is therefore no longer present; its effect manifests itself in
the presence of a new dissipative term in (2.1a) corresponding to large-scale thermal
damping. The novel feature of the MRBC model is thus the simultaneous presence
of both small-scale (viscous) and large-scale (thermal) dissipation. As a result (2.1)
defines a characteristic instability scale that is unrelated to the layer height. This new
property alone makes the MRBC model worthy of detailed study.

The dimensionless quantities present in (2.1) are defined as follows:

t=
κS

d2
t∗, (x, z)=

1
d
(x∗, z∗), ψ =

1
κS
ψ∗ and S=

Rρτ
βSd

S∗, (2.2a−d)
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where ∗ indicates dimensional quantities and

d=
(
νκT

gαTβT

)1/4

(2.3)

is the (dimensional) natural finger scale.
The MRBC model describes salt-finger convection in the limit τ → 0, Rρ→∞, a

regime described by two independent dimensionless parameters instead of the usual
three, the Prandtl number Pr ≡ ν/κT , the density ratio Rρ ≡ αTβT/(αSβS) and the
diffusivity ratio τ ≡ κS/κT . The model assumes that these two remaining parameters,
the Rayleigh ratio

Ra≡
1

Rρτ
=

RaS

RaT
(2.4)

and the Schmidt number Sc≡ ν/κS, both remain of order one. Here

RaT =
gαTβTH4

νκT
and RaS =

gαSβSH4

νκS
(2.5a,b)

are the usual thermal and solutal Rayleigh numbers characterizing the stabilizing
temperature and destabilizing salinity profiles. In these expressions αT,S are the
expansion coefficients, κT,S are the diffusivities, βT,S are the background gradients, g
is the gravitational acceleration, H is the layer depth and ν is the kinematic viscosity;
the subscripts T and S denote temperature and salinity, respectively. When τ is small,
i.e. when the temperature field diffuses much more rapidly than salinity, the above
regime corresponds to strong driving via an unstable salt stratification. In this regime
the temperature field is slaved to the velocity field and may be eliminated from the
governing equations via a systematic asymptotic expansion in the small parameter
τ (Xie et al. 2017). Equations (2.1) represent the leading-order description of the
system to within O(τ ) corrections.

To relate the intrinsic scale for salt-finger convection to the scale d we substitute
a normal mode ansatz of the form (ψ, S) = eλt+i(kx+mz)(ψ0, S0) into (2.1), linearized
around S=ψ = 0. We find that the linear growth rate λ satisfies

λ2
+

[
|k|2 +

Sc
|k|4

(k2
+ |k|6)

]
λ+

Sc
|k|2

(k2
+ |k|6 − Rak2)= 0, (2.6)

where |k|2 = k2
+ m2. This equation informs us that linear instability is present only

when the last term is negative, i.e. when

Ra> Ra(k,m)≡ 1+
|k|6

k2
. (2.7)

This condition is independent of Sc and so applies even in the limit Sc → ∞
appropriate for terrestrial oceans. The critical value of Ra for linear instability is thus
Rac= 1 and the instability sets in with wavenumbers (k,m)= (0, 0). In the following
we find that the quantity R≡ Ra− 1 provides a convenient measure of the distance
from threshold, i.e. the supercriticality of the system. The positive (unstable) solution
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of (2.6) is

λ =
1
2

− [|k|2 + Sc
|k|4

(k2
+ |k|6)

]

+

√[
|k|2 +

Sc
|k|4

(k2 + |k|6)
]2

−
4Sc
|k|2

(k2 + |k|6 − Rak2)

, (2.8)

which reduces in the limit of Sc→∞ to the growth rate of the inertia-free salt-finger
convection (IFSC) model derived by Xie et al. (2017):

λIFSC = Ra
k2
|k|2

k2 + |k|6
− |k|2. (2.9)

When the supercriticality R is small, we find that the optimal growth rate behaves
like

λopt =
2

33/2
R3/2
+ h.o.t., (2.10)

a quantity independent of Sc to leading order, and hence identical to that for Sc=∞
(Xie et al. 2017, equation (26b)), matching the small-Pr result of Brown et al. (2013,
equation (B20)).

The linear growth rate λ(k, m) for Ra = 2 and Ra = 6 and three different values
of Sc is shown in figure 1. The figure highlights the anisotropic dependence of λ on
k and m: for fixed m, not too large, there exists an optimal k that maximizes the
growth rate, whereas when k is fixed, an optimal m exists for small k, but for large
k the growth rate decreases monotonically with increasing m. The sequence of plots
in each column shows that the linear growth rate and the horizontal wavenumber k
of the most unstable mode increase with increasing Sc, and we find that they reach a
regular limit as Sc→∞. The most unstable modes are the so-called elevator modes
with m= 0. These modes are unstable within a band of horizontal wavenumbers k that
is well captured by the supercriticality R,

0< k4 <R, (2.11)

and are exact solutions of the nonlinear equations (2.1) with periodic boundary
conditions in the vertical. However, in contrast to the IFSC model valid in the limit
Sc→∞, these modes are not directly involved in the saturation process. The reasons
for this difference are elaborated below.

3. Nonlinear simulations
In this section, we present two representative numerical simulations of the MRBC

system (2.1). These use a Fourier pseudospectral method with 2/3 dealiasing in space
with resolution 512 × 512 and a fourth-order explicit Runge–Kutta scheme in time
with a fixed time step 5 × 10−3 in which the nonlinear terms are treated explicitly
and linear terms implicitly using an integrating factor method. All calculations are
initialized with small-amplitude random Gaussian fields whose amplitude determines
the time required to reach saturation. The numerical results provide an empirical
foundation for the theoretical development in later sections.
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FIGURE 1. (Colour online) Contour plots of the linear growth rate λ(k,m) of the MRBC
model (2.1) defined in (2.8). Results for Ra= 2 (a,c,e) and Ra= 6 (b,d, f ), respectively, for
Sc= 0.1 (a,b), 1 (c,d) and 10 (e, f ). Only positive growth rates are shown. Circles mark
the optimal wavenumbers: 0.50, 0.65 and 0.68 for Ra= 2 and increasing Sc, approaching
the optimal wavenumber 0.69 when Sc = ∞; and 0.55, 0.77 and 0.85 for Ra = 6 and
increasing Sc, approaching the optimal wavenumber 0.88 when Sc=∞.

3.1. Simulation of the MRBC system with Ra= 6, Sc= 1
We begin with the case Ra = 6, Sc = 1. This case corresponds to high-density-ratio
simulations of two-dimensional salt-finger convection using primitive equations by
Garaud & Brummell (2015), and therefore permits validation of the MRBC system.
We present here the results of a simulation initialized with small homogeneous random
perturbations ψ and S in a doubly periodic domain of size Lx × Lz ≡ 32lopt × 32lopt.
Here lopt= 2π/kopt is the wavelength of the fastest growing mode in the limit Sc→∞,
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where
k4

opt =
1
2(−2− Ra+

√
Ra2 + 8Ra). (3.1)

In figure 2 we show the time evolution of the salinity potential energy PS, the
salinity flux FS, the kinetic energy Kjet in the jets that form and the fluctuation kinetic
energy Kfluc, defined as follows:

PS =
1

2A

∫
S2 dx dz, (3.2a)

FS =
1
A

∫
ψxS dx dz, (3.2b)

Ktot =
1

2A

∫ [
(ψx)

2
+ (ψz)

2
]

dx dz, (3.2c)

Kjet =
1

2Lz

∫ (
1
Lx

∫
ψz dx

)2

dz=
1

2Lz

∫
Ū2 dz, (3.2d)

Kfluc = Ktot −Kjet. (3.2e)

Here Lx and Lz represent the domain size in the x and z directions, respectively, and
A= LxLz is the domain area. For the purposes of these definitions we speak of a jet
whenever the horizontally averaged horizontal velocity Ū is non-zero. Although we
refer here to PS simply as a potential energy it is in fact the consumed available
potential energy, defined for a weak salinity redistribution as the potential energy
difference between the perturbed state and the unstably stratified background salinity
field.

In this parameter regime the MRBC system exhibits remarkable relaxation
oscillations that are also shared by the primitive equations (Garaud & Brummell
2015). After an initial transient, a statistically stationary state is achieved in which
the four global quantities defined in (3.2) all oscillate with a well-defined period
but fluctuate in amplitude. Figure 2(e) shows that the salinity potential energy PS,
salinity flux FS and the fluctuation kinetic energy Kfluc all oscillate in phase but
that the kinetic energy Kjet in the jets lags behind. The presence of very similar
behaviour in both the primitive equations and the asymptotic MRBC system indicates
that the latter is not missing any essential physics. We understand this behaviour as
follows: efficient fingering, characterized by large salinity flux FS, drives horizontal
jets resulting in the growth of Kjet. The strengthening jets shear out the salt-finger
field (Linden 1974; Smyth & Kimura 2007; Fernandes & Krishnamurti 2010; Radko
2010; Radko et al. 2015), resulting in an abrupt collapse of the fluctuations that
feed the jets. As a result the jet starts to weaken, and when it is weak enough the
fluctuations driven by the salinity stratification regrow and the jet starts to strengthen
again. This process then repeats, leading to the observed relaxation oscillations
(Garaud & Brummell 2015). A similar mechanism is responsible for relaxation
oscillations in two-dimensional high-Ra, moderate-Pr Rayleigh–Bénard convection
(Rucklidge & Matthews 1996; Fitzgerald & Farrell 2014; Goluskin et al. 2014),
in three-dimensional Rayleigh–Bénard convection (Matthews et al. 1996) and in
magnetoconvection (Rucklidge & Matthews 1996). In § 6 we use this idea to propose
a phenomenological model of these relaxation oscillations in order to explain the
observed Ra-dependence of the jet properties.
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FIGURE 2. (Colour online) Evolution of salinity potential energy PS, salinity flux FS,
kinetic energy Kjet in the jets and the fluctuation kinetic energy Kfluc in a doubly periodic
domain of size Lx × Lz ≡ 32lopt × 32lopt obtained from the MRBC equations (2.1) when
Ra= 6 and Sc= 1. Panel (e) shows a comparison of phases of these quantities (suitably
normalized) for t ∈ [1200, 1500].

The evolution of the jets in time is shown in figure 3 in terms of a space–time
Hovmöller plot of the horizontally averaged horizontal velocity Ū(z, t). The jets
initially coarsen, but subsequently the coarsening process appears to terminate.
Superposed on the jets are relaxation oscillations that are observed at all times
after an initial transient. These oscillations are almost exactly in phase in all the jets,
even though the jets are not all equally strong.
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FIGURE 3. (Colour online) Space–time evolution of the jet profile Ū(z, t) in the MRBC
system when Ra= 6 and Sc= 1.

3.2. Simulation of the MRBC system with Ra= 2, Sc= 1
In this section we show the corresponding results with Ra = 2 and Sc = 1 in a
doubly periodic domain of the same effective size Lx × Lz = 32lopt × 32lopt, with lopt
now computed for Ra = 2. In this case the density ratio is three times larger and
comparable to the inverse of the small diffusivity ratio. This parameter regime is
hard to reach in DNS of the primitive equations describing salt-finger convection
owing to the high buoyancy frequency associated with large density ratios (Garaud &
Brummell 2015). However, the MRBC system (2.1) is quite capable of reaching this
extreme parameter regime and at low cost.

In figure 4 we show the time evolution of the salinity potential energy PS, salinity
flux FS, kinetic energy Kjet in the jets and the fluctuation kinetic energy Kfluc. We see
that PS, FS and Kfluc equilibrate relatively quickly while the jet kinetic energy Kjet
undergoes several step-like increases that correlate well with jet mergers (figure 5a).
The resulting two-jet state persists for a long time, but not forever: if the calculation is
continued to & 105 (not shown) one finds that the two jets eventually also merge and
the final state of the system therefore consists of a single jet to the right (accompanied,
of course, by a similar jet to the left). Moreover, the relaxation oscillations that proved
so dominant at Ra= 6 are now largely submerged in the fluctuation field.

Because of the longer time integration, t= [0, 2.2× 104
], as compared with that in

§ 3.1, we observe more coarsening events – the four jets coarsen into three around
t = 5000 and then into two around t = 14 000. The snapshots of the horizontal
velocity field u(x, z, t) (figure 5b–e) show that at the very initial time, the salt-finger
distribution is almost uniform in height, with no hint of jet formation. However, as
time proceeds, jets begin to form and strengthen as a result of repeated mergers.
Figure 6 shows the corresponding snapshots of the salinity field S. The salt fingers
are clearly visible in the initial stages of evolution but are subsequently shredded by
the growing horizontal flow.

To describe the jets we define the dominant jet wavenumber

mdominant =

∫
|m|3| ˆ̄ψ |2 dm∫
|m|2| ˆ̄ψ |2 dm

, (3.3)
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FIGURE 4. (Colour online) Evolution of salinity potential energy PS, salinity flux FS,
kinetic energy Kjet in the jets and the fluctuation kinetic energy Kfluc in a doubly periodic
domain of size Lx × Lz = 32lopt × 32lopt obtained from the MRBC equations (2.1) when
Ra= 2 and Sc= 1. A statistically stationary state is present for t & 1.5× 104.

where ˆ̄ψ is the Fourier transform of the horizontally averaged streamfunction ψ̄ .
Figure 7 shows the dependence of the total kinetic energy on the dominant jet
wavenumber during a simulation run, with the latter normalized by the wavenumber
corresponding to the domain height. Thus, at the end of this simulation, 2πm/Lz
reaches 2. We observe that as the system evolves, the dominant wavenumber decreases
and the jet kinetic energy surpasses the fluctuation kinetic energy. In addition, we
identify a scaling law for the total kinetic energy, Ktot ∼ m−αdominant with 5/3 . α . 2,
quantifying the growth in kinetic energy as the system coarsens.

To illuminate the details of this energy increase, we show in figure 8 the spectrum
of the jet kinetic energy

EKjet =
1
2 m2
|ψ̂(0,m)|2 (3.4)

at t= 3000, 8000 and 15 000, corresponding to states with 4, 3 and 2 jets, respectively
(figure 5a). We observe that except on the largest scales, the jet kinetic energy
spectrum exhibits a m−4 scaling, for which we provide an explanation in § 5. We can
also identify a bulge in energy at the largest scale present and track it to yet larger
scales as time progresses and the system coarsens. Throughout the paper, we use the
notation E to denote spectra – for example, if Kjet is the domain-averaged jet kinetic
energy then EKjet is the corresponding spectrum.

We next focus on gathering information about the dynamics and dominant balances
in the MRBC system (2.1) in spectral space. For this purpose we observe that in
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FIGURE 5. (Colour online) (a) Space–time evolution of the jet profile Ū(z, t) in the
MRBC system when Ra= 2 and Sc= 1. (b–e) Snapshots of u(x, z, t) at t= 10, 100, 1000
and 12 000, respectively.

spectral space
d
dt

EKtot = Tψ + Fψ −Dlψ −Dsψ , (3.5)

where

EKtot =
1
2(k

2
+m2)|ψ̂(k,m)|2, (3.6a)

Tψ = 1
2(ψ̂

∗J (ψ,∇2ψ)

∧

+ c.c.), (3.6b)
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FIGURE 6. (Colour online) (a–d) Snapshots of S(x, z, t) at t= 10, 100, 1000 and 12 000,
respectively.
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FIGURE 7. (Colour online) Dependence of the total kinetic energy Ktot (blue solid curve),
the kinetic energy Kjet in the jets (red dashed curve) and the kinetic energy Kfluc in the
fluctuations (green dotted curve) on the dominant jet wavenumber mdominant. The black
arrow indicates the direction of time evolution. The black dashed and dot-dashed lines
represent m−2 and m−5/3 relations, respectively, and are provided for visual guidance.

Fψ = − 1
2(ikψ̂ Ŝ∗ + c.c.), (3.6c)

Dlψ =
k2

k2 +m2
|ψ̂(k,m)|2, (3.6d)
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FIGURE 8. (Colour online) Jet kinetic energy spectrum at t= 3000, 8000 and 15 000. The
black dot-dashed line represents the m−4 relation and is provided for visual guidance.

Dsψ = (k2
+m2)2|ψ̂(k,m)|2. (3.6e)

Here the superscript * indicates a complex conjugate. Equation (3.5) describes the
contributions to the evolution of EKtot arising from energy transport through advection
(Tψ ) and buoyancy (Fψ ) together with energy losses via large-scale (Dlψ ) and
small-scale (Dsψ ) dissipation. Next, we introduce a decomposition into a mean
and a fluctuating part, ψ = ψ̄ + ψ ′, and separate the fluctuation transport equation
into mean–fluctuation and fluctuation–fluctuation contributions, defined as follows:

Tψ,m+f→f =
1
2(ψ̂

′∗(ψ ′xψ̄zzz − ψ̄z∇
2ψ ′x)

∧

+ c.c.), (3.7a)

Tψ,f+f→f =
1
2(ψ̂

′∗J (ψ ′,∇2ψ ′)

∧

+ c.c.). (3.7b)

Thus Tψ,f = Tψ,m+f→f + Tψ,f+f→f is the total fluctuation transport.
We begin by focusing on the fluctuating component by subtracting the spectrum of

the mean from the total spectrum, and define the fluctuation kinetic energy spectrum
as EKfluc = EKtot − EKjet. In figure 9 we show the fluctuation spectrum EKfluc at t= 10,
the initial stage of evolution. Figure 9(a) shows that the fluctuation kinetic energy
initially centres on the optimal wavenumber for instability, much as in the IFSC
regime in the limit Sc → ∞. Comparison of panels (b–d) shows that advection
is dominated by the fluctuation–fluctuation interaction, while the mean–fluctuation
interaction is of higher order, as is made explicit by the colour difference in the
associated colour maps. The transport of energy from small scales to large scales
(inverse cascade) via the fluctuation–fluctuation interaction resembles that in 2D
turbulence. This is illustrated in figure 9(c) by the extraction and injection of energy
around the optimal wavenumber and marginal curve at k= 0, respectively.

When jets form, the dominant balance changes. In figure 10 we show the spectra of
the various contributions to (3.5) at t= 1000. The fluctuation kinetic energy spectrum
no longer concentrates around the optimal wavenumber, but now centres around the
marginal curve at k≈0. In addition, as evidenced by the differing range of scale in the
colour maps, the dominant component in energy transport is now the mean–fluctuation
interaction instead of the fluctuation–fluctuation interaction. We will make use of this
important observation in the next section.
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FIGURE 9. (Colour online) Spectra of (a) the fluctuation kinetic energy EKfluc, (b) energy
transport Tψ,f , (c) fluctuation–fluctuation interaction Tψ,f+f→f and (d) the mean–fluctuation
interaction Tψ,m+f→f at t = 10, computed from the MRBC system (2.1) with Ra= 2 and
Sc= 1. The black dots mark the marginal curve for linear instability.

The direction of transport is revealed in figure 11, which shows the spectra of
the various contributions to (3.5) averaged over t = [9000, 12 000], a time interval
corresponding to the presence of three jets. The fluctuation kinetic energy spectrum
EKfluc centres around the marginal curve and transport is dominated by the mean–
fluctuation interactions. The latter transport energy from small to large scales along
the marginal curve, while the mean–fluctuation interaction transports energy mostly
across the marginal curve.

We can obtain an analogous description of salinity transport in spectral space.
Multiplying (2.1a) by Ŝ∗ and adding the complex conjugate leads to the potential
energy equation

d
dt

ES = TS + FS −DS, (3.8)

where

ES =
1
2 |Ŝ(k,m)|2, (3.9a)

TS =
1
2(ψ̂

∗J (ψ, S)
∧

+ c.c.), (3.9b)

FS = +
1
2(ikψ̂ Ŝ∗ + c.c.)=−Fψ , (3.9c)

DS = (k2
+m2)|Ŝ(k,m)|2. (3.9d)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

78
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.782


Jet formation in MRBC 243

m
/k

op
t

2

1

0

-1

-2 -1 0 1 2

m
/k

op
t

2

1

0

-1

-2 -1 0 1 2
k/kopt

(a)

(c)

2

1

0

-1

-2 -1 0 1 2

2

1

0

-1

-2 -1 0 1 2
k/kopt

(b)

(d)

4

3

2

1

0

4

2

0

-2

-4

1.0

0.5

0

-0.5

-1.0

-1.5

1.0

0.5

0

-0.5

-1.0

-1.5

(÷ 106) (÷ 107)

(÷ 107) (÷ 107)EK fluc T¥,f

T¥,f+f→f T¥,m+f→f

FIGURE 10. (Colour online) Spectra of (a) the fluctuation kinetic energy EKfluc, (b) energy
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Sc= 1. The black dots mark the marginal curve for linear instability.

As before, we define the jet and fluctuation parts of the salinity potential energy
spectrum

ESjet =
1
2 |Ŝ(0,m)|2, (3.10a)

ESfluc = ES − ESjet, (3.10b)

and the mean–fluctuation and fluctuation–fluctuation transports:

TS,m+f→f =
1
2(S
′∗(ψ ′xS̄z − S′xψ̄z)

∧

+ c.c.), (3.11a)

TS,f+f→f =
1
2(S
′∗J (ψ ′, S′)
∧

+ c.c.), (3.11b)
TS,f = TS,m+f→f + TS,f+f→f . (3.11c)

Figure 12 shows ESfluc and TS,f averaged over t = [9000, 12 000]. The salinity field
differs from the streamfunction by its concentration at large scale both horizontally
and vertically.

To understand the mean balance, we take the time and horizontal (zonal) average
over a statistically steady state of the MRBC system (2.1). We obtain

1
Sc
ψxψz = ψ̄zz, (3.12a)
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The black dots mark the marginal curve for linear instability.

ψxS= S̄z + const., (3.12b)

a result confirmed in figure 13, indicating that the system has reached a statistically
steady state in which the jet structure is in balance with dissipation. In (3.12b)
the constant of integration corresponds to the total downward salinity flux that
drives the system by transferring available potential energy in the salinity field into
kinetic energy, and hence must be non-zero. In contrast, equation (3.12a) contains
no integration constant because the x→−x symmetry of the MRBC model prohibits
shear with a preferred direction. The small differences between the left- and right-hand
sides of (3.12) seen in figure 13 are a consequence of the slow coarsening process.

4. Further reduction
In the previous section we found that horizontal jets are the dominant structures in

the MRBC system (2.1) at late times and that in the jet regime the mean–fluctuation
interaction is stronger than the fluctuation–fluctuation interaction. In this section we
make use of these findings to obtain two further simplifications of the MRBC system
that continue to retain the essential dynamics of this system. These are the quasilinear
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system studied in § 4.1, obtained by neglecting the fluctuation–fluctuation interaction,
and the single-mode system studied in § 4.2, with only one horizontal wavenumber.
The results show that these two further reductions do, at least qualitatively, capture the
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phenomena of jet formation and coarsening, and provide us with additional confidence
in the phenomenological theory described in § 5.

4.1. Quasilinear system
In this section, we present the study of the quasilinear system obtained by neglecting
the fluctuation–fluctuation interaction in the MRBC system (2.1). Mathematically, we
replace the nonlinear advection terms by their quasilinear approximation:

J (a, b)→J (ā, b′)+J (a′, b̄), (4.1)

where a and b are arbitrary fields. Thus the mean–perturbation interaction contains
both the mean-advected perturbation field and the perturbation-advected mean field.
This approximation has been widely used in studies of jet formation on the β-plane
with random forcing (cf. Farrell & Ioannou 2003, 2007; O’Gorman & Schneider 2007;
Marston, Conover & Schneider 2008; Srinivasan & Young 2012) because it leads to
a relatively simple description of the statistical properties of the solution in terms of
cumulants. However, the quasilinear approximation may apply to deterministic systems
as well. In some cases the approximation may be justified by appropriate asymptotic
analysis (Beaume et al. 2015), but here it is made on the basis of our numerical
observations. We show below that the mean–fluctuation interaction alone can generate
and maintain horizontal jets, without the presence of an inverse cascade mechanism
due to the fluctuation–fluctuation interaction. For this study we therefore retain the
parameters Ra= 2 and Sc= 1 and likewise retain the domain size and resolution of
the previous section, unless otherwise specified.

Numerical integration of the resulting quasilinear system shows that all quantities
settle into a statistically steady state, although here they do so much faster than the
corresponding quantities in figure 4. In figure 14 we compare the time evolution of
the salinity potential energy PS, salinity flux FS, and the kinetic energy Kjet and Kfluc
of the jets and the associated fluctuations in the quasilinear system (blue curves) with
the corresponding results from the MRBC model (red curves). The figure shows that
the salinity potential energy and the fluctuation kinetic energy in the saturated state
are larger than those in the MRBC system, while the salinity flux and the jet kinetic
energy are weaker. However, a more careful look reveals that the jet kinetic energy in
the quasilinear linear system saturates at approximately the same level as the initial
saturation level in the MRBC system, although subsequent coarsening in the latter
leads to growing divergence between the two. At the same time the coarsening in
the MRBC system leads to growing convergence with the salinity potential energy
in the quasilinear system. Figure 15 shows a typical evolution of the horizontally
averaged horizontal velocity as well as snapshots of the instantaneous horizontal
velocity u(x, z, t). The key feature we observe is that jets still form, indicating
that the primary mechanism behind jet formation is the mean–fluctuation interaction.
As in the full system, we observe that initially narrow jets gradually coarsen into
fewer broader and more energetic jets, although here the three-jet state appears to be
more stable and persists for a longer time than in the MRBC system. However, the
structure of the fluctuating horizontal velocity field u(x, z, t) differs in detail from that
of the MRBC system (figure 5), with small horizontal scale structures suppressed and
replaced over time by prominent V-shaped structures that stretch across the domain
in the horizontal direction (figure 15b–e).

Figure 16 shows the corresponding snapshots of the salinity field S(x, z, t), whose
behaviour also resembles that of the full MRBC system (figure 6) – as the mean
velocity field strengthens with time, it shears the salt fingers more efficiently and
we observe smaller-scale fingers. These are gradually submerged into horizontal
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FIGURE 14. (Colour online) Blue solid curves: evolution of the salinity potential energy
PS, salinity flux FS, the jet kinetic energy Kjet and the kinetic energy Kfluc of the associated
fluctuations computed from the quasilinear system with Ra = 2 and Sc = 1 in a doubly
periodic domain of size Lx × Lz = 32lopt × 32lopt. Red dashed curves: corresponding
quantities from the MRBC system (shown in figure 4).

domain-size structures reflecting similar structures in the u(x, z, t) snapshots.
Qualitatively similar results were obtained for moderately low Prandtl numbers
by Radko (2010) using a weakly nonlinear mean-field approach.

We conclude this subsection with figure 17, showing the spectrum of the fluctuation
kinetic energy EKfluc and the transport term Tψ averaged over t = [10 000, 11 000].
The figure shows that the fluctuation kinetic energy concentrates at the horizontal
wavenumber corresponding to the domain size while centring around the marginal
curve. These large horizontal scale structures are particularly prominent in figure 15(e).
From the transport term shown in figure 17(b) we see that advection transports energy
from linearly growing modes to linearly damped modes, much as occurs in the full
MRBC system.

4.2. Single-mode system
In the previous section we found that the quasilinear system can successfully generate
jets and that energy concentrates at the largest horizontal scales accessible to the
system. In this section we use this information to reduce the quasilinear system yet
further, to a single-mode system with only one horizontal wavenumber corresponding
to the domain size, k = π/(16lopt), retained in the fluctuation field. As before we
present results from this procedure for the parameters Ra= 2 and Sc= 1.

Figure 18 shows the time evolution of the salinity potential energy PS, salinity
flux FS, kinetic energy Kjet in the jets and the kinetic energy Kfluc in the associated
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FIGURE 15. (Colour online) (a) Space–time evolution of the jet profile Ū(z, t) in the
quasilinear system when Ra = 2 and Sc = 1. (b–e) Snapshots of u(x, z, t) at t =
10, 100, 1000 and 12 000, respectively.

fluctuations and compares it with the evolution of the corresponding quantities in
the MRBC system. As in the quasilinear system, the single-mode system also shows
an initial energy peak, but this time the ‘final’ state is not as steady and bursts
appear in the energy evolution. This abrupt bursting behaviour is also observed in
the evolution of the jet state shown in figure 19. The main distinguishing feature of
the single-mode system is that the jet coarsens to the domain size very quickly, but
the subsequent properties of the jet structure are qualitatively similar to those found
in both the quasilinear system and the MRBC system. Indeed, figure 18 shows that
the salinity potential energy and the fluctuation kinetic energy are reproduced almost
perfectly, although the salinity flux and the jet kinetic energy are in general weaker.
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respectively, for the quasilinear system with Ra= 2, Sc= 1.
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FIGURE 17. (Colour online) (a,b) Spectra of the fluctuation kinetic energy EKfluc
and energy transport Tψ,f in the quasilinear system arising from the mean–fluctuation
interaction, averaged over t = [10 000, 11 000]. The black dots mark the marginal curve
for linear instability.

5. Spectra

In the previous section we showed that the quasilinear and single-mode models
capture the essential behaviour of the MRBC model – jet formation and coarsening
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FIGURE 18. (Colour online) Blue solid curves: evolution of the salinity potential energy
PS, salinity flux FS, the jet kinetic energy Kjet and the kinetic energy Kfluc of the
associated fluctuations computed from the single-mode system with Ra= 2 and Sc= 1 and
wavenumber k = π/(16lopt) in a doubly periodic domain of size Lx × Lz = 32lopt × 32lopt.
Red dashed curves: corresponding quantities from the MRBC system (shown in figure 4).
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FIGURE 19. (Colour online) Space–time evolution of the jet profile Ū(z, t) in the
single-mode system with Ra= 2 and Sc= 1 and wavenumber k=π/(16lopt).

– despite differences in the detailed properties of the solutions. In this section we
perform a more quantitative comparison by comparing and contrasting in detail the
spectra of the solutions to the MRBC model and the quasilinear and single-mode
approximations to it.
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FIGURE 20. (Colour online) Compensated spectra of (a) the mean velocity and (b) the
mean salinity for the MRBC model, the quasilinear (QL) model and the single-mode
model with wavenumber k=π/(16lopt).

Figure 20 shows that all three systems exhibit the same zonal velocity spectrum
Ēu(m)= |û(k= 0,m)|2/2∼m−4 and the same mean salinity spectrum ĒSjet(m)= |Ŝ(k=
0, m)|2/2 ∼ m−2 at sufficiently small m/kopt. In view of our reduction procedure,
this robust scaling must be a consequence of the mean–fluctuation interaction and
insensitive to the fluctuation–fluctuation interactions. In fact, the fluctuation–fluctuation
interactions are important only for wavenumbers m/kopt & 0.7. We emphasize that this
scaling differs from the m−5 scaling for the planetary (β-plane) jet based on the
Rossby wave dispersion relation (Rhines 1975).

To understand the origin of these large-scale spectral scalings we examine the
dominant balances in the governing equations in spectral space. However, finding
these balances in the MRBC and quasilinear models is not simple, owing to the k
dependence of the terms. Figures 21 and 22 show the m dependence of Eψ = |ψ̂ |2/2
and ES = |Ŝ|2/2 for fixed horizontal wavenumbers k = 2πnk/Lx, nk = 1, 2 . . . ,
computed from the MRBC and quasilinear models, respectively. We see that while
the spectrum of Eψ does depend on k, the m-dependence of ES is almost independent
of k. Note that in these figures the quantities marked ‘averaged’ correspond to
averaging over all the horizontal wavenumbers k, and not only over the five smallest
wavenumbers shown in the plots.

The situation is simpler in the single-mode case. Figure 23 shows the spectra of the
different contributions to the fluctuation momentum and fluctuation salinity balance
in spectral space ((3.5) and (3.8)) as computed from the single-mode system in a
statistically steady state when Ra = 2 and Sc = 1. We find that in the large-scale
regime (small m) all quantities exhibit power-law behaviour. The dominant balance in
the momentum equation is between energy pumping by buoyancy Fψ and large-scale
damping Dlψ ; the slight imbalance between the two quantifies the contribution of the
transport term Tψ . In the salinity equation, the flux FS, damping DS and the transport
term TS are all comparable and in balance.

Figure 24 shows the spectrum of the transport term Tψ in the momentum equation.
This term consists of two contributions

Tψ1 =
1
2(ψ̂

∗ψ̄z∇
2ψ ′x

∧

+ c.c.) and Tψ2 =
1
2(ψ̂

∗ψ ′xψ̄zzz + c.c.
∧

). (5.1a,b)

Of these Tψ1 is the dominant term, while Tψ2 has the opposite sign and therefore
reduces (slightly) the overall effectiveness of the first term.
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FIGURE 21. (Colour online) The quantities Eψ and ES at differing fixed horizontal
wavenumbers k computed from the MRBC system with Ra= 2, Sc= 1. The black curve
shows the spectrum obtained by averaging over k. The red star is the marginal vertical
wavenumber corresponding to the smallest horizontal wavenumber 2π/Lx. (a) MRBC,
fluctuation ψ spectrum. (b) MRBC, fluctuation S spectrum.
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FIGURE 22. (Colour online) The quantities Eψ and ES at different fixed horizontal
wavenumbers k computed from the quasilinear system with Ra = 2, Sc = 1. The black
curve shows the spectrum obtained by averaging over k. The red star is the marginal
vertical wavenumber corresponding to the smallest horizontal wavenumber 2π/Lx. (a) QL,
fluctuation ψ spectrum. (b) QL, fluctuation S spectrum.

We can express the above leading- and next-order balances in the ψ fluctuation
equation as

Fψ ∼ Dlψ , (5.2a)
Tψ1 ∼ Dlψ + Fψ , (5.2b)

approximating Tψ by the dominant Tψ1 term. It is hard to estimate Dlψ +Fψ , but our
numerical results (figure 23) suggest that Dlψ +Fψ ∼mDlψ . Since in the single-mode
model k 6 m� 1 for large-scale modes in the vertical we approximate the Laplacian
as 1∼m−2. The balances (5.2) then imply

Ŝ′ ∼
1

m2
ψ̂ ′, (5.3a)
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FIGURE 23. (Colour online) Contributions to (a) fluctuating momentum balance and
(b) fluctuating salinity balance, in spectral space, obtained from the single-mode model
with Ra = 2, Sc = 1 and wavenumber k = π/(16lopt). The star is the marginal vertical
wavenumber corresponding to k=π/(16lopt).
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FIGURE 24. (Colour online) Transport terms in spectral space computed from the single-
mode model with Ra= 2, Sc= 1 and wavenumber k=π/(16lopt).

ψ̄z∇
2ψ ′x

∧

∼ m
1

m2
ψ̂ ′. (5.3b)

To obtain a closed system we need the mean balance (3.12), which in spectral space
can be written as

ψ ′zψ
′

x

∧
∼m2 ˆ̄ψ, (5.4a)

ψ ′xS
′

∧
∼m ˆ̄S. (5.4b)

To solve the closed system (5.3)–(5.4) we must compute the convolution integrals.
These do not have a suitable asymptotic expansion valid in our large-scale regime, and
we therefore calculate them numerically. For this purpose we assume that all quantities
are described by piecewise power laws, i.e.

f̂ (m)=

{
|m|α, |m|<m0,

|m|β, |m|> m0,
(5.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

78
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.782


254 J.-H. Xie, K. Julien and E. Knobloch

10010-1

100

10-5

10-10

m1

m

ı = -10
ı = -∞
Adv

FIGURE 25. (Colour online) Numerical (green solid curve) and theoretical estimates of the
left-hand side of (5.3b). The theoretical estimates use different values of the small-scale
exponent β: blue curve for β =−10 and red curve for β =−∞.

where m0 denotes the transition between large and small scales. We also assume that
the transition between these two regimes occurs at the marginal wavenumber, m0 =

mmar = (Ra− 1)1/6k1/3
= (Ra− 1)1/6(2π/Lx)

1/3, as observed in figure 23. In the above
expressions, the convergence of the Fourier transform requires that β < 0.

For convenience, we define a function C(n1, n2) that approximates the exponent
of the convolution of two functions f1 and f2 with the piecewise power-law spectra
defined above in (5.5) and large-scale exponents α = n1 and α = n2, respectively,
i.e. f1f2

∧
∼ mC(n1,n2) for m < m0. Here, we assume that C(n1, n2) is independent of

the small-scale exponents, as confirmed numerically in figure 25, and determine this
quantity from a power-law fit to the convolution in the range k . m . m0. Thus
C(n1, n2) is determined empirically.

Assuming that the fluctuation and mean fields are well approximated for k.m.m0
by the power laws

ψ̂ ′ ∼ma, ˆ̄ψ ∼mb, Ŝ′ ∼mc and ˆ̄S∼md, (5.6a−d)

and that k� 1 is fixed, a balance of the exponents in (5.3)–(5.4) implies

c = a− 2, (5.7a)
C(b+ 1, a+ 2) = a− 1, (5.7b)

C(a+ 1, a) = b+ 2, (5.7c)
C(a, c) = d+ 1. (5.7d)

These balances are obtained from fits to the data for wavenumbers m smaller than
the breakpoint m0, but not too small (since m & k), and are therefore empirical. We
solve (5.7) using an iterative process employing the fitting procedure described above
to compute C(a, b) for each a, b. The choice

a≈ 2, b≈−3, c≈ 0, d≈−1 (5.8a−d)

is found to lead to smallest error in (5.7) and matches well the numerical results for
the mean velocity and salinity spectra presented in figure 20(a,b). Thus despite its
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FIGURE 26. (Colour online) Mean velocity Ū and shear Ūz for the full MRBC system
at t= 20 000.

empirical nature the above procedure provides a pathway to understanding the origin
of the observed large-scale behaviour of the jet spectrum.

In figure 25 we show the matching between the numerical simulation results and
the theoretical prediction for the left-hand side of (5.3b) and hence (5.7b). The
convolution of functions of the form of (5.5) is well approximated by a power
law in the large-scale regime. In addition, since the β = −10 and β = −∞ cases
are indistinguishable at large scales, we conclude that the small-scale exponent is
unimportant in the computation of C. This provides a plausible explanation why the
three systems – MRBC, quasilinear and single mode – all have the same large-scale
spectrum, even though their small-scale spectra are very different.

We close this section by discussing the physical space structure corresponding to
the large-scale scaling (5.8), focusing on the mean velocity Ū characterizing the jet
structure. In view of the scaling ˆ̄ψ ∼ m−3 of the mean streamfunction, the mean
velocity scales as ˆ̄U ∼ m−2. The inverse-square dependence of the spectrum of the
jet velocity Ū on the wavenumber m is consistent with a zigzag profile: at the jet
flank the mean velocity depends linearly on z and the shear is therefore constant,
Ūz = const., a conclusion that is confirmed in figure 26. Similar linkage between a
power-law spectrum and spatial structure also appears in other systems. For example,
the Phillips spectrum is based on the assumption that gravity waves have a wedge
shape (Phillips 1958).

6. Turbulent Hopf bifurcation
One striking phenomenon observed in the simulations of the MRBC system (2.1),

beyond the appearance of jets, is the turbulent state with superposed, approximately
periodic oscillations present when Ra= 6. In contrast, when Ra= 2 these oscillations
are absent and the state is statistically steady, albeit turbulent. An intriguing question
arises therefore as to the mechanism whereby these oscillations first appear as Ra
increases from Ra= 2. This section is devoted to this question.

Figure 27 shows the projection of the MRBC dynamics on two quantities
characteristic of the large-scale dynamics, the kinetic energy Kjet in the jets and
the salinity potential energy PS, for four values of the Rayleigh ratio, Ra = 2, 3, 4
and 6. We see that when Ra = 2 the system evolves towards a fixed-point attractor
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FIGURE 27. (Colour online) Projection of the MRBC dynamics on the salinity potential
energy PS and the kinetic energy Kjet in the jets within the time range t ∈ [0, 2000] as
computed from the MRBC system (2.1) with Sc=1 and (a–d) Ra=2, 3, 4, 6, respectively.
All curves start close to (0, 0).

corresponding to a statistically steady state. As Ra increases, an attractor remains but
becomes a statistical limit cycle, corresponding to the appearance of oscillations with
a well-defined period, cf. figure 2.

6.1. Phenomenological model
The basic mechanism for the saturation of the MRBC model is as follows: if
nonlinear advection is absent, the linear dynamics indicate that the energy of the
growing (respectively damped) modes increases (respectively decreases) exponentially;
nonlinear advection couples these modes by transferring energy from the linearly
growing modes to the linearly damped modes via the horizontally averaged mode,
the jet mode. Based on the above considerations, we propose a three-component
phenomenological model consisting of one linearly growing mode (A), one linearly
damped mode (B) and one mean mode (C):

At = λA− eCA− αCB, (6.1a)
Bt = −δB− eCB+ αCA, (6.1b)
Ct = −dC+ A2

+ B2, (6.1c)

where λ is the growth rate, δ is the damping rate, d is the decay rate of the mean
mode and α and e capture the strength of stable–unstable and mean–fluctuation
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FIGURE 28. (Colour online) Energy evolution in the three-mode model (6.1) with the
parameters α = 2, δ = 1, d= 1, e= 1 and (a) λ= 0.5, (b) λ= 1. In (b) we only show a
window of the final periodic state.

interactions, respectively. The form of the nonlinear terms preserves total energy
E = (A2

+ B2
+ eC2)/2 when the linear terms are absent. The signs in front of

A2
+ B2 in the third equation and αCA in the second equation have been taken

to be the same, so that in steady state perturbation energy is transferred from the
linearly growing mode A to the linearly damped mode B; moreover, this sign must
be opposite to that in front of the e-terms, while the signs of the two α-terms are
opposite, ensuring that the nonlinear terms preserve energy. Although we can set two
coefficients in the above model to be unity, e.g. d= e= 1, by an appropriate rescaling
of the variables and the time scale, we do not do so here as some of the coefficients
have clear physical meanings that we hope to explore in future work. We remark that
this model has been developed to describe the strongly driven turbulent regime and
so differs from other models of convectively driven shear flows that are based on the
interaction between near-marginal modes (Howard & Krishnamurti 1986; Hughes &
Proctor 1990; Rucklidge & Matthews 1996).

In this model, we expect the linear growth rate λ to be an increasing function of
Ra and therefore show in figure 28 numerical solutions of (6.1) for different λ but
keeping the other parameters fixed: α = 2, δ = 1, d = 1 and e= 1. This simple case
study shows that when the growth rate is small, λ= 0.5, corresponding to small Ra,
a steady state is reached, while for slightly larger growth rate, λ= 1, corresponding
to a larger Ra, a periodic state is reached. In this state a phase lag between the wave
and the mean, resembling that in the bottom panel in figure 2, is also observed.

Although the model (6.1) is based on our understanding of the energy transfer
and is not asymptotically derived, its simple form enables us to carry out a detailed
analysis. The steady state of the model is given by

A2
0 =

dλ
(1+ β2)(e+ αβ)

, (6.2a)

B2
0 =

dλβ2

(1+ β2)(e+ αβ)
, (6.2b)

C0 =
λ

(e+ αβ)
, (6.2c)
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Eigenvalues, å = 2, ∂ = 1, d = 1, e =1

FIGURE 29. (Colour online) The eigenvalues of the nonlinear steady state of the model
(6.1) with α= 2, δ= 1, d= 1, e= 1 and λ in the range [0.2, 2]. The arrows indicate the
direction of increasing λ.

where

β =
1

2δα

[
−e(δ + λ)+

√
e2(δ + λ)2 + 4λδα2

]
. (6.3)

This state is stable for small λ, as shown in figure 28(a), but not for larger λ. To
demonstrate this we examine the linear stability of this state described by the matrix

L=

λ− eC0 −αC0 −eA0 − αB0

αC0 −1− eC0 αA0 − eB0

2A0 2B0 −d

 . (6.4)

Figure 29 shows the parameter dependence of the eigenvalues of L on λ with the
other parameters held fixed. As λ increases, two eigenvalues cross the imaginary axis
from left to right, indicating a (supercritical) Hopf bifurcation that we identify with the
appearance of the statistical limit cycle observed in the numerical simulations of the
MRBC model in figure 27. We mention that other examples of oscillatory instability
of a turbulent state are known (e.g. Mujica & Lathrop 2015; Fauve et al. 2017).

7. Summary and discussion

In this paper we have studied the MRBC system (2.1) that describes salt-finger
convection in the regime of strong forcing by the unstable salinity stratification
and low salinity diffusivity. The system resembles Rayleigh–Bénard convection but
includes dissipation on large scales arising from thermal effects. As a result instability
sets in with an intrinsic length scale that is unrelated to externally imposed scales.

We have shown that the MRBC system, asymptotically valid in the limit τ → 0,
evolves towards a structure consisting of horizontal jets which disrupt the salt-finger
field and coarsen with increasing time. In the final, statistically steady state the
large-scale jet structures coexist dynamically with small-scale fluctuations. Although
our calculations were carried out for Schmidt number Sc = 1, we believe that this
value captures the essential dynamics of the system, since it lies between the case
Sc→∞ studied by Xie et al. (2017) and the opposite extreme case Sc→ 0 in which
the temperature field is no longer slaved to the dynamics and therefore cannot be
eliminated. The latter regime is neither geophysically nor astrophysically relevant,
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however, although it could apply to isothermal systems with competing salt–sugar
stratification.

We confirmed the validity of the MRBC system as a model of salt-finger convection
by comparing the results of numerical simulations of the model with those of the
primitive equations for Rayleigh ratio Ra = 6 carried out by Garaud & Brummell
(2015) and corresponding to salinity forcing of intermediate strength. The comparison
between these two simulations reveals common features, and in particular the presence
of relaxation oscillations: the fingers force the jets, while the jets shear the fingers,
and these two processes occur out of phase. However, we are unable to provide a
quantitative explanation of the oscillation period observed by Garaud & Brummell
(2015) because in our scaling we take κT to infinity while the primitive simulations
employ a time scale based on the thermal time.

The case Ra = 2, corresponding to a larger density ratio, is expensive for direct
numerical simulation of the primitive equations but is easily accessible in the MRBC
system. In our simulations, initialized with small-amplitude random noise, we observe
that the jet dynamics consist of two stages: the first stage is dominated by the linear
salt-finger instability and the jets are weak. In this stage the energy concentrates
around the optimal linear wavenumber and the nonlinear term transfers energy
gradually away from the linearly unstable wavenumbers. In the second and later
stage, the jets are strong and the kinetic energy concentrates around the marginal
modes. A statistically steady state is reached through energy transport from the
linearly growing wavenumbers to linearly damped wavenumbers via the mean field.
Simultaneously, the jets coarsen to smaller wavenumbers, leading to more and more
kinetic energy in the jet mode. Our simulations indicate that during the coarsening
process the kinetic energy grows with the decreasing wavenumber of the jet structure
as Ktot ∼ m−5/3

dominant as the system extracts potential energy from the unstable salinity
field.

To understand the mechanism of jet formation, we studied two further reductions of
the MRBC system: a quasilinear system in which fluctuation–fluctuation interactions
are omitted, and a single-mode system which retains only one horizontal wavenumber
in the fluctuations, the wavenumber corresponding to the domain-filling mode. The
major finding is that even these highly simplified systems both generate jets, thereby
confirming that the formation and maintenance of jets by the fluctuating fields is a
consequence of mean–fluctuation interactions. However, the two systems do differ in
some details from the MRBC system: the jets in the quasilinear system exhibit greater
temporal variability and coarsen more slowly as compared with those in the MRBC
system. In the single-mode model, temporal variability also includes intermittent bursts
in the energy evolution.

Even though the details of the three systems are different, the energy spectra of
the jets show a uniform wavenumber scaling at large scales, Eu ∼m−4 and ES ∼m−2,
which enables us to use the one-dimensional balances in the single-mode system to
study the formation and properties of the jet state. For the fluctuations, the dominant
balance in the momentum equation is between energy pumping through the buoyancy
term and large-scale damping; at next order advective transport accounts for the
remaining imbalance. In the salinity equation, the flux, damping and transport terms
all contribute to the leading-order balance. In contrast, in the mean-field equations,
both the momentum and salinity equations have the same basic balance between
nonlinear advection by the fluctuations and damping. A piecewise power-law model
for the spectrum (5.5) was shown to capture self-consistently the observed spectra
of both the mean and the fluctuating fields at large vertical scales. In particular, the
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observed scaling Eu ∼ m−4 indicates that the jets have a zigzag velocity profile, a
prediction also consistent with the DNS studies. Based on the above balances we used
phenomenological arguments to propose a simple three-variable model that appears to
capture the basic properties of the statistically stationary state and its loss of stability
to oscillations with increasing Rayleigh ratio.

The jet formation and subsequent coarsening process observed in the MRBC system
are reminiscent of other two-dimensional systems with both small-scale and large-scale
dissipation. The prototypical system of this type is provided by the two-dimensional
vorticity equation with small-scale dissipation and large-scale damping analogous to
Rayleigh friction and driven by an externally imposed small-scale random force (Smith
& Yakhot 1994; Bouchet & Simonnet 2009; Laurie et al. 2014; Frishman 2017;
Frishman et al. 2017). This system exhibits spectral condensation into domain-size
vortex structures in square domains and into parallel jets in rectangular domains. In
both cases these structures are long-time statistically stationary states of the system
that are both maintained by and in equilibrium with the small-scale fluctuations
introduced by the random force. In fact, similar phenomenology is also observed
in three-dimensional but highly anisotropic systems, such as thin-layer turbulence
(Francois et al. 2013; Xia & Francois 2017) and rapidly rotating Rayleigh–Bénard
convection (Guervilly & Hughes 2017; Julien, Knobloch & Plumley 2018). Because
of the strongly anisotropic motions, both these systems behave like two-dimensional
systems. However, in both, the domain-size structures are in equilibrium with the
small-scale fluctuations they themselves generate, as opposed to externally imposed
fluctuations, exactly as in the MRBC system studied here. In each case the jets
are statistical structures and so are contaminated by transient vortices and other
small-scale features, as also observed in the MRBC system.

One may expect that some understanding of the spectral condensation process
may be achieved using equilibrium statistical mechanics (Bouchet & Simonnet 2009;
Bouchet & Venaille 2012), as in other systems of this type (Julien et al. 2018),
despite the fact that these systems are driven dissipative systems and so are not
equilibrium systems in the statistical mechanics sense. However, the MRBC system
is in fact far from equilibrium because the salinity field is not a passive scalar
and is coupled to the streamfunction bidirectionally. As a result the buoyancy force
does not behave like an external random force. Despite these essential differences,
similarities between these systems remain and these can be traced to the presence of
strong anisotropy: in contrast to the vorticity equation with large-scale but isotropic
damping, the MRBC system has anisotropic large-scale dissipation that mimics the
anisotropy introduced in the stochastically forced two-dimensional vorticity equation
via the domain aspect ratio (Bouchet & Simonnet 2009; Bouchet & Venaille 2012;
Falkovich 2016; Frishman et al. 2017).

We close this paper with remarks on four future directions. First, the details of the
coarsening process of the jets observed in the MRBC system, such as the mechanism
behind coarsening, its time scale and the final jet scale, still remain to be understood.
Second, assuming an equilibrium jet scale exists, its dependence on the external
parameters needs to be determined. In fact, from the balance between the nonlinear
and the large-scale damping terms in the mean-momentum equation we obtain a
characteristic length scale,

`=

(
Urms

Sc

)1/3
(

dimensional: l∗ =
(

U∗rmsκTκ
2
S

gαTβT

)1/3
)
, (7.1)
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that may play a similar role to the Rhines scale for β-plane jets (Rhines 1975).
Evidently, studies of the MRBC system for different values of the Schmidt number
are desirable. Third, the validation of the phenomenological model (6.1) requires that
its parameters be fixed by numerical data or theory in order to facilitate further study
of bifurcations of the turbulent jet state. Fourth, the present work has focused on
the two-dimensional dynamical MRBC model, and it is an open question whether
the results we find in this paper generalize to three dimensions. A three-dimensional
MRBC model is easily derived following Xie et al. (2017), but isotropy in the
horizontal plane may prevent the formation of coherent horizontal jets (Garaud &
Brummell 2015). However, a preferred direction may be selected through the use of
a rectangular domain in the horizontal, as done for example by Guervilly & Hughes
(2017) and Julien et al. (2018), and in this case coherent jets may still form.
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